JP5131726B2 - Fullerene wire manufacturing method - Google Patents

Fullerene wire manufacturing method Download PDF

Info

Publication number
JP5131726B2
JP5131726B2 JP2006313074A JP2006313074A JP5131726B2 JP 5131726 B2 JP5131726 B2 JP 5131726B2 JP 2006313074 A JP2006313074 A JP 2006313074A JP 2006313074 A JP2006313074 A JP 2006313074A JP 5131726 B2 JP5131726 B2 JP 5131726B2
Authority
JP
Japan
Prior art keywords
fullerene
pyridine
liquid
fine
days
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006313074A
Other languages
Japanese (ja)
Other versions
JP2008127237A (en
Inventor
ラガソン リンゴル チェリー
薫一 宮澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2006313074A priority Critical patent/JP5131726B2/en
Publication of JP2008127237A publication Critical patent/JP2008127237A/en
Application granted granted Critical
Publication of JP5131726B2 publication Critical patent/JP5131726B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

60、C70、原子内包フラーレン、および、それらの誘導体からなるフラーレン分子を構成要素とする、棒状結晶、針状結晶、ひげ結晶、もしくは、繊維であるフラーレン細線の製造方法に関する。 The present invention relates to a method for producing a fullerene fine wire that is a rod-like crystal, needle-like crystal, whisker crystal, or fiber, comprising C 60 , C 70 , atom-encapsulated fullerene, and a fullerene molecule composed of derivatives thereof.

フラーレン分子の粉末の溶解液に光を照射して得たフラーレン分子粉末の飽和溶液に、液−液界面を形成し、これに超音波照射してフラーレン細線を製造方法において、中心波長302nmの紫外光をC60飽和ピリジン溶液に照射することは非特許文献1に示すとおり、従来公知である。
Diamond & Related Materials 15・1143 ・2005年12月5日・ K. Miyazawa , J. Minato, M. Fujino, T. Suga Kun’ichi Miyazawa,Jun−ichi Minato, Tetsuro Yoshii, Masahisa Fujino and Tadatomo Suga,” Structural characterization of the fullerene nanotubes prepared by the liquid−liquid interfacial precipitation method”, J.Mater.Res., 20[3](2005)688−695. K.Miyazawa and T.Suga, “Transmission electron microscopy investigation of tubular and capsular needlelike crystals of C60 produced by the liquid−liquid interfacial precipitation method”, J.Mater.Res.,19[11](2004)3145 - 3148 K.Miyazawa, J.Minato, T.Yoshii and T.Suga, “Characterization of fullerene nanotubes prepared by the liquid-liquid interfacial precipitation method”, Sci.Technol.Adv.Mater., 6[3−4](2005)388−393 J.Cheng, Y.Fang, Q.Huang, Y.Yan, X.Li,” Blue−green photoluminescence from pyridine−C60 adduct”, Chemical Physics Letters 330 (2000) 262 Kenichi Ogawa, Tomohiro Kato, Asato Ikegami, Hajime Tsuji, Nobuyuki Aoki and Yuichi Ochiai and Jonathan P. Bird, ” Electrical properties of field−effect transistors based on C60 nanowhiskers”, App.Phys.Lett. 88, 112109 (2006).
A liquid-liquid interface is formed in a saturated solution of fullerene molecule powder obtained by irradiating light to a solution of fullerene molecule powder, and this is irradiated with ultrasonic waves to produce a fullerene fine wire. Irradiating light onto a C 60 saturated pyridine solution is conventionally known as shown in Non-Patent Document 1.
Diamond & Related Materials 15, 1143 ・ December 5, 2005 ・ K. Miyazawa, J .; Minato, M.M. Fujino, T .; Suga Kun'ichi Miyazawa, Jun-ichi Minato, Tetsuro Yoshii, Masahisa Fujino and Tadatomo Suga, "Structural characterization of the fullerene nanotubes prepared by the liquid-liquid interfacial precipitation method", J. Mater. Res. , 20 [3] (2005) 688-695. K. Miyazawa and T.M. Suga, “Transmission electron microinvestigation of tubular and capsular needlelike crystals of the C60 produced by the liquid interface. Mater. Res. 19 [11] (2004) 3145-3148. K. Miyazawa, J. et al. Minato, T .; Yoshii and T. Suga, “Characterization of fullreen nanotubes prepared by the liquid-liquid interprecipitation method”, Sci. Technol. Adv. Mater. , 6 [3-4] (2005) 388-393 J. et al. Cheng, Y.C. Fang, Q. Huang, Y. et al. Yan, X. Li, “Blue-green photoluminescence from pyridine-C60 add”, Chemical Physics Letters 330 (2000) 262 Kenichi Ogawa, Tomohiro Kato, Asato Ikegami, Hajime Tsuji, Nobuyuki Aoki and Yuichi Ochiai and Jonathan P. Bird, “Electrical properties of field-effect transformers based on C60 nanohiskers”, App. Phys. Lett. 88, 112109 (2006).

しかし、従来の方法では、収率が不十分であったので、本発明は、その収率を著しく向上することを目的とする。   However, since the yield is insufficient in the conventional method, the present invention aims to significantly improve the yield.

本発明は、上記問題を解決するために、照射する光を波長範囲400nm−500nmの青色光としたことを特徴とするものである。
In order to solve the above problems, the present invention is characterized in that the light to be irradiated is blue light having a wavelength range of 400 nm to 500 nm .

前記非特許文献1で示す従来例では、中心波長302nmの紫外光を照射したが、この波長では、C60細線の析出に適したC60とピリジンとの化合物が十分に生成していなかったものと思われる。
これに対し、本発明では、青色光(400nm−500nm)を照射した結果、このような問題がなく収率が格段に向上した。
また非特許文献1で示す従来例では、C60飽和ピリジンとイソプロピルアルコールの量比を1:9に固定したが、本発明によって、この量比を1:10から1:6の範囲に拡張した場合も、C60細線が生成するという効果を発揮した。

また非特許文献1で示す従来例では、保管温度を10℃に固定していた。しかし、本発明では、保管温度、5℃、10℃、15℃の全てにおいて、再現性良く、C60細線が生成するという効果を発揮した。
In the conventional example shown in Non-Patent Document 1, ultraviolet light having a central wavelength of 302 nm was irradiated, but at this wavelength, a compound of C 60 and pyridine suitable for precipitation of C 60 fine wires was not sufficiently formed. I think that the.
On the other hand, in this invention, as a result of irradiating with blue light (400 nm-500 nm), there was no such problem and the yield was remarkably improved.
Further, in the conventional example shown in Non-Patent Document 1, the quantitative ratio of C 60 saturated pyridine and isopropyl alcohol is fixed at 1: 9, but this quantitative ratio is expanded to a range of 1:10 to 1: 6 by the present invention. Again, it was effective as C 60 thin line is produced.

In the conventional example shown in Non-Patent Document 1, the storage temperature is fixed at 10 ° C. However, in the present invention, C 60 fine wires were produced with good reproducibility at all storage temperatures of 5 ° C., 10 ° C., and 15 ° C.

(1)フラーレン溶液の調製
60 (99.5+% MTR Ltd.)を用いた。C60の溶媒として、ピリジン(密度 0.9819 g/ml)を用いた。C60粉末をメノウ乳鉢で粉砕して、ガラスビン(50mL)に入れたピリジンに添加し、これを、超音波洗浄装置を用いて、30分間超音波攪拌して飽和溶液を作った。この溶液を、桐山ロート(21mmφ、ろ紙No.5C)を用いて、溶け残ったC60をろ別し、沈殿を除去したC60飽和ピリジン溶液を得た。このビンを、Heraeus Kulzer GmBH社のTechnotray CUを用いて、青色光(波長分布400nm〜500nm)で、24時間照射した。また、同様にC60飽和ピリジンのガラスビンを、中心波長302 nm紫外光(光源:UVP Model UVM−57, USA)で24時間照射した。
(1) was used for the preparation of fullerene solution C 60 (99.5 +% MTR Ltd. ). Pyridine (density 0.9819 g / ml) was used as the C 60 solvent. C 60 powder was pulverized in an agate mortar and added to pyridine in a glass bottle (50 mL), and this was ultrasonically stirred for 30 minutes using an ultrasonic cleaning device to make a saturated solution. This solution, using a Kiriyama funnel (21Mmfai, filter paper No. 5C), the remaining C 60 dissolved was filtered off, to give a C 60 saturated pyridine solution to remove the precipitate. This bottle was irradiated with blue light (wavelength distribution: 400 nm to 500 nm) for 24 hours using a Technoray CU manufactured by Heraeus Kulzer GmBH. Similarly, a glass bottle of C 60 saturated pyridine was irradiated with ultraviolet light having a central wavelength of 302 nm (light source: UVP Model UVM-57, USA) for 24 hours.

(2)液−液界面の形成とフラーレン細線の生成
液−液界面を作るガラスビンとして、10mL容量のもので、外径が約21mmの円筒状のものを用いた。このサイズのものが好ましいが、外径40mm以下のガラスビンが扱い易い。ガラスビンは、透明でかつ耐食性に優れているので、容器として適している。金属製バット(横40cm縦30cm深さ10cm)の水を、投げ込み式クーラーで攪拌しつつ、水温を5℃に保った。10mLガラスビンに、C60飽和ピリジンを入れ、次いで、イソプロピルアルコール(IPA、密度0.79 g/ml)を静かに注いで、液−液界面を作った。液−液界面を形成後、このビンに溶媒蒸発を防ぐための蓋をして、氷水を入れた超音波洗浄器で1分間超音波攪拌し、手で振り混ぜ、さらに、1分間超音波攪拌を施して、界面を適度に拡散させた。この液−液界面析出法により、フラーレン細線が自己組織的に生成する。
(2) Formation of liquid-liquid interface and generation of fullerene thin wire As a glass bottle for forming the liquid-liquid interface, a glass bottle having a capacity of 10 mL and an outer diameter of about 21 mm was used. Although this size is preferable, a glass bottle having an outer diameter of 40 mm or less is easy to handle. Glass bottles are suitable as containers because they are transparent and excellent in corrosion resistance. The water temperature was kept at 5 ° C. while stirring water of a metal bat (width 40 cm, length 30 cm, depth 10 cm) with a throw-in cooler. A 10 mL glass bottle was charged with C 60 saturated pyridine and then isopropyl alcohol (IPA, density 0.79 g / ml) was gently poured to create a liquid-liquid interface. After forming the liquid-liquid interface, the bottle is covered with a cap to prevent solvent evaporation, and is ultrasonically stirred for 1 minute with an ultrasonic cleaner containing ice water, shaken by hand, and then ultrasonically stirred for 1 minute. The interface was diffused appropriately. By this liquid-liquid interface precipitation method, fullerene fine wires are self-organized.

(3)フラーレン細線の生成条件
フラーレン細線が生成する条件は、1)フラーレンの純度、2)フラーレンの有機溶液の青色光もしくは紫外光の照射時間、3)2)の作業終了後から液−液界面を形成するまでの経過時間(単に“経過時間”とする)、4)部屋の温度と湿度、5)用いた光の波長、6)第一溶媒(ピリジン)と第二溶媒(IPA)の量比(1:10, 1:9, 1:8,1:7,1:6,1:5など)、7)低温恒温器の貯蔵温度(15℃、10℃、5℃)に依存する。
このときの部屋の温度、湿度は、それぞれ、23℃〜26℃、50%〜75%の間である。3つの低温恒温器((SANYO MIR−153)を用い、それぞれ、貯蔵温度(15℃、10℃、5℃)に保った。
本研究の結果、青色光(波長範囲400nm−500nm)を照射したC60のピリジン溶液の方が、紫外線照射(中心波長302nm)したものよりもC60細線の生成量がより多いことが分かった。経過時間は、1時間〜25時間である。
好ましい条件として、青色光の照射時間は24時間、C60飽和ピリジン溶液/IPAの比は1:10、1:9、1:8である。15℃、10℃、5℃の貯蔵温度のいずれにおいてもC60細線が生成した。貯蔵温度5℃においては、液−液界面形成後から1〜2日で、C60細線の生成が目視で観察され、最良の結果を得ている。
また、1:9と1:8の両方の量比において、青色光照射したものの方がC60細線の生成量が多いことが分かった。
60細線の生成量は、溶液の保管温度にも依存しており、5℃が最も高いことが分かった。15℃では、C60飽和ピリジン溶液/IPAの比が小さくなるにつれて、生成量が減少した。
(3) Conditions for generating fullerene fine wires The conditions for generating fullerene fine wires are 1) purity of fullerene, 2) irradiation time of blue light or ultraviolet light of an organic solution of fullerene, and 3) liquid-liquid after the completion of 2) work. Elapsed time to form an interface (simply referred to as “elapsed time”), 4) room temperature and humidity, 5) wavelength of light used, 6) first solvent (pyridine) and second solvent (IPA) Quantity ratio (1:10, 1: 9, 1: 8, 1: 7, 1: 6, 1: 5, etc.) 7) Depends on the storage temperature of the low temperature incubator (15 ° C, 10 ° C, 5 ° C) .
The room temperature and humidity at this time are between 23 ° C. and 26 ° C. and 50% to 75%, respectively. Three low temperature incubators ((SANYO MIR-153) were used and kept at storage temperatures (15 ° C., 10 ° C., 5 ° C.), respectively.
As a result of this study, it was found that C 60 pyridine solution irradiated with blue light (wavelength range 400 nm-500 nm) produced more C 60 fine wires than that irradiated with ultraviolet light (center wavelength 302 nm). . The elapsed time is 1 hour to 25 hours.
As preferable conditions, the irradiation time of blue light is 24 hours, and the ratio of C 60 saturated pyridine solution / IPA is 1:10, 1: 9, 1: 8. C 60 fine wires were produced at all storage temperatures of 15 ° C., 10 ° C. and 5 ° C. At a storage temperature of 5 ° C., the formation of C 60 fine wires was visually observed within 1-2 days after the formation of the liquid-liquid interface, and the best results were obtained.
In addition, it was found that the amount of C 60 fine wire produced was greater in the blue light-irradiated product at both 1: 9 and 1: 8 quantitative ratios.
The amount of C 60 fine wire produced was also dependent on the storage temperature of the solution, and it was found that 5 ° C. was the highest. At 15 ° C., the yield decreased as the C 60 saturated pyridine solution / IPA ratio decreased.

比較例1Comparative Example 1

約0.15gのC60粉末をメノウ乳鉢で粉砕して、外径40mmの透明ガラスビン(容量100mL)を用いて、50mLのピリジン(和光純薬工業(株)製、特級)に溶解させ、蓋をして、紫外光(302nm)を24時間室温で照射し、最後に、ろ過した。
この照射によって、暗紫色の溶液が赤みを帯びた淡紅色に変化した。外径21mmの透明ガラスビン(10mL容量)に、この紫外線照射したC60飽和ピリジン溶液を0.82mL入れて、さらに、8.2mLのIPAをピペットを用いてゆっくりと加えて、液−液界面を形成した(図1(a))。ここまでの工程は、全て、約5℃に保った水浴で行なった。
次いで、超音波洗浄器(iuchi VS−150, 150W)の氷水中で、上記ガラスビンに超音波照射した(図1(b))。このビンは蓋をしたままで、低温恒温器で、10℃で保管した。
以上の方法によって、40本のサンプルを調製したが、調整時から4〜7日経過後観察したところ、16本だけのガラスビン中にC60細線が生成し、収率は40%であった(図2(a))。C60細線の生成量は、目視では、ビンによってばらつきがあった。
About 0.15 g of C 60 powder is pulverized in an agate mortar and dissolved in 50 mL of pyridine (made by Wako Pure Chemical Industries, Ltd., special grade) using a transparent glass bottle (capacity 100 mL) with an outer diameter of 40 mm, and the lid And irradiated with ultraviolet light (302 nm) for 24 hours at room temperature, and finally filtered.
This irradiation changed the dark purple solution to a reddish light red. Place 0.82 mL of this UV-irradiated C 60 saturated pyridine solution into a transparent glass bottle (10 mL capacity) with an outer diameter of 21 mm, and then slowly add 8.2 mL of IPA using a pipette to form a liquid-liquid interface. It was formed (FIG. 1 (a)). All the steps so far were performed in a water bath maintained at about 5 ° C.
Next, the glass bottle was subjected to ultrasonic irradiation in ice water of an ultrasonic cleaner (Iuchi VS-150, 150 W) (FIG. 1B). The bottle was stored at 10 ° C. in a low temperature incubator with the lid on.
Although 40 samples were prepared by the above method, when observed after 4 to 7 days from the time of adjustment, C 60 fine wires were formed in only 16 glass bottles, and the yield was 40% (Fig. 2 (a)). The amount of C 60 fine wire produced varied from bottle to bottle.

様々なC60飽和ピリジン/IPAの量比について、C60細線の生成を検討した(図2(a)、(b))。1:9(=C60飽和ピリジン/IPA)のビン(それぞれ、C60飽和ピリジン0.9mLとIPA8.1mLを含む)では、20本のビンのうちで、10本のビンに、目視でC60細線の生成が観察され、収率は50%であった。この場合、C60細線の生成が確認できるまで、最短で2日、最長で22日の育成時間を要しており、ごく少量のC60細線が生成した。 The ratio of the various C 60 saturated pyridine / IPA, were examined the generation of C 60 thin line (FIG. 2 (a), (b) ). In 1: 9 (= C 60 saturated pyridine / IPA) bottles (each containing 0.9 mL C 60 saturated pyridine and 8.1 mL IPA), 10 of 20 bottles were visually Production of 60 fine lines was observed and the yield was 50%. In this case, to be confirmed C 60 thin line generation, 2 days at the shortest, longest and takes a development time of 22 days, to produce only a small amount of C 60 thin line.

1:8のビン(C60飽和ピリジン1.0mLとIPA8.0mL)では、5本のビンのうちで3本のみにごく少量のC60細線が生成し、収率は、60%であった。この場合、C60細線の生成が確認できるまで、最短で2日、最長で21日の育成時間を要した。 In 1: 8 bottles (1.0 mL C 60 saturated pyridine and 8.0 mL IPA), only 3 out of 5 bottles produced very small C 60 wires and the yield was 60%. . In this case, to be confirmed C 60 thin line of production is 2 days a minimum, required to train time maximum of 21 days.

1:7のビン(C60飽和ピリジン1.1mLとIPA7.7mL)では、13本のビンのうちで8本のみにC60細線が生成し、収率は、60%であった。この場合、C60細線の生成が確認できるまで、最短で3日、最長で5日の育成時間を要した。生成したC60細線は極少量から少量であった。 In the 1: 7 bottle (1.1 mL of C 60 saturated pyridine and 7.7 mL of IPA), only 60 of 13 bottles produced C 60 wires, and the yield was 60%. In this case, until it can be confirmed C 60 thin line of generation, the shortest in three days, took the training time of 5 days at the longest. The resulting C 60 thin line was a small amount of very small amounts.

1:6のビン(C60飽和ピリジン1.3mLとIPA7.8mL)では、5本のビンのうちで1本のみにC60細線が生成し、収率は、20%であった。この場合、C60細線の生成が確認できるまで、8日の育成時間を要した。生成したC60細線は極少量であった。
1:5のビン(C60飽和ピリジン0.5mLとIPA7.5mL)では、C60細線の生成が、目視で確認できなかった。
In the 1: 6 bottle (1.3 mL of C 60 saturated pyridine and 7.8 mL of IPA), only 60 of the 5 bottles produced C 60 wires, and the yield was 20%. In this case, up to C 60 thin line of generation can be confirmed, took the training time of 8 days. The amount of C 60 fine wire produced was very small.
In a 1: 5 bottle (C 60 saturated pyridine 0.5 mL and IPA 7.5 mL), the formation of C 60 fine wires could not be confirmed visually.

比較例1のプロセスを、302nmの紫外光の代わりに、24時間青色光(400−500nm)照射したC60飽和ピリジンを用いて行なった。
この照射によって、C60飽和ピリジンは暗紫色から濁った黄褐色の溶液に変化した。この波長の光の照射によって、比較例1の場合に比べて、保管温度10℃において、より多い量のC60細線がより短い日数で生成した。
The process of Comparative Example 1 was performed using C 60 saturated pyridine irradiated with blue light (400-500 nm) for 24 hours instead of 302 nm ultraviolet light.
This irradiation changed the C 60 saturated pyridine from a dark purple to a cloudy tan solution. By the irradiation of light in this wavelength, as compared with the case of Comparative Example 1, the storage temperature 10 ° C., higher amounts of C 60 thin line was produced in shorter days.

1:10の溶液を用いた場合は、50本のビンに生成した。   When a 1:10 solution was used, it was produced in 50 bottles.

1:9のガラスビンにおいては、50本のビンのうちで、49本のビンにC60細線の生成が認められ、収率は98%であった。この場合、界面形成後、最短で1日、最長で10日で、C60細線が生成した。図1(c)にこの条件で生成したC60細線を示す。これは、界面形成後1日経過した様子を示しており、C60細線の生成が容易に視認できる。界面形成後2日後(図1(d))には、より多くのC60細線が綿球状に生成している。 In the 1: 9 glass bottle, generation of C 60 fine wires was observed in 49 of the 50 bottles, and the yield was 98%. In this case, C 60 fine lines were generated in 1 day at the shortest and 10 days at the longest after the interface formation. Figure 1 (c) shows a C 60 thin line generated by this condition. This shows a state in which one day has elapsed after the formation of the interface, and the generation of C 60 fine lines can be easily visually confirmed. Two days after the formation of the interface (FIG. 1 (d)), more C 60 fine lines are formed in a cotton ball.

1:8のガラスビンにおいては、収率はかなり高くなり、53本のビンの全てにおいてC60細線が生成し、100%の収率となった。 In the 1: 8 glass bottle, the yield was quite high, with C 60 fine lines formed in all 53 bottles, yielding 100%.

1:7(13本)、1:6(5本)、1:5(5本)のガラスビンにおいては、C60細線の生成が確認できなかった。
この結果、C60細線の生成には、ピリジンとイソプロピルアルコールの量比が、1:7から1:10の間が好ましい。
In the glass bottles of 1: 7 (13 bottles), 1: 6 (five bottles), and 1: 5 (five bottles), the generation of C 60 fine wires could not be confirmed.
As a result, the amount ratio of pyridine and isopropyl alcohol is preferably between 1: 7 and 1:10 for the production of C 60 fine wires.

1:10(C60飽和ピリジン/IPA)のガラスビン中のC60細線を、生成後2日経過したものにつき、走査型電子顕微鏡(SEM、Hitachi S−5500)で観察したものを図3に示す。
このC60細線の外径は約315nmであり、内部が外表面層とは異なった密度を持つ組織で充填された構造を示している。外表面の見かけの壁厚は、約75nmと約96nmと測定され、見かけの内径は約171nmと測定された。このC60細線は両端が閉じた構造を持っていると考えられ、中空構造部分が、溶媒和したC60で充填されていると推察される。
1:10 C 60 thin line in glass bottle (C 60 saturated pyridine / IPA), per that after two days after production, shown in Figure 3 that observed with a scanning electron microscope (SEM, Hitachi S-5500) .
The outer diameter of the C 60 thin line is about 315 nm, illustrates the inside is filled with tissue having different densities with the outer surface layer structure. The apparent wall thickness of the outer surface was measured at about 75 nm and about 96 nm, and the apparent inner diameter was measured at about 171 nm. The C 60 thin line is considered to have both ends closed structure, hollow structure portion is presumed to have been filled with C 60 solvated.

約0.15gのC60粉末をメノウ乳鉢で粉砕して、外径40mmの透明ガラスビン(容量100mL)を用いて、50mLのピリジン(和光純薬工業(株)製、特級)に溶解させ、蓋をして、青色光(400nm−500nm)を24時間室温で照射し、最後に、ろ過した。外径21mmの透明ガラスビン(10mL容量)に、この青色光を照射したC60飽和ピリジン溶液を入れて、さらに、IPAをピペットを用いてゆっくりと加えて、液−液界面を形成した。ここまでの工程は、全て、約5℃に保った水浴で行なった。
次いで、超音波洗浄器(iuchi VS−150, 150W)の氷水中で、上記ガラスビンに超音波照射した。このビンは蓋をしたままで、低温恒温器で10℃で保管した。
この結果、1:10(20本)、1:9(20本)、1:8(20本)、1:7(10本)のいずれのガラスビンにおいてもC60細線が生成した。また、潜伏期(=液−液界面形成直後から目視でC60細線の生成が確認されるまでの期間)は、それぞれ、1日、1日〜2日、 1日〜4日、7日〜17日であった(図2(b))。潜伏期の逆数を、C60細線の生成速度と定義すると、潜伏期が短いほど、生成速度は大きい。
About 0.15 g of C 60 powder is pulverized in an agate mortar and dissolved in 50 mL of pyridine (made by Wako Pure Chemical Industries, Ltd., special grade) using a transparent glass bottle (capacity 100 mL) with an outer diameter of 40 mm, and the lid And irradiated with blue light (400 nm-500 nm) for 24 hours at room temperature and finally filtered. The C 60 saturated pyridine solution irradiated with the blue light was put into a transparent glass bottle (10 mL capacity) having an outer diameter of 21 mm, and IPA was slowly added using a pipette to form a liquid-liquid interface. All the steps so far were performed in a water bath maintained at about 5 ° C.
Next, the glass bottle was irradiated with ultrasonic waves in ice water of an ultrasonic cleaner (Iuchi VS-150, 150 W). The bottle was stored at 10 ° C. in a low temperature incubator with the lid on.
As a result, C 60 fine wires were generated in any of the glass bottles of 1:10 (20), 1: 9 (20), 1: 8 (20), and 1: 7 (10). In addition, the incubation period (= period from immediately after the formation of the liquid-liquid interface until the formation of the C 60 fine line is visually confirmed) is 1 day, 1 day to 2 days, 1 day to 4 days, and 7 days to 17 days, respectively. Day (FIG. 2B). When the reciprocal of the incubation period is defined as the generation rate of the C 60 thin line, the generation rate is larger as the incubation period is shorter.

60細線の生成量は、1:10、1:9、1:8で、ほぼ等量であったが、1:7では生成量は減少した。しかし、保管温度5℃の例のみではあるが、1:7のビンにおいても、青色光で照射したC60を用いることにより、C60細線が生成したことは注目に値する。 The production amount of C 60 fine wire was 1:10, 1: 9, and 1: 8, which were almost equal, but the production amount decreased at 1: 7. However, although it is only an example at a storage temperature of 5 ° C., it is notable that a C 60 fine line was generated by using C 60 irradiated with blue light even in a 1: 7 bottle.

60飽和ピリジン溶液のガラスビンを、302nmの紫外光に代えて、青色光(400nm−500nm)で24時間照射したものを用いて、保管温度15℃にて、C60細線の生成実験を行なった。
この条件では、より短い時間で、より高いC60ピリジン飽和溶液/IPAの比において、より多くのC60細線が得られた(図2(a))。
Using a glass bottle of C 60 saturated pyridine solution irradiated with blue light (400 nm-500 nm) for 24 hours instead of 302 nm ultraviolet light, a C 60 fine wire generation experiment was conducted at a storage temperature of 15 ° C. .
Under this condition, more C 60 fine wires were obtained in a shorter time and at a higher C 60 pyridine saturated solution / IPA ratio (FIG. 2 (a)).

1:10のガラスビンにおいては、液−液界面形成から1〜4日の潜伏期間で、10本のガラスビン全てに、C60細線が生成した(収率100%)。 In the 1:10 glass bottle, C 60 fine wires were formed in all 10 glass bottles in the incubation period of 1 to 4 days from the formation of the liquid-liquid interface (yield 100%).

1:9のガラスビンにおいては、液−液界面形成から2〜15日の潜伏期間で、10本のガラスビン全てに、C60細線が生成した(収率100%)。 In the 1: 9 glass bottle, C 60 fine wires were formed in all 10 glass bottles (yield 100%) in the incubation period of 2 to 15 days from the formation of the liquid-liquid interface.

1:8のガラスビンにおいては、液−液界面形成から4〜5日の潜伏期間で、20本のガラスビンのうちの5本に、C60細線が生成した(収率25%)。 In the 1: 8 glass bottle, C 60 fine wires were formed in 5 of 20 glass bottles in a latent period of 4 to 5 days from the formation of the liquid-liquid interface (yield 25%).

1:7のガラスビンにおいては、C60細線が全く生成しなかった。
よって、本実施例では、1:10から1:8が好ましい割合である。
1: In 7 vial, C 60 thin line was not generated at all.
Therefore, in this embodiment, 1:10 to 1: 8 is a preferable ratio.

図4に、1:10の溶液を用いて、8日間育成したC60細線の走査型電子顕微鏡(SEM)による二次電子像を示す。C60細線の直径には、ばらつきがあり、矢印で示すように、125nmから500nmの直径の範囲のC60細線が観察されている。図5に示す走査透過電子像(STEM像, S−5500)では、C60細線は中空な構造となっており、C60ナノチューブが生成したことが分かる。
図中、ひとつの矢印で示したC60細線の直径は約125nm、2つの矢印で示したC60細線の直径は約500nmである。
図5のC60ナノチューブの壁厚は、約30nmの非常に薄い厚さの壁から、126nmの厚い壁まで、異なった厚さの壁が観察されている。また、C60ナノチューブの内径は、40nmから200nmまで、広く分布している。(a)と(b)のいずれの例においても、壁厚が一様でない。
図6では、C60飽和ピリジン溶液とIPAの比が1:8の溶液を用いて、9日間育成した例(二次電子像)を示す。このC60細線は約170nmの直径を持ち、中空構造となっていない。これは、中空なC60細線は、有限の壁厚を持っているため、ある外径以下のものは、中空構造を取りえないためである。
図7の外径220nm、内径64nmのC60細線は中空であり、ほぼ一様な壁厚と小さな内径の孔を持っているC60ナノチューブである。図6のC60細線よりも、より大きな外径を持つ場合は、中空構造を取りえることが分かる。
4 1:10 solution using a shows a secondary electron image by a scanning electron microscope of C 60 thin line was grown for 8 days (SEM). The diameter of the C 60 fine line varies, and as indicated by the arrows, a C 60 fine line having a diameter in the range of 125 nm to 500 nm is observed. Scanning transmission electron image shown in FIG. 5 (STEM image, S-5500) In, C 60 thin line has a hollow structure, it can be seen that C 60 nanotubes are produced.
In the drawing, the diameter of the C 60 thin line indicated by one arrow is about 125 nm, and the diameter of the C 60 thin line indicated by two arrows is about 500 nm.
C 60 nanotube wall of FIG. 5, a very thin wall thickness of about 30 nm, to the thick walls of 126 nm, the wall of different thicknesses are observed. The inner diameter of the C 60 nanotubes, from 40nm to 200 nm, are widely distributed. In both examples (a) and (b), the wall thickness is not uniform.
FIG. 6 shows an example (secondary electron image) grown for 9 days using a solution in which the ratio of C 60 saturated pyridine solution to IPA is 1: 8. The C 60 thin line has a diameter of about 170 nm, not a hollow structure. This is because a hollow C 60 thin wire has a finite wall thickness, and a hollow C 60 wire having a certain outer diameter cannot take a hollow structure.
The C 60 thin wire having an outer diameter of 220 nm and an inner diameter of 64 nm in FIG. 7 is hollow, and is a C 60 nanotube having a substantially uniform wall thickness and a small inner diameter hole. C 60 than thin line in FIG. 6, when having a larger outer diameter, it can be seen that can take a hollow structure.

以上の実施例1から3をまとめると、潜伏期間は、保管温度が低いほど短くなり、生成量はより多くなることが分かった。また、紫外光よりも青色光を照射したC60ピリジン溶液を用いた方が、生成量が多くなることが判明した。 When the above Examples 1 to 3 were put together, it was found that the incubation period was shorter as the storage temperature was lower, and the generation amount was larger. Further, preferable to use a C 60 pyridine solution was irradiated with blue light than ultraviolet light is, the amount that increases were found.

(実施例からの予測性)
非特許文献2から、C60をC70に置換しても、同様な作用効果を発揮させ得ることは容易に類推できる。さらに、C82などのより高次のフラーレンや原子内包フラーレンに、C60を置換しても、同様な作用効果を発揮させ得ることは容易に類推できる。
また、非特許文献3に示したように、(h-C60)Pt(PPhのようなフラーレンの誘導体を、C60を置換しても、同様な作用効果を発揮させ得ることは容易に類推できる。
(Predictability from examples)
From Non-Patent Document 2, it can be easily analogized that even if C 60 is replaced with C 70 , the same effect can be exhibited. Furthermore, the higher order fullerenes and atoms encapsulated fullerene such as C 82, be replaced with C 60, can be easily inferred that may be exhibited the same effect.
In addition, as shown in Non-Patent Document 3, even if C 60 is substituted with a fullerene derivative such as (h 2 -C 60 ) Pt (PPh 3 ) 2 , the same effect can be exhibited. Can be easily inferred.

フラーレンの良溶媒としては、実施例に示したピリジンの他に、トルエン、キシレン、二硫化炭素などを用いることができる。また、アルコールは、非特許文献4からも明らかなとおり、イソプロピルアルコールの他に、n−プロピルアルコール、イソブチルアルコールなどのアルコール類一般を用いることができるので、イソプロピルアルコールを他のアルコール類に置換しても、同様な作用効果を発揮させ得ることは容易に類推できる。   As a good solvent for fullerene, toluene, xylene, carbon disulfide and the like can be used in addition to pyridine shown in the examples. As is clear from Non-Patent Document 4, alcohols such as n-propyl alcohol and isobutyl alcohol can be used in addition to isopropyl alcohol, so that isopropyl alcohol can be replaced with other alcohols. However, it can be easily analogized that similar effects can be achieved.


上記実施例における合成は、大気中と冷却水中で行なっているが、乾燥窒素などの不活性ガス中で行なうことも可能である。また、温度コントロールは冷却水を用いずとも、冷却板など冷却できる装置であれば何でも良い。これらの理由によって、実施例の雰囲気を不活性ガスに置換しても、冷却水を、冷却装置に置換しても、同様な作用効果を発揮させ得ることは容易に類推できる。

The synthesis in the above examples is performed in the atmosphere and cooling water, but can also be performed in an inert gas such as dry nitrogen. The temperature control may be anything as long as it can be cooled without using cooling water, such as a cooling plate. For these reasons, it can be easily analogized that even if the atmosphere of the embodiment is replaced with an inert gas or the cooling water is replaced with a cooling device, the same effect can be exhibited.

60細線は半導体である。実施例として、C60細線を用いた電界効果トランジスタが作製されている。(非特許文献6を参照)
また、半導体として、メモリ、太陽電池素子、の用途がある。熱処理することによって、導電性繊維とすることにより、燃料電池やリチウムイオン電池の電極としての利用も可能である。図5に示すように、中空なC60細線(=C60ナノチューブ)は、ナノ流路、ナノシリンジ、ナノマテリアル担持材料、化学合成テンプレート、重金属回収媒体、各種触媒担体など、多様な用途を持つ。
C 60 fine wire is a semiconductor. As an example, the field effect transistors are fabricated using a C 60 thin line. (See Non-Patent Document 6)
Further, as semiconductors, there are applications of memories and solar cell elements. By making the conductive fiber by heat treatment, it can be used as an electrode of a fuel cell or a lithium ion battery. As shown in FIG. 5, hollow C 60 thin wires (= C 60 nanotubes) have various uses such as nanochannels, nanosyringes, nanomaterial support materials, chemical synthesis templates, heavy metal recovery media, and various catalyst supports. .

(a)C60飽和ピリジンとIPA(1:9)の液−液界面形成直後の写真、(b)(a)に超音波照射を施した直後の状態の写真、(c)液−液界面を形成し、超音波照射してより、1日経過後のC60細線の成長の様子を示す写真、(d) (c)から1日経過後の様子を示す写真。(A) A photograph immediately after formation of a liquid-liquid interface between C 60 saturated pyridine and IPA (1: 9), (b) a photograph immediately after ultrasonic irradiation to (a), (c) liquid-liquid interface to form a more and ultrasonic irradiation, photograph illustrating the appearance of a C 60 thin line growth after 1 day, photograph showing a state after a lapse of one day from (d) (c). (a)C60飽和ピリジンとIPAの量比を変化させたときの、各条件(照射光波長と保管温度)におけるC60細線の生成率を示すグラフ、(b)各量比と照射光波長においての、液−液界面形成直後からC60細線が生成するまでに要した日数(平均値)を示すグラフ。(A) A graph showing the production rate of C 60 fine wires in each condition (irradiation light wavelength and storage temperature) when the amount ratio of C 60 saturated pyridine and IPA is changed, (b) each amount ratio and irradiation light wavelength in the liquid - graph showing the number of days (average value) required until C 60 thin line is produced immediately after the liquid interface formed. 1:10 (C60飽和ピリジン:IPA)のガラスビンにおいて生成したC60細線の(a)二次電子像(SE像)、及び、(b) 走査透過電子像(STEM像)。(A) Secondary electron image (SE image) and (b) Scanning transmission electron image (STEM image) of a C 60 fine line generated in a glass bottle of 1:10 (C 60 saturated pyridine: IPA). 60飽和ピリジン:イソプロピルアルコールの容量比が、1:10である系において、15℃で合成したC60細線の二次電子像。Secondary electron image of C 60 fine line synthesized at 15 ° C. in a system in which the volume ratio of C 60 saturated pyridine: isopropyl alcohol is 1:10. 60飽和ピリジン:イソプロピルアルコールの容量比が、1:10である系において、15℃で合成した中空なC60細線(C60ナノチューブ)の走査透過電子像(STEM像)。C 60 saturated pyridine: volume ratio of isopropyl alcohol, 1: 10 in a system, a scanning transmission electron image of the synthesized hollow C 60 thin line (C 60 nanotube) at 15 ° C. (STEM image). 60飽和ピリジン:イソプロピルアルコールの容量比が、1:8である系において、15℃で育成したC60細線の二次電子像(a)とその拡大像(b)。A secondary electron image (a) of a C 60 fine line grown at 15 ° C. and an enlarged image (b) thereof in a system in which the volume ratio of C 60 saturated pyridine: isopropyl alcohol is 1: 8. 60飽和ピリジン:イソプロピルアルコールの容量比が、1:8である系において、15℃で育成したC60細線の走査透過電子像。Scanning transmission electron image of C 60 fine line grown at 15 ° C. in a system in which the volume ratio of C 60 saturated pyridine: isopropyl alcohol is 1: 8.

Claims (1)

フラーレン分子の粉末の溶解液に光を照射して得たフラーレン分子粉末の飽和溶液に、液−液界面を形成し、これに超音波照射してフラーレン細線を製造する方法において、前記照射する光を波長範囲400nm−500nmの青色光としたことを特徴とするフラーレン細線の製造方法
In the method for producing a fullerene fine wire by forming a liquid-liquid interface in a saturated solution of fullerene molecule powder obtained by irradiating light to a solution of fullerene molecule powder and irradiating it with ultrasonic waves, the irradiated light A fullerene fine wire manufacturing method characterized in that blue light having a wavelength range of 400 nm to 500 nm is used .
JP2006313074A 2006-11-20 2006-11-20 Fullerene wire manufacturing method Expired - Fee Related JP5131726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006313074A JP5131726B2 (en) 2006-11-20 2006-11-20 Fullerene wire manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006313074A JP5131726B2 (en) 2006-11-20 2006-11-20 Fullerene wire manufacturing method

Publications (2)

Publication Number Publication Date
JP2008127237A JP2008127237A (en) 2008-06-05
JP5131726B2 true JP5131726B2 (en) 2013-01-30

Family

ID=39553447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006313074A Expired - Fee Related JP5131726B2 (en) 2006-11-20 2006-11-20 Fullerene wire manufacturing method

Country Status (1)

Country Link
JP (1) JP5131726B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8437020B2 (en) 2004-05-13 2013-05-07 Sharp Laboratories Of America, Inc. System and method for printer emulation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5205672B2 (en) * 2007-08-29 2013-06-05 独立行政法人物質・材料研究機構 Fullerene thin substrate and its manufacturing method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3785454B2 (en) * 2001-04-18 2006-06-14 独立行政法人物質・材料研究機構 Carbon wire and method for producing carbon wire
JP2003321214A (en) * 2002-05-07 2003-11-11 Japan Science & Technology Corp Two-dimensional polymer thin film of fullerenes and method for manufacturing the same
JP2004202345A (en) * 2002-12-25 2004-07-22 Denso Corp Deodorization and cleaning catalyst, air conditioner for vehicle using it and cleaning structure for air in cabin
EP1582609A1 (en) * 2003-01-10 2005-10-05 Nippon Sheet Glass Company, Limited Fullerene crystal and method for producing same
JP2005104815A (en) * 2003-10-02 2005-04-21 Yokohama Tlo Co Ltd Method for crystallizing fullerene
JP2005289755A (en) * 2004-04-01 2005-10-20 Kyoto Univ Method of manufacturing atom- or molecule-including fullerene and including fullerene obtained by the manufacturing method
JP2005343739A (en) * 2004-06-02 2005-12-15 Nippon Sheet Glass Co Ltd Fiber-like fullerene crystal and its producing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8437020B2 (en) 2004-05-13 2013-05-07 Sharp Laboratories Of America, Inc. System and method for printer emulation

Also Published As

Publication number Publication date
JP2008127237A (en) 2008-06-05

Similar Documents

Publication Publication Date Title
Wang et al. Catalytic growth of semiconducting zinc oxide nanowires and their photoluminescence properties
KR101344493B1 (en) Single crystalline graphene sheet and process for preparing the same
Gautam et al. The effect of growth temperature of seed layer on the structural and optical properties of ZnO nanorods
WO2015031461A1 (en) Seed for metal dichalcogenide growth by chemical vapor deposition
Wang et al. Hydrothermal synthesis of single-crystalline hexagonal prism ZnO nanorods
Deng et al. Our research progress in heteroaggregation and homoaggregation of organic π‐conjugated systems
Tharsika et al. Tailoring ZnO nanostructures by spray pyrolysis and thermal annealing
Xu et al. Micron-sized hexagonal single-crystalline rods of metal nitride clusterfullerene: preparation, characterization, and photoelectrochemical application
Umar et al. Non-catalytic growth of high aspect-ratio ZnO nanowires by thermal evaporation
CN105209383A (en) Film comprising single-layer carbon nanotubes and having dense portions and sparse portions, process for producing same, and material including said film and process for producing same
CN107445206A (en) A kind of method of alkali metal ion auxiliary transient metal chalcogenide compound growth
Posudievsky et al. Structural and Spectral Characteristics of Mechanochemically Prepared CsPbBr 3
KR100746311B1 (en) A preparing method of carbon nanotube from liquid phased-carbon source
JP5131726B2 (en) Fullerene wire manufacturing method
JP2007261839A (en) Method for producing carbon nanotube
Rana et al. Kinetically stabilized C60–toluene solvate nanostructures with a discrete absorption edge enabling supramolecular topotactic molecular exchange
Xu et al. Hybrid hexagonal nanorods of metal nitride clusterfullerene and porphyrin using a supramolecular approach
Ma et al. “Electrochemical” growth of ZnO coating on carbon fiber
Li et al. Synthesis and properties of aligned ZnO microtube arrays
KR101787083B1 (en) Preparation method of perovskite nanostructures and the perovskite nanostructures thereby
JP2004359471A (en) Nanofiber or nanotube composed of group v transition metal di-chalcogenide crystal and method of manufacturing the same
Li et al. Synthesis of CdSe micro/nanocrystals with controllable multiform morphologies and crystal phases
Zhang et al. Growth of submillimeter-scale single crystal 2D BiI3 by the cooling-induced growth method in a confined space
Thiandoume et al. Morphology transition of one-dimensional ZnO grown by metal organic vapour phase epitaxy on (0 0 0 1)-ZnO substrate
JP2000281323A (en) Production of carbon nanotube containing boron

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121030

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121031

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees