JP5094691B2 - 光ピックアップ装置 - Google Patents

光ピックアップ装置 Download PDF

Info

Publication number
JP5094691B2
JP5094691B2 JP2008313707A JP2008313707A JP5094691B2 JP 5094691 B2 JP5094691 B2 JP 5094691B2 JP 2008313707 A JP2008313707 A JP 2008313707A JP 2008313707 A JP2008313707 A JP 2008313707A JP 5094691 B2 JP5094691 B2 JP 5094691B2
Authority
JP
Japan
Prior art keywords
reflected light
optical
light
optical axis
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008313707A
Other languages
English (en)
Other versions
JP2010140527A (ja
Inventor
茂治 木村
治一 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Media Electronics Co Ltd
Original Assignee
Hitachi Media Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Media Electronics Co Ltd filed Critical Hitachi Media Electronics Co Ltd
Priority to JP2008313707A priority Critical patent/JP5094691B2/ja
Priority to US12/632,867 priority patent/US7965610B2/en
Publication of JP2010140527A publication Critical patent/JP2010140527A/ja
Application granted granted Critical
Publication of JP5094691B2 publication Critical patent/JP5094691B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1381Non-lens elements for altering the properties of the beam, e.g. knife edges, slits, filters or stops
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0009Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage
    • G11B2007/0013Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage for carriers having multiple discrete layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0901Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following only
    • G11B7/0903Multi-beam tracking systems

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Head (AREA)

Description

本発明は光ピックアップ装置に関し、特に光ピックアップ装置の読出し光学系に関する。
光ディスクの1層の記録容量は、使用する半導体レーザの波長と対物レンズの開口数(NA)に大きく依存する。半導体レーザの波長が短いほど、あるいはNAが大きいほど、記録密度を大きくでき、1層あたりの容量を増やすことができる。現在市場に流通している光ディスクドライブの主体は、波長650nm付近の赤色光とNA0.6の対物レンズを使用するDVD(Digital Versatile Disc)ドライブであるが、DVDの記録密度を上回るものとして、光波長405nm付近の青紫色の半導体レーザを光源とし、NA0.85の対物レンズを使用する光ディスクドライブも出荷されている。現状で達成されている記録密度をさらに増加させる方式として、使用波長の短波長化が考えられるが、この青紫色より短い紫外領域の半導体レーザの開発は困難が予想される。また、対物レンズの高NA化に関しても、空気中での対物レンズのNAの限界は1であるので、対物レンズのNAによる記録密度の向上も困難になってきている。
このような状況において、1枚の光ディスクの容量を増加させる方式として2層化が実施されている。非特許文献1には2層の相変化ディスクの技術が紹介されている。レーザ光を2層光ディスクに照射した場合、同時に隣接層を照射することになるので層間のクロストークが問題となる。この問題を低減するために、層間隔を大きくすることが行われる。レーザ光は集光されており、目的とする層(当該層)以外はレーザ光の集光位置からずれるので、クロストークを低減することができる。
一方、層間隔を広げると球面収差が問題になってくる。記録層は屈折率が空気と異なるポリカーボネイト中に埋め込まれており、ディスク表面からの深さにより球面収差が異なる。対物レンズはその球面収差が特定の層に対して小さくなるように設計されており、他の層にレーザ光の焦点を移すと、焦点位置の表面からの距離が異なるため、球面収差が発生する。この収差は、通常二枚のレンズで構成されるエクスパンダーレンズ光学系あるいは液晶素子を対物レンズの前に置くことで補正することが可能である。すなわち、二枚のレンズの距離あるいは液晶素子の位相を変えることで収差を補正することができる。しかし、液晶素子の補償可能範囲あるいはレンズの移動機構を小型の光ディスクドライブ装置内で実現することを考慮すると、大きい球面収差を補正することは難しい。
容量を増加させるために多層化を行おうとした場合、球面収差の補正限界のために、多層全体の厚さは制限されることになり、層数が多いと層間隔は狭くなってしまう。このため、実際の多層用の光ドライブ装置では層間クロストークが残ることになる。
前述のクロストークを低減するために、非特許文献2によれば、多層光ディスクからの反射光をレンズで集光したとき、目的とする層と隣接層からの反射光の集光位置が光軸上で異なることを利用する。光軸を含む形でグレーティングを配置し、当該層からの反射光の集光位置に反射鏡を配置する。隣接層からの反射光はグレーティングを照射することになるので減衰される。一方、当該層からの反射光はグレーティングと反射鏡との間隙を透過するので、減衰されずに検出系に戻ることが可能になっている。これにより層間クロストークを低減することが可能となる。
Jpn.J.Appl.Phys.Vol.42 (2003)pp.956-960 ISOM/ODS’08, Technical Digest Post-deadline Papers, TD05-155 (2008)
図3を用いて、光ピックアップ装置の検出光学系における多層光ディスクによるクロストークを説明する。トラッキングエラー信号の検出はここではDPP(Differential Push-Pull)法を使用するものとする。DPP法では回折格子によりレーザ光を1本のメイン光線と二本のサブ光線に分割し、3本の光線で光ディスクを照射する。図3ではメイン光線80のみを示している。単純化のために、501は二層の光ディスクとし、511及び512は情報記録層であるものとする。対物レンズ401からのメイン光線の最小ビームスポット位置はメイン光線80で示すように情報記録層511上にあり、情報記録層511からの情報を読み出そうとしている。情報記録層511上には、図4に示すトラッキングのための案内溝が形成されており、この溝をメイン光線が光スポット94として照射し、同時にサブ光線は半トラックピッチだけずれた位置を照射スポット95、96の状態で照射している。照射光の焦点は記録層511に合っているので、その反射光は入射光と同じ光路を逆方向に辿って図3の対物レンズ401に戻る。次に、検出レンズ402を透過し、光ビーム801となって光検出器51に入射する。検出レンズ402には非点収差が入っており、光検出器51は最小錯乱円の位置に設置される。
光検出器の形状とディスクからの反射光の入射状態を図5に示す。中央にある田の字状の四分割された検出器541はメイン光線を検出するものであり、メイン光線はスポット811として検出器541を照射する。サブ光線による反射光は、それぞれ2分割検出器542、543上に光スポット812、813として入射する。四分割検出器541からの信号をA、B、C、Dとし、2分割検出器542からの信号をE、F、2分割検出器543からの信号をG、Hとする。このとき、トラッキングエラー信号TRは、TR=(A+B)−(C+D)−k{(E−F)+(G−H)}と表される。ここに、kは定数であり、メイン光線とサブ光線の強度比等から決められる。通常、メイン光線はサブ光線の強度と比較して10倍以上大きくなるように設定されている。また、フォーカスエラー信号をAF、データ信号をRFとしたとき、AF=A+C−(B+D)、RF=A+C+B+Dのように表される。TR及びAF信号はレーザ光の照射位置の制御に使用される。
多層ディスクにレーザ光を照射したとき、それぞれの層からの反射光量はほぼ同量になるように設計されている。このために対物レンズに近い層の透過率が大きくなっており、対物レンズから遠い層にもレーザ光が照射できるようになっている。このような条件下では、図3に示したように情報読出し対象層である511にレーザ光の焦点を合わせると、一部のレーザ光は光ビーム82として当該層511を透過し、隣接層512で反射され、迷光である反射光ビーム83となる。この反射光ビーム83は対物レンズ401に戻り、検出レンズ402に入射した後、光検出器51の手前で一旦集光され、光ビーム804で示したように広がりながら光検出器51に入射する。光ビーム804は、光検出器面上では図5に示すように、広がった光スポット841になり、光検出器541、542、543を覆った状態となる。このため、ビーム811及び812、813と干渉することになる。この干渉は、層間隔の変動による光スポット841の位相の変化に影響され、変化する。
ビーム811の全光量であるRF信号強度の変動はRF信号のジッターの劣化を引き起こし、データ読み出し時のエラーレートを悪化させてしまう。また、ビーム812と813での干渉はTR信号の変動を引き起こす。回折格子で分割されて生成されるサブ光線の強度は設計上小さく設定されているので、隣接層からのメイン光線の反射光のパワーデンシティと同程度となり、このため、干渉の効果が強く現れる。この干渉も光ディスクの傾きや層間隔などに影響され、不均一な層間隔のディスクの回転で光スポット812あるいは813の光量分布が変化する。この結果、TR信号の差動信号部分(E−F)+(G−H)に影響を与えることになり、トラッキング信号のバランスを崩すことになる。これにより、トラッキングがはずれるような不具合が生じる。同様に、隣接層512が読出し対象層511の対物レンズ寄りにある場合も、隣接層から反射光が発生し、問題となる干渉が同様に生じる。
上述の隣接層からの影響である層間クロストークを低減するために、非特許文献1では図6に示すピックアップ光学系においてグレーティング素子46を使用している。以下に光学系の説明をする。半導体レーザ101から出射したレーザ光を、コリメータレンズ403と三角プリズム102により円形のコリメートされた光ビームに変換する。コリメートされたビームは回折格子103により3本のビームに分割され、1本のメイン光線と2本のサブ光線になる。メイン光線の進行方向は入射ビームと同じ方向であるが、サブ光線は光軸の両側にある傾きを持った出射光となる。通常、メイン光線とサブ光線の光量差は10倍以上に設定される。3本のビームは偏光ビームスプリッタ104を透過し、λ/4板105により円偏光に変換され、回転機構により回転する多層ディスク501に対物レンズ404で絞り込まれる。ここでは多層ディスク501として2層ディスクを図示しているが、3層以上の多層ディスクにも適用可能である。読出し対象層(当該層)は511であり、レーザ光の最小スポットの位置が511上にある。隣接層512からも反射光83が発生し、クロストークの原因である迷光となる。
多層ディスクからの反射光は迷光も含めて、対物レンズ404を戻り、λ/4板105により、元の偏光方向に対して直交する方向の直線偏光に変換される。このため偏光ビームスプリッタ104で反射され、λ/4板106に向かい、円偏光に変換される。その後、反射光集光レンズ405で集光され、当該層である記録層511からの反射光の最小スポット位置に置かれた反射板43で反射される。反射光集光レンズ405と反射板43の間には平板状のグレーティング素子46が光軸を含む形で設置されている。このグレーティング素子は他層からの反射光を反射光集光レンズに戻さない。反射板43による当該層からの反射光は反射光集光レンズ405に戻り、λ/4板106により入射時の偏光方向に対して直交した偏光方向の直線偏光となり、ビームスプリッタ104を透過する。406は非点収差が入った集光レンズであり、最小錯乱円の位置に光検出器52が置かれている。光検出器52の感度のある部分の形状は図5で示した通りである。光検出器52からの信号は信号処理回路53で処理され、光スポットの位置を制御するAF信号及びTR信号、データ信号であるRF信号が形成される。
図7に示すように、迷光を発生する隣接層が当該層より深い位置にある場合は、隣接層からの反射光84は光軸上のグレーティング素子46を最小スポット位置840で照射することにより減衰する。また、図8に示すように、当該層より浅い位置にある隣接層からの反射光は一旦反射板43で反射された後、最小スポット位置850でグレーティング素子46を照射し、減衰される。他方、当該層からの反射光はグレーティング46と反射板43の間隙を透過するので減衰しない。検出器上では隣接層からの反射光が減少しているので、層間クロストークが減少することになる。
しかし、実際には光軸上に設置するグレーティング等の平板状の減衰素子は無限に薄いことはありえず、有限の厚さを持つ。図9には光軸近傍の光線86を図示しているが、有限の厚さを有する減衰素子47により遮光されている。このように、当該層からの反射光の光軸上の光線及び光軸近傍の光線は減衰素子により遮光されることになる。減衰素子で遮光された当該層からの反射光の検出器上での光量分布を図10に示す。メイン光線では暗線821が発生し、サブ光線ではそれぞれ暗線822、833が発生する。特に問題となるのはメイン光線の暗線であり、光量の減少のためにRF信号の信号雑音比が低下し、ジッター値が劣化する。
本発明の目的は、光ピックアップ装置において、上述の減衰素子を設置する方法により層間クロストークを減少させたとき発生するRF信号の信号雑音比の低下を防止し、ジッター値を劣化させないようにすることにある。
上述の課題を解決するために、本発明では、当該層からの暗線を生じさせない方法を用いる。
本発明の光ピックアップ装置は、レーザ光源と、レーザ光源からのレーザ光を多層光情報記憶媒体の一つの記録層に集光する照射光集光光学系と、多層光情報記憶媒体の記録層から反射された反射光を検出する検出光学系とを有する。検出光学系は、記録層からの反射光を平行分割する分割光学系と、分割された反射光を絞り込む反射光集光レンズと、反射光集光レンズによって絞り込まれた反射光中の目的とする記録層からの反射光の最小スポット位置に置かれた反射面と、反射光集光レンズと反射面の間に設置され当該層以外の他層からの反射光を減衰する減衰素子と、反射光を検出する光検出器とを含み、反射面によって反射された反射光を前記光検出器上で検出する。
あるいは、照射光集光光学系の光路中にビームスプリッタと対物レンズが設けられ、照射光集光光学系と検出光学系はビームスプリッタと前記対物レンズを共有し、照射光集光光学系は、レーザ光源からのレーザ光を発散光としてビームスプリッタを通過させる。そして、検出光学系は、記録層からの反射光を、分割直後には光軸を通らず次第に光軸に収束するように光軸の両側に分割する分割光学系と、分割光学系を通過した反射光中の目的とする記録層からの反射光の最小スポット位置に設けられた反射面と、分割光学系と反射面の間に光軸を含むように設置され記録層以外の隣接層からの反射光の光量を減衰させる減衰素子と、反射光を検出する光検出器とを含み、反射面によって反射された反射光を光検出器上で検出する。
減衰素子は他層からの反射光の反射光集光レンズによる最小スポット位置の少なくとも1つと重なり、光軸を含む形で設けられる。減衰素子は他層からの反射光を反射光集光レンズに戻さない役割をする。
本発明によると、当該層からの反射光におけるメイン光線の中心部の暗線が発生しなくなり、光量の損失を低減させることができるので、RF信号のジッターを小さくすることができる。したがって、読み出したデータの信頼性が向上する。
分割光学系の役割を、図11を用いて説明する。図11では分割光学系により多層ディスクからの反射光が左右に分割され反射光集光レンズ405に入射しているが、当該層からの反射光のみを示している。当該層からの反射光は平行分割されたビームの状態で入射する。このビームを反射集光レンズ405で集光すると、中心部に光がない状態で反射板43へ進んで行き、反射板上で最小スポットとなる。反射後も二つに分かれた状態で反射光集光レンズ405に戻り、二つの分離した平行光線になる。このような集光状態の光軸上に平板状の減衰素子46が設置されており、減衰素子が反射光を遮光することはなくなる。減衰素子46は、光吸収体あるいはグレーティング素子によって構成することができる。
図12では、当該層より深い層からの反射光が二分割されたのち、反射光集光レンズ405で集光されている。2本のビームは850で示した減衰素子上の位置で集光するため、減衰素子で光量が減少し、反射光集光レンズには戻らなくなる。図13では、当該層より浅い層からの反射光が反射光集光レンズ405に入射し、集光されている状態を示している。この場合は一旦反射板43で反射された後、減衰素子上の位置851で集光される。したがって、図12の場合と同様に、減衰素子で光量が減少し、反射光集光レンズには戻らなくなる。以上説明したように、当該層からの反射光は減衰素子に当たることなく、反射光集光レンズに戻ることができるので、光量の減少は起こらず、RF信号のジッターの劣化は発生しない。層間クロストークに関しても、他層からの反射光は減衰素子で減少させられるので、TR信号の変動も除去され、これによるRF信号のジッターの劣化も発生しない。
次に、分割光学系について説明する。図14は、バイプリズムを二つ使用してビームを分割する分割光学系の例を示す図である。第1のバイプリズム408に平行光線が入射しており、光軸の垂線を分割線として光軸に対して同角度で対称な進行方向の平行光線が作られる。第2のバイプリズム409は、光軸に対して角度を持った平行光線の進行方向を光軸に対して平行に変える。このようにバイプリズムを二つ使用することにより、通常のビームを分割平行光線に変換することができる。
図15は、透過グレーティング41と42を用いて平行分割する分割光学系の例を示す図である。グレーティング41及び42はそれぞれグレーティングによる回折光の方向が異なる二つの領域から構成されているが、二つの領域のグレーティングは分割線と同じ溝方向と同じ溝ピッチを有し、なおかつ0次光の発生しない溝深さ1/(n−1)の鋸歯状のグレーティングとなっている。nはグレーティングの屈折率であり、空気中にあるものとした。溝深さはこの整数倍のものでも0次光を発生しない。図19にはグレーティング41の鋸歯の形状を示しており、410と411の領域での鋸歯は互いに反転した形状をしているので、回折光は光軸に対称な方向に発生する。これにより、入射光の二つの領域の光は異なる方向に出射することになる。図20にグレーティング42の鋸歯の形状を示す。光は上方から入射する。421での鋸歯の形状と410での形状、及び420での鋸歯の形状と411での形状はそれぞれ同じであるので、グレーティング41を透過して光軸に対して角度を持った二つのビームはグレーティング42を透過した後、間隔の空いた光軸に対して平行な光になる。
図16は、平行平板を使用した分割光学系の例を示す図である。分割平板素子44は、2枚の平行平板441と442で構成され、それぞれの平行平板は光軸に対して同じ角度で傾いており、また光軸に対して対称な位置にある。二つの平行平板の接合部がなす稜線は光軸に垂直に交わるものとし、平行平板の接合部がなす稜線あるいは谷線は減衰素子を含む平面内にある。紙面上方からの入射平行光は谷線の位置で二つに分けられ、それぞれ別の平行平板に入射する。平行平板は透明ガラスあるいはプラスチックとすると、屈折率が空気より大きいので、入射面で光線が谷線と光軸を含む平面から離れる方向に向かい、出射面で光軸と平行なビームとなる。
次に、実施例により本発明を説明する。
図1は、本発明の実施例1による光ピックアップ装置の光学系を示す図である。図6で示した光学系に、分割光学系107が挿入されている。これにより多層ディスク501からの反射光が、中心部が空いた状態のビームに変換される。45はグレーティングを用いた減衰素子である。多層ディスク501の当該層511からの反射光は、減衰素子45を照射することなく反射板43の上で最小スポットを形成し、反射光集光レンズ405に戻る。平行分割された状態で反射光集光レンズ405を出射し、分割光学系107に戻り、通常の分割のない状態に戻る。分割光学系107を出射した当該層からの反射光は、偏光ビームスプリッタ104、非点収差の入った集光レンズ406を透過後、光検出器52で検出される。当該層以外の他層からの反射光は減衰素子45を照射するので、反射光集光レンズ405に戻ることができない。したがって、光検出器52に到達しないので、層間クロストークは発生しなくなる。同時に、当該層からの反射光は光軸近傍の光のない状態で減衰素子45を通過するので、減衰素子による強度の減少は発生しない。
分割光学系107には、図14から16に示した光学系を利用できる。図15に示した分割光学系のグレーティングは偏光性回折素子とすることも可能である。この場合、偏光ビームスプリッタ104から分割光学系107に向かう光線に対してのみ回折効果を持たせ、106のλ/4板から戻る偏光方向が90度異なる光線に対しては作用を及ぼさないようにしておく。ビームが分割された状態で検出されることになるが、それぞれの分割された検出器(図10)に入射する光量はビームが分割されていない場合と同様であるので、RF信号及び制御信号に問題が生じることはない。偏光性回折格子を使用することで、反射板43の傾きや光軸方向の位置ずれに対して分割素子の影響を少なくできる長所がある。
図17に、信号処理のための電子回路を示す。光検出器541及び542、543は図5で示したものと同様である。4分割検出器541はメイン光線を検出し、2分割検出器542、543はそれぞれサブ光線を検出する。551から555までが差動増幅器であり、561から566までが加算回路である。580はk倍の増幅器であり、kはメイン光線とサブ光線の強度比を勘案して決まる値である。各検出器からの信号はプリアンプで増幅された後、これらの電子回路で処理され、制御信号あるいはデータ信号となる。4分割検出器からの出力であるA及びB、C、Dのすべてを加え合わせた信号572は、データ信号である。574は非点収差法によるAF信号となる。573はメイン光線によるプッシュプル信号であり、571はサブ光線によるサブプッシュプル信号である。信号571は増幅器580でk倍に増幅され、メイン光線によるプッシュプル信号573と共に差動増幅器555で処理され、TR信号575となる。
本実施例によると、メイン光線の中心部の光量の減少がなくなるので、RF信号の信号雑音比を悪化させることがない。層間クロストークも除去でき、RF信号への他層からの迷光の混入もないので、エラーの少ないデータ信号を得ることができる。本方式は、当然のことながら、層間隔の変動に伴ってトラッキングエラー信号が変動する現象を小さくすることができる。すなわち、隣接層からのメイン光線の反射光とトラッキングのための当該層からのサブ光線の反射光とが干渉し、その位相差が層間隔によって変わるので、サブプッシュプル信号が変動するが、本発明により隣接層からの反射光の影響を小さくできるので、トラッキングエラー信号の変動が小さくなる。これにより、精度の高いレーザ光照射位置の制御が可能となり、読出し及び書込みのときのレーザ照射位置を正確に決められるので信号の品質が向上する。
本実施例では偏光光学系を用いたが、半導体レーザの最大出力に十分余裕がある場合は、偏光ビームスプリッタ104を通常のビームスプリッタに置き換え、λ/4板105、106を取り除いた光学系を使用することも可能である。
図2は、本発明の実施例2による光ピックアップ装置の光学系を示す図である。本実施例では、回折格子103と偏光ビームスプリッタ104がコリメータレンズ407より半導体レーザ101側に設置されている。従って、半導体レーザ101から出射したレーザ光は発散光の状態で偏光ビームスプリッタ104を透過し、その後コリメータレンズ407でコリメートされ、λ/4板105に入射する。実施例1では回折格子103と偏光ビームスプリッタ104がコリメータレンズ403と対物レンズ404の間に設置されていたため、集光レンズ405が必要であったが、実施例2では図2に示すように、多層ディスク501の読出し対象層511から反射された光ビームはコリメータレンズ407を通ると収束光になるので、集光レンズが必要ない。これにより、部品点数を削減できる効果がある。
分割光学系107には、実施例1と同様に、図14から16に示した光学系を利用できる。図15に示した分割光学系のグレーティングを偏光性回折素子としてもよいのも実施例1と同様である。実施例1では、当該層511からの反射光は分割光学系107から平行光として出射するが、本実施例の場合、当該層511からの反射光は分割光学系107から収束光として出射する。
サブプッシュプル信号(SPP)の変動を減少させることが可能な光ディスクドライブ装置の実施例を図18に示す。回路711〜714は、データを多層光ディスク501に記録するためのものである。誤り訂正用符号化回路711では、データに誤り訂正符号が付加される。記録符号化回路712は、1−7PP方式でデータを変調する。記録補償回路713は、マーク長に適した書込みのためのパルスを発生する。発生したパルス列に基づき、半導体レーザ駆動回路714により、光ピックアップ60内の半導体レーザを駆動し、対物レンズから出射したレーザ光80を変調する。モータ502によって回転駆動される光ディスク501上には相変化膜が形成されており、レーザ光で熱せられ、急冷されるとアモルファス状態になり、徐冷されると結晶状態になる。これらの二つの状態は反射率が異なり、マークを形成することができる。書き込み状態では、レーザ光のコヒーレンシーを低下させる高周波重畳を行わないため、隣接層からの反射光と当該層からの反射光は干渉しやすい状態になっている。このため、SPPの変動を低減するための対策を行わない場合は、トラッキングがはずれたり、隣接トラックのデータを消したりする不具合が生じる。本実施例では、光ピックアップ60には実施例1,2で示した光ピックアップのいずれかが採用されており、多層ディスクにおいてもトラッキングの不具合は生じない。
回路721〜726は、データの読み出しのためのものである。イコライザー721は、最短マーク長付近の信号雑音比を改善する。この信号はPLL回路722に入力され、クロックが抽出される。また、イコライザーで処理されたデータ信号は抽出されたクロックのタイミングでA−D変換器723でデジタル化される。PRML(Pertial Response Maximum Likelyhood)信号処理回路724では、ビタビ復号を行う。記録復号化回路725では1−7PP方式の変調規則に基づき復号化し、誤り訂正回路726でデータを復元する。
本発明により、多層間クロストーク対策を施した光ピックアップ装置において、RF信号の中心部の光量が減少するのを回避することができる。これによりRF信号の信号雑音比を向上させることが可能であり、他層クロストーク除去効果と相まって、データ信号の品質をエラーの少ない状態に保つことが可能となる。
本発明による光ピックアップ装置の光学系の一例を示す図。 本発明による光ピックアップ装置の光学系の一例を示す図。 隣接層からの反射光の影響を示す図。 1本のメイン光線と2本のサブ光線が溝付き記録面を照射している状態を示す図。 光検出器の形状と光ディスクからの反射光の光スポットの位置と広がりを示す図。 光軸上に設置した減衰素子を用いる光ピックアップ光学系を示す図。 当該層より深い層からの反射光に対する減衰素子の作用を示す図。 当該層より浅い層からの反射光に対する減衰素子の作用を示す図。 光軸近傍の光線が減衰素子で遮光されることを示す図。 検出器上での減衰素子で遮光されたメイン光線、サブ光線の光量分布を示す図。 当該層からの反射光である分割平行光が反射集光レンズで集光したとき、光軸上に設置された減衰素子を避けて反射板に集光されている状態を示す図。 分割素子を透過した当該層より深い層からの反射光を反射光集光レンズで減衰素子と反射板に集光したときの状態を示す図。 分割素子を透過した当該層より浅い層からの反射光を反射光集光レンズで減衰素子と反射板に集光したときの状態を示す図。 2枚のバイプリズムを用いた分割光学系を示す図。 2枚の分割グレーティングを用いた分割光学系を示す図。 2枚の平行平板を用いた分割光学系を示す図。 信号処理回路の概略を示す図。 本発明による光ピックアップ装置を用いた光ディスクドライブ装置の一例を示す図。 グレーティングの形状を示す図。 グレーティングの形状を示す図。
符号の説明
43:反射板、45:グレーティング減衰素子、46:減衰素子、52:検出器、53:信号処理回路、101:半導体レーザ、103:回折格子、104:偏光ビームスプリッタ、105:λ/4板、106:λ/4板、107:分割光学系、404:対物レンズ、405:反射光集光レンズ、406:非点収差入り集光レンズ、501:多層ディスク、541:四分割検出器、542:2分割検出器、543:2分割検出器、81:当該層からの反射光:811:メイン光線スポット、812:サブ光線スポット、813:サブ光線スポット、821:遮光素子による暗線、841:隣接層からのメイン光線の光スポット

Claims (10)

  1. レーザ光源と、
    前記レーザ光源からのレーザ光を多層光情報記憶媒体の一つの記録層に集光する照射光集光光学系と、
    前記多層光情報記憶媒体の前記記録層から反射された反射光を検出する検出光学系とを有し、
    前記検出光学系は、前記記録層からの反射光を、分割後の光束が光軸を通らないように光軸の両側に平行分割する分割光学系と、前記分割光学系によって分割された反射光を絞り込む反射光集光レンズと、前記反射光集光レンズによって絞り込まれた前記反射光中の前記記録層からの反射光の最小スポット位置に設けられた反射面と、前記反射光集光レンズと前記反射面の間に光軸を含むように設置され前記記録層以外の隣接層からの反射光の光量を減衰させる減衰素子と、前記反射光を検出する光検出器とを含み、
    前記反射面によって反射された反射光を前記光検出器上で検出することを特徴とする光ピックアップ装置。
  2. 請求項1に記載の光ピックアップ装置において、前記減衰素子は平板状であり、前記記録層からの反射光が通過せず前記隣接層からの反射光の前記反射光集光レンズによる集光位置と重なる光軸位置に設置されていることを特徴とする光ピックアップ装置。
  3. 請求項1に記載の光ピックアップ装置において、前記分割光学系は光軸に沿って配置された二つのバイプリズムで構成されることを特徴とする光ピックアップ装置。
  4. 請求項1に記載の光ピックアップ装置において、前記分割光学系は光軸に沿って配置された二つのグレーティング素子からなり、前記二つのグレーティング素子は光軸を含む面で二分割され、その溝の方向は同一であり、溝深さは0次光を抑圧する深さであり、グレーティングの溝形状は鋸波状であり、前記光軸を含む面に対して対称であることを特徴とする光ピックアップ装置。
  5. 請求項1に記載の光ピックアップ装置において、前記分割光学系は前記減衰素子を含む平面内の光軸に垂直な直線を稜線として光軸に対して同角度の二平面と該二平面を光軸方向に平行移動した二平面とで光学面が構成されることを特徴とする光ピックアップ装置。
  6. レーザ光源と、
    前記レーザ光源からのレーザ光を多層光情報記憶媒体の一つの記録層に集光する照射光集光光学系と、
    前記多層光情報記憶媒体の前記記録層から反射された反射光を検出する検出光学系とを有し、
    前記照射光集光光学系の光路中にビームスプリッタと対物レンズが設けられ、前記照射光集光光学系と前記検出光学系は前記ビームスプリッタと前記対物レンズを共有し、
    照射光集光光学系は、前記レーザ光源からのレーザ光を発散光として前記ビームスプリッタを通過させ、
    前記検出光学系は、前記記録層からの反射光を、分割直後には光軸を通らず次第に光軸に収束するように光軸の両側に分割する分割光学系と、前記分割光学系を通過した前記反射光中の前記記録層からの反射光の最小スポット位置に設けられた反射面と、前記分割光学系と前記反射面の間に光軸を含むように設置され前記記録層以外の隣接層からの反射光の光量を減衰させる減衰素子と、前記反射光を検出する光検出器とを含み、
    前記反射面によって反射された反射光を前記光検出器上で検出することを特徴とする光ピックアップ装置。
  7. 請求項6に記載の光ピックアップ装置において、前記減衰素子は平板状であり、前記記録層からの反射光が通過せず前記隣接層からの反射光の集光位置と重なる光軸位置に設置されていることを特徴とする光ピックアップ装置。
  8. 請求項6に記載の光ピックアップ装置において、前記分割光学系は光軸に沿って配置された二つのバイプリズムで構成されることを特徴とする光ピックアップ装置。
  9. 請求項6に記載の光ピックアップ装置において、前記分割光学系は光軸に沿って配置された二つのグレーティング素子からなり、前記二つのグレーティング素子は光軸を含む面で二分割され、その溝の方向は同一であり、溝深さは0次光を抑圧する深さであり、グレーティングの溝形状は鋸波状であり、前記光軸を含む面に対して対称であることを特徴とする光ピックアップ装置。
  10. 請求項6に記載の光ピックアップ装置において、前記分割光学系は前記減衰素子を含む平面内の光軸に垂直な直線を稜線として光軸に対して同角度の二平面と該二平面を光軸方向に平行移動した二平面とで光学面が構成されることを特徴とする光ピックアップ装置。
JP2008313707A 2008-12-09 2008-12-09 光ピックアップ装置 Expired - Fee Related JP5094691B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008313707A JP5094691B2 (ja) 2008-12-09 2008-12-09 光ピックアップ装置
US12/632,867 US7965610B2 (en) 2008-12-09 2009-12-08 Optical pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008313707A JP5094691B2 (ja) 2008-12-09 2008-12-09 光ピックアップ装置

Publications (2)

Publication Number Publication Date
JP2010140527A JP2010140527A (ja) 2010-06-24
JP5094691B2 true JP5094691B2 (ja) 2012-12-12

Family

ID=42230931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008313707A Expired - Fee Related JP5094691B2 (ja) 2008-12-09 2008-12-09 光ピックアップ装置

Country Status (2)

Country Link
US (1) US7965610B2 (ja)
JP (1) JP5094691B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5286233B2 (ja) * 2009-11-27 2013-09-11 株式会社日立メディアエレクトロニクス 光ピックアップ装置
WO2014203526A1 (ja) * 2013-06-19 2014-12-24 パナソニックIpマネジメント株式会社 光情報装置及び情報処理装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5065246A (ja) * 1973-10-11 1975-06-02
JPH0444005A (ja) * 1990-06-12 1992-02-13 Ricoh Co Ltd 光路分割素子
JP2002367211A (ja) * 2001-06-11 2002-12-20 Hitachi Ltd 光学情報記録再生装置
JP4325468B2 (ja) * 2004-04-07 2009-09-02 株式会社日立製作所 光情報記録再生装置
JP4855703B2 (ja) * 2005-03-15 2012-01-18 株式会社リコー 光ピックアップ、光記録装置、光再生装置、および光記録再生装置
JP4618725B2 (ja) * 2005-11-08 2011-01-26 株式会社リコー 光ピックアップ装置及び光ディスク装置
JP4620631B2 (ja) * 2006-05-16 2011-01-26 株式会社日立メディアエレクトロニクス 光ディスクドライブ装置
JP2007334955A (ja) * 2006-06-13 2007-12-27 Canon Inc 光学式情報記録再生装置
JP2008004239A (ja) * 2006-06-26 2008-01-10 Sharp Corp 光ピックアップおよびこれを備える光ディスクドライブ装置
JP2008130219A (ja) * 2006-11-27 2008-06-05 Sanyo Electric Co Ltd 光ピックアップ装置
JP4763581B2 (ja) * 2006-11-27 2011-08-31 株式会社日立メディアエレクトロニクス 光ピックアップ装置
JP2008276860A (ja) * 2007-04-27 2008-11-13 Hitachi Media Electoronics Co Ltd 光ピックアップ装置及び光ディスクドライブ
JP2009020945A (ja) * 2007-07-11 2009-01-29 Hitachi Media Electoronics Co Ltd 光ピックアップ装置
JP5007196B2 (ja) * 2007-10-22 2012-08-22 株式会社日立メディアエレクトロニクス 光ピックアップ装置

Also Published As

Publication number Publication date
US7965610B2 (en) 2011-06-21
JP2010140527A (ja) 2010-06-24
US20100142354A1 (en) 2010-06-10

Similar Documents

Publication Publication Date Title
US7460448B2 (en) Optical pick-up head, optical information apparatus, and optical information reproducing method
JP4620631B2 (ja) 光ディスクドライブ装置
JP4763581B2 (ja) 光ピックアップ装置
JP5007196B2 (ja) 光ピックアップ装置
US8036090B2 (en) Optical pickup device
JP5070140B2 (ja) 光ピックアップ装置
US20080267019A1 (en) Optical Pickup Apparatus and Optical Disk Drive
US7796488B2 (en) Optical pickup apparatus
JP5286233B2 (ja) 光ピックアップ装置
US7876648B2 (en) Optical pick-up capable of eliminating stray beams
JP5094691B2 (ja) 光ピックアップ装置
JP2009070437A (ja) 抽出光学系、光ピックアップ装置、光ディスク装置及び情報処理装置
US20090323501A1 (en) Optical pickup and information device
JP4325468B2 (ja) 光情報記録再生装置
JP5318033B2 (ja) 光ピックアップ装置
JP2012243340A (ja) 光ピックアップ装置、光ディスク装置及び情報再生方法
JP2012108980A (ja) 光ピックアップ装置及び光ディスクドライブ
JP2007234083A (ja) 光ピックアップ装置およびチルト検出方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120918

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees