JP5085387B2 - Inspection method and inspection apparatus - Google Patents

Inspection method and inspection apparatus Download PDF

Info

Publication number
JP5085387B2
JP5085387B2 JP2008076858A JP2008076858A JP5085387B2 JP 5085387 B2 JP5085387 B2 JP 5085387B2 JP 2008076858 A JP2008076858 A JP 2008076858A JP 2008076858 A JP2008076858 A JP 2008076858A JP 5085387 B2 JP5085387 B2 JP 5085387B2
Authority
JP
Japan
Prior art keywords
inspected
measurement points
displacement
cut end
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008076858A
Other languages
Japanese (ja)
Other versions
JP2009229321A (en
Inventor
貴志 岡
利教 目木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2008076858A priority Critical patent/JP5085387B2/en
Publication of JP2009229321A publication Critical patent/JP2009229321A/en
Application granted granted Critical
Publication of JP5085387B2 publication Critical patent/JP5085387B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、アルミニウム押出材を押出方向に対し垂直に切断して得られた被検査体の形状精度を検査する検査方法及び検査装置に関する。   The present invention relates to an inspection method and an inspection apparatus for inspecting the shape accuracy of an object to be inspected obtained by cutting an extruded aluminum material perpendicularly to an extrusion direction.

自動車のABS(アンチスキッド・ブレーキ・システム)のハウジング等は、アルミニウム合金鋳塊を押出加工した後、所定の寸法に切断して押出材半製品を得、これを必要に応じて鍛造した後、切削加工を行って最終製品に仕上げる。ABSのハウジング等は高い表面精度が要求されるため、押出材半製品の段階で押出材切断面を検査し、所定の形状精度を満たさないものは不良品として排除される。   Automotive ABS (anti-skid brake system) housing, etc., after extruding the aluminum alloy ingot, cut to a predetermined dimension to obtain an extruded semi-finished product, forged as necessary, Finish the final product by cutting. Since the ABS housing and the like are required to have high surface accuracy, the cut surface of the extruded material is inspected at the stage of the extruded material semi-finished product, and those that do not satisfy the predetermined shape accuracy are excluded as defective products.

形状精度を検査する方法として、従来から接触式計測方法が使用されている。これは切断面に接触式のセンサを走査させて切断面上のポイント毎の3次元位置を測定し、切断長さ、両切断端面の平行度、及び各切断端面の押出方向に対する垂直度等の形状精度を検査する方法である。しかし、接触式計測方法は、被検査体の表面上の測定点毎にセンサを走査させて位置を測定するため測定に時間がかかる。従って、生産工程で検査による時間ロスを生じさせないため、すなわち生産性を損なわないため、全数検査ではなくサンプリング検査が行われているが、不良品の検査としては十分でない。
一方、レーザ変位計を用いた非接触式計測方法も知られているが(特許文献1〜3参照)、前記のような形状精度を知るには、いずれにしても被検査体自体をレーザ変位計の前で移動させるかレーザ変位系を走査させる必要があり、測定に時間がかかる点は同様である。
Conventionally, a contact measurement method has been used as a method for inspecting shape accuracy. This is done by scanning the cutting surface with a contact-type sensor and measuring the three-dimensional position of each point on the cutting surface, such as the cutting length, the parallelism of both cutting end surfaces, and the perpendicularity of each cutting end surface to the extrusion direction. This is a method for inspecting shape accuracy. However, the contact-type measurement method takes time for measurement because the position is measured by scanning the sensor for each measurement point on the surface of the object to be inspected. Therefore, in order not to cause time loss due to inspection in the production process, that is, not to impair productivity, sampling inspection is performed instead of 100% inspection, but it is not sufficient as inspection of defective products.
On the other hand, a non-contact type measuring method using a laser displacement meter is also known (see Patent Documents 1 to 3). It is necessary to move in front of the meter or scan the laser displacement system, and the measurement takes time.

特許第2519375号公報Japanese Patent No. 2519375 特開平5−99636号公報Japanese Patent Laid-Open No. 5-99636 特開平8−2333547号公報JP-A-8-2333547

本発明は、アルミニウム押出材を押出方向に対し垂直に切断して得られた被検査体の形状精度を検査する場合における前期従来技術の問題点にかんがみてなされたもので、ごく短時間で被検査体の形状精度を検査できるようにすることを目的とする。   The present invention was made in view of the problems of the prior art in the case of inspecting the shape accuracy of an object to be inspected obtained by cutting an aluminum extruded material perpendicularly to the extrusion direction. An object is to enable inspection of the shape accuracy of an inspection object.

本発明は、アルミニウム押出材を押出方向に対し垂直に切断して得られた被検査体の形状精度を検査する検査方法において、所定間隔を開けてそれぞれ対向配置したN(N:2以上の整数)組のレーザ変位計の間に、前記被検査体を押出方向が前記レーザ変位計のレーザビームの照射光軸に平行に向くように位置決めし、各レーザ変位計から前記被検査体の両切断端面にレーザビームを照射し、各レーザ変位計の検出信号に基づき、前記被検査体について各測定ポイント毎に予め標準試料に対して設定された基準位置からの変位を求め、この変位に基づいて前記被検査体の形状精度を検査することを特徴とする。この形状精度には、具体的には切断長さ、両切断端面の平行度、各切断端面の押出方向に対する直角度が含まれる。また、アルミニウム押出材には純アルミニウム及びアルミニウム合金が含まれる。   The present invention relates to an inspection method for inspecting the shape accuracy of an object to be inspected obtained by cutting an aluminum extruded material perpendicularly to the extrusion direction, and N (N is an integer equal to or greater than 2) arranged to face each other at a predetermined interval. ) Position the test object between a pair of laser displacement meters so that the direction of extrusion is parallel to the irradiation optical axis of the laser beam of the laser displacement meter, and cut both of the test objects from each laser displacement meter The end face is irradiated with a laser beam, and based on the detection signal of each laser displacement meter, the displacement from the reference position set in advance with respect to the standard sample is determined for each measurement point for the object to be inspected. The shape accuracy of the inspection object is inspected. Specifically, the shape accuracy includes the cutting length, the parallelism of both cutting end faces, and the perpendicularity of each cutting end face with respect to the extrusion direction. The aluminum extruded material includes pure aluminum and aluminum alloy.

本発明において、標準試料とは、長さ方向(被検査体の押出方向に相当)両端の端面(被検査体の切断端面に相当)が長さ方向に対し正確に垂直で、両端面間の長さが被検査体の目標値と正確に一致する試料である。被検査体の形状精度の検査に先立ち、各レーザ変位計のキャリブレーション(前記基準位置の設定)が行われる。
キャリブレーションでは、所定間隔を置いて対向配置されたN組のレーザ変位計の間に、標準試料を長さ方向が照射ビームに対し平行になるように位置決めし、レーザビームを照射して標準試料の両端面までの距離を測定し、この位置を各測定ポイントにおける基準位置(ゼロ点)として設定する。なお、標準試料の代わりに、両端の端面が長さ方向に対し正確に垂直で、両端面間の長さが標準試料とは異なるが既知の他の試料を用いて、標準試料に対応する基準位置を設定(補正が必要)することもできる。
In the present invention, the standard sample is the length direction (corresponding to the extrusion direction of the object to be inspected) and the end surfaces at both ends (corresponding to the cut end surface of the object to be inspected) are exactly perpendicular to the length direction. It is a sample whose length exactly matches the target value of the object to be inspected. Prior to the inspection of the shape accuracy of the object to be inspected, calibration of each laser displacement meter (setting of the reference position) is performed.
In calibration, a standard sample is positioned between N sets of laser displacement meters arranged opposite to each other at a predetermined interval so that the length direction is parallel to the irradiation beam, and the laser beam is irradiated to calibrate the standard sample. Measure the distance to both end faces of and set this position as the reference position (zero point) at each measurement point. Instead of the standard sample, the end surfaces at both ends are exactly perpendicular to the length direction, and the length between the end surfaces is different from the standard sample, but other known samples are used, and the standard corresponding to the standard sample is used. The position can also be set (correction required).

次に被検査体を押出方向を照射ビームの光軸に平行になるように位置決めし、前記各レーザ変位計からレーザビームを照射して、前記被検査体の両切断端面の各測定ポイント毎に、各基準位置(ゼロ点)からの変位を測定する。
図1(a)に示すように、標準試料1の長さをL、対向配置されたレーザ変位計2,3から標準試料1の端面までの距離をα,β、レーザ変位計2,3間の距離をWとしたとき、次式が成立する。
W=L+(α+β)・・・(1)
次に図1(b)に示すように、被検査体4の長さをL、被検査体4の端面までの距離をα,βとしたとき、次式が成立する。
W=L+(α+β)・・・(2)
(1)、(2)式より、次式が成立する。
L=L−{(α−α)+(β−β)}・・・(3)
Next, the object to be inspected is positioned so that the extrusion direction is parallel to the optical axis of the irradiation beam, and a laser beam is irradiated from each of the laser displacement meters, for each measurement point on both cut end faces of the object to be inspected. The displacement from each reference position (zero point) is measured.
As shown in FIG. 1 (a), the length of the standard sample 1 is L 0 , the distances from the laser displacement meters 2 and 3 arranged opposite to each other to the end surface of the standard sample 1 are α 0 and β 0 , and the laser displacement meter 2 , 3 is W, the following equation holds.
W = L 0 + (α 0 + β 0 ) (1)
Next, as shown in FIG. 1B, when the length of the inspection object 4 is L and the distances to the end face of the inspection object 4 are α and β, the following equation is established.
W = L + (α + β) (2)
From the equations (1) and (2), the following equation is established.
L = L 0 − {(α−α 0 ) + (β−β 0 )} (3)

(α−α)と(β−β)は、それぞれ標準試料に対して設定された基準位置からの変位であるから、これをそれぞれΔα,Δβとすると、次式のようになる。
L=L−(Δα+Δβ)・・・(4)
このように、標準試料に対して設定された基準位置からの変位Δα,Δβに基づいて、被検査体4の押出方向に沿った長さ(切断長さ)を算出することができる。本発明では被検査体4の両切断端面にN組の測定ポイントが設定されるから、被検査体4の断面のN組の測定ポイントにおいて切断長さを算出することになる。なお、切断長さを求める場合、対向配置されたレーザ変位計は、照射光軸をなるべく正確に一直線上に置くようにすることが望ましい。続いて算出した切断長さLを基準値Lと比較し、当該被検査体4の切断長さLが予め設定した公差範囲内であるかどうかを判定する。
Since (α−α 0 ) and (β−β 0 ) are displacements from the reference position set with respect to the standard sample, if they are Δα and Δβ, respectively, the following equations are obtained.
L = L 0 − (Δα + Δβ) (4)
Thus, based on the displacements Δα and Δβ from the reference position set with respect to the standard sample, it is possible to calculate the length (cutting length) along the extrusion direction of the inspection object 4. In the present invention, since N sets of measurement points are set on both cut end faces of the inspection object 4, the cutting length is calculated at N sets of measurement points on the cross section of the inspection object 4. In addition, when calculating | requiring a cutting | disconnection length, it is desirable for the laser displacement meter arrange | positioned facing to place an irradiation optical axis on a straight line as accurately as possible. Following the cut length L calculated by comparing the reference value L 0, it determines whether cut length L of the inspection object 4 is within the tolerance range set in advance.

前記切断端面が矩形(押出断面が矩形)の場合、N≧4とされ、それぞれの測定ポイントとして少なくとも各切断端面の4つの隅部が設定されることが望ましい。この場合、切断長さだけでなく、前記変位に基づいて、被検査体の両切断端面の平行度、及び/又は被検査体の各切断端面の押出方向に対する直角度を合わせて求めることができる。
両切断端面の平行度については、対向配置されたレーザ変位計に対応するN組の測定ポイント毎に、前記変位に基づいて前記被検査体の切断長さを求め、その最大値Lmaxと最小値LminからΔL=Lmax−Lminを両切断端面の平行度として算出する。必要に応じてΔLが公差範囲内(平行度の基準値は0)であるかどうかを判定する。
各切断端面の押出方向に対する直角度については、各切断端面の隅部に設定された4つの測定ポイントのうち、各切断端面の2組の対辺のうち一方の組の対辺の一方の辺の両側の隅部に設定された2つの測定ポイントの変位差と、前記一方の組の対辺の他方の辺の両側の隅部に設定された2つの測定ポイントの変位差を算出して、いずれか大きい方を被検査体の各切断端面の押出方向に対するY方向直角度として求め、このY方向直角度が公差範囲内(Y方向直角度の基準値はゼロ)であるかどうかを判定する。同時に、各切断端面の隅部に設定された4つの測定ポイントのうち、各切断端面の2組の対辺のうち他方の組の対辺の一方の辺の両側の隅部に設定された2つの測定ポイントの変位差と、前記他方の組の対辺の他方の辺の両側の隅部に設定された2つの測定ポイントの変位差を算出して、いずれか大きい方を被検査体の各切断端面の押出方向に対するZ方向直角度として求め、このZ方向直角度が公差範囲内(Z方向直角度の基準値はゼロ)であるかどうかを判定することもできる。Y方向及びZ方向は互いに垂直で、かついずれも被検査体の押出方向に垂直である。
なお、切断長さを求めるのでなければ、対向配置されたレーザ変位計は、必ずしも照射光軸を一直線上に置く必要はない。
When the cut end face is rectangular (extrusion cross section is rectangular), it is desirable that N ≧ 4, and at least four corners of each cut end face are set as respective measurement points. In this case, based on the displacement as well as the cutting length, the parallelism of both cutting end faces of the object to be inspected and / or the perpendicularity of each cutting end face of the object to be inspected with respect to the extrusion direction can be obtained. .
For the parallelism of both cutting end faces, the cutting length of the object to be inspected is determined based on the displacement for each of N sets of measurement points corresponding to the laser displacement meters arranged opposite to each other, and the maximum value Lmax and the minimum value are obtained. From Lmin, ΔL = Lmax−Lmin is calculated as the parallelism of both cut end faces. If necessary, it is determined whether ΔL is within a tolerance range (the parallelism reference value is 0).
About the perpendicularity with respect to the extrusion direction of each cutting end face, out of the four measurement points set at the corners of each cutting end face, both sides of one side of one set of two sets of opposite sides of each cutting end face The displacement difference between the two measurement points set at the corner of the pair and the displacement difference between the two measurement points set at the corners on both sides of the other side of the one set of the one set are calculated, whichever is greater Is determined as the Y-direction squareness with respect to the extrusion direction of each cut end face of the object to be inspected, and it is determined whether this Y-direction squareness is within the tolerance range (the reference value of the Y-direction perpendicularity is zero). At the same time, of the four measurement points set at the corners of each cut end face, two measurements set at the corners on both sides of one side of the opposite side of the other set of the two sets of opposite sides of each cut end face The displacement difference between the points and the displacement difference between the two measurement points set at the corners on both sides of the other side of the other set of the other set are calculated, and the larger one of the cut end faces of the object to be inspected is calculated. It can be determined as a Z-direction squareness with respect to the extrusion direction, and it can be determined whether the Z-direction squareness is within a tolerance range (the reference value of the Z-direction perpendicularity is zero). The Y direction and the Z direction are perpendicular to each other, and both are perpendicular to the extrusion direction of the test object.
If the cutting length is not obtained, the laser displacement meter arranged oppositely does not necessarily need to place the irradiation optical axis on a straight line.

本発明に係る検査装置は、上記検査方法を実施可能な装置であり、前記被検査体の両切断端面にレーザビームを照射できるように所定間隔を開けてそれぞれ対向配置されたN(N:2以上の整数)組のレーザ変位計と、対向配置されたレーザ変位計の間で前記被検査体を載せる定盤と、前記被検査体の側面を当接させて押出方向が前記レーザ変位計のレーザビームの照射光軸に平行になるように前記被検査体を位置決めする位置決め部材と、定盤上に載せた被検査体を位置決めのため位置決め部材に当接させる当接部材と、各レーザ変位計の検出信号に基づき、前記被検査体について各測定ポイント毎に予め標準試料に対して設定された基準位置からの変位を求め、この変位に基づいて前記被検査体の形状精度を検査する制御装置を備える。   An inspection apparatus according to the present invention is an apparatus capable of performing the above-described inspection method, and N (N: 2) arranged to face each other with a predetermined interval so that both cut end faces of the inspection object can be irradiated with a laser beam. (Integer above) A set of laser displacement meters, a surface plate on which the object to be inspected is placed between the laser displacement meters arranged opposite to each other, and a side surface of the object to be inspected abuts so that the pushing direction of the laser displacement meter A positioning member that positions the object to be inspected so as to be parallel to the optical axis of the laser beam; a contact member that abuts the object to be inspected placed on the surface plate for positioning; and each laser displacement Control for obtaining a displacement from a reference position set in advance with respect to a standard sample for each measurement point on the object to be inspected based on a detection signal of the meter, and inspecting the shape accuracy of the object to be inspected based on the displacement Equipment.

本発明によれば、対向配置した複数組のレーザ変位計により、アルミニウム押出材を押出方向に対し垂直に切断して得られた被検査体における複数箇所の切断長さ、両切断端面の平行度、各切断端面の押出方向に対する直角度などの3次元的形状を正確に測定し、その形状精度を基準値と比較して公差範囲内かどうかを判定し、しかもこれをごく短時間に行うことができる。
検査工程が短時間で行えることから、例えば全数検査しても生産性が特に阻害されるようなこともなく、また、必要に応じて、検査結果に基づいて被検査体の良否判定を行い、直ちに良品と不良品を仕分けることもできるから、切断工程と検査工程、さらには鍛造、切削等の製品製造工程をインライン化することも可能となる。
According to the present invention, a plurality of cut lengths in an object to be inspected obtained by cutting an aluminum extruded material perpendicularly to the extrusion direction by a plurality of sets of laser displacement meters arranged opposite to each other, and the parallelism of both cut end faces , Accurately measure the three-dimensional shape such as the squareness of each cut end face with respect to the extrusion direction, compare the shape accuracy with the reference value, determine whether it is within the tolerance range, and do this in a very short time Can do.
Since the inspection process can be performed in a short time, productivity is not particularly hindered even if, for example, 100% inspection is performed, and if necessary, the quality of the inspected object is determined based on the inspection result, Since a good product and a defective product can be immediately sorted, it is possible to inline a cutting process and an inspection process, as well as a product manufacturing process such as forging and cutting.

以下、図2〜6に基づいて、本発明をより具体的に説明する。
図2は、断面矩形のアルミニウム合金押出材を押出方向に垂直に所定長さに切断した被検査体の形状精度を検査する方法及び装置を説明するもので、4組(計8個)のレーザ変位計A1−A2,B1−B2,C1−C2,D1−D2が,被検査体4の長さより所定間隔長い距離を置いて対向配置され、対向配置された(同じ組の)レーザ変位計(例えばA1とA2)はいずれもレーザビームの照射光軸がそれぞれ一直線上になるように設定されている。また、各レーザ変位計の測定ポイントa1,a2,b1,b2,c1,c2,d1,d2は、位置決めされた被検査体4の切断端面の各隅部に位置し、かつ各切断端面の測定ポイントa1,b1,c1,d1、及びa2,b2,c2,d2を仮に線分でつなぐと矩形となるように位置設定されている。
Hereinafter, the present invention will be described more specifically based on FIGS.
FIG. 2 illustrates a method and apparatus for inspecting the shape accuracy of an object to be inspected obtained by cutting an aluminum alloy extruded material having a rectangular cross section into a predetermined length perpendicular to the extrusion direction. Displacement meters A1-A2, B1-B2, C1-C2, and D1-D2 are opposed to each other with a predetermined distance longer than the length of the object to be inspected 4, and are opposed to each other (the same set) of laser displacement meters (the same set). For example, both A1 and A2) are set so that the irradiation optical axes of the laser beams are in a straight line. Further, the measurement points a1, a2, b1, b2, c1, c2, d1, and d2 of each laser displacement meter are located at each corner of the cut end surface of the object to be inspected 4, and the measurement of each cut end surface is performed. If the points a1, b1, c1, d1, and a2, b2, c2, d2 are connected by line segments, the positions are set to be rectangular.

図3〜図5に示すように、対向配置されたレーザ変位計A1〜D1とレーザ変位計A2〜D2の間に、被検査体4を載置する水平面を有する定盤5が配置され、その一端に前記レーザ変位計A1〜D1,A2〜D2の照射光軸に平行な位置決め面を有する位置決め部材6が設置され、その反対側に位置決め部材6に向けて進退する当接部材(プッシャー)7が設置されている。この当接部材7は、前進して被検査体4を押し、被検査体4の側面を位置決め部材6に当接させて、被検査体4の押出方向がレーザビームの照射光軸と平行になるように位置決めする機能を有する。レーザ変位計A1〜D1,A2〜D2はいずれも先に述べたように予め標準試料を用いてキャリブレーションされ、各々基準位置(ゼロ点)が設定されている。   As shown in FIG. 3 to FIG. 5, a surface plate 5 having a horizontal plane on which the object to be inspected 4 is placed is disposed between the laser displacement meters A1 to D1 and the laser displacement meters A2 to D2 that are arranged to face each other. A positioning member 6 having a positioning surface parallel to the irradiation optical axis of the laser displacement meters A1 to D1 and A2 to D2 is installed at one end, and a contact member (pusher) 7 that advances and retracts toward the positioning member 6 on the opposite side. Is installed. The abutting member 7 advances to push the object 4 to be inspected, and the side surface of the object 4 to be in contact with the positioning member 6 so that the pushing direction of the object 4 is parallel to the irradiation optical axis of the laser beam. It has the function which positions so that it may become. The laser displacement meters A1 to D1 and A2 to D2 are all calibrated in advance using a standard sample as described above, and each reference position (zero point) is set.

図示しない手段により定盤5上に被検査体4が載置されると、当接部材7が前進して被検査体4の側面を位置決め部材6の位置決め面に当接させ、ここでレーザ変位計A1〜D1,A2〜D2から両切断端面4a,4bにレーザビームが照射され、検出信号が制御装置8(図2参照)に送られ、その検出信号に基づき、各測定ポイントa1,a2,b1,b2,c1,c2,d1,d2毎に前記基準位置からの変位が求められ、さらにこの変位に基づいて被検査体4の形状精度が算出及び検査され、続いて当接部材7が後退し、図示しない手段により被検査体4が定盤5上から排出される。なお、図3〜5において9はレーザ変位計A1〜D1及びレーザ変位計A2〜D2を設置した共通のフレームである。   When the device under test 4 is placed on the surface plate 5 by means not shown, the contact member 7 moves forward to bring the side surface of the device under test 4 into contact with the positioning surface of the positioning member 6, where the laser displacement A laser beam is irradiated from the totals A1 to D1 and A2 to D2 onto the two cut end faces 4a and 4b, and a detection signal is sent to the control device 8 (see FIG. 2). Based on the detection signal, each measurement point a1, a2, The displacement from the reference position is obtained for each of b1, b2, c1, c2, d1, and d2, and the shape accuracy of the device under test 4 is calculated and inspected based on this displacement, and then the contact member 7 is retracted. Then, the inspection object 4 is discharged from the surface plate 5 by means not shown. 3 to 5, reference numeral 9 denotes a common frame in which the laser displacement meters A1 to D1 and the laser displacement meters A2 to D2 are installed.

前記制御装置8による一連の制御手順の例について、図6のフローチャート及び図2を参照して説明する。
被検査体4の位置決め後、ステップ1において、レーザ変位計A1〜D1,A2〜D2から両切断端面4a,4bにレーザビームを照射し、それぞれの検出信号に基づき、各測定ポイントa1,a2,b1,b2,c1,c2,d1,d2毎に基準位置からの変位(それぞれΔa1,Δa2,Δb1,Δb2,Δc1,Δc2,Δd1,Δd2とする)を求める。ステップ2において、対向配置されたレーザ変位計に対応する4組の測定ポイント(a1とa2,b1とb2,c1とc2,d1とd2)毎に、求めた変位(Δa1とΔa2,Δb1とΔb2,Δc1とΔc2,Δd1とΔd2)から切断長さを算出する。切断長さは4つ算出される。
An example of a series of control procedures by the control device 8 will be described with reference to the flowchart of FIG. 6 and FIG.
After positioning the object 4 to be inspected, in step 1, the laser displacement meters A1 to D1, A2 to D2 irradiate the cut end surfaces 4a and 4b with laser beams, and based on the respective detection signals, the measurement points a1, a2, The displacement from the reference position is obtained for each of b1, b2, c1, c2, d1, and d2 (referred to as Δa1, Δa2, Δb1, Δb2, Δc1, Δc2, Δd1, and Δd2, respectively). In step 2, the obtained displacements (Δa1 and Δa2, Δb1 and Δb2) are obtained for each of four sets of measurement points (a1 and a2, b1 and b2, c1 and c2, d1 and d2) corresponding to the laser displacement meters arranged opposite to each other. , Δc1 and Δc2, Δd1 and Δd2), the cutting length is calculated. Four cutting lengths are calculated.

ステップ3において、算出した切断長さを基準長さと比較し、切断長さが予め設定した公差範囲内かどうかを判定する。NOと判定したとき、ステップ10においてこの被検査体を不良品と判定し、ステップ11において排出指令を出し、製品製造工程に供給することなくライン外に排出する。なお、ステップ3における判定の仕方として、例えば算出した4つの切断長さ毎に基準長さと比較し、あるいは4つの切断長さの平均値をとって基準長さと比較するなど、具体的な比較の仕方は適宜設定できる。
ステップ3においてYESのとき、ステップ4において、算出した切断長さに基づいて両切断端面の平行度を算出する。具体的には、切断長さの最大値Lmaxと最小値LminからΔL=Lmax−Lminを両切断端面の平行度として算出する。ステップ5において、算出した平行度ΔLが予め設定した公差範囲内であるかどうかを判定する。NOと判定したとき、ステップ10においてこの被検査体を不良品と判定し、ステップ11において排出指令を出し、製品製造工程に供給することなくライン外に排出する。
In step 3, the calculated cutting length is compared with a reference length to determine whether the cutting length is within a preset tolerance range. When it is determined NO, the object to be inspected is determined to be defective in step 10 and a discharge command is issued in step 11 to be discharged out of the line without being supplied to the product manufacturing process. In addition, as a method of determination in step 3, for example, for each of the calculated four cutting lengths, a comparison is made with the reference length, or an average value of the four cutting lengths is taken and compared with the reference length. The way can be set appropriately.
When YES in step 3, in step 4, the parallelism of both cut end faces is calculated based on the calculated cut length. Specifically, ΔL = Lmax−Lmin is calculated as the parallelism of both cutting end faces from the maximum value Lmax and the minimum value Lmin of the cutting length. In step 5, it is determined whether or not the calculated parallelism ΔL is within a preset tolerance range. When it is determined NO, the object to be inspected is determined to be defective in step 10 and a discharge command is issued in step 11 to be discharged out of the line without being supplied to the product manufacturing process.

ステップ5においてYESのとき、ステップ6において、各切断端面4a,4bのY方向直角度を算出する。なお、図2の例では、Y方向は、被検査体4の押出方向(X方向)に対し垂直、かつ押出方向に平行な2組の対面(4cと4d、4eと4f)のうち一方の組の対面(4eと4f)に平行な方向とされ、Z方向は、被検査体4の押出方向(X方向)に対し垂直、かつ押出方向に平行な2組の対面(4cと4d、4eと4f)のうち他方の組の対面(4cと4d)に平行な方向とされ、Y方向とZ方向は垂直である。
切断端面4aのY方向直角度は、切断端面4aに設定された4つの測定ポイントa1,b1,c1,d1のうち、切断端面4aのY方向に向く1組の対辺4ac,4adの一方の辺4acの両側の隅部に設定された2つの測定ポイントa1,c1で測定された変位Δa1,Δc1の差(変位差=|Δa1−Δc1|)を算出し、他方の辺4adの両側の隅部に設定された2つの測定ポイントb1,d1で測定された変位Δb1,Δd1の差(変位差=|Δb1−Δd1|)を算出し、2つの変位差を比較していずれか大きい方として求められる。一方、切断端面4bのY方向直角度は、切断端面4bに設定された4つの測定ポイントa2,b2,c2,d2のうち、切断端面のY方向に向く1組の対辺4bc,4bdの一方の辺4bcの両側の隅部に設定された2つの測定ポイントa2,c2で測定された変位Δa2,Δc2の差(変位差=|Δa2−Δc2|)を算出し、他方の辺4bdの両側の隅部に設定された2つの測定ポイントb2,d2で測定された変位Δb2,Δd2の差(変位差=|Δb2−Δd2|)を算出し、2つの変位差を比較していずれか大きい方として求められる。
When YES in step 5, in step 6, the perpendicularity in the Y direction of each of the cut end faces 4a and 4b is calculated. In the example of FIG. 2, the Y direction is one of two pairs of faces (4c and 4d, 4e and 4f) that are perpendicular to the extrusion direction (X direction) of the inspection object 4 and parallel to the extrusion direction. A direction parallel to the pair of facing surfaces (4e and 4f) is set, and the Z direction is perpendicular to the extrusion direction (X direction) of the object to be inspected 4 and parallel to the extrusion direction (4c and 4d, 4e). And 4f) are parallel to the other pair of facing surfaces (4c and 4d), and the Y direction and the Z direction are perpendicular to each other.
The perpendicularity in the Y direction of the cutting end surface 4a is one side of a pair of opposite sides 4ac, 4ad facing the Y direction of the cutting end surface 4a among the four measurement points a1, b1, c1, d1 set on the cutting end surface 4a. The difference (displacement difference = | Δa1−Δc1 |) between the displacements Δa1 and Δc1 measured at the two measurement points a1 and c1 set at the corners on both sides of 4ac is calculated, and the corners on both sides of the other side 4ad are calculated. The difference between the displacements Δb1 and Δd1 measured at the two measurement points b1 and d1 set to (displacement difference = | Δb1−Δd1 |) is calculated, and the two displacement differences are compared to obtain the larger one. . On the other hand, the perpendicular angle in the Y direction of the cut end surface 4b is one of the pair of opposite sides 4bc, 4bd facing the Y direction of the cut end surface among the four measurement points a2, b2, c2, d2 set on the cut end surface 4b. The difference between the displacements Δa2 and Δc2 measured at the two measurement points a2 and c2 set at the corners on both sides of the side 4bc (displacement difference = | Δa2−Δc2 |) is calculated, and the corners on both sides of the other side 4bd are calculated. The difference between the displacements Δb2 and Δd2 measured at the two measurement points b2 and d2 set in the section (displacement difference = | Δb2−Δd2 |) is calculated, and the two displacement differences are compared and obtained as the larger one. It is done.

ステップ7において、算出した各切断端面4a,4bのY方向直角度がそれぞれ予め設定した公差範囲内であるかどうかを判定する。NOと判定したとき、ステップ10においてこの被検査体を不良品と判定し、ステップ11において排出指令を出し、製品製造工程に供給することなくライン外に排出する。
ステップ7においてYESのとき、ステップ8において、各切断端面4a,4bのZ方向直角度を算出する。切断端面4aのZ方向直角度は、切断端面4aに設定された4つの測定ポイントa1,b1,c1,d1のうち、切断端面のZ方向に向く1組の対辺4aa,4abの一方の辺4aaの両側の隅部に設定された2つの測定ポイントa1,b1で測定された変位Δa1,Δb1の差(変位差=|Δa1−Δb1|)を算出し、他方の辺4abの両側の隅部に設定された2つの測定ポイントc1,d1で測定された変位Δc1,Δd1の差(変位差=|Δc1−Δd1|)を算出し、2つの変位差を比較していずれか大きい方として求められる。一方、切断端面4bのZ方向直角度は、切断端面4bに設定された4つの測定ポイントa2,b2,c2,d2のうち、切断端面4bのZ方向に向く1組の対辺4ba,4bbの一方の辺4baの両側の隅部に設定された2つの測定ポイントa2,b2で測定された変位Δa2,Δb2の差(変位差=|Δa2−Δb2|)を算出し、他方の辺4bbの両側の隅部に設定された2つの測定ポイントc2,d2で測定された変位Δc2,Δd2の差(変位差=|Δc2−Δd2|)を算出し、2つの変位差を比較していずれか大きい方として求められる。
In step 7, it is determined whether or not the calculated Y-direction squareness of each of the cut end faces 4a and 4b is within a preset tolerance range. When it is determined NO, the object to be inspected is determined to be defective in step 10 and a discharge command is issued in step 11 to be discharged out of the line without being supplied to the product manufacturing process.
When YES in step 7, in step 8, the perpendicularity in the Z direction of each cut end face 4a, 4b is calculated. The perpendicularity of the cutting end surface 4a in the Z direction is one side 4aa of a pair of opposite sides 4aa and 4ab facing the Z direction of the cutting end surface among the four measurement points a1, b1, c1 and d1 set on the cutting end surface 4a. The difference (displacement difference = | Δa1−Δb1 |) between the displacements Δa1 and Δb1 measured at the two measurement points a1 and b1 set at the corners on both sides of the other side 4ab is calculated. The difference between the displacements Δc1 and Δd1 measured at the two set measurement points c1 and d1 (displacement difference = | Δc1−Δd1 |) is calculated, and the two displacement differences are compared to obtain the larger one. On the other hand, the perpendicularity of the cutting end surface 4b in the Z direction is one of a pair of opposite sides 4ba and 4bb facing the Z direction of the cutting end surface 4b among the four measurement points a2, b2, c2 and d2 set on the cutting end surface 4b. The difference between the displacements Δa2 and Δb2 measured at the two measurement points a2 and b2 set at the corners on both sides of the side 4ba is calculated (displacement difference = | Δa2−Δb2 |). The difference between the displacements Δc2 and Δd2 measured at the two measurement points c2 and d2 set at the corner (displacement difference = | Δc2−Δd2 |) is calculated, and the two displacement differences are compared, whichever is greater Desired.

ステップ9において、算出した各切断端面4a,4bのZ方向直角度がそれぞれ予め設定した公差範囲内であるかどうかを判定する。NOと判定したとき、ステップ10においてこの被検査体を不良品と判定し、ステップ11において排出指令を出し、製品製造工程に供給することなくライン外に排出する。
ステップ9においてYESと判定したとき、この被検査体4はステップ12において良品と判定し、ステップ13において製品製造工程に供給する。
なお、各被検査物毎にスタートからエンドまでの制御が行われる。また、この検査方法では、切断長さ、両切断端面の平行度、各切断端面のY方向垂直度及びZ方向垂直度の全てについて形状精度を算出し、その3次元的形状精度が予め設定した公差の範囲内かどうかを判定したが、これらの一部のみについて算出及び判定することもできる。
In step 9, it is determined whether or not the calculated Z-direction squareness of each of the cut end faces 4a and 4b is within a preset tolerance range. When it is determined NO, the object to be inspected is determined to be defective in step 10 and a discharge command is issued in step 11 to be discharged out of the line without being supplied to the product manufacturing process.
When YES is determined in step 9, the device under test 4 is determined to be non-defective in step 12 and supplied to the product manufacturing process in step 13.
Control from the start to the end is performed for each inspection object. Further, in this inspection method, the shape accuracy is calculated for all of the cutting length, the parallelism of both cutting end surfaces, the Y direction verticality and the Z direction verticality of each cutting end surface, and the three-dimensional shape accuracy is preset. Although it was determined whether it was within the tolerance range, it is also possible to calculate and determine only a part of these.

被検査物の切断端面の基準位置からの変位の意味について説明する図である。It is a figure explaining the meaning of the displacement from the reference | standard position of the cut end surface of a to-be-inspected object. 本発明に係る検査装置の構成を示す斜視図である。It is a perspective view which shows the structure of the inspection apparatus which concerns on this invention. その平面図である。FIG. 同じく側面断面図である。It is side surface sectional drawing similarly. 同じく正面断面図である。It is a front sectional view similarly. 本発明に係る検査方法における処理を示すフローチャートである。It is a flowchart which shows the process in the test | inspection method which concerns on this invention.

符号の説明Explanation of symbols

1 標準試料
2,3 レーザ変位計
4 被検査体
5 定盤
6 位置決め部材
7 当接部材(プッシャー)
8 制御装置
A1〜D1,A2〜D2 レーザ変位計
a1,a2,b1,b2,c1,c2,d1,d2 測定ポイント
DESCRIPTION OF SYMBOLS 1 Standard sample 2,3 Laser displacement meter 4 Inspected object 5 Surface plate 6 Positioning member 7 Contact member (pusher)
8 Control device
A1-D1, A2-D2 Laser displacement meter a1, a2, b1, b2, c1, c2, d1, d2 Measurement points

Claims (11)

アルミニウム押出材を押出方向に対し垂直に切断して得られた被検査体の形状精度を検査する検査方法において、所定間隔を開けてそれぞれ対向配置したN(N:2以上の整数)組のレーザ変位計の間に、前記被検査体を押出方向が前記レーザ変位計のレーザビームの照射光軸に平行に向くように位置決めし、各レーザ変位計から前記被検査体の両切断端面にレーザビームを照射し、各レーザ変位計の検出信号に基づき、前記被検査体について各測定ポイント毎に予め標準試料に対して設定された基準位置からの変位を求め、対向配置されたレーザ変位計に対応するN組の測定ポイント毎に、前記変位に基づいて前記被検査体の切断長さを算出し、切断長さの基準値と比較して公差範囲内であるかどうかを判定することを特徴とする検査方法。 In an inspection method for inspecting the shape accuracy of an object to be inspected obtained by cutting an aluminum extruded material perpendicularly to the extrusion direction, N (N: an integer greater than or equal to 2) sets of lasers arranged facing each other at a predetermined interval Between the displacement meters, the object to be inspected is positioned so that the extrusion direction is parallel to the irradiation optical axis of the laser beam of the laser displacement meter, and a laser beam is emitted from each laser displacement meter to both cut end faces of the object to be inspected. Based on the detection signal of each laser displacement meter, the displacement from the reference position previously set for the standard sample is determined for each measurement point for the object to be inspected, and it corresponds to the laser displacement meter arranged oppositely The cutting length of the object to be inspected is calculated based on the displacement for each N sets of measurement points, and compared with a reference value of the cutting length to determine whether it is within a tolerance range. Inspection method 前記被検査体を、前記レーザビームの照射光軸に平行に設置した定盤の面上に置き、次いで前記被検査体の側面を位置決め部材に当接させて位置決めすることを特徴とする請求項1に記載された検査方法。 The object to be inspected is placed on a surface of a surface plate installed in parallel to the optical axis of the laser beam, and then the side surface of the object to be inspected is brought into contact with a positioning member for positioning. 1. The inspection method described in 1. 前記切断端面が矩形であり、N≧4であり、それぞれの測定ポイントとして少なくとも各切断端面の4つの隅部近傍が設定されていることを特徴とする請求項1又は2に記載された検査方法。 3. The inspection method according to claim 1, wherein the cut end face is rectangular, N ≧ 4, and at least four corners of each cut end face are set as respective measurement points. . 対向配置されたレーザ変位計に対応するN組の測定ポイント毎に、前記変位に基づいて前記被検査体の切断長さを求め、その最大値Lmaxと最小値LminからΔL=Lmax−Lminを両切断端面の平行度として算出し、このΔLが平行度の公差範囲内であるかどうかを判定することを特徴とする請求項3に記載された検査方法。 For each of N sets of measurement points corresponding to the laser displacement meters arranged opposite to each other, the cutting length of the object to be inspected is obtained based on the displacement, and ΔL = Lmax−Lmin is obtained from the maximum value Lmax and the minimum value Lmin. The inspection method according to claim 3 , wherein the parallelism of the cut end face is calculated, and it is determined whether or not ΔL is within a tolerance range of the parallelism. 各切断端面の隅部に設定された4つの測定ポイントのうち、各切断端面の2組の対辺のうち一方の組の対辺の一方の辺の両側の隅部に設定された2つの測定ポイントの変位差と、前記一方の組の対辺の他方の辺の両側の隅部に設定された2つの測定ポイントの変位差を算出して、いずれか大きい方を被検査体の各切断端面の押出方向に対するY方向直角度として求め、このY方向直角度が公差範囲内であるかどうかを判定することを特徴とする請求項3又は4に記載された検査方法。 Of the four measurement points set at the corners of each cut end face, the two measurement points set at the corners on both sides of one side of one set of the two opposite sides of each cut end face The displacement difference and the displacement difference between the two measurement points set at the corners on both sides of the opposite side of the one set of the one set are calculated, and the larger one is the extrusion direction of each cut end surface of the object to be inspected. 5. The inspection method according to claim 3, wherein the inspection method is obtained as a perpendicularity in the Y direction with respect to and determines whether the perpendicularity in the Y direction is within a tolerance range. 各切断端面の隅部に設定された4つの測定ポイントのうち、各切断端面の2組の対辺のうち他方の組の対辺の一方の辺の両側の隅部に設定された2つの測定ポイントの変位差と、前記他方の組の対辺の他方の辺の両側の隅部に設定された2つの測定ポイントの変位差を算出して、いずれか大きい方を被検査体の各切断端面の押出方向に対するZ方向直角度として求め、このZ方向直角度が公差範囲内であるかどうかを判定することを特徴とする請求項5に記載された検査方法。 Of the four measurement points set at the corners of each cut end face, the two measurement points set at the corners on both sides of one side of the opposite side of the other set of the two opposite sides of each cut end face The displacement difference and the displacement difference between the two measurement points set at the corners on both sides of the other side of the other set of the other set are calculated, and the larger one is the extrusion direction of each cut end surface of the object to be inspected. The inspection method according to claim 5 , wherein the inspection method is obtained as a Z-direction squareness with respect to, and determines whether or not the Z-direction squareness is within a tolerance range. アルミニウム押出材を押出方向に対し垂直に切断して得られた被検査体の形状精度を検査する検査装置において、前記被検査体の両切断端面にレーザビームを照射できるように所定間隔を開けてそれぞれ対向配置されたN(N:2以上の整数)組のレーザ変位計と、対向配置されたレーザ変位計の間で前記被検査体を載せる定盤と、前記被検査体の側面を当接させて押出方向が前記レーザ変位計のレーザビームの照射光軸に平行になるように前記被検査体を位置決めする位置決め部材と、定盤上に載せた被検査体を位置決めのため位置決め部材に当接させる当接部材と、各レーザ変位計の検出信号に基づき、前記被検査体について各測定ポイント毎に予め標準試料に対して設定された基準位置からの変位を求め、対向配置されたレーザ変位計に対応するN組の測定ポイント毎に、前記変位に基づいて前記被検査体の切断長さを算出し、切断長さの基準値と比較して公差範囲内であるかどうかを判定する制御装置を備えることを特徴とする検査装置。 In an inspection apparatus for inspecting the shape accuracy of an object to be inspected obtained by cutting an aluminum extruded material perpendicularly to the extrusion direction, a predetermined interval is provided so that both cutting end faces of the object to be inspected can be irradiated with a laser beam. N (N: integer greater than or equal to 2) sets of laser displacement meters arranged opposite to each other, a surface plate on which the object to be inspected is placed between the laser displacement meters arranged opposite to each other, and a side surface of the object to be inspected The positioning member is positioned so that the direction of extrusion is parallel to the irradiation optical axis of the laser beam of the laser displacement meter, and the testing object placed on the surface plate is contacted with the positioning member for positioning. Based on a contact member to be contacted and a detection signal of each laser displacement meter, a displacement from a reference position previously set with respect to a standard sample is obtained for each measurement point with respect to the object to be inspected, and a laser displacement arranged oppositely Total For each corresponding N sets points of measurement, the calculated cut length of the device under test based on the displacement, determining the control unit whether it is within the tolerance range as compared with the reference value of the cut length An inspection apparatus comprising: 前記被検査体の切断端面が矩形であり、N≧4であり、それぞれの測定ポイントとして少なくとも各切断端面の4つの隅部が設定されていることを特徴とする請求項7に記載された検査装置。 The inspection according to claim 7 , wherein the cut end surface of the object to be inspected is rectangular, N ≧ 4, and at least four corners of each cut end surface are set as respective measurement points. apparatus. 前記制御装置が、対向配置されたレーザ変位計に対応するN組の測定ポイント毎に、前記変位に基づいて前記被検査体の切断長さを求め、その最大値Lmaxと最小値LminからΔL=Lmax−Lminを両切断端面の平行度として算出し、このΔLが平行度の公差範囲内であるかどうかを判定するものであることを特徴とする請求項8に記載された検査装置。 The control device obtains the cutting length of the object to be inspected based on the displacement for each of N sets of measurement points corresponding to the laser displacement meters arranged opposite to each other, and ΔL = from the maximum value Lmax and the minimum value Lmin 9. The inspection apparatus according to claim 8 , wherein Lmax−Lmin is calculated as a parallelism of both cut end faces, and it is determined whether or not ΔL is within a tolerance range of the parallelism. 前記制御装置が、各切断端面の隅部に設定された4つの測定ポイントのうち、各切断端面の2組の対辺のうち一方の組の対辺の一方の辺の両側の隅部に設定された2つの測定ポイントの変位差と、前記一方の組の対辺の他方の辺の両側に設定された2つの測定ポイントの変位差を算出して、いずれか大きい方を被検査体の各切断端面の押出方向に対するY方向直角度として求め、このY方向直角度が公差範囲内であるかどうかを判定するものであることを特徴とする請求項8又は9に記載された検査装置。 Of the four measurement points set at the corners of each cutting end face, the control device is set at the corners on both sides of one side of the opposite side of one set of the two opposite sides of each cutting end face. The displacement difference between the two measurement points and the displacement difference between the two measurement points set on both sides of the other side of the one set are calculated, and the larger one is calculated for each cut end face of the object to be inspected. 10. The inspection apparatus according to claim 8 , wherein the inspection apparatus is obtained as a perpendicularity in the Y direction with respect to the extrusion direction, and determines whether or not the perpendicularity in the Y direction is within a tolerance range. 前記制御装置が、各切断端面の隅部に設定された4つの測定ポイントのうち、各切断端面の2組の対辺のうち他方の組の対辺の一方の辺の両側の隅部に設定された2つの測定ポイントの変位差と、前記他方の組の対辺の他方の辺の両側に設定された2つの測定ポイントの変位差を算出して、いずれか大きい方を被検査体の各切断端面の押出方向に対するZ方向直角度として求め、このZ方向直角度が公差範囲内であるかどうかを判定するものであることを特徴とする請求項10に記載された検査装置。 Of the four measurement points set at the corners of each cutting end face, the control device is set at the corners on both sides of one side of the other side of the two sets of opposite sides of each cutting end face. The displacement difference between the two measurement points and the displacement difference between the two measurement points set on both sides of the other side of the other set of the other set are calculated, and the larger one is calculated for each cut end face of the object to be inspected. The inspection apparatus according to claim 10 , wherein the inspection apparatus is obtained as a Z-direction squareness with respect to the extrusion direction and determines whether or not the Z-direction squareness is within a tolerance range.
JP2008076858A 2008-03-24 2008-03-24 Inspection method and inspection apparatus Active JP5085387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008076858A JP5085387B2 (en) 2008-03-24 2008-03-24 Inspection method and inspection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008076858A JP5085387B2 (en) 2008-03-24 2008-03-24 Inspection method and inspection apparatus

Publications (2)

Publication Number Publication Date
JP2009229321A JP2009229321A (en) 2009-10-08
JP5085387B2 true JP5085387B2 (en) 2012-11-28

Family

ID=41244885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008076858A Active JP5085387B2 (en) 2008-03-24 2008-03-24 Inspection method and inspection apparatus

Country Status (1)

Country Link
JP (1) JP5085387B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5289144B2 (en) * 2009-03-31 2013-09-11 株式会社神戸製鋼所 Inspection method
JP6926663B2 (en) * 2017-05-17 2021-08-25 株式会社リコー Inspection equipment
KR102094330B1 (en) * 2019-10-15 2020-03-27 비엠스틸 주식회사 Round bar cutting apparatus
CN117516346A (en) * 2023-12-13 2024-02-06 烟台芮禾电气技术有限公司 Cabinet body corner perpendicularity measuring equipment for power distribution cabinet production

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58182109U (en) * 1982-05-28 1983-12-05 川崎製鉄株式会社 Angle measuring device
JPH0767571B2 (en) * 1990-10-31 1995-07-26 三井造船株式会社 Cross-sectional shape measurement method for aluminum extrusion
JP3073374B2 (en) * 1993-01-27 2000-08-07 日立造船株式会社 Dimension measuring device for shaped steel
JP4132433B2 (en) * 1998-08-10 2008-08-13 株式会社フローリック Method and apparatus for testing concrete length change
JP3339624B2 (en) * 1998-08-31 2002-10-28 川崎製鉄株式会社 Dimension measurement method
JP3565178B2 (en) * 2001-03-23 2004-09-15 オムロン株式会社 Displacement sensor
JP2007183183A (en) * 2006-01-06 2007-07-19 Hitachi Ltd Apparatus for measuring width dimension of straddle-type monorail-use girder

Also Published As

Publication number Publication date
JP2009229321A (en) 2009-10-08

Similar Documents

Publication Publication Date Title
EP2466250B1 (en) Machine calibration artifact
KR20100083834A (en) Method for ascertaining rethe pressure and the profile depth in a vehicle tyre
JP5085387B2 (en) Inspection method and inspection apparatus
DE69925582D1 (en) DEVICE AND METHOD FOR OPTICAL SURFACE CONTOUR MEASUREMENT
US6985238B2 (en) Non-contact measurement system for large airfoils
CN113446952B (en) Online non-contact shaft diameter measuring method
JP4340625B2 (en) Optical inspection method and apparatus
JP4878904B2 (en) Dimensional difference measuring method and apparatus
CN112620139A (en) Concrete test piece size detection device and method
KR100937477B1 (en) A Coordinate Measuring Machine Using A Reference Plate
JP5289144B2 (en) Inspection method
KR100978397B1 (en) System for analyzing plasma density
US20040263840A1 (en) Calibration of reconfigurable inspection machine
CN114396929B (en) Method for detecting form and position tolerance of diaphragm hole of laser gyro cavity
Muralikrishnan et al. Dimensional metrology of bipolar fuel cell plates using laser spot triangulation probes
D’Emilia et al. Measurement uncertainty estimation of gap and profile in the automotive sector
CN110440708B (en) Standard component for three-dimensional white light scanning equipment and calibration method thereof
CN216205921U (en) Calibration device of dovetail groove detection tool of glass mold
CN211856473U (en) Calibration test block for digital ultrasonic detection
JP2003254747A (en) Straightness measurement method
WO2013050007A1 (en) Method and apparatus for measuring shape deviations of mechanical parts
TWI467129B (en) Method for detecting flatness of nozzle
Zapico et al. Feasibility analysis of using machinable glass ceramics to manufacture non-contact measurement approach metrological artefacts
CN111307065B (en) Steel rail profile detection method, system and device based on polarization beam splitting
Doiron et al. High Accuracy Measurements Using a Scanning System with a Single Point Triangulation Sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120905

R150 Certificate of patent or registration of utility model

Ref document number: 5085387

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3