JP3339624B2 - Dimension measurement method - Google Patents

Dimension measurement method

Info

Publication number
JP3339624B2
JP3339624B2 JP24617198A JP24617198A JP3339624B2 JP 3339624 B2 JP3339624 B2 JP 3339624B2 JP 24617198 A JP24617198 A JP 24617198A JP 24617198 A JP24617198 A JP 24617198A JP 3339624 B2 JP3339624 B2 JP 3339624B2
Authority
JP
Japan
Prior art keywords
measurement
measured
distance
temperature
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24617198A
Other languages
Japanese (ja)
Other versions
JP2000074632A (en
Inventor
実 松本
二郎 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP24617198A priority Critical patent/JP3339624B2/en
Publication of JP2000074632A publication Critical patent/JP2000074632A/en
Application granted granted Critical
Publication of JP3339624B2 publication Critical patent/JP3339624B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、寸法測定方法に関
し、特に、レーザ距離計を用いて測定対象物の断面形状
や寸法を高精度で測定するのに好適な寸法測定方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dimension measuring method, and more particularly to a dimension measuring method suitable for measuring a cross-sectional shape and a dimension of an object to be measured with high accuracy using a laser distance meter.

【0002】[0002]

【従来の技術】測定対象物、例えばH形鋼では、ウエブ
厚、ウエブ高さ、フランジ厚、フランジ幅、脚長、中心
偏りなど、品質管理上必要とされる製品寸法精度を確保
するために、製品や圧延中間品の寸法や形状を測定し、
この測定データを基に圧延条件を調整することが行われ
ている。
2. Description of the Related Art In an object to be measured, for example, an H-section steel, in order to secure product dimensional accuracy required for quality control, such as web thickness, web height, flange thickness, flange width, leg length, center deviation, etc. Measure the dimensions and shape of products and intermediate rolling products,
The rolling conditions are adjusted based on the measured data.

【0003】この測定を行うために、従来、レーザ距離
計を用いた測定装置が用いられている。レーザ距離計は
レーザ光の投光器と受光器とを組み合わせた三角測量機
能を有する計器であり、計器原点から所定の計測方向線
上の被測点(測定対象物におけるレーザ光の到達点)ま
での距離(計測距離)を計測・出力する。被測点が測定
対象物を走査するようにレーザ距離計を走行させること
を、「レーザ距離計で走査する」という。
Conventionally, a measuring device using a laser distance meter has been used to perform this measurement. A laser range finder is a meter having a triangulation function combining a laser beam projector and a laser beam receiver, and is a distance from the instrument origin to a point to be measured on a predetermined measurement direction line (the point at which the laser beam reaches the object to be measured). (Measurement distance) is measured and output. Running the laser distance meter so that the measured point scans the object to be measured is referred to as "scanning with the laser distance meter".

【0004】そこで、従来、特開平8−327329号公報に
開示されているような、たとえば図6に示すように、搬
送ロール2で支持される形鋼1の上下の空間を横切る軌
道4(添符号a は上、b は下、以下同じ)を延設し、軌
道4に沿わせてレーザ距離計3を往復走行させ、計測角
度θを例えば往路で45°、復路で135 °に設定すること
により形鋼1の断面全輪郭をレーザ距離計3で走査、計
測し、同時に校正片8も走査、計測し、その結果を考慮
して形鋼1の寸法や形状を測定する方法が知られてい
る。
Therefore, as shown in FIG. 6, for example, a track 4 (see FIG. 6) which crosses the space above and below a section steel 1 supported by a transport roll 2 as disclosed in JP-A-8-327329. The symbol a is upper, b is lower, the same applies hereinafter), the laser range finder 3 is reciprocated along the track 4, and the measurement angle θ is set to, for example, 45 ° on the outward path and 135 ° on the return path. A method of scanning and measuring the entire contour of the cross section of the shaped steel 1 with the laser distance meter 3 and simultaneously scanning and measuring the calibration piece 8 and measuring the size and shape of the shaped steel 1 in consideration of the result is known. I have.

【0005】この場合、計器原点Cと被測点Pとの距離
(計測距離)Lはレーザ距離計3の三角測量機能により
計測され、計測角度θはレーザ距離計3に取り付けた角
度検出器5により計測され、計測位置は、例えば図示の
ように設けたxy座標系での計器原点Cの座標(X,
Y)であり、Y値は上が上下の軌道間隔H、下が0でい
ずれも一定値であり、X値はレーザ距離系3を走行させ
るモータ6の回転数を走行距離に変換するエンコーダ7
等により計測される。
In this case, the distance (measurement distance) L between the instrument origin C and the measured point P is measured by the triangulation function of the laser range finder 3, and the measurement angle θ is obtained by the angle detector 5 attached to the laser range finder 3. And the measurement position is, for example, the coordinates (X, X) of the instrument origin C in the xy coordinate system provided as shown in the figure.
Y), the Y value is an upper or lower trajectory interval H at the top and 0 at the bottom, which are constant values, and the X value is an encoder 7 that converts the number of rotations of the motor 6 that drives the laser distance system 3 into the running distance
And so on.

【0006】幾何学的関係から被測点Pの位置座標点
(x,y)は数1式で与えられる。
From the geometrical relationship, the position coordinate point (x, y) of the measured point P is given by the following equation (1).

【0007】[0007]

【数1】 (Equation 1)

【0008】数1式に計測距離(L)、計測位置
((X,Y))、計測角度(θ)を代入して得た被測点
Pの位置座標点(x,y)を往路・復路で走査順につな
ぎ、これらを合成することで形鋼1の断面形状を測定で
きる。そして、かかる合成画像を用いて前記各種寸法を
算出することができる。
The position coordinate point (x, y) of the measured point P obtained by substituting the measurement distance (L), the measurement position ((X, Y)) and the measurement angle (θ) into the equation (1) is calculated as follows: The cross section shape of the section steel 1 can be measured by connecting them in the order of scanning in the return path and combining them. The various dimensions can be calculated using the composite image.

【0009】[0009]

【発明が解決しようとする課題】この種の測定には種々
の誤差が入り込み、測定精度を悪くする。特に形鋼の寸
法や形状測定では、形鋼が冷却された状態だけでなく高
温の状態でも実施されることが多いので、環境温度の変
動による計測誤差を極力小さく抑える配慮が必要であ
る。この点に関し、例えば特開平7−120224号公報で
は、レーザ距離計を支持する架構に温度検出器を取り付
け、架構の温度変動を検出してその温度変動に伴う熱膨
張によって生じる計測距離のばらつきを吸収することが
開示されている。
Various errors are introduced into this type of measurement, and the accuracy of the measurement is degraded. In particular, when measuring the dimensions and shape of a shaped steel, it is often performed not only in a state where the shaped steel is cooled but also in a high temperature state. Therefore, consideration must be given to minimizing measurement errors due to fluctuations in environmental temperature. In this regard, for example, in Japanese Patent Application Laid-Open No. Hei 7-120224, a temperature detector is attached to a frame supporting a laser range finder, the temperature fluctuation of the frame is detected, and the variation of the measurement distance caused by the thermal expansion accompanying the temperature fluctuation is detected. It is disclosed to absorb.

【0010】一方、レーザ距離計については、温度によ
って計測距離の誤差が生じることが知られているが、通
常は測定前に誤差発生を抑えるべく校正するだけであ
り、測定中に時々刻々変化する温度変動に伴う誤差を補
正する方法は見当たらない。本発明は、上記の問題点に
鑑み、とくに熱を持った測定対象物に対して生じるレー
ザ距離計の計測距離の誤差を測定中に補正する寸法測定
方法を提供することを目的とする。
[0010] On the other hand, it is known that an error in the measurement distance occurs due to the temperature of the laser range finder. However, it is usually merely calibrated before the measurement to suppress the occurrence of the error, and changes every moment during the measurement. There is no known method for correcting errors due to temperature fluctuations. SUMMARY OF THE INVENTION The present invention has been made in consideration of the above circumstances, and has as its object to provide a dimension measurement method for correcting an error in a measurement distance of a laser distance meter, which occurs particularly for a measurement object having heat, during measurement.

【0011】[0011]

【課題を解決するための手段】本発明は、測定対象物を
レーザ距離計で往復走査、計測して、計測距離、計測位
置および計測角度を採取し、これら計測値を用いて測定
対象物の形状や寸法を算出する寸法測定方法において、
前記測定対象物の傍らに所定形状・寸法の校正片を配置
して測定対象物と一緒に走査、計測するとともに、往復
走査の度毎に、各計測時点でレーザ距離計の温度を検出
し、校正片の計測距離と検出温度を用いて計測距離とレ
ーザ距離計の温度の関係を設定し、その関係を用いて測
定対象物の各計測距離を補正することを特徴とする寸法
測定方法である。
According to the present invention, a measurement object is reciprocally scanned and measured by a laser range finder, a measurement distance, a measurement position and a measurement angle are collected, and the measurement object is measured by using these measured values. In the dimension measurement method to calculate the shape and dimensions,
A calibration piece having a predetermined shape and dimensions is arranged beside the measurement target and scanned together with the measurement target, and the measurement is performed.At each reciprocal scan, the temperature of the laser range finder is detected at each measurement time, A dimension measurement method characterized by setting a relationship between a measurement distance and a temperature of a laser distance meter using a measurement distance and a detection temperature of a calibration piece, and correcting each measurement distance of a measurement object using the relationship. .

【0012】本発明では、前記校正片の計測距離を少な
くとも2種以上とし、それぞれの計測距離に対し計測距
離とレーザ距離計の温度の関係を設定することが好まし
い。
In the present invention, it is preferable that the measurement distance of the calibration piece is at least two or more, and the relationship between the measurement distance and the temperature of the laser distance meter is set for each measurement distance.

【0013】[0013]

【発明の実施の形態】図1は、本発明の一実施形態を示
す説明図であり、図6の従来例と同じ部材には同じ符号
を付し、詳しい説明を省略する。図1では、計測角度θ
を上下とも90°に設定している。図示のように、本発明
では、形鋼(測定対象物)1の傍らに所定形状・寸法の
校正片8を配置して形鋼1と一緒に走査・計測する。こ
の例では校正片8を直方体形状とし、底を水平にして所
定の位置(空間座標値が既知の場所)に1個配置してい
る。また、校正片8を形鋼1の一方の側に1個配置して
いるが、他方の側にもう1個配置してもよい。
FIG. 1 is an explanatory view showing an embodiment of the present invention. The same members as those in the conventional example of FIG. 6 are denoted by the same reference numerals, and detailed description thereof will be omitted. In FIG. 1, the measurement angle θ
Is set to 90 ° both above and below. As shown in the drawing, in the present invention, a calibration piece 8 having a predetermined shape and dimensions is arranged beside a shaped steel (object to be measured) 1 and scanning and measurement are performed together with the shaped steel 1. In this example, one calibration piece 8 is formed in a rectangular parallelepiped shape, and one piece is arranged at a predetermined position (a place where the spatial coordinate value is known) with the bottom horizontal. Further, although one calibration piece 8 is arranged on one side of the section steel 1, another calibration piece may be arranged on the other side.

【0014】そして、温度センサ(例えば抵抗温度計)
9をレーザ距離計3に装着して、往復走査の度毎に、各
計測時点でのレーザ距離計の温度を検出する。これによ
り、校正片と測定対象物とについての計測距離とレーザ
距離計の温度(以下単に温度と略す)のデータが得ら
れ、例えば上の軌道の往路、復路で得られた校正片の同
一面(レーザ距離計からの垂直距離が一定)に対する計
測距離と温度のデータを(Lo ,To )、(Lf ,Tf
)、測定対象物に対する計測距離と温度のデータを
(Li ,Ti ;i= 1〜n )とする。
And a temperature sensor (for example, a resistance thermometer)
9 is mounted on the laser range finder 3, and the temperature of the laser range finder at each measurement time point is detected each time reciprocating scanning is performed. As a result, data on the measurement distance between the calibration piece and the object to be measured and the temperature of the laser distance meter (hereinafter simply referred to as temperature) are obtained. For example, the same surface of the calibration piece obtained in the forward and backward paths of the upper orbit is obtained. (Lo, To), (Lf, Tf) and the measured distance and temperature data for (the vertical distance from the laser rangefinder is constant).
), And the data of the measured distance and the temperature to the object to be measured are (Li, Ti; i = 1 to n).

【0015】校正片に対する計測距離と温度のデータか
ら計測距離Lと温度Tの関係を直線近似すると数2(1)
式で表される。
When the relationship between the measured distance L and the temperature T is linearly approximated from the data of the measured distance and the temperature for the calibration piece, Equation 2 (1) is obtained.
It is expressed by an equation.

【0016】[0016]

【数2】 (Equation 2)

【0017】数2(1) 式の関係は測定対象物でも成立す
ると考えられるから、温度Ti での計測距離がLi であ
る測定対象物がたとえば基準とする温度Tc で計測され
たとすれば、そのときの計測距離Lciは数2(2) 式で表
される。そこで、本発明では、数2(2) 式を用いて測定
対象物の計測距離(Li ;i= 1〜n )を温度Tc で計測
されたとする値Lciに補正する。
Since it is considered that the relationship of the equation (1) is also established for the object to be measured, if the object to be measured having the measurement distance Li at the temperature Ti is measured at the reference temperature Tc, for example, The measured distance Lci at this time is expressed by Equation (2). Therefore, in the present invention, the measurement distance (Li; i = 1 to n) of the measurement object is corrected to the value Lci which is assumed to be measured at the temperature Tc by using Expression (2).

【0018】図2は、上記の直線近似による計測距離補
正方法の説明図である。図示のように、この方法は、T
L座標平面内で点(Ti ,Li )を通り直線m1(数2
(1) 式)に平行な直線m2(数2(2) 式)を引き、この直
線m2と直線T=Tc との交点のL座標値Lciを、Li を
補正した値として採用するものである。また、本発明で
は、校正片を測定対象物の向こう側にもう一つ配置し、
往復走査の中間で該校正片についてもデータ(Lm ,T
m )を採取し、これを前記データ(Lo ,To )、(L
f ,Tf )に付加し、図3に示すように、これら3点の
データから校正片における計測距離Lと温度Tの関係を
曲線c1で近似し、この曲線c1を点(Ti ,Li )を通る
ように平行移動して得られた曲線c2と直線T=Tc との
交点のL座標値LciにLi を補正してもよい。
FIG. 2 is an explanatory diagram of a method of correcting a measured distance by the above-described linear approximation. As shown, the method involves T
A straight line m1 (equation 2) passing through the point (Ti, Li) in the L coordinate plane
A straight line m2 (Equation 2 (2)) parallel to (Equation (1)) is drawn, and the L coordinate value Lci at the intersection of the straight line m2 and the straight line T = Tc is adopted as a value corrected for Li. . Further, in the present invention, another calibration piece is arranged on the other side of the measurement object,
In the middle of the reciprocating scan, data (Lm, T
m), and collects the data (Lo, To), (L
f, Tf), and as shown in FIG. 3, the relationship between the measured distance L and the temperature T in the calibration piece is approximated by a curve c1 from the data of these three points, and this curve c1 is converted to a point (Ti, Li). Li may be corrected to the L coordinate value Lci at the intersection of the curve c2 and the straight line T = Tc obtained by performing the parallel movement so as to pass.

【0019】上述のように、本発明によれば、測定対象
物の走査中にレーザ距離計の温度が変動しても、校正片
によってその場で計測距離に対する温度の影響を評価し
て、その影響を打ち消すような補正を施すことができる
ので、温度変動による計測距離の誤差を補正することが
できるようになり、形鋼製品の形状・寸法精度を向上さ
せることができる。
As described above, according to the present invention, even if the temperature of the laser distance meter fluctuates during scanning of the object to be measured, the influence of the temperature on the measurement distance is evaluated on the spot by the calibration piece, and Since a correction that cancels out the influence can be performed, an error in the measurement distance due to a temperature change can be corrected, and the shape and dimensional accuracy of the shaped steel product can be improved.

【0020】一方、レーザ距離計は、測定対象物間隔と
の距離が変わると計測距離の誤差の量も変わる。そのた
め、計測距離の誤差をさらに小さくするためには、これ
も考慮した補正を加えるのが好ましい。そこで、本発明
では、さらなる好適形態として、たとえば前記校正片を
階段形状として、校正片の計測距離を2種以上とし、そ
れぞれの計測距離に対する計測距離と温度の関係を用い
て後述のように補正することにより、計測距離の誤差の
補正をより確実に行うことができる。
On the other hand, in the laser range finder, when the distance from the object to be measured changes, the amount of error in the measurement distance also changes. Therefore, in order to further reduce the error in the measurement distance, it is preferable to perform correction taking this into consideration. Therefore, in the present invention, as a further preferred embodiment, for example, the calibration piece is formed in a stepped shape, and the measurement distance of the calibration piece is set to two or more types. By doing so, it is possible to more reliably correct the measurement distance error.

【0021】図4は、階段形状の校正片を用いた本発明
実施形態の一例を示す説明図であり、校正片8を、高さ
の異なる水平面(階)10〜12を有し隣接階が段(垂直
面)で連結された階段形状としている。階数は校正片全
体で2つ以上であれば特に限定されない。なお、図4に
おいて、図1と同一または相当部分には同じ符号を付し
説明を省略する。また、上に面した階のみ図示したが、
この例では図示の階と上下対称な下に面した階も有す
る。
FIG. 4 is an explanatory view showing an example of the embodiment of the present invention using a step-shaped calibration piece. The calibration piece 8 has horizontal planes (floors) 10 to 12 having different heights, and adjacent floors have different heights. It has a staircase shape connected by steps (vertical plane). The floor number is not particularly limited as long as it is two or more in the entire calibration piece. In FIG. 4, the same or corresponding parts as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted. Also, only the floor facing upward is shown,
In this example, there is also a floor facing downward, which is vertically symmetrical with the illustrated floor.

【0022】これにより、往路、復路での校正片に係る
計測距離Lと測定時の温度Tが各階毎に得られ、これら
のデータから計測距離Lの温度Tに関する校正線が、例
えば図5に示すようにTL座標平面内の直線m10 〜m12
(m10, m11, m12 は図4の階10,11,12に関するデータ
に対応する)として各階毎に得られる(図5のプロット
(黒点)が測定データ)。
As a result, the measured distance L and the temperature T at the time of measurement are obtained for each floor on the calibration piece in the forward path and the return path. From these data, a calibration line relating to the temperature T of the measured distance L is shown in FIG. As shown, straight lines m10 to m12 in the TL coordinate plane
(M10, m11, and m12 correspond to data on floors 10, 11, and 12 in FIG. 4) for each floor (the plots (black dots) in FIG. 5 are measurement data).

【0023】これら校正線を用いて測定対象物の計測距
離(Li ;i= 1〜n )を基準温度Tc に対応する値Lci
に補正するには、図5において、点(Ti ,Li )を通
る直線m0を引き、この直線m0と直線T=Tc との交点の
L値を求めるという手法によるが、直線m0の勾配を決め
るにあたり、例えば点(Ti ,Li )との距離の昇順に
2本の校正線(図5では直線m11 、m10 )を選択し、こ
れら校正線が平行なら直線m0もこれらに平行とし、非平
行ならそれらの交点を通るようにする。
Using these calibration lines, the measurement distance (Li; i = 1 to n) of the object to be measured is changed to a value Lci corresponding to the reference temperature Tc.
In FIG. 5, a straight line m0 passing through the point (Ti, Li) is drawn, and the L value of the intersection of the straight line m0 and the straight line T = Tc is determined in FIG. 5, but the gradient of the straight line m0 is determined. In this case, for example, two calibration lines (straight lines m11 and m10 in FIG. 5) are selected in ascending order of the distance to the point (Ti, Li). If these calibration lines are parallel, the straight line m0 is also parallel to them. Pass through those intersections.

【0024】なお、校正片での計測距離は、レーザ距離
計の機器固有誤差(同一測定条件下での計測値のばらつ
き)を考慮して、同一面の走査時に複数点採取しその平
均値を採用することが好ましい。
The measurement distance of the calibration piece is determined by taking the average value of a plurality of points sampled during scanning of the same surface, taking into account the device-specific error of the laser rangefinder (variation in measured values under the same measurement conditions). It is preferable to employ it.

【0025】[0025]

【実施例】(実施例1)実施例1では、H形鋼熱間圧延
ラインにおいて、図1に示した形態でH形鋼の形状測定
を行った。レーザ距離計は三角測量機能を有するものを
使用し、その保護筐体内にはエアを流して塵埃侵入や熱
損傷を防止している。レーザ距離計の温度は、計器原点
から半径200 mmの保護筐体内部に取り付けた抵抗温度計
により検出した。校正片はステンレス製の直方体であ
り、往路起点側の所定位置に配置し、内部水冷により温
度を20℃に保持した。なお、計測距離のサンプリング周
期は2msとし、レーザ距離計毎の計測点数は1往復の合
計で約300 点とした。計測距離補正方法は図2に示した
直線近似方法とした。
(Example 1) In Example 1, the shape of the H-section steel was measured in the H-section steel hot rolling line in the form shown in FIG. A laser distance meter having a triangulation function is used, and air is flowed in the protective housing to prevent dust intrusion and thermal damage. The temperature of the laser rangefinder was detected by a resistance thermometer mounted inside a protective case with a radius of 200 mm from the instrument origin. The calibration piece was a rectangular parallelepiped made of stainless steel, arranged at a predetermined position on the outward path starting point side, and the temperature was maintained at 20 ° C. by internal water cooling. The sampling cycle of the measurement distance was 2 ms, and the number of measurement points for each laser distance meter was about 300 in one round trip. The measurement distance correction method was the straight line approximation method shown in FIG.

【0026】この結果、ウエブ厚測定値のばらつきが、
従来(図6の形態)実績の±300 μm 程度から、±250
μm 程度へと減少した。 (実施例2)実施例2では、実施例1と同ラインにて、
図4に示した形態でH形鋼の形状測定を行った。ここで
は図4に示す階段形状の校正片を用い、計測距離補正方
法は図5に示した直線近似方法とした。これ以外の諸条
件は実施例1と同じにした。
As a result, the variation in the measured web thickness is
From the result of the conventional (Fig.
It decreased to about μm. (Embodiment 2) In Embodiment 2, on the same line as in Embodiment 1,
The shape of the H-section steel was measured in the form shown in FIG. Here, a calibration piece having a staircase shape shown in FIG. 4 was used, and the measurement distance correction method was the linear approximation method shown in FIG. Other conditions were the same as in Example 1.

【0027】この結果、ウエブ厚測定値のばらつきが、
±200 μm 程度へと、実施例1よりもさらに減少した。
なお、上記の実施例では測定対象物をH形鋼としたが、
本発明は、これ以外の形鋼(L形鋼、I形鋼、C形鋼、
不等片山形鋼など)はもちろん、どんな形状、材質の測
定対象物に対しても適用可能である。
As a result, the variation in the measured web thickness is
The value was further reduced to about ± 200 μm than in Example 1.
In the above embodiment, the object to be measured was an H-shaped steel.
The present invention relates to other shaped steels (L-shaped steel, I-shaped steel, C-shaped steel,
The present invention can be applied to measuring objects of any shape and material, as well as unequal angle steel.

【0028】[0028]

【発明の効果】かくして本発明によれば、測定環境温度
の変動によるレーザ距離計の計測距離の誤差を測定中に
補正できるようになり、測定対象物の形状・寸法精度が
向上するという効果を奏する。
As described above, according to the present invention, it is possible to correct the error of the measurement distance of the laser distance meter due to the fluctuation of the measurement environment temperature during the measurement, thereby improving the shape and dimensional accuracy of the object to be measured. Play.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態を示す説明図である。FIG. 1 is an explanatory diagram showing one embodiment of the present invention.

【図2】図1の形態での直線近似による計測距離補正方
法の説明図である。
FIG. 2 is an explanatory diagram of a measurement distance correction method by linear approximation in the embodiment of FIG. 1;

【図3】図1の形態での曲線近似による計測距離補正方
法の説明図である。
FIG. 3 is an explanatory diagram of a measurement distance correction method by curve approximation in the embodiment of FIG. 1;

【図4】階段形状の校正片を用いた本発明実施形態の一
例を示す説明図である。
FIG. 4 is an explanatory view showing an example of an embodiment of the present invention using a step-shaped calibration piece.

【図5】図4の形態での直線近似による計測距離補正方
法の説明図である。
FIG. 5 is an explanatory diagram of a method of correcting a measured distance by linear approximation in the embodiment of FIG. 4;

【図6】従来の形鋼断面形状測定方法の一例を示す説明
図である。
FIG. 6 is an explanatory view showing an example of a conventional method for measuring a sectional shape of a shaped steel.

【符号の説明】[Explanation of symbols]

1 形鋼(測定対象物) 2 搬送ロール 3 レーザ距離計 4 軌道 5 角度検出器 6 モータ 7 エンコーダ 8 校正片 9 温度センサ(抵抗温度計) 10,11,12 階 DESCRIPTION OF SYMBOLS 1 Section steel (measurement object) 2 Conveyance roll 3 Laser distance meter 4 Orbit 5 Angle detector 6 Motor 7 Encoder 8 Calibration piece 9 Temperature sensor (resistance thermometer) 10, 11, 12 floors

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−120224(JP,A) 特開 平9−21616(JP,A) 特開 平6−265326(JP,A) 特開 平7−83650(JP,A) 特開 平7−134006(JP,A) 特開 平9−101390(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01B 11/24 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-7-120224 (JP, A) JP-A-9-21616 (JP, A) JP-A-6-265326 (JP, A) JP-A-7-216 83650 (JP, A) JP-A-7-134006 (JP, A) JP-A-9-101390 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01B 11/24

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 測定対象物をレーザ距離計で往復走査、
計測して、計測距離、計測位置および計測角度を採取
し、これら計測値を用いて測定対象物の形状や寸法を算
出する寸法測定方法において、前記測定対象物の傍らに
所定形状・寸法の校正片を配置して測定対象物と一緒に
走査、計測するとともに、往復走査の度毎に、各計測時
点でレーザ距離計の温度を検出し、校正片の計測距離と
検出温度を用いて計測距離とレーザ距離計の温度の関係
を設定し、その関係を用いて測定対象物の各計測距離を
補正することを特徴とする寸法測定方法。
1. An object to be measured is reciprocally scanned by a laser distance meter.
In a dimension measurement method of measuring and measuring a measurement distance, a measurement position, and a measurement angle, and calculating the shape and dimensions of the measurement object using these measurement values, calibration of a predetermined shape and dimensions beside the measurement object A piece is arranged and scanned and measured together with the object to be measured, and the temperature of the laser range finder is detected at each measurement point at each round-trip scanning, and the measurement distance is measured using the measured distance of the calibration piece and the detected temperature. A relationship between the temperature of the object and the temperature of the laser distance meter is set, and each measurement distance of the object to be measured is corrected using the relationship.
【請求項2】 前記校正片の計測距離を少なくとも2種
以上とし、それぞれの計測距離に対し計測距離とレーザ
距離計の温度の関係を設定することを特徴とする請求項
1記載の寸法測定方法。
2. The dimension measuring method according to claim 1, wherein at least two types of measurement distances of the calibration piece are set, and a relationship between the measurement distance and the temperature of the laser distance meter is set for each measurement distance. .
JP24617198A 1998-08-31 1998-08-31 Dimension measurement method Expired - Fee Related JP3339624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24617198A JP3339624B2 (en) 1998-08-31 1998-08-31 Dimension measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24617198A JP3339624B2 (en) 1998-08-31 1998-08-31 Dimension measurement method

Publications (2)

Publication Number Publication Date
JP2000074632A JP2000074632A (en) 2000-03-14
JP3339624B2 true JP3339624B2 (en) 2002-10-28

Family

ID=17144579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24617198A Expired - Fee Related JP3339624B2 (en) 1998-08-31 1998-08-31 Dimension measurement method

Country Status (1)

Country Link
JP (1) JP3339624B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008185491A (en) * 2007-01-31 2008-08-14 Jfe Steel Kk Angle steel size calculation method and device
JP4867059B2 (en) * 2008-03-28 2012-02-01 本田技研工業株式会社 Displacement detection method and apparatus used therefor
DE102009013157B4 (en) 2008-03-17 2012-10-31 Honda Motor Co., Ltd. Vehicle Wheel Measurement Measurement Method and Device
JP5085387B2 (en) * 2008-03-24 2012-11-28 株式会社神戸製鋼所 Inspection method and inspection apparatus
JP2020139907A (en) * 2019-03-01 2020-09-03 株式会社川口金属加工 Method for measuring right-angle cross-sectional shape of deformed shaped steel
CN109990708A (en) * 2019-04-04 2019-07-09 广州肖宁道路工程技术研究事务所有限公司 Caliberating device, calibration system and scaling method

Also Published As

Publication number Publication date
JP2000074632A (en) 2000-03-14

Similar Documents

Publication Publication Date Title
US8228488B2 (en) Method and apparatus for thickness measurement
KR100256324B1 (en) Method and apparatus for measuring cross sectional dimensions of sectional steel
US20110125442A1 (en) Method for calibrating a thickness gauge
JP3339624B2 (en) Dimension measurement method
CN113701678B (en) Road surface flatness detection method based on line scanning three-dimension
US7026620B2 (en) Method and device for the geometrical measurement of a material strip
JP4131843B2 (en) Chatter mark detector
CN114689106B (en) Sensor calibration method, robot and computer readable storage medium
US20240085542A1 (en) Method for calibrating a laser scanner, and technical apparatus
JP3385174B2 (en) Cross section profile measurement method
JPH024843B2 (en)
JP2006275919A (en) Dimension measuring method of shape steel
JP3048107B2 (en) Method and apparatus for measuring object dimensions
RU2686801C1 (en) Optical measuring device
JP3528733B2 (en) Method for measuring cross-sectional dimensions of H-section steel
CN108072326B (en) Method and device for observing light beam irradiation
JP2882560B2 (en) How to measure dimensions of section steel
JP2637675B2 (en) How to measure dimensions of section steel
JPH06273162A (en) Flatness measuring device
JPH0481123B2 (en)
JP3282745B2 (en) Plate width and meandering measurement device using two-dimensional distance meter
JPH07218227A (en) Method and apparatus for measuring sectional shape
JPH08271226A (en) Method and device for measuring sectional dimensions of h-steel
JPH0765967B2 (en) Mounted board visual inspection device
JPH0688711A (en) Apparatus for measuring amounts of rail expansion and contraction

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070816

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080816

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080816

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090816

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees