JP5078245B2 - 力学量センサ - Google Patents

力学量センサ Download PDF

Info

Publication number
JP5078245B2
JP5078245B2 JP2005264607A JP2005264607A JP5078245B2 JP 5078245 B2 JP5078245 B2 JP 5078245B2 JP 2005264607 A JP2005264607 A JP 2005264607A JP 2005264607 A JP2005264607 A JP 2005264607A JP 5078245 B2 JP5078245 B2 JP 5078245B2
Authority
JP
Japan
Prior art keywords
substrate
shield
sensor
silicon
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005264607A
Other languages
English (en)
Other versions
JP2007080985A (ja
Inventor
武 内山
光男 鎗田
明 江川
均 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2005264607A priority Critical patent/JP5078245B2/ja
Publication of JP2007080985A publication Critical patent/JP2007080985A/ja
Application granted granted Critical
Publication of JP5078245B2 publication Critical patent/JP5078245B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Sensors (AREA)

Description

本発明は、加速度や角速度などの力学量を検出する力学量センサに関する。
ビデオカメラの手ぶれ補正装置や車載用のエアバッグ装置、ロボットの姿勢制御装置などの広い分野において、物体に作用する力学量を検出するための力学量センサが用いられている。
力学量センサの1つに、物体の回転運動、即ち角速度を検出するジャイロと呼ばれる角速度センサがある。
ジャイロは、物体の回転運動、即ち角速度を検出するセンサであり、取り付け部位や回転の中心位置に関わらず作用する角速度を検出することができる。
ジャイロは、その動作原理の違いによりいくつかの種類に分類され、振動体を用いたものは、振動式角速度センサと呼ばれている。
振動式角速度センサ(以下、角速度センサとする)は、可撓性を有する部材に支持された錘体を一定の周期で振動させ、発生するコリオリ力を検出することによって作用する角速度を検出する。
詳しくは、質量mの錘体をz軸方向に速度vで振動させた状態で、x軸またはy軸周りに角速度Ωが働くと、錘体の中心部には、“F=2mvΩ”のコリオリ力Fが発生する。
そして、発生するコリオリ力の作用によりねじれが生じるため、錘体は、振動方向と直交する面に対して傾く。
角速度センサは、この錘体の傾きの方向、傾き量を検出し、これらの検出された値に基づいて錘体に作用する角速度を算出する。
上述したような、錘体(錘部)の姿勢変化に基づいて加速度や角速度を検出する力学量センサでは、錘体(錘部)の姿勢変化を電気信号として検出するセンサ部と、検出された電気信号を処理する信号処理部(検出手段)と、がそれぞれ別の基板に設けられている。
そして、信号処理部は、センサ部から引き出された配線によって接続され、センサ部における検出信号がこの配線を介して信号処理部に入力されるように構成されている。
力学量センサは、電波雑音等の外乱ノイズの影響を受けると、検出精度が低下するおそれがある。特に、センサ部自身や信号処理部(検出手段)における処理前の信号、即ちセンサ部における検出信号を伝達する配線が外来ノイズを受けるような場合には、その影響がセンサ出力に顕著に現れてしまう。
そこで従来、外乱ノイズの影響を低減させる技術が下記の特許文献に提案されている。
特開2004−311951公報
特許文献1には、可動部(錘)の上部および信号処理回路の下部に配設されたシリコン層をグランド電位にしてシールド層を構成する技術が提案されている。
このようなシールド層を設けることにより、外部ノイズ等に起因する可動部(錘)や信号処理回路部の誤動作を抑制することができる。
しかしながら、上述した特許文献1に記載のセンサでは、上下方向にシールド層が対向するように配設されているため、この方向における外来ノイズ対策はなされているものの、側面方向における外来ノイズからのシールド対策(保護対策)は考慮されていない。
従って、側面方向からの外来ノイズを受け、その影響がセンサ出力に現れてしまうおそれがあった。
そこで本発明は、センサ部のシールド(遮蔽)効果をより向上させる力学量センサを提供することを目的とする。
請求項1記載の発明では、中空部を有するフレームと、錘と、前記錘を前記フレームの中空部に固定する梁と、前記錘部の姿勢変化に伴い回路定数が変化する検出素子と、を有するセンサ部と、前記センサ部を内包する凹部と、前記検出素子の回路定数の変化に基づいて、前記錘部の姿勢変化を検出する検出手段と、を有するシールド基板と、前記センサ部の検出素子と前記シールド基板の検出手段とを電気的に接続する第1 の接続手段と、前記検出手段で検出された前記錘部の姿勢の変化を力学量に変換する変換手段と、を備え、前記シールド基板は、シリコンにより形成され、前記接続手段は、導電性を有する接合部材を含み、前記検出手段は、前記シールド基板に直接作り込まれており、前記接合部材を介して前記センサ部と接合されてなることにより前記目的を達成する。
請求項2記載の発明では、請求項1記載の発明において、前記凹部の開口部と対向して設けられたシールド層を有するベース基板を備え、前記接続手段は、前記検出手段において処理された信号を前記ベース基板へ引き出すための配線部を有する
請求項3記載の発明では、請求項記載の発明において、前記配線部は、前記凹部の内面に沿って設けられている
請求項4記載の発明では、請求項記載の発明において、前記配線部は、前記センサ部に設けられている
請求項5記載の発明では、請求項記載の発明において、前記センサ部は、縁部を貫通するスルーホールを有し、前記配線部は、前記センサ部のスルーホールの内部に設けられている
請求項6記載の発明では、請求項1から5のいずれか一項に記載の発明において、前記シールド基板の外壁面に設けられ、前記シールド基板を形成するシリコンよりも高い不純物濃度の部材により形成されたシールド強化部を備えた。
請求項7記載の発明では、請求項2から6のいずれか一項に記載の発明において、前記シールド層は、前記ベース基板の内層であって前記凹部の開口部を覆うように設けられ、一部が前記凹部側の端面に露出し、接合部材を介して前記凹部と接合される
請求項1記載の発明によれば、シールド基板の凹部にセンサ部を配設することにより、センサ部における外来ノイズに対する耐性を向上させることができる。また、検出手段を有するシールド基板の凹部にセンサ部を配設することにより、センサ部と検出手段とを接続する配線を短く構成することができ、接続配線を介して受ける外来ノイズが低減する。これらのことから、適切にセンサ精度の向上を図ることができる。また、請求項1記載の発明によれば、検出手段をシールド基板に直接作り込むことにより、力学量センサの小型・薄型化を図ることができる
請求項2記載の発明によれば、シールド基板における凹部の開口部を覆うようにシールド層を配設することにより、センサ部における外来ノイズに対する耐性がより向上する
請求項6記載の発明によれば、シールド強化部を設けることにより、シールド基板のシールド効果を向上させることができる。
以下、本発明の好適な実施の形態について、図1〜図10を参照して詳細に説明する。
(1)実施形態の概要
物体に働く加速度や角速度などの力学量を、可撓性を有する梁112で支持された錘体113の姿勢変化に基づいて検出する。
本実施の形態に係る加速度センサは、大きく分けて検出部1、シリコン遮蔽(シールド)基板2およびベース基板3から構成される。
検出部1は、錘体113および錘体113の姿勢変化を検出するための検出素子を備えている。錘体113の姿勢検出をする検出素子としては、錘体113の姿勢変化に伴い回路定数が変化する静電容量素子や圧電抵抗素子が用いられる。
シリコン遮蔽基板2は、検出部1を十分に内包することができる凹部20が形成されたシリコン基板から構成される。
シリコン遮蔽基板2には、検出部1における検出素子の定数変化に基づいて錘体113の姿勢変化を検出し、さらに検出された錘体113の姿勢変化を作用する力学量に変換する信号処理回路21が設けられている。この信号処理回路21は、シリコン遮蔽基板2上に直接作り込まれている。
ベース基板3には、シリコン遮蔽基板2の凹部20の開口部を塞ぐように設けられたシールド部31(シールド層)が設けられている。
シリコン遮蔽基板2とベース基板3は、接合部材または陽極接合等により接合される。
また、検出部1は、信号処理回路21と直接または、ベース基板3を介して電気的に接続されている。
このように、本実施の形態では、微細な信号を扱うため外来ノイズに対する耐性の低い検出部1をシリコン遮蔽基板2、さらにベース基板3のシールド部31(シールド層)によって遮蔽(シールド)することができる。
このように検出部1を適切に遮蔽することにより、外来ノイズによる影響を低減させることができるため、結果としてセンサの感度(精度)を向上させることができる。
また、本実施の形態によれば、信号処理回路12が形成されるシリコン基板(シリコン遮蔽基板2)をシールド手段として機能させることにより、検出部1を覆うシールド部材を別途設けることなく検出部1のノイズ耐性を向上させることができる。
(2)実施形態の詳細
図1は、本実施の形態に係る力学量センサの概略構成を示した図である。
なお、本実施の形態では、力学量センサの一例として、加速度を検出する加速度センサについて説明する。
図1に示すように、加速度センサは、検出部1、シリコン遮蔽(シールド)基板2およびベース基板3を備えている。
図2は、検出部1の概略構成を示した断面図である。
検出部1は、実際に作用する加速度を検出するセンサ部である。この検出部1は、半導体基板を加工して形成された半導体センサ素子である。なお、半導体基板の加工は、MEMS(マイクロ・エレクトロ・メカニカル・システム)技術を用いて行うことができる。
本実施の形態に係る加速度センサにおいては、検出部1を構成する基板の積層方向と同一方向を上下方向、即ちz軸(方向)と定義する。そして、このz軸と直交し、かつ互いの軸と直交する軸をx軸(方向)およびy軸(方向)と定義する。つまり、x軸、y軸、z軸は、それぞれ互いに直交する3軸となる。
検出部1は、可動部構造体11、上部硝子基板12および下部硝子基板13を備えている。詳しくは、可動部構造体11を上部硝子基板12および下部硝子基板13によって上下方向から挟み込んだ3層構造となっている。
なお、検出部1は、センサ部として機能する。
図3は、可動部構造体11の構成を示した平面図である。なお、図2の断面図は、図3に示す線分A−A’の位置、即ちx軸方向における検出部1の断面を示した図である。
可動部構造体11は、シリコン基板から形成されている。そして、このシリコン基板をエッチングすることによって、フレーム111、梁112および錘体113が形成されている。なお、錘体113は、可動部として機能する。
フレーム111は、錘体113を囲むように可動部構造体11の周縁部に設けられた固定部であり、可動部構造体11の枠組みを構成する。このフレーム111、上部硝子基板12および下部硝子基板13によって、検出部1のハウジング(外装体)が構成されている。
梁112は、錘体113の中心から放射方向に(フレーム111の方向に)十字方向に延びる4つの帯状の薄部材であり、可撓性を有している。
錘体113は、4つの梁112によってフレーム111に固定された質量体である。錘体113は、梁112の作用により、外部より加わる力により振動させたり、捩れる動きが可能となっている。
図2の説明に戻り、梁112および錘体113の上面(上部硝子基板12との対向面)と上部硝子基板12との間には、錘体113を可動にするための空間である可動隙間114が形成されている。上部硝子基板12は、この可動隙間114を封止するように接合されている。
梁112の下面(下部硝子基板13との対向面)および錘体113の底面、即ち下面(下部硝子基板13との対向面)と下部硝子基板13との間、さらに錘体113の周部においても、錘体113を可動にするための空間である可動隙間115が形成されている。下部硝子基板13は、この可動隙間115を封止するように接合されている。
なお、可動隙間114、115は真空状態となっている。真空状態とすることで、錘体113が動作する際の空気抵抗を低減することができる。
なお、可動部構造体11におけるフレーム111、梁112、錘体113を形成する際には、シリコン基板をプラズマによる深いトレンチエッチングを施すD−RIE(ディープ−リアクティブ・イオン・エッチング)技術を利用して行う。
また、本実施の形態に係る加速度センサでは、可動部構造体11の本体部をシリコン基板を用いて形成しているが、可動部構造体11の形成部材はこれに限られるものではない。例えば、シリコン基板の中間層に酸化膜を埋め込んだSOI(シリコン・オン・インシュレータ)基板を用いて形成してもよい。
この場合、梁112や錘体113を加工する際のエッチング処理において、中間の酸化膜層がエッチング遮断層(ストップ層)として機能するため、厚み方向に対する加工精度を向上させることができる。
上部硝子基板12および下部硝子基板13は、可動部構造体11を封止するように接合された硝子基板である。上部硝子基板12および下部硝子基板13は、それぞれ、可動部構造体11のフレーム111において陽極接合によって接合されている。
陽極接合とは、硝子基板(上部硝子基板12、下部硝子基板13)側に陰極電圧を与え、硝子−シリコン間の静電引力を利用して接合する接合方法である。
なお、硝子基板と可動部構造体11との接合方法は、陽極接合に限定されるものではない。例えば、接合面に金属を積層させて接合する共晶接合等を用いるようにしてもよい。
図4は、上部硝子基板12の構成を示した平面図である。なお、図4は、上部硝子基板12を可動部構造体11側から見た図である。
上部硝子基板12には、固定電極121〜124、引出端子125〜128、共通端子129、引出パッド130〜133、共通パッド134、スルーホール135〜139を備えている。
固定電極121〜124は、上部硝子基板12の側面に配置されたアルミ等の導体の部材によって構成されている。
また、固定電極121〜124は、互いに同形状、同面積の電極によって形成されている。電極の形状は、直角二等辺三角形であり、それぞれの電極の直角をなす二辺の頂点が、錘体113の中心方向に向くように、中心を取り囲んで90°ごとに配置されている。
同一平面上の対向する電極同士、即ち中央を挟んで反対側に位置する電極同士が対となり、錘体113の姿勢状態の各軸方向成分を検出する際に用いられる。
ここでは、固定電極121と固定電極122が対になりx軸方向の錘体113の姿勢状態を検出する。また、固定電極123と固定電極124が対になりy軸方向の錘体113の姿勢状態を検出するようになっている。
引出端子125〜128は、固定電極121〜124とそれぞれ導電性のパターンを介して電気的に接続された端子である。この引出端子125〜128は、上部硝子基板12の下面(可動部構造体11と対向する面)から、上面(可動部構造体11と対向しない方の面)に、固定電極121〜124の電位を引き出すための端子である。
共通端子129は、上部硝子基板12の下面(可動部構造体11と対向する面)から、上面(可動部構造体11と対向しない方の面)に、錘体113の電位を引き出すための端子である。
引出パッド130〜133は、引出端子125〜128と同電位となるように形成された導電性のパッド(パターン)である。
共通パッド134は、共通端子129と同電位になるように形成された導電性のパッド(パターン)である。
スルーホール135〜139は、引出端子125〜128、共通端子129を形成するために形成された、上部硝子基板12を貫通するテーパ形状の貫通孔である。スルーホール135〜139は、開口部の面積が上部硝子基板12の外壁側より内壁側が小さくなるように形成されている。
共通端子129は、スルーホール139の底面(可動部構造体11と対抗する端面)が、可動部構造体11と接しているため、上面(可動部構造体11と対向しない方の面)から導電材料(Al等)を蒸着するなどして、形成することができる。スルーホール139底面の周辺は、すべて可動部構造体11と完全に密着しているため、気密性を保持することが可能である。
一方、引出端子125も、共通端子129と同様にスルーホール135の内周壁面に沿って形成された導電性の薄膜である。しかし、スルーホール135の下面は開いているため、共通端子129と同じように形成することはできない。そのため、あらかじめ導電性の板状部材(図示せず)をスルーホール135の下面に、固定電極121と導通するように接合することで、共通端子129と同様に、上方(可動部構造体11と対向しない方の面)からの蒸着により形成することが可能となる。あるいは、初めにスルーホール135の内周壁面に導電膜を形成した後、その導電膜と固定電極121が導通するように、半田や導電性樹脂などで、スルーホール135底面の穴を埋めればよい。その他の引出端子126〜128も、引出端子125と同様に形成されている。
図1の説明に戻り、次に、シリコン遮蔽(シールド)基板2について説明する。
シリコン遮蔽基板2は、比抵抗の小さい高濃度のシリコン基板から構成されている。
なお、本実施の形態に係る加速度センサにおいては、例えば、P型シリコン基板を用いてシリコン遮蔽基板2が形成されている。
また、シリコン遮蔽基板2は、シリコン基板同士を積層(接合)した多層シリコン基板によって構成されていてもよい。
シリコン遮蔽基板2には、断面コの字型の凹部20、即ち中空部が形成されている。
凹部20は、シリコン遮蔽基板2をエッチングすることによって形成されている。凹部20を形成する場合には、例えば、上述したD−RIE技術を用いる。
シリコン遮蔽基板2には、信号処理回路21が設けられている。なお、信号処理回路21は、検出手段および変換手段として機能する。
信号処理回路21は、加速度センサにおける信号処理回路が形成されたIC(集積回路)から構成されている。このICには、例えば、静電容量/電圧変換(C/V変換)回路が形成されている。
C/V変換回路としては、例えば、周波数の高いキャリア信号を静電容量素子に印加し、その出力信号の振幅の変化量を静電容量変化として検出する方法がある。
静電容量素子に印加されたキャリア信号の出力は、その振幅が静電容量に比例する。そのため、入力キャリア信号と出力キャリア信号の振幅を比較することによって、静電容量を検出することができるようになっている。
本実施の形態では、シリコン遮蔽基板2における凹部20の底壁面に信号処理回路21が作り込まれている。
なお、信号処理回路21の形成部位は、凹部20の底壁面に限定されるものではなく、凹部20の内壁面に形成されていればよい。例えば、凹部20の内側壁面に形成されていてもよい。
信号処理回路21は、上述した検出部1における錘体113の姿勢変化を、錘体113と固定電極121〜124とで形成される静電容量素子の静電容量の変化量に基づいて検出する。
なお、錘体113と固定電極121〜124とで形成される静電容量素子は、検出素子として機能する。
信号処理回路21には、信号処理回路21の所定の部位に外部信号を入力するための信号入力用パッドが複数設けられている。
そして、これらの信号入力用パッドと、検出部1の上部硝子基板12に設けられた引出パッド130〜133、共通パッド134とを導電性の接合部材41を介して接合することにより、検出部1とシリコン遮蔽基板2が電気的に接続された状態で固定される。
接合部材41は、例えば、耐熱性を有するAg(銀)ロウによるフリップチップボンディングによって構成されている。
なお、接合部材41は、接続手段として機能する。
また、シリコン遮蔽基板2には、信号処理回路21において処理された信号をベース基板3へ引き出す(取り出す)ための配線部22が設けられている。
この配線部22は、導電性の配線パターンによって構成され、シリコン遮蔽基板2における凹部20の内壁面に沿って設けられている。
配線部22(配線パターン)は、例えば、アルミや銅などを蒸着することによって形成されている。
ベース基板3は、シリコン遮蔽基板2の凹部20の開口部を覆う(塞ぐ)ように設けられた多層の硝子基板である。
また、ベース基板3は、例えば、エポキシ、セラミックスなどの母材からなる多層基板により構成されていてもよい。
そして、ベース基板3の内層には、シリコン遮蔽基板2の凹部20の開口部を覆う(塞ぐ)ようにシールド部(シールド層)31が設けられている。
このシールド部31の一部は、ベース基板3のシリコン遮蔽基板2側の端面に露出して(引き出されて)おり、その部位においてシリコン遮蔽基板2のベース基板3側端面と接合部材42を介して接合されている。
接合部材42は、接合部材41と同様に導電性を有する部材から構成され、これによりシリコン遮蔽基板2とシールド部31とが電気的に接合されている。
また、接合部材42をリング状(環状)の部材によってシリコン遮蔽基板2の凹部20の開口部を囲むように配設することにより、全体をシールド(遮蔽)するだけでなく、凹部20内部、即ち検出部1の配設領域を封止することができる。
なお、本実施の形態では、ベース基板3の内層にシールド部(シールド層)31が設けられているが、シールド部(シールド層)31の配設部位はこれに限定されるものではない。例えば、ベース基板3の表面に設けるようにしてもよい。
また、ベース基板3のシリコン遮蔽基板2側の端面には、信号処理回路21において処理された信号(出力信号)の取り出しパッドが設けられており、この取り出しパッドと配線部22とが接合部材43を介して接合されている。
なお、接合部材43は、接合部材41と同様に導電性を有する部材から構成され、これによりベース基板3上の取り出しパッドとシリコン遮蔽基板2上の配線部22とが電気的に接合されている。
さらにベース基板3の取り出しパッドには、出力信号をベース基板3の外部へ引き出すための引き出し線32が設けられている。
シリコン遮蔽基板2の信号処理回路21において処理された信号(出力信号)は、配線部22、接合部材43、引き出し線32を介して加速度センサの外部へ引き出される。
さらに、本実施の形態に係る加速度センサでは、シリコン遮蔽基板2におけるシールド効果をさらに強化するために、シリコン遮蔽基板2における外側の表面部にシールド強化部23が設けられている。
このシールド強化部23は、シリコン基板における不純物濃度を部分的に高くすることによって形成することができる。
本実施の形態では、シールド強化部23をシリコン遮蔽基板2のベース基板3と反対側の端面にのみ形成するようにしているが、シールド強化部23の形成部位は、これに限られるものではない。例えば、シールド強化部23の外側壁面全体に形成するようにしてもよい。
また、本実施の形態に係る加速度センサでは、シリコン遮蔽基板2とベース基板3との接合強度を上げるために、固定用の接合部材44が設けられている。
なお、上述したシールド機能を有するシリコン遮蔽基板2およびシールド部(シールド層)31は、グランド電位に設定されている。
次に、このように構成された加速度センサの検出動作について説明する。
加速度センサに加速度が作用すると錘体113に外力が作用する。すると、梁112が捩れ錘体113の姿勢が変化する(傾く)。
この錘体113の姿勢の変化(傾き、ねじれ量)を検出することによって、作用する加速度の向きや大きさを検出する。
錘体113の姿勢の変化の検出(姿勢検出)は、錘体113と固定電極121〜124とによって形成される静電容量素子の静電容量の変化、即ち錘体113と固定電極121〜124間の静電容量の変化を検出することによって行う。
つまり、固定電極121〜124と可動電極(錘体113)との距離の変化を検出することによって錘体113の姿勢の変化を検出する。
なお、固定電極121〜124と可動電極(錘体113)、即ち電極間の静電容量は、
シリコン遮蔽基板2に設けられた信号処理回路21における、静電容量/電圧変換(C/V変換)回路を用いて電気的に検出することができる。
検出された錘体113の姿勢の変化(傾斜方向、傾斜度合い等)に基づいて、加速度を算出(導出)する。つまり、錘体113の姿勢の変化量を加速度に変換する。
本実施の形態に係る加速度センサによれば、シリコン遮蔽(シールド)基板2およびベース基板3のシールド部31によって検出部1を囲むことによって、電波雑音等の外乱ノイズの影響を受けやすい検出部1を適切に遮蔽(シールド)することができる。
また、本実施の形態によれば、シリコン遮蔽基板2の凹部20の底壁面に信号処理回路21を設けることによって、電波雑音等の外乱ノイズの影響を受けやすい信号処理回路21を適切に遮蔽(シールド)することができる。即ち、外部からのノイズに対する耐性が向上する。
また、本実施の形態に係る加速度センサによれば、シリコン遮蔽(シールド)基板2およびベース基板3のシールド部31によって検出部1を囲むことによって、十分なシールド効果を得ることができるため、別途全体を覆うシールド処理が不要となる。これにより、コスト削減が図れるとともに、加速度センサの小型・薄型化を図ることができる。
(変形例1)
次に、本実施の形態に係る加速度センサの第1の変形例について説明する。
第1の変形例では、検出部1がベース基板3に固定されており、ベース基板3を介して、信号処理回路21との電気的接続が行われる。
図5は、本実施の形態に係る加速度センサの第1の変形例の概略構成を示した図である。
なお、ここでは、上述した図1に示す加速度センサと同様の構成を有する部位には同じ符号を付して説明を省略し、異なる構成についてのみ説明する。
第1の変形例における加速度センサでは、ベース基板103上に上述したシールド部(シールド層)31の他に、信号処理回路21へ入力する信号を検出部1から取り出すための信号入力用パッドが複数設けられている。
そして、これらの信号入力用パッドと、検出部1の上部硝子基板12に設けられた引出パッド130〜133、共通パッド134とを導電性の接合部材45を介して接合することにより、検出部1とシリコン遮蔽基板2が電気的に接続された状態で固定される。
なお、第1の変形例における加速度センサでは、検出部1とベース基板3とを電気的に接続するために、検出部1を反転させて引出パッド130〜133、共通パッド134をベース基板3と対向する部位に設けるようにする。
または、引出パッド130〜133、共通パッド134を配線を介して引き回し、下部硝子基板13へ設けるようにする。
さらに、ベース基板103上には、信号入力用パッドを信号処理回路へ引き出すためのコンタクトパターン33が設けられている。
このベース基板3上のコンタクトパターン33とシリコン遮蔽基板2の配線部22とが接合部材43を介して接合されている。
なお、接合部材43は、接合部材41と同様に導電性を有する部材から構成され、これによりベース基板3上のコンタクトパターン33とシリコン遮蔽基板2上の配線部22とが電気的に接合されている。
このようにして、検出部1と信号処理回路21とが、接合部材45、コンタクトパターン33、接合部材43、配線部22を介して電気的に接続される。なお、接合部材45、コンタクトパターン33、接合部材43、配線部22は、接続手段として機能する。
なお、信号処理回路21で処理された信号(出力信号)は、シリコン遮蔽基板2を貫通するビアホールを設けて加速度センサの外部へ引き出すようにする。また、上述した図1に示す加速度センサと同様に、ベース基板3に引き出し線32を設け、配線部22、接合部材43、引き出し線32を介して信号処理回路21で処理された信号(出力信号)を加速度センサの外部へ引き出すようにしてもよい。
このように、第1の変形例によれば、検出部1をベース基板3に固定することができる。そのため、製造工程を簡略化することができ、コスト削減を図ることができる。
(変形例2)
次に、本実施の形態に係る加速度センサの第2の変形例について説明する。
第2の変形例では、シリコン遮蔽基板2に配線部22を設けずに、検出部201に設けられた配線部50を介して信号処理回路21とベース基板203とを電気的に接続する。
図6は、本実施の形態に係る加速度センサの第2の変形例の概略構成を示した図である。
なお、ここでは、上述した図1に示す加速度センサと同様の構成を有する部位には同じ符号を付して説明を省略し、異なる構成についてのみ説明する。
第2の変形例における加速度センサでは、上述した図1に示す加速度センサに設けられていた配線部22をシリコン遮蔽基板202に設けず、代わりに検出部201に配線部50が設けられている。
配線部50は、検出部201の表面または内部に設けられており、詳しくは、上部硝子基板12の外側端面から下部硝子基板13の外側端面に渡って配設されている。
配線部50を検出部201の内面に設ける場合には、例えば、検出部1の縁部を貫通させるスルーホールを設け、このスローホールの内部に配線を設けるようにする。または、例えば、シリコン基板のポスト構造を用いて設けるようにする。
なお、配線部50の両端部には、接合用パッドが設けられている。
シリコン遮蔽基板には、信号処理回路21において処理された信号(出力信号)を検出部201へ引き出すための引き出しパッドが設けられている。
そして、この引き出しパッドと検出部201(上部硝子基板12)に設けられた接合用パッドを導電性の接合部材47を介して接合することにより、検出部201の配線部50が電気的に接続される。
また、ベース基板203のシリコン遮蔽基板2側の端面には、信号処理回路21において処理された信号(出力信号)の取り出しパッドが設けられており、この取り出しパッドと配線部50の他端(下部硝子基板13)に設けられた接合用パッドとが導電性の接合部材48を介して接合されている。
さらにベース基板203の取り出しパッドには、出力信号をベース基板203の外部へ引き出すための引き出し線32が設けられている。
シリコン遮蔽基板202の信号処理回路21において処理された信号(出力信号)は、接合部材47、配線部50、接合部材48、引き出し線32を介して加速度センサの外部へ引き出される。
このように、第2の変形例によれば、検出部201に設けられた配線部50を介して、より短い経路によって信号処理回路21において処理された信号(出力信号)をベース基板203から加速度センサの外部へ引き出すことができる。
そのため、配線部22を形成する行程を省くことができるため、製造工程の簡略化を図ることができる。
(変形例3)
次に、本実施の形態に係る加速度センサの第3の変形例について説明する。
第3の変形例では、シリコン遮蔽基板2とベース基板303とを、接合部材42〜44を介さずに、直接陽極接合によって電気的に接合する。
図7は、本実施の形態に係る加速度センサの第3の変形例の概略構成を示した図である。
なお、ここでは、上述した図1に示す加速度センサと同様の構成を有する部位には同じ符号を付して説明を省略し、異なる構成についてのみ説明する。
第3の変形例における加速度センサでは、上述した図1に示す加速度センサに設けられていた接合部材42〜44介さずに、シリコン遮蔽基板2とベース基板303とを接合する。
ベース基板303のシリコン遮蔽基板2側の端面(表面)に、シリコン遮蔽基板2の凹部20の開口部を覆う(塞ぐ)ようにシールド部(シールド層)34が設けられている。
このシールド部(シールド層)34は、その端部がシリコン遮蔽基板2とベース基板303との間に挟み込まれるように設けられている。
第3の変形例における加速度センサでは、シリコン遮蔽基板2とベース基板303とを陽極接合による接合処理を施し、配線部22と引き出し線32、シリコン遮蔽基板2とシールド部34を直接電気的に接合する。
なお、陽極接合とは、ベース基板303側に陰極電圧を与え、硝子−シリコン間の静電引力を利用して接合する接合方法である。
なお、ベース基板303とシリコン遮蔽基板2との接合方法は、陽極接合に限定されるものではない。例えば、接合面に金属を積層させて接合する共晶接合等を用いるようにしてもよい。
このように、第3の変形例によれば、ベース基板303とシリコン遮蔽基板2とを直接固定することにより接合部材が不要になる。また、真空封止を適切に行うことができる。
(変形例4)
次に、本実施の形態に係る加速度センサの第4の変形例について説明する。
第4の変形例では、信号処理回路25がシリコン遮蔽基板402の外側面に設けられている。
図8は、本実施の形態に係る加速度センサの第4の変形例の概略構成を示した図である。
なお、ここでは、上述した図1に示す加速度センサと同様の構成を有する部位には同じ符号を付して説明を省略し、異なる構成についてのみ説明する。
第4の変形例では、信号処理回路25をシリコン遮蔽基板402の外側面、詳しくは、シリコン遮蔽基板402の開口側と反対側の外側の端面に設ける。
シリコン遮蔽基板402には、凹部20の底壁部を貫通するビアホール27が設けられており、このビアホール27は、配線部22と接合されている。
なお、このビアホール27は、シリコン遮蔽基板402の底壁部を貫通するテーパ形状の貫通孔からなるスルーホールの側面に、導電性の接続パターンが形成された接続部である。
また、シリコン遮蔽基板402における凹部20の底壁面には、固定用のパッドから構成される固定部24が設けられている。この固定部24は、配線部22に設けられた配線パターンの一部の配線経路と電気的に接続されている。
さらに、シリコン遮蔽基板402の外側面には、信号処理回路25とビアホール27とを電気的に接続するための導電性のコンタクトパターン26が設けられている。
上部硝子基板12に設けられた引出パッド130〜133、共通パッド134と、シリコン遮蔽基板402の固定部24とを導電性の接合部材41を介して接合することにより、検出部1と固定部24が電気的に接続された状態で固定される。
これにより、検出部1と信号処理回路25とが、接合部材41、固定部24、配線部22、ビアホール27、コンタクトパターン26を介して電気的に接続される。
なお、信号処理回路25で処理された信号(出力信号)は、上述した図1に示す加速度センサと同様に、ベース基板3に引き出し線32を設け、配線部22、接合部材43、引き出し線32を介して加速度センサの外部へ引き出すようにする。
また、第4の変形例では、電波雑音等の外乱ノイズの影響を受けやすい信号処理回路25を適切に遮蔽(シールド)するために、信号処理回路25を覆うようにシリコン遮蔽基板402にシールドカバー28を設ける。
このように、第4の変形例によれば、信号処理回路25をシリコン遮蔽基板402の外側面に設けることにより、信号処理回路25の形成が容易になる。
また、信号処理回路25をシリコン遮蔽基板402の外側面に設けることにより、後工程において回路の調整を容易に行うことができる。
次に、上述した本実施の形態に係る加速度センサ(変形例を含む)において、引き出し線32によって加速度センサの外部に引き出された配線の処理例について説明する。
図9は、引き出し線32によって加速度センサの外部に引き出された配線の処理例を示した図である。
図10は、引き出し線32によって加速度センサの外部に引き出された配線の別の処理例を示した図である。
引き出し線32によって加速度センサの外部に引き出された配線を、図9に示すように、ベース基板3の底面部および側面部に渡って設けられた接合電極51と電気的に接合させる。
さらに、シリコン遮蔽基板2がむき出しにならないように、図9に示すように、シリコン遮蔽基板2をモールド部材61によってコーティングする。なお、モールド部材61は、例えば、非導電性の樹脂を用いる。
このように、シリコン遮蔽基板2をモールド部材61によってコーティングし、さらに、信号処理回路21において処理された信号(出力信号)を接合電極51に引き出すことにより、加速度センサを表面実装タイプの部品として扱うことができる。
また、図10に示すように、ベース基板3’をシリコン遮蔽基板2よりも大きく形成し、ベース基板3’のシリコン遮蔽基板2側端面におけるシリコン遮蔽基板2からはみ出した部分に、引き出し電極52を設ける。
そして、この引き出し電極52と引き出し線32と電気的に接合させる。
このように、信号処理回路21において処理された信号(出力信号)を引き出し電極52に引き出すことにより、後段の処理回路と加速度センサを容易にワイヤボンディング処理によって接続することができる。
また、上述した本実施の形態に係る加速度センサ(変形例を含む)は、検出部1における錘体錘体113をz軸方向に振動させる駆動手段を設けて、角速度センサとして機能させるように構成することもできる。
駆動手段により錘体113をz軸方向に振動させ、振動方向と直交する面に対する錘体113の傾き、即ち錘体113の姿勢変化を検出する。
錘体113の姿勢の変化の検出(姿勢検出)は、錘体113と固定電極121〜124とによって形成される静電容量素子の静電容量の変化を検出することによって行う。
詳しくは、固定電極121〜124および可動電極(錘体113)により形成される静電容量素子における静電容量の変化に基づいて、錘体113に作用するコリオリ力を検出する。
そして、信号検出回路において検出されたコリオリ力に基づいて、角速度を算出(導出)する。つまり、錘体113の姿勢の変化量を角速度に変換する。
上述した本実施の形態では、錘体113と固定電極121〜124とによって形成される静電容量素子の静電容量の変化を検出することによって、錘体113の姿勢の変化の検出(姿勢検出)を行うように構成されているが、錘体113の姿勢の変化の検出(姿勢検出)方法はこれに限定されるものではない。
例えば、梁112に圧電抵抗を設け、錘体113の姿勢が変化した時の梁112の変形を圧電抵抗の定数の変化から検出し、この圧電抵抗の定数の変化に基づいて錘体113の姿勢の変化を検出するようにしてもよい。
なお、このように圧電抵抗を用いる場合には、例えば、各圧電抵抗の一端を共通端子129と電気的に接続し、他端を引出端子125〜128と電気的に接続するように配線する。
本実施の形態に係る力学量センサの概略構成を示した図である。 検出部の概略構成を示した断面図である。 可動部構造体の構成を示した平面図である 上部硝子基板の構成を示した平面図である。 本実施の形態に係る加速度センサの第1の変形例の概略構成を示した図である。 本実施の形態に係る加速度センサの第2の変形例の概略構成を示した図である。 本実施の形態に係る加速度センサの第3の変形例の概略構成を示した図である。 本実施の形態に係る加速度センサの第4の変形例の概略構成を示した図である。 引き出し線によって加速度センサの外部に引き出された配線の処理例を示した図である。 引き出し線によって加速度センサの外部に引き出された配線の別の処理例を示した図である。
符号の説明
1 検出部
2 シリコン遮蔽基板
3 ベース基板
11 可動部構造体
12 上部硝子基板
13 下部硝子基板
20 凹部
21 信号処理回路
22 配線部
23 シールド強化部
24 固定部
25 信号処理回路
26 コンタクトパターン
27 ビアホール
28 シールドカバー
31 シールド部
32 引き出し線
33 コンタクトパターン
34 シールド部
41〜48 接合部材
50 配線部
51 接合電極
52 引き出し電極
61 モールド部材
111 フレーム
112 梁
113 錘体
113 錘体錘体
114 可動隙間
115 可動隙間
121 固定電極
121〜124 固定電極
125〜128 引出端子
129 共通端子
130〜133 引出パッド
134 共通パッド
135〜139 スルーホール

Claims (7)

  1. 中空部を有するフレームと、錘と、前記錘を前記フレームの中空部に固定する梁と、前記錘部の姿勢変化に伴い回路定数が変化する検出素子と、を有するセンサ部と、
    前記センサ部を内包する凹部と、前記検出素子の回路定数の変化に基づいて、前記錘部の姿勢変化を検出する検出手段と、を有するシールド基板と、
    前記センサ部の検出素子と前記シールド基板の検出手段とを電気的に接続する接続手段と、
    前記検出手段で検出された前記錘部の姿勢の変化を力学量に変換する変換手段と、
    を備え
    前記シールド基板は、シリコンにより形成され、
    前記接続手段は、導電性を有する接合部材を含み、
    前記検出手段は、前記シールド基板に直接作り込まれており、前記接合部材を介して前記センサ部と接合されてなることを特徴とする力学量センサ。
  2. 前記凹部の開口部と対向して設けられたシールド層を有するベース基板を備え
    前記接続手段は、前記検出手段において処理された信号を前記ベース基板へ引き出すための配線部を有することを特徴とする請求項記載の力学量センサ。
  3. 前記配線部は、前記凹部の内面に沿って設けられていることを特徴とする請求項2記載の力学量センサ。
  4. 前記配線部は、前記センサ部に設けられていることを特徴とする請求項2記載の力学量センサ。
  5. 前記センサ部は、縁部を貫通するスルーホールを有し、
    前記配線部は、前記スルーホールの内部に設けられていることを特徴とする請求項4記載の力学量センサ。
  6. 前記シールド基板の外壁面に設けられ、前記シールド基板を形成するシリコンよりも高い不純物濃度の部材により形成されたシールド強化部を備えたことを特徴とする請求項1から5のいずれか一項に記載の力学量センサ。
  7. 前記シールド層は、前記ベース基板の内層であって前記凹部の開口部を覆うように設けられ、一部が前記凹部側の端面に露出し、接合部材を介して前記凹部と電気的に接合されることを特徴とする請求項2から6のいずれか一項に記載の力学量センサ。
JP2005264607A 2005-09-13 2005-09-13 力学量センサ Expired - Fee Related JP5078245B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005264607A JP5078245B2 (ja) 2005-09-13 2005-09-13 力学量センサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005264607A JP5078245B2 (ja) 2005-09-13 2005-09-13 力学量センサ

Publications (2)

Publication Number Publication Date
JP2007080985A JP2007080985A (ja) 2007-03-29
JP5078245B2 true JP5078245B2 (ja) 2012-11-21

Family

ID=37940992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005264607A Expired - Fee Related JP5078245B2 (ja) 2005-09-13 2005-09-13 力学量センサ

Country Status (1)

Country Link
JP (1) JP5078245B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012242223A (ja) * 2011-05-18 2012-12-10 Dainippon Printing Co Ltd Memsデバイス

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008042351A1 (de) * 2008-09-25 2010-04-01 Robert Bosch Gmbh Mikromechanischer Sensor
JP2012202762A (ja) * 2011-03-24 2012-10-22 Denso Corp 力学量センサ
JP6336865B2 (ja) 2014-09-09 2018-06-06 日立オートモティブシステムズ株式会社 物理量センサ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6329981A (ja) * 1986-07-24 1988-02-08 Toshiba Corp 半導体圧力変換器
US5323051A (en) * 1991-12-16 1994-06-21 Motorola, Inc. Semiconductor wafer level package
EP0886144B1 (en) * 1997-06-19 2006-09-06 STMicroelectronics S.r.l. A hermetically sealed sensor with a movable microstructure
JP2002009301A (ja) * 2000-06-26 2002-01-11 Yokogawa Electric Corp 半導体装置
JP2002267684A (ja) * 2001-03-14 2002-09-18 Denso Corp 半導体式力学量センサ
US7335971B2 (en) * 2003-03-31 2008-02-26 Robert Bosch Gmbh Method for protecting encapsulated sensor structures using stack packaging

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012242223A (ja) * 2011-05-18 2012-12-10 Dainippon Printing Co Ltd Memsデバイス

Also Published As

Publication number Publication date
JP2007080985A (ja) 2007-03-29

Similar Documents

Publication Publication Date Title
JP6580804B2 (ja) Mems圧力センサとmems慣性センサの集積構造
US11287486B2 (en) 3D MEMS magnetometer and associated methods
JP2012225920A (ja) マイクロ−電子機械システム(mems)デバイス
WO2007061054A1 (ja) ウェハレベルパッケージ構造体、および同パッケージ構造体から得られるセンサ装置
JP2007101531A (ja) 力学量センサ
JP6451062B2 (ja) 電子デバイス、電子モジュール、電子機器および移動体
KR101068341B1 (ko) 용량형 역학량 센서
JP6258977B2 (ja) センサおよびその製造方法
JP5078245B2 (ja) 力学量センサ
US10408619B2 (en) Composite sensor
JP6343102B2 (ja) 慣性力センサ
JP2006226770A (ja) 力学量センサ
JP2016070670A (ja) センサ装置
US20170012602A1 (en) Oscillation device and physical quantity sensor
JP6372450B2 (ja) 複合センサ
JP2007192587A (ja) 力学量センサ用配線基板、力学量センサ用配線基板の製造方法および力学量センサ
US20180002164A1 (en) Semiconductor sensor device
JP2017040540A (ja) 複合センサデバイスの製造方法
JP5821158B1 (ja) 複合センサデバイス
KR19980086900A (ko) 고진공 패키징 2축 마이크로자이로스코프 및 그 제조방법
US20220155072A1 (en) Physical quantity sensor
JP5101820B2 (ja) 力学量センサ
JP2008249390A (ja) 半導体装置及びその製造方法
JP5257115B2 (ja) 力学量センサ及びその製造方法
JPH1151964A (ja) 加速度センサ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080620

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091105

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120828

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5078245

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees