JP5041583B2 - 走査光学装置および画像形成装置 - Google Patents

走査光学装置および画像形成装置 Download PDF

Info

Publication number
JP5041583B2
JP5041583B2 JP2006344670A JP2006344670A JP5041583B2 JP 5041583 B2 JP5041583 B2 JP 5041583B2 JP 2006344670 A JP2006344670 A JP 2006344670A JP 2006344670 A JP2006344670 A JP 2006344670A JP 5041583 B2 JP5041583 B2 JP 5041583B2
Authority
JP
Japan
Prior art keywords
unit
image
main scanning
change rate
rate data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006344670A
Other languages
English (en)
Other versions
JP2008155409A5 (ja
JP2008155409A (ja
Inventor
勝秀 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2006344670A priority Critical patent/JP5041583B2/ja
Priority to US11/957,748 priority patent/US8054502B2/en
Publication of JP2008155409A publication Critical patent/JP2008155409A/ja
Publication of JP2008155409A5 publication Critical patent/JP2008155409A5/ja
Application granted granted Critical
Publication of JP5041583B2 publication Critical patent/JP5041583B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/50Picture reproducers
    • H04N1/506Reproducing the colour component signals picture-sequentially, e.g. with reproducing heads spaced apart from one another in the subscanning direction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/047Detection, control or error compensation of scanning velocity or position

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Laser Beam Printer (AREA)

Description

本発明は、走査光学装置、画像形成装置及び走査光学装置に適用される画像クロックの補正方法に関する。
画像形成装置などで利用される走査光学装置は、主走査方向に沿ってビームを走査する。特に電子写真方式の画像形成装置では、走査光学装置から画像信号により変調されたビームを回転多面鏡により回転偏向し、感光体上の被走査面を走査する。
このような画像形成装置において、主走査方向の倍率は、常に理想的な倍率となることが望ましい。しかし、画像形成装置に対する走査光学装置の取り付け誤差や、fθレンズにおける屈折率変動などによって、いわゆる倍率ずれが発生する。倍率ずれは、画像の歪みの原因となるため好ましくない。特に、カラー画像形成装置では、各色ごとに倍率ずれの量が異なれば、色ずれの原因ともなるため好ましくない。
特許文献1によれば、主走査方向を複数の領域に分け、領域毎に画像クロックの位相を変更することで、片倍率成分やfθ成分といった部分倍率成分を補正する画像形成装置が提案されている。
特開2005−111972号公報
ところが、特許文献1によれば、複数の画素からなる領域を単位として画像クロックを補正するための、補正の精度を上げることが難しい。そこで、本発明は、これらの課題又は他の課題のうち少なくとも1つを解決することを目的とする。なお、他の課題については、明細書の及び図面の全体から把握できよう。
本発明は、例えば、
光源から射出されたビームが感光体を走査するように前記ビームを偏向する偏向部と、
前記偏向部によって偏向されたビームを検出する検出部と、
前記検出部が前記ビームを検出したことに応じて前記ビームが前記感光体を走査する主走査方向の画素数をカウントするカウンタと、
基準周期を決定する決定部と、
前記基準周期の基準クロック信号と、前記基準クロック信号に基づいて前記基準クロック信号よりも大きい周期の画像クロック信号と、を生成するクロック信号生成部と、
前記クロック信号生成部によって生成された前記画像クロック信号と画像データとに基づいて画像信号を生成する画像信号生成部と、
前記画像信号生成部によって生成された前記画像信号に基づいて前記光源から前記ビームを出射させる駆動部と、
前記主走査方向の画素位置に対応する補正量の変化率を示す変化率データを前記主走査方向の1ラインを複数に分割した主走査領域それぞれに対応させて記憶する第1の記憶部と、を有し、
前記クロック信号生成部は、前記カウンタのカウント値に基づいて前記変化率データを読み出し、読み出された変化率データと前記主走査方向の画素位置とに基づいて求められる前記補正量を前記基準周期に加算することで前記主走査方向の画素位置に応じた周期の前記画像クロック信号を生成することを特徴とする走査光学装置を提供する。
本実施形態によれば、画素ごとに画像クロックを補正するため、領域単位で補正する場合よりも、補正の精度を向上させることができる。
以下に本発明の一実施形態を示す。もちろん以下で説明される個別の実施形態は、本発明の上位概念、中位概念及び下位概念など種々の概念を理解するために役立つであろう。また、本発明の技術的範囲は、特許請求の範囲によって確定されるのであって、以下の個別の実施形態によって限定されるわけではない。
(第1の実施形態)
図1は、実施形態に係る画像形成装置の概略断面図である。本発明の画像形成装置は、例えば、印刷装置、プリンタ、複写機、複合機、ファクシミリとして実現できる。ここでは、画像形成装置を複写機として説明する。画像リーダー部100、レーザ露光部101、作像部103、定着部104、給紙/搬送部105、及び、これらを制御する不図示のプリンタ制御部を備えている。作像部103は、感光ドラム102、帯電器121、及び現像部122を備えている。感光ドラム102は、レーザ露光部101などの走査光学装置によってビームを走査される像担持体の一例である。帯電器121は、感光ドラム102の表面を一様に帯電させるユニットの一例である。一様に帯電された感光ドラム102の表面(被走査面)を、画像データにしたがって変調されたビームにより露光及び走査することで、潜像が形成される。現像部122は、像担持体に形成された潜像を現像剤像へと現像するユニットである。また、作像部103は、現像剤像を記録媒体に転写するための転写部を備えている。転写部は、転写体としての転写ベルト123を備えている。作像部103は、感光ドラム102上に形成された現像剤像を、転写ベルト123により搬送されてきた記録媒体上に転写する。なお、記録媒体は、記録材、用紙、シート、転写材、転写紙と呼ばれることもある。
良く知られているように、画像リーダー部100は、原稿台に置かれた原稿から原稿画像を光学的に読み取り、原稿画像を電気信号に変換して画像データを作成するユニットである。レーザ露光部101には、本発明に係る走査光学装置を採用できる。レーザ露光部101は、レーザなどの光源から射出されたレーザ光などのビームを等角速度で回転する回転多面鏡(ポリゴンミラー)106により回転偏向することで感光ドラム102上の被走査面を走査する。もちろん、ビームは、画像データにしたがって変調されている。
カラー(多色)画像を形成するための作像部103は、複数の現像ステーションを備えている。各現像ステーションは、それぞれ現像剤の色(例:シアン(C)、マゼンタ(M)、イエロー(Y)、ブラック(K))が異なる。
定着部104は、記録媒体上に形成された現像剤像を加熱して定着させるユニットである。給紙/搬送部105は、記録媒体を給紙して搬送するユニットである。シートカセット107やペーパーデッキ108及び手差し給紙部109に代表されるシート収納庫は、複数の記録媒体を収納している。給紙/搬送部105は、一枚づつ記録媒体を分離し、作像部103へ給紙する。さらに、給紙/搬送部105は、作像部103から記録媒体を定着部104へ搬送し、最終的に機外へと排出する。
図2は、実施形態に係るレーザ露光部101の一例を示す図である。半導体レーザ200は、光源の一例である。レーザ駆動装置201は、半導体レーザ200を駆動するための装置である。半導体レーザ200から射出されたビーム(レーザ光)はコリメータレンズ202及び絞り203を通過することで、ほぼ平行光となり、回転多面鏡204に入射する。回転多面鏡204は、いわゆるポリゴンミラーなどであり、光源から射出されたビームを回転偏向するユニットである。fθレンズ205は、集光作用を有するとともに、走査の時間的な直線性を保証するためのユニットである。これにより、ビームは、感光ドラム102上の被走査面上を等速度で移動することになる。
BDセンサ206は、回転多面鏡204からのビームを受光することで主走査の開始タイミングを検出する検出部の一例である。BDセンサ206から出力される検出信号207は、回転多面鏡204の回転とデータの書き込みとを同期させるための同期信号として用いられる。
画像クロック発生部208は、BDセンサ206から出力される同期信号に同期した一定の周波数の画像クロックを発生するユニットである。画像信号生成部209は、画像クロック発生部208から出力される画像クロックにしたがって、光源を駆動するために利用される画像信号210を生成する生成部の一例である。レーザ駆動制御部211は、画像信号210にしたがって半導体レーザ200を駆動制御する駆動制御部の一例である。
直線220は、感光ドラム102の被走査面の中心位置をビームが露光するときの光路を示している。なお、被走査面は、実際のところ、ビームの幅と等しい幅を有する1本のラインとなる。直線221及び222は、最大となる画像形成領域の両端(BDセンサ側の端部と、その反対側の端部)を露光するときのビームの光路を示している。ちなみに、像高とは、被走査面の中心位置を原点としたときの露光位置(画像形成位置)の座標をいう。図から明らかなように、中心位置よりもBDセンサ206側に近い被走査面上の位置の像高は、負の値となる。反対に、中心位置よりもBDセンサ206の反対側に近い被走査面上の位置の像高は、正の値となる。
[画像クロックを補正する理由]
上述したように、画像形成装置に対する走査光学装置の取り付け誤差や、fθレンズにおける屈折率変動などによって、いわゆる倍率ずれが発生する。この倍率ずれを補正するには、画像クロックを補正すればよい。
図3Aは、倍率ずれに含まれる成分のうち全体倍率ずれを説明するための図である。全体倍率ずれとは、走査光学装置が被走査面(感光ドラム102の表面)に対して垂直又は水平方向に平行移動することで光路長が変化し、それによって発生する全体倍率のずれのことである。このときのずれ量を全体倍率成分と呼ぶ。なお、全体倍率とは、主走査方向の1ラインの倍率(1ラインの実長/1ラインの理想長)のことである。
図において、102は、レーザ露光部101が正規の取り付け位置に取り付けられたときの感光ドラムを示している。102’は、レーザ露光部101の実際の取り付け位置に対する感光ドラムを示している。図3Aに示す事例では、実際の取り付け位置に対応する光路長が、正規の取り付け位置に対応する光路長よりも長くなっている。
図3Bは、全体倍率成分を説明するための図である。この図は、図1に示されたレーザ露光部101と感光ドラム102を手差し給紙部109側から見たときの様子を示している。図3Bの左側には、正規の場合のレーザ露光部101と感光ドラム102との関係が示されている。図3Bの右側には、実際のレーザ露光部101’と感光ドラム102’との関係が示されている。図からわかるように、実際の光路長は、正規の光路長よりも長くなっている。そのため、被走査面に形成される1ラインの実際の長さも、正規の長さよりも長くなる。すなわち、実際の倍率は、正規の倍率よりも大きくなってしまう。
図3Cは、全体倍率成分を説明するための図である。図中、正規のドットとは、正規の位置にレーザ露光部101が配置されたときに形成される一定間隔のドットのことである。一方、実際のドットは、正規の位置とは異なる位置にレーザ露光部101が配置されたときに記載されるドットである。いずれの場合もドットを形成するための画像信号は同一である。図からわかるように、実際のドット間隔は、いずれのドットに関しても同一の倍率で広がっていることがわかる。
図3Dは、理想的な像高と、全体倍率ずれによる像高ずれとの関係を表すグラフである。横軸は、主走査方向の理想像高(像高の理想値)を示している。横軸の原点は、感光ドラム102における中心位置に相当する。また、横軸で負の方向は、中心位置よりもBDセンサに近い位置であることを示している。また、横軸で正の方向は、中心位置よりもBDセンサの反対側に近い位置であることを示している。縦軸は、主走査方向の理想像高からのずれ量を示している。縦軸の正方向は、BDセンサの反対側に露光位置がずれていることを示している。また、縦軸の負方向は、BDセンサ側に露光位置がずれていることを示している。
このグラフにおける傾きが倍率を表している。例えば、同図においてAが像高−150mm、像高ずれ量が−0.1mmを示しているとする。また、Bが、像高+150mm、像高ずれ量が+0.1mmを示しているとする。この場合、走査長は300mmであり、像高ずれ量は+0.2mmである。つまり、理想の走査長300mmに対して実際の走査長が300.2mmになっているので、倍率は300.2/300=100.07%となる。このような全体倍率成分を補正するには、画像クロックの周期を一律に1/1.0007倍(画像クロックの周波数で言えば、一律に1.0007倍)すればよい。
図4Aは、倍率ずれの1つである片倍率ずれを説明するための図である。図3Bと比較するとわかるように、レーザ露光部101’は、水平から傾いて取り付けられている。そのため、レーザ露光部101’と感光ドラム102’との光路長は、像高に依存して異なっている。つまり、感光ドラム102上の被走査面の左端における光路長と右端における光路長がそれぞれ異なっている。このように、片倍率ずれとは、走査光学装置と被走査面とが平行でなくなることで光路長が像高に依存して変化し、それによって発生する理想倍率からのずれをいう。このときのずれ量を片倍成分と呼ぶ。
図4Bは、片倍成分を説明するための図である。片倍成分を含む場合、実際のドット間隔は、一定にならず、像高にしたがって単調増加又は単調減少する。図4Bでは、左(BDセンサ側)から右(BDセンサの反対側)へと進むにつれて、徐々に、ドット間隔が広がっていることを理解できよう。
図4Cは、理想的な像高と、片倍率ずれによる像高ずれとの関係を表すグラフである。ここでは一歩進めて、図中のCとDとにおいて、全体倍率が合うように画像クロックを調整したときの、像高と像高ずれとの関係が示されている。図からわかるように、C点からD点までの走査長は、理想的なケースと片倍成分を含むケースとで同一である。しかし、C点からD点までの間では、像高ずれが発生している。この片倍成分は、一般に、2次関数で表される。
図4Dは、fθ倍率ずれが発生しているときの理想像高と像高ずれとの関係を表すグラフである。fθ倍率ずれとは、実際のレーザの波長が、理想波長(設計中心値)からずれることによって発生する倍率ずれをいう。レーザの波長が設計中心値に合致していれば、fθレンズはポリゴンミラーの等角速度運動を感光ドラム上での等速度運動に変換できる。しかし、実際は、レーザごとに波長が異なる(通常、±10nm程度のばらつきがある)。特に、この波長が設計中心値から外れると、ビームの走査が等速度運動とはならなくなるため、倍率ずれが発生する。このときの倍率ずれを、特に、fθ成分と呼ぶ。図4Dが示すように、fθ成分は、例えば、5次関数により近似される。
このように、倍率ずれを構成する成分には、全体倍率成分(1次間数)、片倍成分(2次関数)及びfθ成分(5次関数)がある。よって、トータルでの倍率ずれも5次関数となる。
[倍率ずれの補正方法]
図5は、実施形態に係る画像クロック発生部の一例を示す図である。各部は、ASICなど専用の回路により実現されてもよいし、CPU、ROM、RAM及びコンピュータプログラムによリ実現されてもよい。補正量決定部501は、半導体レーザ200からのビームの射出タイミングを制御するための画像クロックの補正量を、ビームの主走査方向の1ラインを構成する画素ごとに、決定する。補正部502は、決定された補正量にしたがって画素ごとに画像クロックを補正する。画素ごとに画像クロックを補正するため、複数の画素からなる領域ごとに補正する従来方法よりも、補正の残渣を削減しやすい。
補正量決定部501は、例えば、記憶部503、補正量算出部504、及びカウンタ505を含む。記憶部503は、主走査方向の1ラインを複数に分割することで形成される主走査領域ごとに、その主走査領域に含まれる画素に対して適用される補正量の変化率データを記憶する。変化率データは、画素ごとに適用される補正量の変化率を表すデータである。補正量算出部504は、各主走査領域ごとに、対応する変化率データを記憶部503から読み出し、読み出した変化率データにしたがって画素ごとの補正量を算出する。特許文献1記載の方法では、領域ごとにレジスタが必要となるため、補正の残渣を減らすために領域の数を増やせばより多数のレジスタが必要になってしまう。また、特許文献1記載の方法では、レジスタを減らせば補正残渣が増加してしまう。本実施形態であれば、主走査領域ごとに用意された変化率データから、その主走査領域に属する各画素用の補正量を算出することで、レジスタの数を削減しつつ、補正残渣も削減できる利点がある。
例えば、補正量算出部504は、主走査方向の1ラインを形成する各主走査領域において、それぞれ対応する変化率データにしたがって画像クロックの周波数を単調増加又は単調減少させるよう補正量を算出する。これは、比較的に簡単な演算回路によって補正を実現できる利点がある。
上述したBD(ビーム検出)センサ206は、ビームを受光することで主走査の開始タイミングを検出する検出部として機能する。カウンタ505は、主走査の開始タイミング(上述の検出信号207)が検出されるとカウントを開始する。補正量算出部504は、カウンタ505によるカウント値が、ある主走査領域から次の主走査領域に切り替わったことを示す値となると、次の主走査領域に対応する変化率データを記憶部503から読み出す。これにより、主走査領域が切り替わるごとに、対応する変化率データを読み出すことができる。
設定部506は、各主走査領域において先頭画素に適用される画像クロックの初期周波数を設定する。設定部506は、例えば、初期周波数決定部507及び引継部508を備える。初期周波数決定部507は、複数の主走査領域のうち、1番目の主走査領域の先頭画素に適用される画像クロックの初期周波数を、主走査方向の1ラインの全体倍率から決定する。引継部508は、複数の主走査領域のうち、2番目から最終番目の主走査領域におけるそれぞれの先頭画素に適用される初期周波数として、1つ前の主走査領域の最終画素に適用された周波数を引き継がせる。
図6は、実施形態に係る画像クロック発生部の主要部の一例を示す回路図である。CLKは、不図示の原発振器から入力される原発振(原発)クロックである。カウンタ601は、入力された原発クロックの数をカウントし、カウント値をカウントデータS601として、コンパレータ602へ出力する。コンパレータ602は、カウントデータS601を定数(=1)と比較し、両者が等しいときのみ原発クロックCLKの1クロック幅だけHiの信号S602を出力する。JKフリップフロップ603は、信号S602がHiになると原発クロックCLKに同期してHiの画像クロックVCLKを出力する。
カウントデータS601は、コンパレータ608にも入力される。コンパレータ608は、Hiとなった画像クロックVCLKをLowに切り替えるために、カウントデータS601を、後述する信号S605の1/2のデータS615と比較する。演算子607は、信号S605に1/2を乗算する乗算回路である。そして、カウントデータS601>データS615になると、コンパレータ608は、Hiの信号S616を1ショット回路609へ出力する。1ショット回路609は、入力された信号S616のLowからHiの立ち上がりを検出すると、原発クロックCLKの1クロック幅だけHiの信号S606をJKフリップフロップ603へ出力する。JKフリップフロップ603は、信号S606が入力されたタイミングで、Hiになった画像クロックVCLKをLowに変更する。このようにして、画像クロックの立ち上がりと立下りを実現できる。
カウンタ601は、コンパレータ606にも接続されている。コンパレータ606は、データS605とカウントデータS601とを比較し、両者が等しいときのみ原発クロックCLKの1クロック幅だけHiの信号S607をOR演算子318へ出力する。
OR演算子318は、信号S607とBD信号(検出信号207)との論理和を信号S608としてカウンタ601に出力する。カウンタ601は、信号S608がHiになると、カウントデータをクリアする。この一連の動作により、画像クロック生成部は、画像クロックVCLKを1クロック生成する。
カウンタ616は、コンパレータ606から出力された信号S607が入力される。カウンタ616は、画像クロックVCLKが1クロック生成される度にカウントアップし、カウントデータS614を出力する。カウントデータS614は、1つの主走査領域における画素の番号を意味している。
乗算器617は、画素ごとに画素クロックの補正量を算出する回路として機能する。すなわち、乗算器617は、信号S614と後述する変化率データS613との積を表す信号S604を出力する。信号S614は、単調増加するため、変化率データS613が負であれば積の値は単調減少し、変化率データS613が正であれば積の値は単調増加する。
レジスタ604は、主走査の開始タイミング(検出信号207が出力されたとき)における初期周波数を保存するレジスタである。すなわち、主走査の1ラインを構成する複数の領域のうち、1番目の領域の先頭画素に適用される周波数の情報がレジスタ604には記憶されている。具体的には、初期クロック/原発クロック−1を16進数で表した値、つまり初期クロックが原発クロックCLKの何クロック分かを表すデータS603が保存されている。データS603は、次段のセレクト回路616に入力される。
セレクト回路616は、検出信号207(BD信号)が入力されると、信号S603を信号S617として出力する。また、セレクト回路616は、後述する領域終了信号S611が入力されると、後述する信号S605を出力する。セレクト回路616は、主走査の開始タイミングで信号S617を出力し、主走査領域終了タイミングで信号S605を出力する。
加算器605は、初期周波数(目標周波数)に対して補正量を加算することで、画素クロックを補正する回路である。加算器605は、初期周波数に相当する信号S617と乗算器617の出力S604とを加算し、和の信号S605を出力する。ここで信号S604の最上位ビットは、符号の意味を持つものとする。よって、加算器605は、信号S604の最上位ビットが1であれば下位ビットについて減算をし、信号S604の最上位ビットが0であれば加算をするものとする。
したがって、このような画像クロック発生部を用いれば、画素ごとに画像クロックを補正することができる。すなわち、画像クロックVCLKは、主走査の開始タイミングで、レジスタ604により設定された初期周波数から始まる。画像クロックVCLKが1クロック進むたびに、変化率データS613に応じて原発クロックCLKの数が増減することで、画像クロックVCLKの周期が伸縮する。
次に、各領域ごとに変化率データS613を読み出す動作について説明する。生成された画像クロックVCLKは、カウンタ611にも入力される。カウンタ611は、画像クロックVCLKをカウントし、カウントデータS609を出力する。なお、カウンタ611は、BD信号と信号S611との論理和演算子612からの出力にしたがってカウントデータをクリアする。
レジスタ610は、各主走査領域のサイズを画素数で表した領域サイズデータS610を保存している。コンパレータ613は、カウントデータS609と領域サイズデータS610とを比較し、両者が等しいときのみ画像クロックVCLKの1クロック幅だけHiの信号S611を出力する。
カウンタ614は、信号S611をカウントするアドレスカウンタであり、カウントデータS612を出力する。カウンタ614は、BD信号が入力されるとリセットされる。記憶装置615は、主走査領域ごとの変化率データを保存するEEPROMなどである。記憶装置615は、入力されたカウントデータS612に対応する変化率データS613を読み出し、乗算器617に出力する。
次に、図7A及び7Bのタイムチャートを参照しながら、上述した動作の詳細を説明する。図7Aは、BD信号が入力されて、画像クロックVCLKが2クロック生成されるまでの拡大図である。ここでは、具体例として初期クロックが原発クロックの100クロック分、つまりレジスタ604の設定値が100−1=99、1番目の主走査領域の変化率データS613が”1”である場合について説明する。
まずカウンタ601は、BD信号の入力にしたがってカウントデータS601を0にクリアし、原発クロックCLKのカウントを開始する。カウントデータS601が1になると、コンパレータ602が原発クロックCLKの1クロック幅だけHiの信号S602を出力する。するとJKフリップフロップ603が、画像クロックVCLKをHiにする。
カウンタ601はカウントを進め、カウントデータS601が、データS605(この時点では99)の1/2=49.5(=S615)より大きくなると、コンパレータ608は、Hiの信号S616を出力する。1ショット回路609は、信号S616の立ち上がりを検出し、信号S606を出力する。信号S606により、前述した画像クロックVCLKはLowになる。
カウンタ601はさらにカウントを進め、カウントデータが信号S605(この時点では99)に等しくなると、コンパレータ606は、画像クロックVCLKが1クロック分終了したことを示す信号S607を出力する。この信号S607により、カウンタ601のカウントデータS601が0にクリアされ、次の画像クロックVCLK生成のためのカウント動作が開始される。信号S607は、カウンタ616のクロックとしても用いられる。信号S607が入力される度に(画像クロックVCLKが生成される度に)、カウンタ616は、カウントアップする。カウンタ616が出力するカウントデータS614は、乗算器617にて、EEPROM315から読み出された変化率データS613(ここでは、最初の領域の変化率データは1)と乗算され、1×1=1がS604に出力される。この値と初期クロックの設定値S617(=S603=99)が加算され、2個目の画像クロックVCLKの周期(=99+1=100CLK)が得られる。すなわち、直前の画素に適用された初期周波数が、次の画素の初期周波数として引き継がれる。
2個目の画像クロックVCLKの周期の半分の値(=50)が、信号S615として出力される。そのため、この画像クロックVCLKのデューティは50%になる。同様にして、3個目の画像クロックVCLKに対しては、カウンタ616からの信号S614が2になるため、画像クロックVCLKの周期は101CLK(=99+2×1)になる。上述した動作が1つの主走査領域が終了するまで繰り返される。
図7Bは、複数の主走査領域に関するタイムチャートである。ここでは、各主走査領域のサイズは20画素(レジスタ610の設定値は20−1=19)とする。1走査(1ライン)に含まれる領域数は8個とする。初期クロックは、原発クロックCLKの100クロック分に相当するものとする。変化率データS613は、1番目の領域は1、2番目の領域が2、3番目の領域がFF、そして最後の8番目の領域は1と仮定する。
1番目の主走査領域について、生成された画像クロックVCLKは、カウンタ611に入力され、画素数がカウントされる。この画素数が領域サイズデータS610(=19)と一致すると、コンパレータ613は画像クロックVCLKの1クロック幅だけHiの領域終了信号S611を出力する。このように、画素数のカウント値が領域サイズデータS610(=19)と一致したという事実は、ある主走査領域から次の主走査領域に切り替わったことを示している。
Hiの領域終了信号S611が論理素子612に入力されることで、カウンタ611がクリアされる。カウンタ611は、次の領域サイズを判定するため、再びカウント動作を開始する。また、領域終了信号S611は上述したセレクト回路616にも接続される。セレクト回路616は、この領域終了信号が出力されたときの信号S605(画像クロックVCLK生成に必要な原発クロックCLK数)を信号S617として出力する。
したがって、各主走査領域の先頭の画素に適用される初期クロックは、1つ前の主走査領域の最終画素に適用された画像クロックを引き継ぐことになる。この画像クロックの値に、各画素の変化率データを加算することで、画素ごとに画像クロックの周期(周波数)を変化させルことが可能となる。
図8は、主走査領域と画像クロックVCLKの周期との関係の一例を示す図である。この図から、画素ごとに画像クロックVCLKの周期が補正されていることを理解できよう。また、各主走査領域内では、画像クロックの周期が単調増加又は単調減少していることも理解できよう。
[変化率データの生成方法]
図9は、走査光学装置の部分倍率を測定するための冶工具の一例を示す図である。各部は、ASICなど専用の回路により実現されてもよいし、CPU、ROM、RAM及びコンピュータプログラムによリ実現されてもよい。複数のセンサが、ビームを受光するために被走査面に沿って配置されている。ここで、部分倍率とは、主走査方向の1ラインを複数の領域に分割したときに、各領域における倍率(領域の実幅/領域の理想幅)を意味する。走査開始位置には、走査基準位置を検出するためのBDセンサ206が配置されている。さらに、主走査方向に沿って複数の走査位置検出センサ901ないし906が、等間隔dでもって配置されている。ここでは、走査位置検出センサの数を7個とするが、一例に過ぎない。
レーザ露光部101と冶工具との距離Lは、レーザ露光部101が画像形成装置に取り付けられる際の感光ドラム102までの距離に等しいものとする。
冶工具は、半導体レーザ200をフル点灯で発光させ、ビームを被走査面に沿って走査させる。換算部910は、センサから出力される出力信号の出力時間差を像高に換算する。例えば、換算部910は、BDセンサ206から出力される検出信号と、各走査位置検出センサから出力される検出信号との時間差を測定し、測定された時間差を距離に換算する。この距離は、上述の像高に相当する。
近似関数決定部911は、換算部により得られた像高と、理想像高に対するずれ量との対応関係を表す近似関数を決定する。微分部912は、近似関数を微分して得られる微分関数を決定する。微分関数は、周波数の変化率を表す。変化率関数決定部913は、微分関数に定数(例:1)を加算することで変化率データを求めるための変化率関数を決定する。変化率関数は、周波数比を表す。変化率データ算出部914は、変化率関数から主走査領域ごとの変化率データを算出する。書き込み部916は、主走査領域ごとの変化率データを記憶部503(レジスタ615)に書き込む。
図10Aは、近似関数の一例を示すグラフである。横軸は、理想像高を示す。縦軸は、理想像高とのずれ量を示す。この関数は、5次の近似関数である。よって、微分して得られる微分関数は、4次関数となる。この微分関数は、周波数の変化率を表している。よって、微分関数に1を加えて得られる関数が、周波数比を表す関数となる。
図10Bは、周波数比の一例を表すグラフである。横軸は、理想像高を示す。縦軸は、周波数比を示す。図10Cは、周波数分布の一例示すグラフである。横軸は、理想像高を示す。縦軸は、周波数を示す。ここでは、補正後の目標周波数を60MHzとして求めた1走査中の周波数分布が示されている。各周波数は、目標周波数に、像高に応じた周波数比を乗算することで算出されたものである。
例えば、1ラインを0から13までの14の主走査領域に分割したと仮定する。この場合、図10Cから、領域0の初期周波数は、59.96MHz(○点)となる。また、領域1の初期周波数は、60.23MHzとなる。領域2の初期周波数は、60.29MHzとなる。最終的に、領域13の初期周波数は、60.02MHzとなる(各●点)。破線の丸は、領域13の終了周波数を算出するためのクロックで59.66MHzとなる。
図11は、主走査領域ごとに算出された変化率データの一例を示す図である。各主走査領域に関して、初期周波数から画素毎変化時間(微分係数)が算出され、算出された画素毎変化時間から、変化率データが算出される。変化率データを算出する際には、1領域の画素数と原発クロックの周波数とが考慮されることはいうまでもない。
図12は、補正後の倍率ずれの一例を示す図である。画像クロックを補正する前には、最大ずれ量が200μm程あったが、本実施形態に係る発明を適用することで、最大ずれ量を7μmくらいまで低減できたことがわかる。
本実施形態によれば、画素ごとに画像クロックを補正するため、領域単位で補正する場合よりも、補正の精度を向上させることができる。特に、主走査領域ごとに用意された変化率データから、その主走査領域に含まれる各画素についての補正量を算出することで、補正の精度を維持しつつ、レジスタの数を削減できる。例えば、変化率データにしたがって画像クロックの周波数を単調増加又は単調減少させるよう補正量を算出すれば、算出のための回路を簡潔にすることができる。
また、次工具を用いて変化率データを取得すれば、補正の精度を向上させることができよう。さらに、カウンタによるカウント値が、ある主走査領域から次の主走査領域に切り替わったことを示す値となると、次の主走査領域に対応する変化率データを読み出せば、変化率データの切り替えを比較的に簡単な回路により実現できる。また、各主走査領域の先頭画素に適用される画像クロックの初期周波数を、主走査方向の1ラインの全体倍率から決定し、それ以降の領域に関しては、1つ前の主走査領域の最終画素に適用された周波数を引き継がせれば、初期周波数の保持部を簡易に構成できる。さらに、本実施形態に係る走査光学装置をレーザ露光部101として画像形成装置に採用すれば、倍率ずれの少なく、また色ずれの少ない画像を形成できる。
(第2の実施形態)
第1の実施形態では、冶工具を用いて、変化率データを取得して走査光学装置のEEPROM等のメモリに書き込むものであった。しかし、冶工具を用いずに、走査光学装置が搭載された画像形成装置が変化率データを取得してもよい。
図13は、実施形態に係る作像部の一部を示す図である。ここでは、簡略化のために感光ドラム102は1つしか示していない。感光ドラム102上の主走査方向に等間隔なパターン1301、1302及び1303を形成される。これらのパターンは、転写ベルト123上に転写される。転写された各パターンは、転写ベルト123の駆動によって、図13の右から左へと移動する。そして、各パターンは、対応する反射型の読取センサ1311、1312、1313により読み取られる。ここでは、3つの読取センサが、主走査方向における両端部と中央部とに対応して配置されている。その読取センサ間の間隔は、等間隔である。なお、読取センサの数を3つとしたのは、部分倍率成分のうち片倍成分については、少なくとも3つの読取センサがあれば検出できるからである。もちろん、より多数の読取センサが配置されてもよいことはいうまでもない。
図14は、実施形態に係る画像形成装置の制御部1400の一例を示す図である。各部は、ASICなど専用の回路により実現されてもよいし、CPU、ROM、RAM及びコンピュータプログラムによリ実現されてもよい。ここでは、変化率データの取得に関連するユニットだけが示されている。パターン形成制御部1401は、像担持体又は転写部に含まれる転写体上において主走査方向に沿ってパターンを形成するための画像データを画像信号生成部209に送出するなど、パターンの形成処理を制御するためのユニットである。読取制御部1402は、形成された複数のパターンを読み取るために、読取センサ1311〜1313を制御して、読み取ったパターンに応じた検出信号を出力するユニットである。特定部1403は、検出信号から、各パターンの形成位置を特定するユニットである。ずれ量決定部1404は、各パターンについて、特定部1403により特定された形成位置の、理想的な形成位置に対するずれ量を決定するユニットである。変化率データ作成部1405は、決定されたずれ量から主走査領域ごとの変化率データを作成して、記憶部503に書き込むユニットである。
図15は、パターン形成位置の特定処理の概念を説明するための図である。パターン1301の一部分である点1501が読取センサ1311を通過すると最初のパルスが出力される。次に、パターン1301の一部分である点1511が読取センサ1311を通過すると2番目のパルスが出力される。これらのパルスが検出信号S1301に含まれることになる。他のパターン1302、1303に関しても同様の原理で検出信号S1302、S1303が出力される。パターン1301〜1303が転写ベルト123上で等間隔である場合(倍率ずれが無い場合)、各読取センサから出力される検出信号S1302、S1302、S1303のパルス間隔t1、t2、t3は等しくなる。特定部1403は、検出信号からパルス間隔t1、t2、t3を取得する。パルス間隔t1、t2、t3が、各パターンの形成位置に対応していることはいうまでもない。
図16は、パターン形成位置の特定処理の概念を説明するための図である。ここでは、倍率ずれが発生しているときのパターン形成位置と検出信号の一例が示されている。図15によれば、中央部に形成されたパターン1602は、片倍率ずれによって、本来の位置からずれた位置に形成されている。そのため、パターン1602に対応する検出信号S1602におけるパルス間隔t2’は、t1やt3よりも短くなっている。
図17は、理想像高とずれ量との関係を示すグラフである。このグラフは、図16に示した片倍率ずれが発生したときのものである。横軸は理想像高を示し、縦軸は理想像高に対するずれ量を示している。ドット1701は、パターン1301について得られたt1に対応している。ドット1702は、パターン1602について得られたt2’に対応している。ドット1703は、パターン1303について得られたt3に対応している。ずれ量決定部1404は、パルス間隔を像高に変換し、得られた実際の像高について理想像高に対するずれ量を算出する。
前述したように片倍成分は2次関数となる。よって、変化率データ作成部1405は、3つのドットの座標から2次関数を近似により決定する。第1の実施形態で説明したように、この2次関数を微分して得られる1次関数が周波数の変化率を表す関数となる。変化率データ作成部1405は、2次関数を微分して1次関数を決定し、さらに、定数として1を加算して、周波数比を表す関数を作成する。この関数が、片倍成分を補正するための関数となる。
変化率データ作成部1405は、この周波数比に目標周波数を乗算することで、領域ごとの変化率データを算出する。そして、変化率データ作成部1405は、領域ごとの変化率データを記憶部503へ書き込む。
本実施形態によれば、冶工具を用いなくても、変化率データを作成できる利点がある。また、工場出荷時以降に生じた経年変化などもこの変化率データには反映されるため、より補正の精度が高まるものと期待される。
(第3の実施形態)
第1の実施形態は、冶工具を用いて変化率データを決定する方法に関するものであり、第2の実施形態は、画像形成装置において変化率データを決定する方法に関するものであった。第3の実施形態は、冶工具を用いて決定された変化率データと、画像形成装置において測定された部分倍率成分とから新たな変化率データを決定して画像クロックを補正する方法に関する。すなわち、第3の実施形態は、第1の実施形態と第2の実施形態を組み合わせたものである。
図18は、実施形態に係る画像クロックの補正方法を示す例示的なフローチャートである。ステップS1801で、補正量算出部504は、記憶部503から走査光学装置固有の変化率データを読み出す。ステップS1802で、補正量算出部504は、読み出したデータを元に補正量を決定し、補正量にしたがって補正部502が画像クロックを補正する。
ステップS1803で、パターン形成制御部1401は、パターンを形成する。ステップS1804で、読取制御部1402は、パターンを読み取って、各パパターンの形成位置を特定する。ステップS1805で、ずれ量決定部1404は、像高ずれ量を算出する。ステップS1806で、変化率データ作成部1405は、微分係数を算出する。上述したように、変化率データ作成部1405は、像高ずれ量から2次関数を決定し、それを微分して1次関数を算出する。
図19は、部分倍率成分から算出された微分係数の算出例を示す図である。算出された1次関数に、各領域に対応する像高の値を代入することで、これらの微分係数が算出される。なお、微分係数は、図11で説明した画素毎変化時間に相当することはいうまでもない。
ステップS1807で、変化率データ作成部1405は、記憶部503から読み出したデフォルトの変化率データからも微分係数を逆算する。なお、ステップS1807の位置は、ステップS1801以降であればどこであってもよい。
図20は、デフォルトとの変化率データから算出された微分係数の算出例を示す図である。ここで、レーザ露光部101固有の像高ずれ量を表す近似関数をf(x)とする。また、デフォルトの変化率データを用いて補正された画像クロックにしたがって形成されたパターンから検出された像高ずれ量を表す近似関数をg(x)とする。画像形成装置全体での像高ずれ量(部分倍率成分)を表す近似関数h(x)は、
h(x)=f(x)+g(x)
となる。上述したように、近似関数を微分して得られる微分関数は、周波数の変化率を表す関数となる。さらに、この微分関数に定数として1を加算して得られる関数が、画像クロックを補正するための補正関数(=1+h‘(x))となる。なお、1+h‘(x)=1+f‘(x)+g’(x)である。
ステップS1808で、変化率データ作成部は、補正関数に基づいて周波数比を決定し、周波数比と目標周波数とを乗算する。変化率データ作成部は、さらに、初期クロックや各領域の先頭画素の画像クロックを算出する。最終的に、変化率データ作成部は、変化率データを算出する。ステップS1809で、変化率データ作成部は、新しい変化率データを記憶部503に書き込むことで、変化率データを更新する。このように、変化率データ作成部は、記憶部に記憶されている変化率データを更新する更新部としても機能する。
なお、デフォルトの変化率データがEEPROMなどの不揮発性のメモリに格納されているときは、新しい変化率データをRAMに記憶する。そして、RAMに記憶されている新しい変化率データが画像クロックの補正に使用される。もちろん、新しい変化率データを以降のデフォルトの変化率データとして使用してもよい。ステップS1810で、補正量算出部504及び補正部502は、新しい変化率データを用いて画素ごとの補正量を決定し、画像クロックを補正する。
本実施形態によれば、冶工具を用いて設定された変化率データを画像形成装置において更新することができるため、個々の画像形成装置の設置環境や使用状態に応じて変化率データを好適にできる。
実施形態に係る画像形成装置の概略断面図である。 実施形態に係るレーザ露光部101の一例を示す図である。 全体倍率ずれを説明するための図である。 全体倍率ずれを説明するための図である。 全体倍率ずれを説明するための図である。 理想的な像高と、全体倍率ずれによる像高ずれとの関係を表すグラフである。 片倍率ずれを説明するための図である。 片倍成分を説明するための図である。 理想的な像高と、片倍率ずれによる像高ずれとの関係を表すグラフである。 fθ倍率ずれが発生しているときの理想像高と像高ずれとの関係を表すグラフである。 実施形態に係る画像クロック発生部の一例を示す図である。 実施形態に係る画像クロック発生部の主要部の一例を示す回路図である。 BD信号が入力されて、画像クロックVCLKが2クロック生成されるまでの拡大図である。 複数の主走査領域に関するタイムチャートである。 主走査領域と画像クロックVCLKの周期との関係の一例を示す図である。 走査光学装置の部分倍率を測定するための冶工具の一例を示す図である。 近似関数の一例を示すグラフである。 周波数比の一例を表すグラフである。 周波数分布の一例示すグラフである。 主走査領域ごとに算出された変化率データの一例を示す図である。 補正後の倍率ずれの一例を示す図である。 実施形態に係る作像部の一部を示す図である。 実施形態に係る画像形成装置の制御部の一例を示す図である。 パターン形成位置の特定処理の概念を説明するための図である。 パターン形成位置の特定処理の概念を説明するための図である。 理想像高とずれ量との関係を示すグラフである。 実施形態に係る画像クロックの補正方法を示す例示的なフローチャートである。 部分倍率成分から算出された微分係数の算出例を示す図である。 デフォルトとの変化率データから算出された微分係数の算出例を示す図である。

Claims (9)

  1. 光源から射出されたビームが感光体を走査するように前記ビームを偏向する偏向部と、
    前記偏向部によって偏向されたビームを検出する検出部と、
    前記検出部が前記ビームを検出したことに応じて前記ビームが前記感光体を走査する主走査方向の画素数をカウントするカウンタと、
    基準周期を決定する決定部と、
    基準クロック信号と、前記基準クロック信号に基づいて前記基準クロック信号よりも大きい周期の画像クロック信号と、を生成するクロック信号生成部と、
    前記クロック信号生成部によって生成された前記画像クロック信号と画像データとに基づいて画像信号を生成する画像信号生成部と、
    前記画像信号生成部によって生成された前記画像信号に基づいて前記光源から前記ビームを出射させる駆動部と、
    前記主走査方向の画素位置に対応する補正量の変化率を示す変化率データを前記主走査方向の1ラインを複数に分割した主走査領域それぞれに対応させて記憶する第1の記憶部と、を有し、
    前記クロック信号生成部は、前記カウンタのカウント値に基づいて前記変化率データを読み出し、読み出された変化率データと前記主走査方向の画素位置とに基づいて求められる前記補正量を前記基準周期に加算することで前記主走査方向の画素位置に応じた周期の前記画像クロック信号を生成することを特徴とする走査光学装置。
  2. 前記クロック信号生成部は、前記主走査方向の1ラインを形成する各主走査領域において、それぞれ対応する前記変化率データにしたがって前記画像クロックの周期を単調増加又は単調減少させるよう前記補正量を求めることを特徴とする請求項1に記載の走査光学装置。
  3. 前記第1の記憶部に記憶されている主走査領域ごとの前記変化率データは、
    前記ビームを受光するために被走査面に沿って配置された複数のセンサと、前記センサから出力される出力信号の出力時間差を像高に換算する換算部と、該換算部により得られた像高と、該像高の理想値に対するずれ量との対応関係を表す近似関数を決定する近似関数決定部と、決定された近似関数を微分して得られる微分関数を決定する微分部と、該微分関数に定数を加算することで前記変化率データを求めるための変化率関数を決定する変化率関数決定部と、前記変化率関数から前記変化率データを算出する変化率データ算出部と、主走査領域ごとの前記変化率データを前記第1の記憶部に書き込む書き込み部とを含む冶工具によって求められたものであることを特徴とする請求項1に記載の走査光学装置。
  4. 前記複数の主走査領域それぞれに含まれる画素数を記憶する第2の記憶部をさらに有し、
    前記クロック信号生成部は、前記カウンタのカウント値が前記第2の記憶部に記憶された第1の主走査領域に対応する画素数と一致したことに応じて前記第1の記憶部から前記第1の主走査領域に隣接する第2の主走査領域の変化率データを読み出すことを特徴とする請求項1乃至3のいずれか1項に記載の走査光学装置。
  5. 前記決定部は、
    前記複数の主走査領域のそれぞれにおいて先頭画素に適用される画像クロック信号基準周期決定し
    前記複数の主走査領域のうち、前記主走査方向において1番目に位置する主走査領域の先頭画素に適用される画像クロック信号基準周期を、前記主走査方向の1ラインの全体倍率から決定
    前記複数の主走査領域のうち、前記主走査方向において2番目から最終番目の主走査領域におけるそれぞれの先頭画素に適用される基準周期として、1つ前の主走査領域の最終画素に適用された周期を適用することを特徴とする請求項1乃至3のいずれか1項に記載の走査光学装置。
  6. 画像形成装置であって、
    請求項1乃至5のいずれか1項に記載の走査光学装置と、
    前記走査光学装置によって走査される像担持体と、
    前記像担持体に形成された潜像を現像剤像へと現像する現像部と、
    前記現像剤像を記録媒体に転写する転写部と
    有することを特徴とする画像形成装置。
  7. 前記像担持体又は前記転写部に含まれる転写体上において主走査方向に沿って形成された複数のパターンを読み取ることで各パターンの形成位置を特定する特定部と、
    各パターンについて、前記特定部により特定された形成位置の、理想的な形成位置に対するずれ量を決定するずれ量決定部と、
    決定された前記ずれ量から主走査領域ごとの変化率データを作成する作成部と、をさらに有することを特徴とする請求項6に記載の画像形成装置。
  8. 前記複数のパターンをそれぞれ読み取るために、主走査方向における両端部と中央部とに対応して配置された少なくとも3つの読取センサを含むことを特徴とする請求項7に記載の画像形成装置。
  9. 画像形成装置であって、
    請求項1に記載の走査光学装置と、
    前記走査光学装置によって走査される像担持体と、
    前記像担持体に形成された潜像を現像剤像へと現像する現像部と、
    前記現像剤像を記録媒体に転写する転写部と、
    前記像担持体又は前記転写部に含まれる転写体上において主走査方向に沿って形成された複数のパターンを読み取ることで各パターンの形成位置を特定する特定部と、
    各パターンについて、前記特定部により特定された形成位置の、理想的な形成位置に対するずれ量を決定するずれ量決定部と、
    決定された前記ずれ量から前記主走査領域ごとの変化率データを作成する作成部と、
    前記走査光学装置が備える前記第1の記憶部に記憶されている変化率データを適用して前記パターンが形成されたときに前記作成部により作成された変化率データを前記第1の記憶部に書き込むことで、前記第1の記憶部に記憶されている変化率データを更新する更新部と
    を有することを特徴とする画像形成装置。
JP2006344670A 2006-12-21 2006-12-21 走査光学装置および画像形成装置 Expired - Fee Related JP5041583B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006344670A JP5041583B2 (ja) 2006-12-21 2006-12-21 走査光学装置および画像形成装置
US11/957,748 US8054502B2 (en) 2006-12-21 2007-12-17 Scanning optical apparatus, image forming apparatus and image clock correction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006344670A JP5041583B2 (ja) 2006-12-21 2006-12-21 走査光学装置および画像形成装置

Publications (3)

Publication Number Publication Date
JP2008155409A JP2008155409A (ja) 2008-07-10
JP2008155409A5 JP2008155409A5 (ja) 2010-02-12
JP5041583B2 true JP5041583B2 (ja) 2012-10-03

Family

ID=39542357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006344670A Expired - Fee Related JP5041583B2 (ja) 2006-12-21 2006-12-21 走査光学装置および画像形成装置

Country Status (2)

Country Link
US (1) US8054502B2 (ja)
JP (1) JP5041583B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11820158B2 (en) 2018-10-19 2023-11-21 Canon Kabushiki Kaisha Image forming apparatus

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712329B2 (ja) 1990-02-08 1995-02-15 トーイン株式会社 商品表示および陳列装置
JP3315474B2 (ja) 1993-05-13 2002-08-19 株式会社リコー 画像形成装置
JP3231610B2 (ja) 1995-12-22 2001-11-26 富士通株式会社 カラー画像形成装置
US5909244A (en) * 1996-04-15 1999-06-01 Massachusetts Institute Of Technology Real time adaptive digital image processing for dynamic range remapping of imagery including low-light-level visible imagery
JP3779400B2 (ja) * 1996-11-28 2006-05-24 株式会社東芝 画像処理方法
JP2001033715A (ja) * 1999-07-16 2001-02-09 Nec Niigata Ltd レーザビーム走査速度補正システムおよびこのレーザビーム走査速度補正システムを備えた画像形成装置
JP4154856B2 (ja) * 2000-12-28 2008-09-24 コニカミノルタホールディングス株式会社 クロック発生回路および画像形成装置
US6683634B2 (en) * 2001-12-14 2004-01-27 Kabushiki Kaisha Toshiba Image forming apparatus of a 4-series drum configuration
US7256815B2 (en) * 2001-12-20 2007-08-14 Ricoh Company, Ltd. Image forming method, image forming apparatus, optical scan device, and image forming apparatus using the same
JP2003300341A (ja) * 2002-04-10 2003-10-21 Ricoh Co Ltd 画素クロック生成装置、レーザ走査装置、及び画像形成装置
JP2004004510A (ja) * 2002-04-17 2004-01-08 Ricoh Co Ltd 光走査装置及び画像形成装置
JP4593884B2 (ja) * 2002-05-10 2010-12-08 キヤノン株式会社 レーザ走査制御装置
JP4224318B2 (ja) 2003-01-31 2009-02-12 株式会社リコー 画像形成装置、制御方法及び制御プログラム
JP2004268503A (ja) 2003-03-11 2004-09-30 Canon Inc 周波数変調装置
JP4174346B2 (ja) 2003-03-03 2008-10-29 キヤノン株式会社 周波数変調装置
US7369148B2 (en) * 2003-03-11 2008-05-06 Canon Kabushiki Kaisha Frequency modulation apparatus and frequency modulation method
JP4065533B2 (ja) * 2003-05-16 2008-03-26 キヤノン株式会社 変調装置
JP2004358739A (ja) * 2003-06-03 2004-12-24 Canon Inc 画像形成装置
JP4324488B2 (ja) * 2003-07-07 2009-09-02 株式会社リコー 画像形成装置
JP4630677B2 (ja) 2005-01-25 2011-02-09 株式会社リコー 画像形成装置、プリンタ装置、ファクシミリ装置、及び、複写機。
JP4916125B2 (ja) * 2005-04-26 2012-04-11 株式会社リコー 画素クロック生成装置、パルス変調装置、および画像形成装置
US20070216756A1 (en) * 2006-03-15 2007-09-20 Kabushiki Kaisha Toshiba Laser beam scanning apparatus, image forming apparatus, and laser beam scanning method
JP4939119B2 (ja) * 2006-06-13 2012-05-23 キヤノン株式会社 画像形成装置
US7782511B2 (en) * 2006-12-28 2010-08-24 Canon Kabushiki Kaisha Optical scanning apparatus and image forming apparatus comprising the same
JP5147316B2 (ja) * 2007-07-10 2013-02-20 キヤノン株式会社 画像形成装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11820158B2 (en) 2018-10-19 2023-11-21 Canon Kabushiki Kaisha Image forming apparatus

Also Published As

Publication number Publication date
US20080151334A1 (en) 2008-06-26
US8054502B2 (en) 2011-11-08
JP2008155409A (ja) 2008-07-10

Similar Documents

Publication Publication Date Title
JP4777410B2 (ja) 画像形成装置
KR101646821B1 (ko) 레이저 빔 간의 상대 위치를 보정할 수 있는 화상 형성 장치
JP4364010B2 (ja) 画素クロック生成装置、光走査装置及び画像形成装置
JP5947529B2 (ja) 画像形成装置
JP5078836B2 (ja) 光走査装置および画像形成装置
EP1844943B1 (en) Image forming apparatus and control method thereof
JP3606029B2 (ja) 画像形成装置
JP6214705B2 (ja) 画像形成装置
US20060256417A1 (en) Frequency modulation apparatus and frequency modulation method
JP2005140922A (ja) 光走査装置、画像形成装置及び位置ずれ補正方法
JP5041583B2 (ja) 走査光学装置および画像形成装置
JP2007010765A (ja) カラー画像形成装置
JP6700970B2 (ja) 画像形成装置
US9025197B2 (en) Optical scanning device in image forming apparatus, and control method thereof
JPH1155472A (ja) 多色画像形成装置
JP6486430B2 (ja) レーザ光間の位置ずれを補正する画像形成装置
US6788320B2 (en) Image formation apparatus and registration method
JP5693034B2 (ja) 画像形成装置
JP6974938B2 (ja) 画像形成装置
JP4492344B2 (ja) 画像形成装置
JP2005309336A (ja) 光走査方法・光走査装置および画像形成方法および画像形成装置
JP2008068509A (ja) 画像形成装置及び光量制御方法
JP2007045075A (ja) 画像形成装置
JP2001281570A (ja) 光走査装置
JP4866057B2 (ja) 光学装置、画像形成装置、点灯位置変更方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091216

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120709

R151 Written notification of patent or utility model registration

Ref document number: 5041583

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees