JP5027647B2 - 単一のステップmocvdによって製造される埋め込みヘテロ構造デバイス - Google Patents

単一のステップmocvdによって製造される埋め込みヘテロ構造デバイス Download PDF

Info

Publication number
JP5027647B2
JP5027647B2 JP2007500962A JP2007500962A JP5027647B2 JP 5027647 B2 JP5027647 B2 JP 5027647B2 JP 2007500962 A JP2007500962 A JP 2007500962A JP 2007500962 A JP2007500962 A JP 2007500962A JP 5027647 B2 JP5027647 B2 JP 5027647B2
Authority
JP
Japan
Prior art keywords
growth
layer
optical waveguide
waveguide core
core mesa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007500962A
Other languages
English (en)
Other versions
JP2007533120A (ja
Inventor
ボアー,デイビッド,ピー
コーザイン,スコット,ダブリュー
Original Assignee
アバゴ・テクノロジーズ・ジェネラル・アイピー(シンガポール)プライベート・リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アバゴ・テクノロジーズ・ジェネラル・アイピー(シンガポール)プライベート・リミテッド filed Critical アバゴ・テクノロジーズ・ジェネラル・アイピー(シンガポール)プライベート・リミテッド
Publication of JP2007533120A publication Critical patent/JP2007533120A/ja
Application granted granted Critical
Publication of JP5027647B2 publication Critical patent/JP5027647B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/131Integrated optical circuits characterised by the manufacturing method by using epitaxial growth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/17Semiconductor lasers comprising special layers
    • H01S2301/173The laser chip comprising special buffer layers, e.g. dislocation prevention or reduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2304/00Special growth methods for semiconductor lasers
    • H01S2304/04MOCVD or MOVPE
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2004Confining in the direction perpendicular to the layer structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2004Confining in the direction perpendicular to the layer structure
    • H01S5/2009Confining in the direction perpendicular to the layer structure by using electron barrier layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2201Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure in a specific crystallographic orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2214Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on oxides or nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3211Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34346Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser characterised by the materials of the barrier layers
    • H01S5/34366Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser characterised by the materials of the barrier layers based on InGa(Al)AS

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Integrated Circuits (AREA)

Description

光電子デバイスは、遠隔通信、データ保存および情報伝達を含む多くの用途で使用されている。光電子デバイスの特定のタイプ、例えばレーザダイオード、光電子変調器、半導体光学増幅器、半導体利得媒体などは、光導波路内に配置された活性領域を有している。光導波路は、典型的には、異なる構造を組み込んでおり、横方向、つまりその上にデバイスを製造する基板の主平面に対して平行方向に、かつ横断方向、つまり基板の主平面に対して直交方向に光を導く。横断方向には、活性領域の半導体材料と活性層を挟んでいるクラッド層との間の屈折率コントラストがあることによって光が導かれる。横方向には、クラッド層および活性層を含む層構造内で少なくとも部分的に画定されているリッジ導波構造または埋め込みヘテロ構造導波路によって光が導かれる。
遠隔通信での用途では、最もよく用いられている横方向の導波構造は、埋め込みヘテロ構造である。埋め込みへテロ構造は、活性領域で大きな屈折率コントラストを提供するので、リッジ導波構造よりも有利である。これによって、基本光モードと活性領域との高度の空間的なオーバーラップを保ちながらも、光導波路を極めて幅狭にすることができる。これによって、次のような利点、例えば、レーザにおいてしきい値電流が低いこと、半導体光学増幅器および光利得媒質において動作電流がより低いこと、また光変調器および直接変調レーザにおいて容量が小さく、よって変調速度が大きいこと得られる。
埋め込みヘテロ構造横方向導波路を組み込んでいる光電子デバイスを製造するための典型的なプロセスを、図1A〜1Cに示す。まず、数百もしくは数千の光電子デバイスが作られる層構造10を成長させる。図1A〜1Cは、単一の光電子デバイスが製造される層構造10の一部の側面図である。図1Aに、基板18上に成長させたn型クラッド層12、非ドープ活性領域14およびp型クラッド層16を示す。これらの層を、有機金属気相エピタキシー(OMVPE)としても知られる有機金属化学蒸着(MOCVD)によって成長させる。
層構造10の材料は、III−V族半導体であり、典型的には、インジウム、ガリウム、ヒ素およびリンのような元素からなっている。クラッド層12および16の半導体材料は、活性層14より小さい屈折率を有している。n型クラッド層12の厚みは約2μmであるが、層構造10におけるp型クラッド層16の厚みは、約200nm〜400nmにすぎない。
活性領域14内には、1つ以上の量子井戸からなる量子井戸構造20が配置されている。各量子井戸は、より高いバンドギャップの半導体材料からなるバリア層の間に挟まれている低バンドギャップ半導体材料の量子井戸層によって画定されている。
図1Aには、p型クラッド層16の表面上に堆積させたマスク22も示す。マスクの材料は、典型的には二酸化シリコンである。マスク22は、図1Aに示すように、y方向に細長く、その幅は典型的には約1〜8μmである。
次に、層構造10を成長チャンバから取り出し、2つのエッチングプロセスにかけ、図1Bに示すように層構造にメサ24を画定する。その場合、まず、反応イオンエッチング(RIE)を用いて、p型クラッド層16、活性層14およびn型クラッド層12の、マスク22によって保護されていない部分を除去する。RIEは、エッチングにさらされる層のエッジを傷つけてしまう。このような損傷したエッジによって、最終的に得られる光電子デバイスの効率が著しく損なわれる。したがって、層構造10に対してウェットエッチングをさらに行い、このウェットエッチングにより、p型クラッド層16、活性領域14およびn型クラッド層12の損傷したエッジを除去する。ウェットエッチングプロセスは、さらに、メサ24からのマスク22の張出し部を画定する。図1Bには、両エッチングプロセス後の層構造10を示す。
次に、層構造10を成長チャンバに戻し、図1Cに示すように、活性層14の材料より低い屈折率を有する高抵抗性のIII−V族半導体材料のオーバーグロース(overgrowth)26を、MOCVDによって層構造上にエピタキシャル成長させる。このオーバーグロース26は、基板18およびメサ24のサイドウォールの露出した表面上に成長するが、マスク22上には成長しない。したがって、オーバーグロース26は、隣接するメサ間の層構造にエッチングにより形成された空洞を充填する。オーバーグロースの堆積は、その成長面がp型クラッド層16の上表面に達するまで続ける。
クラッド層12および16の材料がインジウムリン(InP)である層構造10の態様においては、典型的なオーバーグロース26の材料は、鉄でドープされたインジウムリン(InP:Fe)である。オーバーグロースの材料の屈折率は、活性領域14の材料よりも約0.2小さい。オーバーグロースの材料は、鉄(Fe)でドープされており、その導電性が低減されている。
次に、層構造10を成長チャンバから取り出し、別のウェットエッチングプロセスにかけ、p型クラッド層16の表面からマスク22を除去する。
続いて、層構造10を成長チャンバに戻し、図1Cに示すように、追加のp型クラッド層材料28を、露出したp型クラッド層16およびオーバーグロース26上に成長させる。p型クラッド層16およびこのp型クラッド層16上に成長させた追加のp型クラッド層材料の一部は共に、p型クラッド層30を構成する。このp型クラッド層は、典型的には、n型クラッド層12と同じ、つまり約2μmの厚みを有している。
pコンタクト層(図示せず)を、p型クラッド層30の上表面上に成長させ、電極層(図示せず)を、基板18の下表面およびpコンタクト層の露出した表面に堆積させる。次に、電極層をパターン形成し、電極を画定する。続いて、層構造10を単一化して(1つ1つばらばらにして)個々の光電子デバイスにする。
上述の埋め込みヘテロ構造導波路によって、性能に関する利点がもたらされるものの、上述の製造方法は、複雑でかつ制御が難しい。特に、活性領域14においてp型材料、非ドープ材料およびn型材料の層によって形成されているp−i−n接合を貫通するようにエッチングを行うので、低損傷エッチングプロセスを使用して層構造をエッチングすることが必要となる。キャリアの状態が、メサのエッチングされたサイドウォールにおける構造的な欠陥に関係することは、極めて不都合である。さらに、この方法では、活性領域14の幅、つまり図1Aに示す活性領域のx方向の寸法は、エッチングプロセスによって画定される。活性領域の幅は、正確に画定しなくてはならない。狭すぎる場合、利得が不十分となるかまたはしきい値電流が過度に高くなる。広すぎる場合、光電子デバイスがマルチ光モードで動作可能となってしまい、これは、多くの用途で望ましくない。最後に、この方法では、オーバーグロース26が、その上で追加のp型クラッド層材料28を成長させるのに適度に平坦な表面をもたらすことが保証されるように、メサ24のマスク22に対するアンダーカット輪郭形状を正確に制御しなくてはならない。
長波長の遠隔通信での用途に利用される光電子デバイスは、量子井戸層の材料としてインジウムガリウムヒ素リン(InGaAsP)を含む。量子井戸層の材料としてInGaAsPの代わりに、アルミニウムインジウムガリウムヒ素(AlInGaAs)を使用すると、光電子デバイスの高い温度特性が向上する。しかし、量子井戸層の材料としてAlInGaAsを使用することによって、埋め込みヘテロ構造導波構造の製造は著しく難しくなる。これは、量子井戸層の材料中にアルミニウムが存在すると、ウェットエッチング中、メサ24のサイドウォール上に酸化物の安定層が形成されるからである。InGaAsPをエッチングする場合に、より不安定なインジウムおよびガリウムの酸化物が形成されるのとは異なり、アルミニウム酸化物は、オーバーグロース26の成長前にMOCVD成長チャンバ内で熱的に脱着させることができない。アルミニウム酸化物層はメサのサイドウォール上に残り、メサとオーバーグロース26との間の界面の品質を劣化させてしまう。
露出したメサ24のサイドウォールの損傷の問題は、エッチングプロセス後、エッチングステーションから成長チャンバへウェハを移す必要性があることにより、さらに深刻となる。メサのサイドウォールが曝される周囲大気は、典型的には、水蒸気および酸素を含む。水蒸気および酸素は、メサのサイドウォール上で酸化物形成をさらに引き起こしうる。
メサのサイドウォール上で形成される安定の酸化アルミニウムに関する問題に対しては、様々な手段が提案されている。例えば、Bertoneらによる、Etching of InP-based MQW Structure in a MOCVD reactor by Chlorinated Compounds, 195 J. CRYST. GROWTH, 624 (1998)に記載されているように、インサイトゥのエッチングを使用することができる。しかし、この手段は、高価であり実施が難しく、また、別のデバイスに対する製造プロセスと適合性がない場合がある。
K, Kudoらによる、Densely Arrayed Eight-Wavelength Semiconductor Lasers Fabricated by Microarray Selective Epitaxy, 5 IEEE J. SEL. TOP. QUANTUM ELECTRON,, 428 (1999)は、マイクロ選択領域成長(micro-selective area growth)を使用して埋め込みへテロ構造のアレイを製造する方法を開示している。このプロセスを図2A〜2Cに示す。図2Aに、n型クラッド層62を上に成長させた基板68を示す。続いて、光電子デバイスの活性領域64を追加的に構成する光導波コアメサ80を、n型クラッド層62の表面上にマイクロ選択領域成長によって成長させる。光導波コアメサ80は、2つの細長いマスクパターン84によって画定される細長い窓82内で成長する。光導波コアメサは、台形の断面形状を有しており、図示のy方向に延びている。
埋め込みヘテロ構造レーザの活性領域を含む光導波コアメサの製造のためにマイクロ選択領域成長を用いることによって、活性領域の寸法の正確度が向上する。さらに、マイクロ選択領域成長を用いることによって、光導波コアメサは、活性領域を貫通してエッチングを行うことなく形成される。しかし、p型クラッド層材料を含む光導波コアメサ80を覆うためには、第2のマイクロ選択領域成長プロセスを用いる。第2のマイクロ選択領域成長プロセスでは、成長チャンバからウェハを取り出し、マスクパターン86をエッチングして、窓82の幅を拡張する。図2Bに、図2Aに示すマスクパターン84をエッチングすることによって得られる、狭いマスクパターン88および拡張窓86を示す。
次に、ウェハを成長チャンバに戻し、図2Cに示すように、p型クラッドメサ90を光導波コアメサ80上に成長させる。クラッドメサ90は、マイクロ選択領域成長によって、狭められたマスクパターン88によってn型クラッド層62の表面上に画定された拡張窓86に成長させる。クラッドメサ90は、台形の断面形状を有しており、光導波コアメサ80のサイドウォールおよび上表面を覆う。
このように、マイクロ選択領域成長を用いて埋め込みヘテロ構造光電子デバイスを製造することによって、活性層自体を貫通してエッチングするする必要はなくなるが、Kudoらにより開示されているような介在エッチングプロセスを含むマイクロ選択領域成長プロセスを用いる場合、上記の問題の完全な解決策は提供されない。マスクパターンをエッチングするためにウェハを成長チャンバから取り出さなければならないので、光導波コアメサのサイドウォールが周囲大気に曝され、サイドウォールで安定な酸化物が形成される、もしくはサイドウォールが他の損傷を受ける可能性がある。さらに、光導波コアメサのサイドウォールは、マスクパターンをエッチングするために使用されるエッチャントに晒される。これによって、特に量子井戸構造がアルミニウムを含む場合、安定な酸化物が形成されるか、もしくは光導波コアメサのサイドウォールが別の損傷を被ることがある。Kudoらにより開示されているデバイスは、InGaAsPの量子井戸層を有している。
さらに、Kudoらによって開示のプロセスにより製造される光電子デバイスの電極間容量は大きく、これは、クラッドメサ90のかなりの領域がn型クラッド層62に当接しているからである。最後に、クラッドメサ90の上表面は比較的狭く、その上にpコンタクト電極を形成するのは難しい。
したがって、埋め込みヘテロ構造の製造プロセスの上述の欠点を有していない、埋め込みヘテロ構造横方向導波構造を組み込んでいる光導波路および光電子デバイスを製造する手法が必要とされている。また、光導波コアがアルミニウムを含む埋め込みヘテロ構造光導波路および光導波コアを製造する手法手法が必要とされている。最後に、埋め込みヘテロ構造横方向導波構造の上述の欠点を有さない、埋め込みヘテロ構造横方向導波構造を組み込んでいる光導波路および光デバイスが必要とされている。
本発明は、第1には、成長面、成長マスク、光導波コアメサおよびクラッド層を備えている光導波路または光電子デバイスを提供する。成長マスクを成長面上に配置し、細長い成長窓を画定する。光導波コアメサは、成長窓内に配置され、台形の断面形状を有している。クラッド層は、光導波コアメサを覆い、成長マスクの少なくとも一部上に延びている。
本発明は、第2には、デバイスの製造方法であって、成長チャンバを準備し、成長面を有するウェハを設け、製造プロセスを成長チャンバ内で行う、製造方法を提供する。この製造プロセスは、光導波コアメサを、マイクロ選択領域成長によって成長面上に成長させることを含み、光導波コアメサの製造後にウェハを成長チャンバから取り出す必要なしに、光導波コアメサをクラッド材料で覆うことを含む。
光導波コアメサの上表面上に加えサイドウォール上にもクラッド層材料が成長し、クラッド材料の成長前にエッチングプロセスを行う必要のない成長条件下でクラッド材料の成長を行うことによって、成長チャンバから基板を取り出すことなくクラッド材料を成長させる。さらなるプロセスのために最終的に成長チャンバからデバイスを取り出した時、光導波コアメサのサイドウォールは、光導波コアメサを覆うクラッド材料によってエッチャントおよび大気による汚染から保護される。
本発明は、第3には、デバイスの製造方法であって、成長面を有するウェハを設け、第1の成長温度でマイクロ選択領域成長によって光導波コアメサを成長面上に成長させ、第1の成長温度より低い第2の成長温度で光導波コアメサをクラッド材料で覆う、方法を提供する。
光導波コアメサは、より低い成長温度でクラッド材料で覆われるので、クラッド材料を光導波コアメサのサイドウォール上に成長させることが可能となり、クラッド材料の成長前にエッチングプロセスを行う必要はない。
本発明は、マイクロ選択領域成長によって成長させた光導波コアメサがエッチャントおよび/または大気に曝されることによって生じる問題を、p型クラッド層の成長前にマスク窓を広げることなく回避できるという認識に基づいている。本発明によれば、p型クラッド層を、p型クラッド層材料の成長が、光導波コアメサの上表面上に加えサイドウォール上にも成長するような成長条件下で行う。本発明の一態様によれば、p型クラッド層材料の薄層を光導波コアメサの上表面上に成長させた後、成長温度を低下させ、その成長温度が、p型クラッド材料の表面マイグレーション長(surface migration length)がメサのサイドウォールの幅より小さくなる温度とする。このような成長条件下で、p型クラッド層材料が、光導波コアメサの上表面上だけでなくサイドウォール上でも成長する。このようにして、ウェハがエッチャントおよび/もしくは雰囲気に曝されるかまたは光導波コアメサのサイドウォールを損傷しうる条件に曝される前に、光導波コアメサのサイドウォールを覆うp型クラッド層材料を成長させる。
図3A〜3Gに、デバイスを形成するための本発明による方法の例示的な態様を示す。図示の例では、光電子デバイスを製造する。数百または数千の光電子デバイスを、単一のウェハ上に同時に形成する。その後、ウェハを単一化させ、個々の光電子デバイスを得る。方法の別の態様では、透明の導波デバイス、例えば埋め込みヘテロ構造光導波路を製造する。
図3Aは、ウェハ上に製造された例示的な1つの光電子デバイスの基板112を構成する、ウェハ110の小さな部分(図3D)の側面図である。ウェハ110の主平面114上の結晶配向は[100]である。図示の例では、ウェハの材料はn型インジウムリン(InP)である。
ウェハ110を、有機金属化学蒸着(MOCVD)成長チャンバ(図示せず)のサセプタ(図示せず)上に取り付け、図3Bに示すように、n型インジウムリンのn型クラッド層120を主平面114上に成長させる。n型クラッド層の厚みは約2μmである。n型クラッド層120の露出した主平面は成長面122となり、この成長面122上に光導波コアメサを成長させる。
次に、成長面122上にマスク層(図示せず)を堆積させる。一態様では、マスク層の材料は二酸化シリコン(SiO)である。続いて、ウェハ110を、成長チャンバから取り出し、フォトリソグラフィを施し、マスク層をパターン形成するようにエッチングして、図3Cに示すように成長マスク130を画定する。
図3Dはウェハ110の平面図であり、ウェハ上に成長させたn型クラッド層120(図3C)の成長面122上に配列させた成長マスク130を示す。各成長マスクは、マスクストライプ132の対からなっている。図3Dは、極めて簡略に、成長マスクを3つしか示していない。特別な態様では、各成長マスク130の幅は、約10〜25μmであり、隣接する成長マスクは、ウェハの幅にわたる方向に約100μm〜約500μmの範囲の距離で分離されているので、典型的なウェハは、その表面に配列された数百の成長マスクを有している。
マスクストライプ132は細長く、成長面122の、図示のy方向に整列する[011]結晶方向に平行に整列された長辺を有している。隣接するマスクストライプ132の各対は、細長い成長窓134を画定する成長マスク130を構成しており、この成長窓内で、マイクロ選択領域成長によって細長い導波コアメサを成長させる。成長窓の幅は、マスクストライプ132の対の向かい合うエッジ間のx方向の距離によって画定されており、約1μm〜約3μmの範囲、典型的には約1.5μm〜約2μmの範囲にある。成長窓134の実際の幅は、製作される光電子デバイスの量子井戸構造の規定幅、つまり、量子井戸構造のx方向の規定寸法に依存する。
ウェハ110を、MOCVD成長チャンバに戻し、光導波コアメサ140を、マイクロ選択領域成長を用いて成長窓134内に成長させる。図示の光電子デバイスの例では、光導波コアメサ140は、光電子デバイスの活性領域を提供するように構成されていて、成長面122から、n型バッファ層、ホールブロック層、基板側分離層、量子井戸構造、遠隔側分離層および電子ブロック層よりこの順序で形成されている。光導波コアメサの構造は、図4Bを参照して以下に詳説する。少なくとも1つの量子井戸は、2つのバリア層(図4Bに示す)に挟まれた量子井戸層(図4Bに示す)からなっており、量子井戸領域内に配置されている。透明の導波デバイスにおいては、光導波コアメサ140は均一で、図4Bに示す層を備えていない。
マイクロ選択領域成長による光導波コアメサ140の成長時には、MOCVD成長チャンバに供給される前駆体から形成される半導体材料を、成長マスク130上に堆積させる。この半導体材料は、成長マスク上で核形成することはなく、成長窓134内で露出した成長面122の一部に向かって移動(マイグレーション)する。成長窓で成長する半導体材料は、[111]サイドウォールを形成する傾向が強く、その上での成長速度は約ゼロとなっている。したがって、半導体材料は、光導波コアメサ140の上表面146上で支配的に成長し、光導波コアメサは、成長窓134において、図3Eに示すように台形の断面形状を有するように成長する。光導波コアメサは、真直ぐで滑らかな[111]サイドウォール144によって境界決めされる。
半導体材料の吸着原子が、その表面マイグレーション長もしくは表面拡散長(surface diffusion length)が、サイドウォール144を構成する[111]表面の幅w(図3H)より大きくなるのに十分な移動度を有するような成長温度で、光導波コアメサ140の成長を実施する。表面拡散長がサイドウォール144の幅より大きければ、半導体材料はサイドウォール上に実質的には成長しない。
光導波コアメサ140を、その規定厚みとなるまで成長させる。次に、成長チャンバに供給されていた前駆体を、p型クラッド層材料のための前駆体に変え、成長温度を、光導波コアメサの成長で用いた温度よりもわずかに低下させる。しかし、この低下させた温度はそれでも、半導体材料の吸着原子の表面拡散長がサイドウォール144の幅よりも大きくなる温度より高い。したがって、図3Fに示すように、p型クラッド層の副層162が、光導波コアメサ140の上表面上に成長する。
p型クラッド層の副層162の厚みが数十ナノメートルに達したら、成長温度を低下させるが、その温度では、半導体材料の吸着原子の移動度が、その表面移動距離がサイドウォール144の幅より小さくなるよう温度となっている。低下させた成長温度でマイクロ選択領域成長を続けるが、半導体材料はなお、成長マスク130上では核形成しない。しかし、この低下させた成長温度では、光導波コアメサ140の上表面146上では支配的な成長は起こらない。結果として、p型クラッド層160の残りは、光導波コアメサ140の上表面146上だけでなく、サイドウォール144上でも成長する。
低下させた温度でのp型クラッド層160の成長は、図3Gに示すように、p型クラッド層が規定厚みに達するまで続けられる。p型クラッド層は、サイドウォール144上で成長すると、成長マスク130の一部上に横方向にさらに延びていく。p型クラッド層は、後に電極を被着することができる平らな主平面164を形成する。
p型クラッド層160の成長の終了後、ウェハ110を成長チャンバから取り出す。p型クラッド層160は、光導波コアメサ140のサイドウォール144を覆い、これによって、サイドウォールを周囲環境から保護する。したがって、p型クラッド層は、ウェハへ適用される後続のプロセス、例えば電極被着、電極のパターニングおよび単一化中に起こる損傷からサイドウォールを保護する。
図4Aは、本発明による上述の製造方法によって製造された本発明による光電子デバイス100の例示的な一態様の等角図である。図4Aは、図示を簡略化するために、光電子デバイス100の光導波コアメサの層構造を示していない。図4Bは、光電子デバイス100の一部の拡大図であり、光導波コアメサの層構造を示している。
図4Aを参照すると、光電子デバイス100は、成長面122、成長マスク130、光導波コアメサ140およびクラッド層160からなっている。成長マスク130は、成長面122上に配置されており、細長い成長窓134を画定している。光導波コアメサ140は、成長窓内に配置されており、台形の断面形状を有している。クラッド層160は、光導波コア140および成長マスク130の少なくとも一部を覆っている。
図示の例では、成長面122は、基板112上にエピタキシャル成長させたn型クラッド層120の主平面である。一態様では、基板112の材料は単結晶n型インジウムリン(InP)であり、n型クラッド層120は、n型InPの層であってかつ約2μmの厚みを有しており、成長面122は[100]結晶配向を有している。
図示の例では、成長マスク130は、細長い長方形のマスクストライプ132からなっている。マスクストライプ132は、細長い成長窓134を画定する互いに向き合う平行のエッジを有する二酸化シリコン(SiO)の領域である。成長窓134の幅は、約1μm〜約3μm、典型的には約1.5μm〜約2μmの範囲にある。成長窓の実際の幅は、量子井戸領域(図4Bの154)の規定幅、成長面122と量子井戸領域との距離、およびサイドウォール144と成長面122との角度によって決定される。各マスクストライプ132の幅は、約3μm〜約11μmの範囲にある。図示の例では、マスクストライプ132の厚みは、約500nmであり、光導波コアメサ140の高さと同様(±150nm)である。成長ストライプの向かい合うエッジは、成長面122の[011]結晶方向に平行に整列されている。
成長マスク130の代替的な材料は、窒化シリコンSiである。
光導波コアメサ140は、n型クラッド層120の成長面122上に、成長マスク130によって画定されている成長窓134内に配置されている。光導波コアメサは、n型クラッド層120およびp型クラッド層160のどちらかより高い屈折率を有する1種以上の半導体材料の1つ以上の層からなっている。一態様では、光導波コアメサ140とクラッド層120および160との間の屈折率コントラストは、約−0.2であった。光導波コアメサ140は、マイクロ選択領域成長によって製造し、これによりサイドウォール144を構成する[111]表面が形成されるので、台形の断面形状を有している。
p型クラッド層160は、光導波コアメサ140および成長マスク130の少なくとも一部を覆っている。特に、クラッド層160は、光導波コアメサ140のサイドウォール144と接触している。図示の例では、クラッド層160の材料は、p型InPである。よって、光導波コアメサ140は、n型クラッド層120およびp型クラッド層160によって囲まれており、これらの材料は、光導波コアメサの材料よりも大きな屈折率を有している。よって、光導波コアメサ140ならびにクラッド層120および160が全体として光導波路を構成する。
図示の例では、光導波コアメサ140は、光電子デバイス100の活性領域を提供するように構成されている。図4Bに、そのような光導波コアメサ140の一例の構造を示す。光導波コアメサ140は、n型バッファ層151、ホールブロック層152、基板側分離層153、量子井戸構造154、遠隔側分離層155および電子ブロック層156から、その順序で構成されている。n型バッファ層151は、n型クラッド層120の成長面122上に配置されている。ブロック層152および156は、分離層153および155の半導体材料より著しく大きなバンドギャップエネルギーを有している半導体材料の層である。ホールブロック層152、分離層153および155、ならびに電子ブロック層156からなる構造は、電流キャリア(つまり、電子およびホール)を量子井戸構造に閉じ込める分離閉じ込めヘテロ構造(SCH)159を形成している。
n型バッファ層151は、厚み約100nmのn型InPの層であって、n型クラッド層120の成長面122上で、成長窓134内に成長させたものである。
ホールブロック層152は、隣接する層、つまりn型バッファ層151および基板側分離層153の材料よりも大きなバンドギャップエネルギーを有するn型半導体材料の層である。一態様では、ホールブロック層152は、厚み約40nmのn型アルミニウムインジウムヒ素(AlInAs)の層であった。
基板側分離層153は、量子井戸構造154のバリア層の材料と同様のバンドギャップエネルギーを有する半導体材料の層である。成長時には、基板側分離層の材料にはドーパントは添加されない。一態様では、基板側分離層153は、厚み約50nmのAlGaInAsの層であり、Al、GaおよびInの比はそれぞれ、0.325、0.175および0.5であった。
量子井戸構造154は、N+1個のバリア層158と交互に配置されているN個の量子井戸層157からなっており、この場合、Nは正の整数である。図示の例では、N=7である。量子井戸層の材料は、バリア層の材料より実質的に低いバンドギャップを有している。成長中、量子井戸構造の材料にはドーパントを添加しない。一態様では、量子井戸構造154は、それぞれ厚みが約9nmである7つの量子井戸層157と、それぞれ厚みが約8nmである8つのバリア層158とからなっている。量子井戸構造154の材料は、AlGaInAsであって、Al、Ga、Inの比は、量子井戸層157ではそれぞれ0.18、0.22および0.6であり、バリア層158中ではそれぞれ0.32、0.22および0.46であった。
遠隔側分離層155は、量子井戸構造154のバリア層158の材料と同様のバンドギャップエネルギーを有する半導体材料の層である。成長中、遠隔側分離層の材料にはドーパントは添加されない。一態様では、遠隔側分離層155は、厚み約50nmのAlGaInAsの層であり、Al、GaおよびInの比はそれぞれ、0.325、0.175および0.5であった。
電子ブロック層156は、隣接する層、つまり、遠隔側分離層155およびp型クラッド層160の材料より大きなバンドギャップエネルギーを有するp型半導体材料の層である。一態様では、電子ブロック層156は、厚み約40nmのp型アルミニウムインジウムヒ素(AlInAs)の層であった。
図4Aを参照すると、光電子デバイス100は、基板112の、n型クラッド層120から離反した表面上に配置されている電極172と、p型クラッド層160の表面164上に配置されている電極174と、光導波コアメサ140の長手方向軸に直交する向かい合うファセット(facet)176および178とを有している。ファセット176および178は、典型的には劈開によって形成される。ファセット176および178が高反射性である光電子デバイス100の態様では、電極174および172間の電流によって、光電子デバイス100がレーザとして動作し、ファセットを介して発せられるコヒーレントな光を生成する。ファセット176および178が反射防止材料で被覆されている光電子デバイス100の態様では、電極174および172間の電流によって、光電子デバイス100が光利得媒質として動作し、ファセットを介して発せられる光を生成する。ファセット176および178が反射防止材料で被覆されている光電子デバイス100の別の態様では、電極172および174間に印加される電圧によって、光電子デバイス100が、光導波コアメサ140がその一部を形成するような光導波路を介して通過する光に対する光電子変調装置として動作する。
光電子デバイス100においては、n型クラッド層120、p型クラッド層160および成長マスク130が、光電子デバイス100の電極間容量、つまり電極172および174間の容量の主な源となるキャパシタを形成する。成長マスクは、キャパシタの誘電体を構成している。約50nmの薄さのマスクストライプ132は、成長面122を確実に覆っており、それにより、上述のマイクロ選択領域成長プロセスにおいて成長マスク130として効果的に機能する。しかし、薄い成長マスクを用いると、電極間容量が高くなり、これは、光電子デバイスの最大変調速度を制限する。図示の光電子デバイス100の例では、成長マスク130の厚みは、成長面122を確実に覆うために必要な最小厚みよりも大きくなっている。光導波コアメサ140と同様の厚み、つまり約(500±150)nmの厚みに形成することによって、光電子デバイス100の電極間容量は、厚み3μmのInP:Feキャップ層を備えている従来の埋め込みヘテロ構造光電子デバイスに匹敵するレベルにまで低下する。このようなデバイスは、10Gb/sを超える変調速度で変調が可能となる。
p型クラッド層160の一部は、n型バッファ層151およびn型ホールブロック層152(図4B)に当接している。しかし、p型クラッド層160と光導波コアメサ140のn型部分との間のp−n接合のターンオン電圧が、量子井戸構造を含むp−i−n接合のターンオン電圧よりも大きいので、上記構成により、量子井戸構造154から電流がリークするわけではない。
図4Aに示す光電子デバイス100の製造について、以下、図3A〜3Hを参照してより詳細に説明する。
図3Aを参照すると、基板112は、n型InPのウェハ110の一部であり、厚みは数百マイクロメートルである。基板の材料は、典型的には硫黄(S)でドープされている。基板の主平面114上の結晶配向は、[100]である。
基板112の材料は、名目上は、n型クラッド層120(図3B)と同じであるが、その結晶品質および純度は、通常、光電子デバイスのクラッド層で必要とされるものよりも低い。よって、ウェハ110を、MOCVD成長チャンバ内のサセプタ上に配置し、n型クラッド層120を、約640℃の成長温度で、基板112の主平面114上にエピタキシャル成長させる。n型クラッド層は、シリコンを含むn型でドープされたInPの層である。n型クラッド層を成長させるために使用される典型的な前駆体は、シリコン前駆体としてジシラン(Si)を含むトリメチルインジウム((CHIn)およびホスフィン(PH)である。成長は、n型クラッド層120が約2μmの厚みに達するまで続ける。n型クラッド層の表面は成長面122となり、その結晶配向は[100]である。
エピタキシャル成長層に匹敵する結晶品質および純度を有するInPウェハが利用できる場合には、基板112は、光電子デバイスのn型クラッド層として機能することができる。その場合には、n型クラッド層を基板上にエピタキシャル成長させる必要はなく、基板の主平面114が成長面122となり、この面上に、マイクロ選択領域成長によって光導波コアメサ140を成長させる。
次に、マスク層(それ自体は図示せず)を成長面122上に堆積させる。図示の例では、マスク層は、n型クラッド層120の表面上に堆積させている。一態様では、マスク層の材料は、二酸化シリコン(SiO)であり、これは、前駆体としてシランおよび酸素を使用して形成する。上述のように、マスク層の厚みは、典型的には、数百ナノメートルであり、これにより、光電子デバイスの電極間容量が低減する。この厚みは、成長面122を確実に覆うのに必要な最小厚みよりもかなり大きい。一態様では、マスク層の厚みは500nmである。
次に、ウェハ110を成長チャンバから取り出し、フォトリソグラフィを施して、マスク層をパターン形成するためにエッチングを行い、図3Cおよび3Dに示すようにマスクストライプ132を画定する。隣接するマスクストライプ全体が、成長マスク130を構成し、この成長マスク130が、成長面122上に細長い成長窓134を画定する。隣接するマスクストライプ同士は、距離を置いて分離されており、よって、成長窓134の幅は、約1μm〜約3μmの範囲、典型的には約1.5μm〜約2μmの範囲にある。
マスクストライプ132の幅は、約3μm〜約11μmの範囲、典型的には約5μm〜約11μmの範囲にある。成長マスク130上に付着した半導体材料は、成長窓134において成長する光導波コアメサ140の上表面146(図3E)に向かって移動するので、マスクストライプ132の幅が広すぎると、成長速度が過度に大きくなって、成長する材料の厚みを制御するのが難しくなる。成長速度が大きいと、特に、光導波コアメサの成長プロセスが終わりに近づいた時に、メサの上表面146の面積が小さくなってしまうので問題である。そのように成長速度が大きく、また加速する。一方、マスクストライプ132が過度に幅狭であると、隣接する複数の成長窓134内の光導波コアメサ上で成長させた複数のp型クラッド層160が融合してしまい、これもまた望ましくない。
成長マスク130の形成後、ウェハを成長チャンバへ戻す。ウェハを約640℃の成長温度で加熱し、光導波コアメサ140を、成長面122上で成長マスク130によって画定された成長窓134内で、マイクロ選択領域成長によって成長させる。図4Bに示す層構造を有する光導波コアメサ140の一態様の成長について、以下に説明する。
n型バッファ層151は、成長面122上に成長させたInPの層である。図示の例では、成長面122は、n型クラッド層120の表面である。n型バッファ層は、シリコンでドープされたn型である。n型バッファ層を成長させるのに使用される典型的な前駆体は、シリコン前駆体としてジシラン(Si)を含むトリメチルインジウム((CHIn)およびホスフィン(PH)である。成長は、n型バッファ層151の厚みが約100nmに達するまで行われる。
n型バッファ層151は、光導波コアメサ140の全厚みを低減するよう可能な限り薄く形成する。メサの上表面146の面積が最小である場合、メサ140の厚みを薄くすることによって、メサの最大成長速度、つまりp型クラッド層160の副層162の堆積中の成長速度が低下する。最大成長速度を低減させて、これにより、層厚みの制御を拡大させ、成長させる材料の結晶品質が最大限となることは望ましい。大きな成長速度で成長する材料の結晶品質は、歪みのために低くなりうる。
マスク材料の層において成長マスク130を画定するプロセスによって成長面122の結晶品質が低下することはなく、成長窓134内のマスク材料の残部が残されない態様では、n型バッファ層151を成長させる必要はない。この場合には、ホールブロック層152を成長面122に直接的に成長させる。n型バッファ層151を省くことによって、光導波コアメサ140の厚みが小さくなり、これは望ましいことである。
成長チャンバへのホスフィンの供給を遮断し、トリメチルアルミニウム((CHAl)およびアルシン(AsH)の供給を開始して、AlInAsのホールブロック層152をn型バッファ層151(もしくは、上述のように成長面122)上に成長させる。この場合、ホールブロック層とn型バッファ層151のInPとの間で格子整合が得られるようなアルミニウム組成を有するAlInAsを生成するよう前駆体の流量を調節する。成長は、ホールブロック層152の厚みが約40nmに達するまで続ける。
トリメチルガリウム((CHGa)の供給を開始して、AlGaInAsの基板側分離層153を、ホールブロック層152上に成長させる。前駆体の流量は、生成されるAlGaInAsのAl、GaおよびInの比がそれぞれ0.325、0.175および0.5となるように調節する。この組成物の材料はInPと格子整合している。成長中に、基板側分離層の材料には、ドーパントを添加しない。成長は、基板側分離層153の厚みが約50nmに達するまで行う。
次いで、量子井戸構造154を成長させる。前駆体の流量を、始めはバリア層158を基板側分離層153上に成長させるように調節する。バリア層158は、AlGaInAsの層であり、Al、GaおよびInの比はそれぞれ0.32、0.22および0.46である。この組成の材料は、基板側分離層153のAlGaInAsに類似のバンドギャップエネルギーを有しているが、異なる格子定数を有しており、バリア層は歪む。成長中、量子井戸構造の材料にはドーパントは添加されない。成長は、バリア層158の厚みが約8nmに達するまで行う。
次に、前駆体流量を調節して、量子井戸層157をバリア層158上に成長させる。量子井戸層157は、AlGaInAsの層であって、Al、GaおよびInの比はそれぞれ0.18、0.22および0.6である。このような組成を有する材料は、バリア層158よりも実質的に低いバンドギャップエネルギーを有している。この材料も、量子井戸層も歪みを有するような、基板側分離層のAlGaInAsの格子定数とは異なる、バリア層158とは反対方向の格子定数を有している。成長は、量子井戸層157の厚みが約9nmに達するまで行う。
上述と同様の、バリア層158、続いて量子井戸層157の成長のプロセスを、6回繰り返し、全体で7つのバリア層および7つの量子井戸層を成長させる。次に、上述の、バリア層158を成長させるプロセスをもう一度行って、8番目のバリア層を成長させる。これで、量子井戸構造154の成長は完了する。
次に、前駆体流量を調節して、遠隔側分離層155を量子井戸構造154上に成長させる。前駆体流量を、AlGaInAsであって、Al、GaおよびInの比がそれぞれ0.325、0.175および0.5であるものを生成するように調節する。このような組成の材料は、InPと格子整合するが、バリア層158とは格子不整合をなす。成長中、遠隔側分離層の材料にドーパントを添加しない。成長は、遠隔側分離層155の厚みが約50nmに達するまで行う。
成長チャンバへのトリメチルガリウムの供給を遮断し、ジメチル亜鉛((CHZn)の供給を開始して、図3Eに示すように、p型AlInAsの電子ブロック層156を遠隔側分離層155上に成長させる。前駆体流量を調節して、InPと格子整合するアルミニウム組成を有するAlInAsを生成する。成長は、電子ブロック層156の厚みが約40nmに達するまで行う。これにより、光導波コアメサ140の製造が完了する。
成長チャンバへのトリメチルアルミニウムおよびアルシン(AsH)の供給を遮断して、図3Fに示すように、ホスフィン(PH)の供給を開始し、成長温度を、p型クラッド層160の副層162が成長する約620℃に下げる。副層162は、p型InPの薄層であり、マイクロ選択領域成長によって電子ブロック層156上に成長させる。副層162は、光導波コアメサ140の上表面146上に成長する。
p型クラッド層の副層162を成長させるために用いられた低下させた上記成長温度はそれでも、半導体材料の吸着原子の移動度が、その表面拡散長が、サイドウォール144を構成する[111]表面の幅w(図3H)よりも大きくなるのに十分な移動度であるような温度を超えている。よって、副層162は、上述のように、光導波コアメサ140の上表面上で支配的に成長する。約620℃の成長温度を使用することができるのは、材料をアルミニウムなしで成長させるからである。つまり、アルミニウム含有の材料を成長させる場合に成長マスク130にアルミニウムが付着することを防ぐために必要となる約640℃の成長温度を使用する必要はない。620℃の成長温度は、光導波コアメサ140を成長させるのに用いられる成長温度と、後述のようにp型クラッド層160の残りを成長させるために用いられる成長温度との中間にある。副層162は、数十ナノメートルの厚みに達するまで成長させる。一態様では、副層162を、約40nmの厚みに達するまで成長を続けた。
次に、成長温度を約600℃に低下させた。温度が下がるにつれ、半導体材料の吸着原子の移動度は低下し、その表面拡散長は、サイドウォール144を構成する[111]表面の幅より小さくなる。この低下させた成長温度で、マイクロ選択領域成長を続けるが、成長はもはや、光導波コアメサ140の上表面140上で支配的に起こらない。さらにp型クラッド層160が、メサのサイドウォール144上に成長する。低下させた成長温度でのp型クラッド層160の成長は、図3Gに示すように、p型クラッド層160が規定厚みに達するまで続けられる。一態様では、成長を、p型クラッド層160の厚みが2μmに達するまで続ける。
p型クラッド層160の成長の完了後、ウェハ110を成長チャンバから取り出す。p型クラッド層160は、光導波コアメサ140のサイドウォール144を覆い、成長マスク130の一部上へと延びている。したがって、p型クラッド層は、後続のウェハへの被着プロセス中に受ける損傷からサイドウォール144を保護する。この後続のプロセスは、電極172および174の堆積およびパターニング、ファセット176および178の劈開、ならびに個々の光電子デバイスへの単一化が含まれる。
以上、本発明の態様を、光導波コアメサ140を製造するために使用される半導体材料の一部がアルミニウムを含む例をについて説明した。しかし、これは本発明にとって重要ではない。光導波コアメサを製造するために使用する半導体材料は、アルミニウムを含んでいる必要はない。例えば、量子井戸構造154は、InGaAsPの量子井戸層157を有していてよい。このような量子井戸構造を有するレーザは、量子井戸構造154がAlGaInAsの量子井戸層157を有している上述のものより低いTを有している。
上記には、本発明の態様を、光導波コアメサ140が、光電子デバイスの活性領域を提供するように構成されている例を参照して説明した。しかし、本発明の態様は、光電子デバイスおよびその製造に制限されることはない。本発明は、さらに、透明な導波デバイスおよびその製造も包含する。本発明の上記態様では、光導波コアメサ140は、台形の断面形状を有する透明の光導波コアメサとなるが、図4Bに示すような層構造を有していない。その代わり、光導波コアメサは、クラッド層120および160より屈折率の高い半導体材料の均一なメサとして構成される。適切な半導体材料の例としては、AlInAs、AlGaInAsおよびInGaAsPが挙げられる。
上記には、本発明の態様を、成長マスク130の向かい合うエッジが、成長面122の[011]結晶方向に平行に整列されたものとして記述されている例を参照して説明した。しかし、最適な結果が成長マスクのこの整列によって得られるものの、マイクロ選択領域成長は整列にはあまり依存せず、上述の平行関係から逸脱しても多くの用途での使用に許容される結果が得られる。
図5Aおよび5Bは、埋め込みヘテロレーザとして構成された本発明による光電子デバイスの一態様のいくつかの性能特性を示すグラフである。レーザは、1350nmの波長で光を発生し、そのキャビティ長、つまりファセット176および178(図4A)間の距離は300μmであった。量子井戸構造の材料はAlGaInAsであった。
図5Aに、電極174および172(図4A)間の電流による、光出力電力および順方向電圧の低下の変化を、0℃〜90℃の10℃ごとの10つの異なる温度で示す。レーザは、0℃で4mA未満、温度90℃で20mA未満ののしきい値電流を有している。0℃でのしきい値電流は、従来(図1A〜1C)のInGaAsP BHレーザより約30%低い。
図5Bに、温度による、c−wしきい値電流および量子効率の変化を示す。温度によるしきい値電流および効率の変化はいずれも比較的小さく、それは、量子井戸構造の材料としてAlGaInAsを使用してより高い特性温度が得られているからである。本発明により量子井戸構造の材料としてAlGaInAsを使用して製造された試料レーザでは、特性温度T(しきい値電流に関して)=55°K、T(効率に関して)=190°Kであった。本発明により量子井戸構造の材料としてAlGaInAsを使用して製造された別の類似のレーザでは、T=45°KおよびT=145°Kであった。
以上の開示は、例示的な態様を試料して本発明を説明したものである。しかし、特許請求の範囲に規定された発明は、上記の詳細な実施態様に制限されることはない。
埋め込みヘテロ構造光導波路を組み込んだ従来の第1のタイプの光電子デバイスの製造を示す図である。 埋め込みヘテロ構造光導波路を組み込んだ従来の第1のタイプの光電子デバイスの製造を示す図である。 埋め込みヘテロ構造光導波路を組み込んだ従来の第1のタイプの光電子デバイスの製造を示す図である。 埋め込みヘテロ構造光導波路を組み込んだ従来の第2のタイプの光電子デバイスの製造を示す図である。 埋め込みヘテロ構造光導波路を組み込んだ従来の第2のタイプの光電子デバイスの製造を示す図である。 埋め込みヘテロ構造光導波路を組み込んだ従来の第2のタイプの光電子デバイスの製造を示す図である。 本発明の一態様による埋め込みへテロ構造光導波路を組み込んだ光電子デバイスの製造を示す図である。 本発明の一態様による埋め込みへテロ構造光導波路を組み込んだ光電子デバイスの製造を示す図である。 本発明の一態様による埋め込みへテロ構造光導波路を組み込んだ光電子デバイスの製造を示す図である。 本発明の一態様による埋め込みへテロ構造光導波路を組み込んだ光電子デバイスの製造を示す図である。 本発明の一態様による埋め込みへテロ構造光導波路を組み込んだ光電子デバイスの製造を示す図である。 本発明の一態様による埋め込みへテロ構造光導波路を組み込んだ光電子デバイスの製造を示す図である。 本発明の一態様による埋め込みへテロ構造光導波路を組み込んだ光電子デバイスの製造を示す図である。 図3Fの一部分の拡大図であり、光導波コアメサの一方のサイドウォールを示す。 本発明による埋め込みへテロ構造光導波路を組み込んだ光電子デバイスの例示的な態様の等角図である。 図4Aに示す例示的な光電子デバイスの光導波コアメサの構造を示す拡大図である。 本発明による、埋め込みへテロ構造レーザとして構成された光電子デバイスの一態様のいくつかの性能特性を示すグラフである。 本発明による、埋め込みへテロ構造レーザとして構成された光電子デバイスの一態様のいくつかの性能特性を示すグラフである。

Claims (4)

  1. 成長面(122)を有するウェハ(110)を準備し、
    第1の成長温度で、前記成長面上に、サイドウォールを有する光導波コアメサ(140)をマイクロ選択領域成長により成長させ、
    前記第1の成長温度より低い第2の成長温度で、前記光導波コアメサをクラッド材料(160)で覆う、デバイスの製造方法であって、
    前記第2の成長温度で前記光導波コアメサをクラッド材料で覆う前に、前記光導波コアメサ(140)上に、前記第1の温度と前記第2の温度との間の中間の温度で、前記クラッド材料(160)の副層(162)をマイクロ選択領域成長によって成長させ、前記中間の温度が、吸着原子が前記サイドウォールの幅(w)よりも大きな表面拡散長を有するような温度であることを含み、
    前記クラッド材料(160)が平らな主表面を有する、方法。
  2. 記第1の成長温度が、吸着原子が前記サイドウォールの幅よりも大きな表面拡散長を有するような温度であり、
    前記第2の成長温度が、吸着原子が前記サイドウォールの幅よりも小さな表面拡散長を有するような温度である、請求項に記載の方法。
  3. 前記光導波コアメサを成長させることが、
    前記成長面上に、細長い成長窓(134)を画定する成長マスク(132)を形成すること、および
    前記光導波コアメサを、前記成長窓内で成長させることを含む、請求項1または2のいずれか1項に記載の方法。
  4. 成長チャンバを準備し、
    前記成長チャンバ内に前記ウェハを配置し、
    前記光導波コアメサを成長させ、前記ウェハを前記成長チャンバから取り出すことなく被覆を実施する、請求項1から3のいずれか1項に記載の方法。
JP2007500962A 2004-02-25 2005-02-24 単一のステップmocvdによって製造される埋め込みヘテロ構造デバイス Expired - Fee Related JP5027647B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/787,349 US7184640B2 (en) 2004-02-25 2004-02-25 Buried heterostructure device fabricated by single step MOCVD
US10/787,349 2004-02-25
PCT/US2005/005838 WO2005083480A1 (en) 2004-02-25 2005-02-24 Buried heterostructure device fabricated by single step mocvd

Publications (2)

Publication Number Publication Date
JP2007533120A JP2007533120A (ja) 2007-11-15
JP5027647B2 true JP5027647B2 (ja) 2012-09-19

Family

ID=34861906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007500962A Expired - Fee Related JP5027647B2 (ja) 2004-02-25 2005-02-24 単一のステップmocvdによって製造される埋め込みヘテロ構造デバイス

Country Status (7)

Country Link
US (1) US7184640B2 (ja)
EP (1) EP1719003B1 (ja)
JP (1) JP5027647B2 (ja)
CN (1) CN100476472C (ja)
DE (1) DE202005021940U1 (ja)
TW (1) TWI317764B (ja)
WO (1) WO2005083480A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008515201A (ja) * 2004-09-23 2008-05-08 セミネックス・コーポレーション 高エネルギー赤外半導体ダイオード発光デバイス
US7565200B2 (en) * 2004-11-12 2009-07-21 Advanced Neuromodulation Systems, Inc. Systems and methods for selecting stimulation sites and applying treatment, including treatment of symptoms of Parkinson's disease, other movement disorders, and/or drug side effects
JP2007103581A (ja) * 2005-10-03 2007-04-19 Fujitsu Ltd 埋込型半導体レーザ
JP2009182249A (ja) * 2008-01-31 2009-08-13 Mitsubishi Electric Corp 半導体光素子の製造方法
KR101803326B1 (ko) * 2012-03-14 2017-12-04 한국전자통신연구원 광 스위치 소자 및 그 제조방법
WO2014042637A1 (en) * 2012-09-13 2014-03-20 Hewlett-Packard Development Company, L.P. Controlling temperatures in optical circuits
US10193308B2 (en) * 2017-06-19 2019-01-29 Intel Corporation Semiconductor laser with tensile strained InAlAs electron blocker for 1310 nanometer high temperature operation
JP7480277B2 (ja) * 2020-03-31 2024-05-09 京セラ株式会社 光導波路モジュール及び光源モジュール
WO2022073093A1 (en) * 2020-10-05 2022-04-14 National Research Council Of Canada Corrugated buried heterostructure laser and method for fabricating the same

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5185289A (en) * 1988-06-28 1993-02-09 International Business Machines Corporation Process for the selective growth of GaAs
JP2831667B2 (ja) * 1988-12-14 1998-12-02 株式会社東芝 半導体レーザ装置及びその製造方法
JPH0834336B2 (ja) * 1990-01-31 1996-03-29 シャープ株式会社 半導体レーザ素子及びその製造方法
JP3078004B2 (ja) * 1990-08-31 2000-08-21 株式会社東芝 半導体レーザの製造方法
US5323027A (en) * 1991-05-31 1994-06-21 Shin-Etsu Handotai Kabushiki Kaisha Light emitting device with double heterostructure
JP2746065B2 (ja) * 1993-07-29 1998-04-28 日本電気株式会社 光半導体素子の製造方法
JP2842292B2 (ja) * 1994-09-16 1998-12-24 日本電気株式会社 半導体光集積装置および製造方法
DE19513848A1 (de) * 1995-04-12 1996-10-17 Basf Ag Thermoplastische Formmassen auf der Basis von teilaromatischen Polyamiden und Polyetheramiden
JP3728332B2 (ja) * 1995-04-24 2005-12-21 シャープ株式会社 化合物半導体発光素子
US5952673A (en) * 1996-12-11 1999-09-14 Fujitsu Limited Optical semiconductor device including a multiple quantum well structure of an AlGaInAs/InP system
JPH10242577A (ja) * 1997-02-26 1998-09-11 Matsushita Electric Ind Co Ltd 半導体レーザおよびその製造方法
JP3104789B2 (ja) * 1997-05-02 2000-10-30 日本電気株式会社 半導体光素子およびその製造方法
JPH11238938A (ja) * 1998-02-20 1999-08-31 Matsushita Electric Ind Co Ltd 半導体レーザ装置およびその製造方法ならびに光通信システム
JP3336994B2 (ja) * 1998-04-23 2002-10-21 日本電気株式会社 半導体光導波路アレイの製造方法及びアレイ構造半導体光素子
US6445723B1 (en) * 1998-05-18 2002-09-03 Jds Uniphase Corporation Laser source with submicron aperture
JP3116350B2 (ja) * 1998-06-16 2000-12-11 日本電気株式会社 半導体レーザの製造方法
JP2000260714A (ja) * 1999-03-08 2000-09-22 Nec Corp 有機金属気相成長による成膜方法及びこれを用いた半導体レーザの製造方法
JP3267582B2 (ja) * 1999-06-17 2002-03-18 日本電気株式会社 半導体レーザの製造方法
WO2003025263A1 (fr) * 2001-09-13 2003-03-27 Japan Science And Technology Agency Substrat semi-conducteur de nitrure, son procede d'obtention et dispositif optique a semi-conducteur utilisant ledit substrat

Also Published As

Publication number Publication date
TW200528576A (en) 2005-09-01
CN100476472C (zh) 2009-04-08
EP1719003A4 (en) 2008-01-09
US20050185909A1 (en) 2005-08-25
TWI317764B (en) 2009-12-01
US7184640B2 (en) 2007-02-27
EP1719003B1 (en) 2011-08-24
CN1922518A (zh) 2007-02-28
EP1719003A1 (en) 2006-11-08
WO2005083480A1 (en) 2005-09-09
JP2007533120A (ja) 2007-11-15
DE202005021940U1 (de) 2011-10-12

Similar Documents

Publication Publication Date Title
JP5280614B2 (ja) 単一のステップmocvdによって製造される導波格子を組み込んだ埋め込みヘテロ構造デバイス
JP5027647B2 (ja) 単一のステップmocvdによって製造される埋め込みヘテロ構造デバイス
JPH07221392A (ja) 量子細線の作製方法、量子細線、量子細線レーザ、及び量子細線レーザの作製方法、回折格子の作製方法、及び分布帰還型半導体レーザ
US5260230A (en) Method of manufacturing buried heterostructure semiconductor laser
JPH0864906A (ja) 半導体装置の製法
US7474683B2 (en) Distributed feedback semiconductor laser
US8891159B2 (en) Optical semiconductor element, semiconductor laser, and method of manufacturing optical semiconductor element
JP2005286192A (ja) 光集積素子
CN110247301B (zh) 一种宽温度范围的dfb激光器及其制备方法
US20050186798A1 (en) Process for manufacturing semiconductor devices and related semiconductor device
JP4457578B2 (ja) 半導体光素子を製造する方法、及び半導体光素子
JP3047049B2 (ja) 埋込み構造半導体レーザの製造方法
JP2865160B2 (ja) 半導体レーザの製造方法
KR20000053604A (ko) 반도체광학장치 제조방법
JP3022351B2 (ja) 光半導体装置及びその製造方法
JP3266114B2 (ja) 半導体レーザの製造方法
JPH1140897A (ja) 半導体レーザ素子及びその製造方法
JPH07176830A (ja) 半導体発光素子の製造方法
JP3602814B2 (ja) 半導体装置の製造方法
JPH09186391A (ja) 化合物半導体装置及びその製造方法
JPH09148670A (ja) 半導体レーザ及びその製造方法
JPH0521891A (ja) 埋込み構造半導体レーザの製造方法
JPH0786679A (ja) 半導体発光装置及びその製造方法
JPH10190144A (ja) 埋め込みリッジ型半導体レーザ及びその製造方法
JPH1012972A (ja) 光半導体装置及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110519

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120517

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120622

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees