JP5018240B2 - 電動パワーステアリング装置 - Google Patents

電動パワーステアリング装置 Download PDF

Info

Publication number
JP5018240B2
JP5018240B2 JP2007140537A JP2007140537A JP5018240B2 JP 5018240 B2 JP5018240 B2 JP 5018240B2 JP 2007140537 A JP2007140537 A JP 2007140537A JP 2007140537 A JP2007140537 A JP 2007140537A JP 5018240 B2 JP5018240 B2 JP 5018240B2
Authority
JP
Japan
Prior art keywords
current command
command value
voltage
vehicle speed
steering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007140537A
Other languages
English (en)
Other versions
JP2008290664A (ja
Inventor
誠直 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2007140537A priority Critical patent/JP5018240B2/ja
Publication of JP2008290664A publication Critical patent/JP2008290664A/ja
Application granted granted Critical
Publication of JP5018240B2 publication Critical patent/JP5018240B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)
  • Control Of Ac Motors In General (AREA)

Description

本発明は、ステアリング機構に運転者の操舵負担を軽減する操舵補助力を与える電動パワーステアリング装置に関し、特に、上記操舵補助力を付与する際に、電源電圧の低下を防止するようにした電動パワーステアリング装置に関する。
従来の電動式パワーステアリング車のアイドル回転制御装置としては、車速センサが停車状態の判別信号を出力し、且つ電流センサが大電流使用時の判別信号を出力したとき、アイドルアップ用アクチュエータに対してアイドルアップの制御指令を出力することで、アイドリング運転時においては停車中の据え切り操舵時にのみアイドルアップし、発進する場合はアイドルアップを解除するというものが知られている(例えば、特許文献1参照)。
しかしながら、この場合、アイドルアップするか否かの判定に使用する使用電流値は実際にモータに流れている使用電流であるため、閾値を超えてからアイドルアップ指令を出力しても、閾値を超えたときには既にモータ電流として電源電圧から供給され、電源電圧が落ち込んでいることになる。
そこで、アシスト電流指令値の微分値が所定閾値以上であるときに、アイドルアップ指令を行うことで、電源電圧の落ち込みを予測して、迅速に電源電圧の落ち込みを防止するという電動パワーステアリング装置の制御装置が知られている(例えば、特許文献2参照)。
特開平3−18635号公報 特許第3644343号明細書
ところで、電源電圧の低下を抑制するためには、制御装置への入力電力を増やすか、消費電力を減らす必要がある。
上記各特許文献に記載の従来装置にあっては、上記入力電力を増やすことで電源電圧の低下を抑制するようにしているが、制御装置への入力電圧値を考慮していないため、電源電圧値が高い場合など、必ずしもアイドルアップが必要でない場合にもアイドルアップされてしまい、無駄な電力が制御装置へ入力されることになる。
一方、電源電圧値が低い場合には、アイドルアップしても、消費電力を抑制しているわけではないため十分な補償ができないおそれがある。
そこで、本発明は、電源電圧値に応じて消費電力の削減を行うことにより、電源電圧の低下を防止することができる電動パワーステアリング装置を提供することを課題としている。
上記課題を解決するために、請求項1に係る電動パワーステアリング装置は、ステアリング機構に入力される操舵トルクを検出する操舵トルク検出手段と、少なくとも前記操舵トルク検出手段で検出した操舵トルクに基づいて、d−q軸のベクトル制御を用いて電流指令値を演算する電流指令値演算手段と、前記ステアリング機構のステアリングシャフトに与える操舵補助トルクを発生する電動モータと、前記電流指令値に基づいて前記モータを駆動制御するモータ制御手段とを備えた電動パワーステアリング装置であって、
車速を検出する車速検出手段と、車載バッテリの電圧値を検出する電圧検出手段とを有し、前記電流指令値演算手段は、前記車速検出手段で検出した車速が所定車速以下である停車中若しくは極低速走行中であるとき、前記電圧検出手段で検出したバッテリ電圧値が低いほど、当該バッテリ電圧値の低下を抑制するべく前記ベクトル制御におけるd軸電流指令値を小さく演算することを特徴としている。
また、請求項2に係る電動パワーステアリング装置は、請求項1に係る発明において、前記電流指令値演算手段は、通常のd軸電流指令値に対して、前記電圧検出手段で検出したバッテリ電圧が低いほど小さくなる電圧感応ゲインを乗じることで、当該バッテリ電圧が低いほど、前記d軸電流指令値を小さく演算することを特徴としている。
さらに、請求項3に係る電動パワーステアリング装置は、請求項1に係る発明において、前記電流指令値演算手段は、進角制御によって前記d軸電流指令値を演算するものであって、前記電圧検出手段で検出したバッテリ電圧が低いほど、前記進角制御における進角を小さく演算することを特徴としている。
また、請求項4に係る電動パワーステアリング装置は、請求項1〜3の何れか1項に係る発明において、前記電流指令値演算手段は、前記車速検出手段で検出した車速が所定車速以下であり、且つ前記電圧検出手段で検出したバッテリ電圧が所定電圧以下であるとき、当該バッテリ電圧が低いほど、前記d軸電流指令値を小さく演算することを特徴としている。
本発明に係る電動パワーステアリング装置によれば、車速が所定車速以下の停車状態又は極低速走行状態であるとき、車載バッテリの電圧値が低いほど、ベクトル制御におけるd軸電流指令値(モータの界磁を弱める界磁電流指令値)を小さく演算するので、停車状態又は極低速走行状態で電源電圧が低いときには、転追性能に費やしている出力を抑制することができる。このように、制御装置への入力電流を抑制して消費電力を削減することができ、電源電圧の低下を緩和することができるという効果が得られる。
以下、本発明の実施の形態を図面に基づいて説明する。
図1は、本発明に係る電動パワーステアリング装置の一実施形態を示す全体構成図である。
図中、符号1は、ステアリングホイールであり、このステアリングホイール1に運転者から作用される操舵力が入力軸2aと出力軸2bとを有するステアリングシャフト2に伝達される。このステアリングシャフト2は、入力軸2aの一端がステアリングホイール1に連結され、他端は操舵トルク検出手段としてのトルクセンサ3を介して出力軸2bの一端に連結されている。
そして、出力軸2bに伝達された操舵力は、ユニバーサルジョイント4を介してロアシャフト5に伝達され、さらに、ユニバーサルジョイント6を介してピニオンシャフト7に伝達される。このピニオンシャフト7に伝達された操舵力はステアリングギヤ8を介してタイロッド9に伝達され、図示しない転舵輪を転舵させる。ここで、ステアリングギヤ8は、ピニオンシャフト7に連結されたピニオン8aとこのピニオン8aに噛合するラック8bとを有するラックアンドピニオン形式に構成され、ピニオン8aに伝達された回転運動をラック8bで直進運動に変換している。
ステアリングシャフト2の出力軸2bには、操舵補助力を出力軸2bに伝達する操舵補助機構10が連結されている。この操舵補助機構10は、出力軸2bに連結した減速ギヤ11と、この減速ギヤ11に連結されて操舵系に対して操舵補助力を発生する電動モータ12とを備えている。
トルクセンサ3は、ステアリングホイール1に付与されて入力軸2aに伝達された操舵トルクを検出するもので、操舵トルクを入力軸2a及び出力軸2b間に介装した図示しないトーションバーの捩れ角変位に変換し、この捩れ角変位を例えばポテンショメータで検出するように構成されている。このトルクセンサ3から出力されるトルク検出値Tはコントローラ15に入力される。
コントローラ15は、車載のバッテリ17(例えば、定格電圧が12Vである)から電源供給されることによって作動する。バッテリ17の負極は接地され、その正極はエンジン始動を行うイグニッションスイッチ18を介してコントローラ15に接続されると共に、イグニッションスイッチ18を介さずにもコントローラ15に接続されている。
また、本実施形態の電動モータ12は、例えば3相ブラシレスモータであり、図2に示すように、U相コイルLu、V相コイルLv及びW相コイルLwの一端が互いに接続されてスター結線とされ、各コイルLu、Lv及びLwの他端がコントローラ15に接続されて個別にモータ駆動電流Iu、Iv及びIwが供給される。また、電動モータ12は、ロータの回転位置を検出するレゾルバ、エンコーダ等で構成されるロータ位置検出回路を備え、回転角センサ13はこのロータ位置検出回路から出力されるロータ回転位置をもとにモータ回転角θを検出するようになっている。
コントローラ15には、図2に示すように、トルクセンサ3で検出された操舵トルクT及び車速検出手段としての車速センサ16で検出された車速検出値Vが入力されると共に、回転角センサ13で検出されたモータ回転角θが入力され、さらに電流検出回路22で検出された電動モータ12の各相コイルLu、Lv及びLwに供給されるモータ駆動電流Iu、Iv及びIwが入力される。また、電圧検出手段としての電圧センサ27で検出されたバッテリ電圧Vbatもコントローラ15に入力される。
このコントローラ15は、操舵トルクT、車速検出値V及びモータ回転角θに応じた操舵補助力を電動モータ12で発生するためのモータ電圧指令値Vu、Vv及びVwを出力する例えばマイクロコンピュータで構成される制御演算装置23と、電動モータ12を駆動する電界効果トランジスタ(FET)で構成されるモータ駆動回路(インバータ回路)24と、制御演算装置23から出力される相電圧指令値Vu、Vv及びVwに基づいてパルス幅変調(PWM)制御処理を実行し、モータ駆動回路24の電界効果トランジスタのゲート電流を制御するFETゲート駆動回路(PWM制御部)25と、を備えている。
制御演算装置23は、図3に示すように、入力されるトルク検出値T及び車速検出値Vに応じたトルク指令値Trefを算出し、算出したトルク指令値Trefをもとにd−q軸電流指令値Idref,Iqrefを算出し、さらにd−q軸電流指令値Idref,Iqrefを2相/3相変換して3相電流指令値Iuref〜Iwrefを算出する電流指令値演算部30と、この電流指令値演算部30から出力される3相電流指令値Iuref〜Iwrefと電流検出回路22u〜22wで検出したモータ電流Iu〜Iwとで電流フィードバック処理を行って駆動電圧を制御するモータ電流制御部40とを備えている。
電流指令値演算部30は、トルク指令値演算部31と、角速度演算部32と、換算部33と、3相/2相変換部34と、q軸電流指令値演算部35と、d軸電流指令値演算部36と、2相/3相変換部37とを備えている。
トルク指令値演算部31は、トルクセンサ3で検出した操舵トルクT及び車速センサ16で検出した車速検出値Vを入力として、公知の手順によりトルク指令値Trefを算出し、これをq軸電流指令値演算部35及びd軸電流指令値演算部36に出力する。
角速度演算部32は、回転角センサ13で検出されるモータ回転角θを微分してモータ角速度ωを算出し、これを換算部33、q軸電流指令値演算部35及びd軸電流指令値演算部36に出力する。
換算部33は、モータ角速度ωおよびモータ回転角θを入力として逆起電圧eu,ev,ewを算出する。
3相/2相変換部34は、モータ回転角θおよび換算部33で算出した逆起電圧eu,ev,ewを入力として、逆起電圧eu,ev,ewをd−q軸の逆起電圧ed,eqに変換する。
q軸電流指令値演算部35は、逆起電圧ed,eq、トルク指令値Tref、モータ角速度ωおよび後述するd軸電流指令値Idrefを入力として、電流指令値Iqrefを決定する。具体的には、q軸電流指令値演算部35では、Iqref=2/3(Tref×ω−ed×Idref)/eqを演算する。
また、d軸電流指令値演算部36は、トルク指令値Tref、モータ角速度ω、車速V及びバッテリ電圧Vbatを入力として、後述する処理を行ってd軸電流指令値Idrefを算出する。なお、このd軸電流指令値Idrefは界磁を弱める界磁電流指令値である。
そして、2相/3相変換部37は、電流指令値Iqref,Idrefおよびモータ回転角θが入力されて、電流指令値Iqref,Idrefを3相の電流指令値Iuvref,Ivvref,Iwvrefに変換し、これらをモータ電流制御部40に出力する。
モータ電流制御部40は、減算回路41u,41v,41wと、PI制御部42と、を備えている。
減算回路41u,41v,41wは、電流検出回路22u,22v,22wで検出した各相のモータ電流Iu,Iv,Iwと、3相の電流指令値Iuvref,Ivvref,Iwvrefとの偏差をそれぞれ算出し、その偏差をPI制御部42に出力する。
PI制御部42は、上記偏差を零にするように電圧指令値Vu,Vv,Vwを算出してフィードバック制御を実行する。
そして、PWM制御部25では、これら電圧指令値Vu,Vv,Vwを入力としてインバータ回路24へのPWMのゲート信号を算出し、インバータ回路24は、そのゲート信号によってPWM制御される。これにより、各相電流Iu,Iv,Iwが電流指令値Iuvref,Ivvref,Iwvrefとなるように制御される。
以上が、電動モータ12に対する基本制御であるが、電動モータ12の容量には限度があり、ハンドルを高速で操舵するような場合、モータのパワーが不足するので、モータの出力トルクを抑えて高速回転を実現し、パワー一定の制御をする必要がある。
このような制御を実現するために弱め界磁制御という制御方法が用いられ、通常、d軸の電流指令値Idref=0であったものが、弱め界磁制御の場合は、等価的にIdref=0ではなくなる。d軸電流指令値Idrefは界磁磁束に対応した電流成分であり、d軸電流指令値Idrefを負の方向に増加させるとd軸上の界磁磁束を弱めることと等価となる。界磁磁束が弱められると逆起電力が小さくなるため、より高速でモータを回転させることが可能となる。このような弱め界磁制御を実行して、急速なハンドル操舵においてもハンドル操舵のフィーリングを良くする工夫を施している。
次に、d軸電流指令値演算部36の具体的な処理について、図4をもとに説明する。
まず、換算部36aにトルク指令値Trefが入力され、ベース角速度ωbが算出される。一方、機械角演算部36bでは、モータ角速度ωを入力とし、機械角度に変換した機械角速度ωmを出力する。arccos演算部36cでは、ベース角速度ωbと機械角速度ωmとを入力とし、角度Φ=arccos(ωb/ωm)が実行されて、角度Φが出力される。次に、sin演算部36dで角度Φを入力として、sinΦが出力される。
一方、トルク指令値Trefを入力とし、トルク係数演算部36eにおいて、基準電流Iqb=(Tref/Kt)となる基準電流Iqbが算出される。ここで、Ktはトルク係数である。絶対値演算部36fで基準電流Iqbを入力として絶対値をとって、基準電流の絶対値|Iqb|が出力される。次に掛算部36gで、sin演算部36dでの出力であるsinΦと|Iqb|とを入力として、d軸電流指令値IdrefがIdref=−|Iqb|・sinΦとして出力される。
即ち、ここでは、d軸の電流指令値IdrefはIdref=−|Tref/Kt|・sin(arccos(ωb/ωm))=−|Iref|・sin(arccos(ωb/ωm))として算出される。
指令値補正部36hでは、掛算部36gから出力されるd軸電流指令値(通常のd軸電流指令値)Idrefに、バッテリ電圧Vbatに感応したゲインKを乗じたK・Idrefを、d軸電流指令値Idrefとして出力する。
具体的には、d軸電流指令値Idrefを補正するためのゲインKは、電圧センサ27の出力であるバッテリ電圧Vbatをもとに、ゲインマップを参照して算出する。そして、掛算部36gの出力であるd軸電流指令値Idrefに上記ゲインKを乗じることで、新たなd軸電流指令値K・Idrefを算出する。
ここで、上記ゲインマップは、バッテリ電圧Vbatが高くなるほどゲインKが“0”から“1”に向かって大きくなる特性を有する。例えば、バッテリ電圧Vbatが0VではK=0、バッテリ電圧Vbatが所定電圧Vbat1ではK=1となり、0<Vbat<Vbat1ではゲインKは“0”から“1”の間の値をとるように設定されている。
また、スイッチ36iは、車速センサ16で検出した車速検出値Vが所定車速V1より大きいときには、図中実線で示す状態となっており、掛算部36gから出力されるd軸電流指令値Idrefを最終的なd軸電流指令値として出力する。一方、車速検出値Vが所定車速V1以下であるときには、スイッチ36iは図中破線で示す状態に切り換わり、指令値補正部36hから出力されるd軸電流指令値Idrefを最終的なd軸電流指令値として出力する。ここで、上記所定車速V1は、車両が停車又は極低速状態であると判断できる程度の速度値に設定する。
d軸電流指令値Idrefを表わす式の中のarccos(ωb/ωm)からも分かるように、モータの機械角速度ωmがベース角速度ωbより高速になったとき、界磁を弱めるための界磁電流指令値であるIdrefが値として現れる。即ち、モータの機械角速度ωmがベース角速度ωbより高速になったとき弱め界磁制御が実行される。
次に、第1の実施形態の動作及び効果について説明する。
モータの機械角速度ωmがベース角速度ωbより遅い場合、d軸電流指令値演算部36において、arccos演算部36cの出力であるΦが“0”となるので、sinΦ=0となりIdref=−|Iqb|・sinΦ=0となる。したがって、d軸電流指令値演算部36の出力であるK・Idrefも“0”となって、弱め界磁制御は実行されない。
この状態から機械角速度ωmが早くなり、ベース角速度ωbより高速になると、arccos演算部36cの出力である角度Φが0でなく、sinΦが“0”から“1”の間の値を発生するので、掛算部36gの出力値Idref=−|Iqb|・sinΦは値を発生する。
このとき、例えば、車速V>V1であるものとすると、スイッチ36iが図4の実線に示す状態となるため、掛算部36gの出力値Idrefがそのまま最終的なd軸電流指令値として設定され、弱め界磁制御が実行される。このように、弱め界磁制御が実行されることにより、急速なハンドル操舵におけるハンドル操舵フィーリングが向上される。
一方、据え切り操舵をしており、車速V=0であるものとすると、スイッチ36iは図4の破線に示す状態となる。このとき、バッテリ電圧Vbatが落ち込んでおらず、Vbat≧Vbat1である場合には、指令値補正部36hでゲインKが“1”に算出されるため、掛算部36gの出力値が減少補正されることなく、当該掛算部36gの出力値Idrefがそのまま最終的なd軸電流指令値として設定されて、通常の弱め界磁制御が実行される。
ところで、据え切り操舵等の停車中又は極低速走行中における操舵では、転追性能(操舵速度)よりもアシスト出力要求が優先されると考えられる。そこで、本実施形態では、停車中又は極低速走行中にバッテリ電圧Vbatが落ち込んでいる場合には、転追性能に費やしている出力を抑制することで、バッテリ電圧Vbatの低下を緩和する。
すなわち、Vbat<Vbat1である場合には、指令値補正部36hでゲインKがバッテリ電圧Vbatに応じて“0”から“1”の間で算出される。そのため、最終的なd軸電流指令値Idrefは掛算部36gの出力値より小さくなる。
モータ駆動回路へ入力される電流は、q軸電流とd軸電流とのベクトル和に相当するため、同じ操舵トルク指令値が入力された場合、弱め界磁制御を実施しているときのモータ駆動回路への入力電流は、弱め界磁制御を実施していないときよりも多く流れることになる。
したがって、上記のようにd軸電流指令値Idrefを小さく設定することにより、モータ駆動回路への入力電流を制限し、消費電力を削減することができる。その結果、バッテリ電圧の低下を緩和することができる。
図5は、バッテリ電圧によって変化する弱め界磁制御の領域を説明する図である。このように、Vbat≧Vbat1であるときには通常の弱め界磁制御が実行されるが、Vbat<Vbat1であるときには弱め界磁制御は通常時より弱く実行される。また、Vbat=0であるときには弱め界磁制御は実行されない。
つまり、バッテリ電圧Vbatが低いほど、モータ駆動回路への入力電流が制限されることになり、バッテリ電圧Vbatが高い場合には、通常の弱め界磁制御を実行して操舵フィーリングを向上し、バッテリ電圧Vbatが低い場合には、操舵フィーリングを向上するよりも、バッテリ電圧の低下防止を重視する制御となっている。
このように、上記第1の実施形態では、車速が所定車速以下であるとき、車載バッテリの電圧値が低いほど、ベクトル制御におけるd軸電流指令値(モータの界磁を弱める界磁電流指令値)を小さく演算するので、停車状態又は低速走行状態でバッテリ電圧が低いときには、転追性能に費やしている出力を抑制することができる。その結果、制御装置への入力電流を抑制して消費電力を削減することができ、バッテリ電圧の低下を緩和することができる。
また、通常のd軸電流指令値に対して電圧感応ゲインを乗じることで、バッテリ電圧が低いほどd軸電流指令値を小さく演算するので、比較的簡易な回路構成でd軸電流指令値の制限を実現することができる。
さらに、電圧検出手段で検出したバッテリ電圧が所定電圧以下であるとき、当該バッテリ電圧が低いほどd軸電流指令値を小さく演算するので、バッテリ電圧が高い状態であるときには通常の弱め界磁制御を実行してモータの高速回転を可能とすることができ、ハンドルの急操舵に対してもフィーリングの良いハンドル操舵を確保することができる。
次に、本発明における第2の実施形態について説明する。
この第2の実施形態は、前述した第1の実施形態において弱め界磁制御をベクトル制御のd軸電流指令値によって実現しているのに対し、ベクトル制御の進角制御によって実現するようにしたものである。
図6は、第2の実施形態における制御演算装置23の構成を示すブロック図である。ここでは、図3に示す第1の実施形態における制御演算装置23と同様の処理を行う部分には図3と同一符号を付し、処理の異なる部分を中心に説明する。
電流指令値演算部61は、トルク指令値Tref、モータ回転角θ及びモータ角速度ωが入力され、q軸電流指令値Iqrefとd軸電流指令値Idrefとを演算するものであって、通常、q軸電流指令値Iqrefはトルク指令値Trefに比例し、d軸電流指令値Idrefは“0”となるように算出する。
一方、電流検出回路22u,22v,22wで検出したモータ電流Iu,Iv,Iwは、3相/2相変換部62でモータ電流Iq,Idに変換される。この変換には、モータ回転角θが利用される。
そして、モータ電流Iq,Idは減算部63q,63dにそれぞれフィードバックされ、この減算部63qでq軸電流指令値Iqrefとモータ電流Iqとの偏差ΔIqが算出され、減算部63dでd軸電流指令値Idrefとモータ電流Idとの偏差ΔIdが算出される。
PI制御部64は、これらの偏差ΔId,ΔIqをなくすようにPI制御を施し、電圧指令値Vd,Vqを出力する。そして、これら電流指令値Vd,Vqは、2相/3相変換部65で3相の電圧指令値Vu,Vv,Vwに変換される。この変換には、モータ回転角θ及び後述する進角演算部66で演算される進角の角度Φが利用される。具体的には、電流指令値Vd,Vqに対して次式が実行され、電圧指令値Vu,Vv,Vwが演算される。
Vu=−Vd・cos(θ+Φ)+Vq・sin(θ+Φ),
Vv=−Vd・cos(θ+Φ−2π/3)+Vq・sin(θ+Φ−2π/3),
Vw=−Vd・cos(θ+Φ+2π/3)+Vq・sin(θ+Φ+2π/3) ………(1)
このように、角度Φだけ進角されることにより、界磁を弱めるための電流指令値(d軸電流指令値)が演算されることになる。つまり、進角制御において、界磁を弱めるための界磁電流指令値とは進角の角度Φを意味し、電圧指令値Vu,Vv,Vwにおいて、角度Φによって発生する成分が界磁を弱める作用を発生させている。
図7は、進角演算部66の具体的な構成を示すブロック図である。
トルク指令値Trefを入力として換算部66aにおいてベース角速度ωbが算出され、一方、角速度演算部32で算出されたモータ角速度ωを入力とする機械角演算部66bにおいて機械角速度ωmが算出され、arccos演算部66cにおいて、角度Φ=arccos(ωm/ωb)に基づき、角度Φが算出される。
そして、角度補正部66dで、arccos演算部66cから出力される角度Φに、バッテリ電圧Vbatに感応したゲインKを乗じたK・Φを、最終的な角度Φとして出力する。
具体的には、角度Φを補正するためのゲインKは、電圧センサ27の出力であるバッテリ電圧Vbatをもとに、ゲインマップを参照して算出する。
ここで、上記ゲインマップは、バッテリ電圧Vbatが高くなるほどゲインKが“0”から“1”に向かって大きくなる特性を有する。例えば、バッテリ電圧Vbatが0VではK=0、バッテリ電圧Vbatが所定電圧Vbat1ではK=1となり、0<Vbat<Vbat1ではゲインKは“0”から“1”の間の値をとるように設定されている。
また、スイッチ66eは、車速センサ16で検出した車速検出値Vが所定車速V1より大きいときには、図中実線で示す状態となっており、arccos演算部66cから出力されるd軸電流指令値Idrefを最終的なd軸電流指令値として出力する。一方、車速検出値Vが所定車速V1以下であるときには、スイッチ66eは図中破線で示す状態に切り換わり、角度補正部66dから出力されるd軸電流指令値Idrefを最終的なd軸電流指令値として出力する。
角度Φは、Φ=arccos(ωm/ωb)の式から分かるように、モータの機械角速度ωmがベース角速度ωbより高速になったときに初めて出現する値であり、言い換えれば、モータの機械角速度ωmがベース角速度ωbより高速になったときに弱め界磁制御が実行される。
次に、第2の実施形態の動作及び効果について説明する。
モータの機械角速度ωmがベース角速度ωbより遅い場合、arccos演算部66cの出力である角度Φが“0”となるので、進角演算部66の出力である角度Φも“0”となって、弱め界磁制御は実行されない。
この状態から機械角速度ωmが早くなり、ベース角速度ωbより高速になると、arccos演算部66cの出力である角度Φが0でなくなる。このとき、車速Vが所定車速V1以下であるものとすると、スイッチ66eが図7の破線で示す状態となる。そして、バッテリ電圧Vbatが電圧Vbat1以上であるものとすると、角度補正部66dでゲインK=1として算出されるので、arccos演算部66cの出力値が減少補正されることなく、当該arccos演算部66cの出力値Φを最終的な角度Φとして弱め界磁制御が実行される。
一方、バッテリ電圧Vbatが電圧Vbat1より低い状態にあるものとすると、角度補正部66dでゲインKが1から0の間の値として算出される。そのため、最終的な角度Φは、前記arccos演算部66cの出力値より小さくなる。
また、バッテリ電圧Vbatが0Vであるものとすると、角度値補正部66dでゲインK=0として算出されるので、最終的な角度Φ=0となり、弱め界磁制御は実行されない。
このように、上記第2の実施形態では、車速が所定車速以下であるとき、バッテリ電圧が低いほど進角制御における進角を小さく演算することで、d軸電流指令値を小さく演算するので、バッテリ電圧が低い状態であるときにはモータ駆動回路への入力電流を制限することができ、消費電力を削減してバッテリ電圧の低下を緩和することができる。
なお、上記各実施形態においては、電圧感応ゲインKを図8に示すゲインマップを参照して算出することもできる。図8(a)は、バッテリ電圧Vbatが0VであってもゲインKが“0”ではなく、例えば、K=K1(例えば、0.3)を有するものである。このようなゲインマップを採用することにより、弱め界磁制御のためのd軸電流をある程度確保して、バッテリ電圧の低下を抑制することができると共に操舵フィーリングの良さも確保することができる。
また、図8(b)は、バッテリ電圧Vbatが所定電圧Vbat2(<Vbat1)に達するまでは、K=0として弱め界磁制御を実行させず、Vbat2≦Vbat<Vbat1であるときに、ゲインKが“0”から“1”の間の値をとるようになっている。
このように、ゲインマップの特性は、バッテリ電圧の低下防止と操舵フィーリング向上との兼ね合いによって決定することができる。
また、上記各実施形態においては、電動モータとしてブラシレスモータを適用する場合について説明したが、ブラシモータシステムを適用することもできる。この場合、例えば、モータの逆起電力からモータ角速度ωを推定すればよい。
本発明の実施形態における電動パワーステアリング装置の概略構成図である。 第1の実施形態におけるコントローラの構成を示すブロック図である。 図2の制御演算装置の具体的構成を示すブロック図である。 図3のd軸電流指令値演算部の具体的構成を示すブロック図である。 本発明の効果を説明するための図である。 第2の実施形態におけるコントローラの構成を示すブロック図である。 図6の進角演算部の構成を示すブロック図である。 ゲインマップの変形例を示す図である。
符号の説明
1…ステアリングホイール、2…ステアリングシャフト、3…トルクセンサ、10…操舵補助機構、11…減速ギヤ、12…電動モータ、15…コントローラ、16…車速センサ、17…バッテリ、18…イグニッションスイッチ、22…電流検出回路、23…制御演算装置、24…モータ駆動回路、25…FETゲート駆動回路、27…電圧センサ

Claims (4)

  1. ステアリング機構に入力される操舵トルクを検出する操舵トルク検出手段と、少なくとも前記操舵トルク検出手段で検出した操舵トルクに基づいて、d−q軸のベクトル制御を用いて電流指令値を演算する電流指令値演算手段と、前記ステアリング機構のステアリングシャフトに与える操舵補助トルクを発生する電動モータと、前記電流指令値に基づいて前記電動モータを駆動制御するモータ制御手段とを備えた電動パワーステアリング装置であって、
    車速を検出する車速検出手段と、車載バッテリの電圧値を検出する電圧検出手段とを有し、前記電流指令値演算手段は、前記車速検出手段で検出した車速が所定車速以下である停車中若しくは極低速走行中であるとき、前記電圧検出手段で検出したバッテリ電圧値が低いほど、当該バッテリ電圧値の低下を抑制するべく前記ベクトル制御におけるd軸電流指令値を小さく演算することを特徴とする電動パワーステアリング装置。
  2. 前記電流指令値演算手段は、通常のd軸電流指令値に対して、前記電圧検出手段で検出したバッテリ電圧が低いほど小さくなる電圧感応ゲインを乗じることで、当該バッテリ電圧が低いほど、前記d軸電流指令値を小さく演算することを特徴とする請求項1に記載の電動パワーステアリング装置。
  3. 前記電流指令値演算手段は、進角制御によって前記d軸電流指令値を演算するものであって、前記電圧検出手段で検出したバッテリ電圧が低いほど、前記進角制御における進角を小さく演算することを特徴とする請求項1に記載の電動パワーステアリング装置。
  4. 前記電流指令値演算手段は、前記車速検出手段で検出した車速が所定車速以下であり、且つ前記電圧検出手段で検出したバッテリ電圧が所定電圧以下であるとき、当該バッテリ電圧が低いほど、前記d軸電流指令値を小さく演算することを特徴とする請求項1〜3の何れか1項に記載の電動パワーステアリング装置。
JP2007140537A 2007-05-28 2007-05-28 電動パワーステアリング装置 Expired - Fee Related JP5018240B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007140537A JP5018240B2 (ja) 2007-05-28 2007-05-28 電動パワーステアリング装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007140537A JP5018240B2 (ja) 2007-05-28 2007-05-28 電動パワーステアリング装置

Publications (2)

Publication Number Publication Date
JP2008290664A JP2008290664A (ja) 2008-12-04
JP5018240B2 true JP5018240B2 (ja) 2012-09-05

Family

ID=40165835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007140537A Expired - Fee Related JP5018240B2 (ja) 2007-05-28 2007-05-28 電動パワーステアリング装置

Country Status (1)

Country Link
JP (1) JP5018240B2 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5252190B2 (ja) * 2008-07-23 2013-07-31 株式会社ジェイテクト モータ制御装置
JP2010155598A (ja) * 2008-12-05 2010-07-15 Nsk Ltd 電動パワーステアリング装置
JP5495029B2 (ja) * 2010-01-29 2014-05-21 アイシン・エィ・ダブリュ株式会社 電動機駆動装置の制御装置
JP5480115B2 (ja) * 2010-11-30 2014-04-23 日立オートモティブシステムズ株式会社 パワーステアリング装置
CN103444071B (zh) * 2011-04-28 2016-04-13 松下电器产业株式会社 电动机驱动方法、电动机驱动装置以及无刷电动机
US9321480B2 (en) 2011-06-01 2016-04-26 Toyota Jidosha Kabushiki Kaisha Vehicle steering control apparatus
JP5948843B2 (ja) * 2011-12-14 2016-07-06 株式会社ジェイテクト 車両用操舵装置
JP5835275B2 (ja) * 2013-06-19 2015-12-24 トヨタ自動車株式会社 車両の操舵装置
DE102014210885A1 (de) * 2014-06-06 2015-12-17 Conti Temic Microelectronic Gmbh Verfahren und Vorrichtung zur Steuerung eines Betriebs eines Elektromotors
JP2022044181A (ja) * 2020-09-07 2022-03-17 株式会社デンソー 回転電機制御装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3668866B2 (ja) * 1999-07-02 2005-07-06 トヨタ自動車株式会社 交流モータの電気制御装置
JP3433701B2 (ja) * 1999-07-08 2003-08-04 トヨタ自動車株式会社 車両の電動パワーステアリング装置
JP4405788B2 (ja) * 2003-11-18 2010-01-27 日本精工株式会社 電動パワーステアリング装置の制御装置
JP4628833B2 (ja) * 2005-03-18 2011-02-09 本田技研工業株式会社 電動パワーステアリング装置

Also Published As

Publication number Publication date
JP2008290664A (ja) 2008-12-04

Similar Documents

Publication Publication Date Title
JP5018240B2 (ja) 電動パワーステアリング装置
JP5168448B2 (ja) モータ制御装置及び電動パワーステアリング装置
JP4997472B2 (ja) 電動パワーステアリング装置
JP4969188B2 (ja) 電動パワーステアリング制御装置
JP5343599B2 (ja) モータ制御装置及び電動パワーステアリング装置
JP4710528B2 (ja) 電動パワーステアリング装置
US20080217099A1 (en) Electric Power Steering Apparatus, Control Method Thereof and Program for Electric Power Steering Apparatus
JP5157517B2 (ja) 電動パワーステアリング装置
JP6115368B2 (ja) ステアリング装置
JP4899611B2 (ja) 電動パワーステアリング装置
JP4797565B2 (ja) モータ駆動制御装置
JP2009173179A (ja) 操舵制御装置
JP4910486B2 (ja) 電動パワーステアリング装置
JP2009274692A (ja) 電動パワーステアリング装置
JP5570401B2 (ja) 電動パワーステアリング装置
JP5556219B2 (ja) 電動パワーステアリング装置
JP2008230580A (ja) 電動パワーステアリング装置
JP5233083B2 (ja) 電動パワーステアリング装置
JP2008307913A (ja) 電動パワーステアリング装置
JP2010167878A (ja) 電動パワーステアリング装置
JP5880874B2 (ja) 車両の操舵制御装置
JP6677362B1 (ja) モータ制御装置、電動アクチュエータ製品及び電動パワーステアリング装置
JP5125216B2 (ja) 電動パワーステアリング装置
JP2008155683A (ja) 電気式動力舵取装置
JP7342592B2 (ja) モータ制御装置、モータ制御方法および電動パワーステアリング装置

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090130

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100428

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20101022

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111202

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120528

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees