JP4992342B2 - Method for manufacturing printed wiring board - Google Patents

Method for manufacturing printed wiring board Download PDF

Info

Publication number
JP4992342B2
JP4992342B2 JP2006226775A JP2006226775A JP4992342B2 JP 4992342 B2 JP4992342 B2 JP 4992342B2 JP 2006226775 A JP2006226775 A JP 2006226775A JP 2006226775 A JP2006226775 A JP 2006226775A JP 4992342 B2 JP4992342 B2 JP 4992342B2
Authority
JP
Japan
Prior art keywords
prepreg
hole
layer
printed wiring
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006226775A
Other languages
Japanese (ja)
Other versions
JP2008053362A (en
Inventor
壮平 鮫島
貞夫 佐藤
弘行 大須賀
茂 内海
輝彦 熊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006226775A priority Critical patent/JP4992342B2/en
Priority to US11/832,376 priority patent/US8148647B2/en
Publication of JP2008053362A publication Critical patent/JP2008053362A/en
Application granted granted Critical
Publication of JP4992342B2 publication Critical patent/JP4992342B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、プリント配線板及びその製造方法に関し、特に放熱性に優れたプリント配線板及びその製造方法に関するものである。   The present invention relates to a printed wiring board and a manufacturing method thereof, and particularly to a printed wiring board excellent in heat dissipation and a manufacturing method thereof.

近年、プリント配線板は、電子部品の高密度化に伴い、放熱性の良い基板が要求されている。放熱性に優れたプリント配線板として、金属コア基板が知られており、既に実用化されている。金属コア基板は、コア材として熱伝導率の高いアルミや銅などの金属を用いることで、発熱部品からの熱を基板全体に分散し、発熱部品の温度上昇を抑えることが可能である。中でも、熱伝導率が236W/m・Kで、比重が2.7g/cmと比較的軽いアルミがコア材として一般的に用いられている(例えば、特許文献1参照)。 In recent years, printed circuit boards are required to have a substrate with good heat dissipation as the density of electronic components increases. A metal core substrate is known as a printed wiring board excellent in heat dissipation and has already been put into practical use. By using a metal such as aluminum or copper having high thermal conductivity as the core material, the metal core substrate can disperse heat from the heat-generating component over the entire substrate and suppress the temperature rise of the heat-generating component. Among them, aluminum having a thermal conductivity of 236 W / m · K and a specific gravity of 2.7 g / cm 3 is comparatively light and is generally used as a core material (see, for example, Patent Document 1).

また、アルミよりも低熱膨張、高強度、軽量なコア材として、炭素繊維強化プラスチック(Carbon Fiber Reinforced Plastics:以下CFRPと略す)も検討されている(例えば、特許文献2参照)。   In addition, carbon fiber reinforced plastic (hereinafter abbreviated as CFRP) has been studied as a core material having a lower thermal expansion, higher strength, and lighter weight than aluminum (see, for example, Patent Document 2).

一般的に、炭素繊維は、熱伝導率が140〜800W/m・Kのものが市販されている。熱伝導率が620W/m・Kの炭素繊維(一方向材)からなるプリプレグを0°/90°/90°/0°に積層したCFRP板は、熱膨張率(面内)が約0ppm/℃、熱伝導率が217W/m・K、弾性率が290GPa、比重が1.6g/cmと、アルミと同程度の放熱性を有しながら、アルミよりも低熱膨張、高強度、軽量なコア材が得られる。従って、このCFRPを用いてコア基板を作製すれば、大型のセラミック部品を実装した場合であってもはんだ接続部にクラックを発生せず、アルミよりも高性能な、特に実装信頼性に優れた基板を得ることができる。 In general, carbon fibers having a thermal conductivity of 140 to 800 W / m · K are commercially available. A CFRP plate in which prepregs made of carbon fiber (unidirectional material) having a thermal conductivity of 620 W / m · K are laminated at 0 ° / 90 ° / 90 ° / 0 ° has a coefficient of thermal expansion (in-plane) of about 0 ppm / ° C., the thermal conductivity of 217W / m · K, the elastic modulus 290 GPa, and a specific gravity of 1.6 g / cm 3, while having a heat radiation of the same level as aluminum, low thermal expansion than aluminum, high strength, lightweight A core material is obtained. Therefore, if a core substrate is manufactured using this CFRP, even if a large ceramic component is mounted, cracks will not occur in the solder connection part, and it has higher performance than aluminum, and particularly excellent mounting reliability. A substrate can be obtained.

特開平8−97556号公報(0006段、図8)Japanese Patent Laid-Open No. 8-97556 (0006 stage, FIG. 8) 特開平11−40902号公報(0008〜0015段、図9)Japanese Patent Laid-Open No. 11-40902 (stages 0008 to 0015, FIG. 9)

しかしながら、上述のコア材は、いずれも導電性であるため、コア上下の配線を接続する貫通スルーホールとコア層とは、貫通穴の穴埋め樹脂で絶縁する必要がある。貫通穴の穴埋めに従来のプリプレグを用いると、樹脂の熱伝導率は、約0.2W/m・Kと低いため、この穴埋め樹脂部で放熱性が律速し、発熱部品からの熱がコアまで充分に伝熱されないという問題があった。 However, since the above core materials are all conductive, it is necessary to insulate the through through hole and the core layer connecting the upper and lower wirings with a resin filling the through hole. If a conventional prepreg is used to fill the through hole, the thermal conductivity of the resin is as low as about 0.2 W / m · K. Therefore, the heat dissipation is controlled by this hole filling resin part, and the heat from the heat generating component reaches the core. There was a problem that heat was not sufficiently transferred.

本発明は、上記のような問題を解決するためになされたものであり、プリント配線板において、放熱性に優れたプリント配線板及びその製造方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a printed wiring board excellent in heat dissipation and a method for manufacturing the printed wiring board.

本発明に係るプリント配線板の製造方法は、貫通穴が設けられた炭素繊維強化プラスチック(CFRP)材からなるコア層の両表面に、無機フィラーを含有するプリプレグを加熱圧着することにより、貫通穴内を埋め、コア層を覆うプリプレグ層を形成する工程を有するものであって、前記プリプレグ層を形成する工程が、前記貫通穴が設けられた前記コア層の両表面に、無機フィラーを含有する第一のプリプレグを加熱圧着することにより、前記貫通穴内を埋め、前記コア層を覆う第一のプリプレグ層を形成する工程と、この第一のプリプレグ層の両表面に、ガラスクロスを挟んで無機フィラーを含有する第二のプリプレグを加熱圧着することにより、前記第一のプリプレグ層と前記ガラスクロスを挟持する第二のプリプレグ層を形成する工程とを含む。
In the method for producing a printed wiring board according to the present invention, a prepreg containing an inorganic filler is thermocompression bonded to both surfaces of a core layer made of a carbon fiber reinforced plastic (CFRP) material provided with a through hole. Padding, I Monodea comprising the step of forming the prepreg layer covering the core layer, the step of forming the prepreg layer is on both surfaces of the core layer wherein a through hole is provided, containing an inorganic filler A step of forming a first prepreg layer that fills the inside of the through hole and covers the core layer by thermocompression bonding the first prepreg, and an inorganic material sandwiching a glass cloth on both surfaces of the first prepreg layer A second prepreg layer sandwiching the first prepreg layer and the glass cloth is formed by heat-pressing a second prepreg containing a filler. And a degree.

本発明によれば、貫通穴の穴埋め樹脂部に無機フィラーを含有したプリプレグ層を用いることにより、発熱部品からの熱がスルーホールの内壁面を通して穴埋め樹脂部によりコア層まで充分に伝熱できるため、放熱性の向上を図ることができる。   According to the present invention, by using the prepreg layer containing the inorganic filler in the resin filling portion of the through hole, heat from the heat generating component can be sufficiently transferred to the core layer by the hole filling resin portion through the inner wall surface of the through hole. The heat dissipation can be improved.

以下、本発明の実施の形態について、詳細に説明する。図1は、本実施の形態におけるプリント配線板100の構成を示す断面図である。図1に示すように、プリント配線板100は、コア層としての金属板1の表裏両面に、第一のプリプレグ層としてのプリプレグ2a、2b、第一のガラスクロスとしてのガラスクロス3a、3b、第二のプリプレグ層としてのプリプレグ4a、4bを順次積層して、それぞれ絶縁層50a、50bが形成されている。   Hereinafter, embodiments of the present invention will be described in detail. FIG. 1 is a cross-sectional view showing a configuration of a printed wiring board 100 in the present embodiment. As shown in FIG. 1, the printed wiring board 100 includes prepregs 2a and 2b as first prepreg layers, glass cloths 3a and 3b as first glass cloths, on both front and back surfaces of a metal plate 1 as a core layer. Insulating layers 50a and 50b are formed by sequentially stacking prepregs 4a and 4b as second prepreg layers.

絶縁層50a、50bの表面には、第三のプリプレグ層としてのプリプレグ5a、5b、第四のプリプレグ層としてのプリプレグ6a、6bが順次積層され、それぞれ回路層51a、51bが形成されている。回路層51a、51bには、それぞれ所定のパターンで表面に配線層7a、7b、中面に配線層7c、7dが形成されている。   On the surfaces of the insulating layers 50a and 50b, prepregs 5a and 5b serving as third prepreg layers and prepregs 6a and 6b serving as fourth prepreg layers are sequentially laminated to form circuit layers 51a and 51b, respectively. In the circuit layers 51a and 51b, wiring layers 7a and 7b are formed on the surface in a predetermined pattern, and wiring layers 7c and 7d are formed on the inner surface.

金属板1には、貫通穴1aが設けられており、この貫通穴1aの中心を通るようにプリント配線板100を貫通するスルーホール8が設けられている。スルーホール8は、配線層7eにより、回路層51a、51bに形成されている各配線層7a、7b、7c、及び7dを接続し、導通する。スルーホール8の径は、貫通穴1aより小さく、金属板1との間はプリプレグ2a、2bで埋められた穴埋め部2cで電気的に絶縁されている。   The metal plate 1 is provided with a through hole 1a, and a through hole 8 penetrating the printed wiring board 100 is provided so as to pass through the center of the through hole 1a. The through hole 8 connects the respective wiring layers 7a, 7b, 7c, and 7d formed in the circuit layers 51a and 51b through the wiring layer 7e, and is electrically connected. The diameter of the through hole 8 is smaller than that of the through hole 1a, and the metal plate 1 is electrically insulated by a hole filling portion 2c filled with prepregs 2a and 2b.

プリプレグ2a、2b、穴埋め部2c、及びプリプレグ4a、4bは、無機フィラーを含有する熱硬化性樹脂からなる。熱硬化性樹脂としては、エポキシ、ビスマレイミド、シアネートエステル、ポリイミド等が挙げられる。無機フィラーとしては、アルミナ、シリカ、マグネシア、窒化アルミニウム、窒化ホウ素、窒化ケイ素等が挙げられ、少なくとも一つが用いられる。プリプレグ5a、5b、及びプリプレグ6a、6bは、第二のガラスクロスとしてのガラスクロスに熱硬化性樹脂を含浸したプリプレグを用いる。   The prepregs 2a and 2b, the hole filling portion 2c, and the prepregs 4a and 4b are made of a thermosetting resin containing an inorganic filler. Examples of the thermosetting resin include epoxy, bismaleimide, cyanate ester, and polyimide. Examples of the inorganic filler include alumina, silica, magnesia, aluminum nitride, boron nitride, and silicon nitride, and at least one is used. As the prepregs 5a and 5b and the prepregs 6a and 6b, prepregs in which a glass cloth as a second glass cloth is impregnated with a thermosetting resin are used.

プリプレグ2a、2b、及びプリプレグ4a、4bの熱硬化性樹脂に無機フィラーを充填すると、スルーホール8に接続される発熱部品(図示せず)から金属板1への放熱性が向上する。熱硬化性樹脂中の無機フィラーの充填率は、75vol%以下であることが好ましい。充填率が、75vol%を超えると貫通穴1aの穴埋め性が低下する。   When the thermosetting resin of the prepregs 2a and 2b and the prepregs 4a and 4b is filled with an inorganic filler, the heat dissipation from the heat generating component (not shown) connected to the through hole 8 to the metal plate 1 is improved. The filling rate of the inorganic filler in the thermosetting resin is preferably 75 vol% or less. When the filling rate exceeds 75 vol%, the filling property of the through hole 1a is deteriorated.

次に、製造方法について説明する。図2(a)乃至(e)、及び図3(a)乃至(d)は、本実施の形態におけるプリント配線板100の製造工程を示す断面図である。
図2(a)乃至(e)は、絶縁層50a、50bの製造工程を示し、図3(a)乃至(d)は、回路層51a、51bの製造工程を示す。
Next, a manufacturing method will be described. FIGS. 2A to 2E and FIGS. 3A to 3D are cross-sectional views showing the manufacturing process of the printed wiring board 100 in the present embodiment.
2A to 2E show a manufacturing process of the insulating layers 50a and 50b, and FIGS. 3A to 3D show a manufacturing process of the circuit layers 51a and 51b.

まず、絶縁層50a、50bの製造工程では、図2(a)に示すように、金属板1を準備し、貫通穴1aを形成する。次に、図2(b)に示すように、プリプレグ2a、2bの片面にそれぞれ離型フィルム9a、9bが貼付された樹脂シート52a、52bを準備し、貫通穴1aが設けられた金属板1の表裏両面に、プリプレグ2a、2bの露出面が重なるように配置する。プリプレグ2a、2bは、半硬化状態(Bステージ)のものが使用される。離型フィルムには、例えば、PET(ポリエチレンテレフタレート)フィルムが用いられる。 First, in the manufacturing process of the insulating layers 50a and 50b, as shown in FIG. 2A, the metal plate 1 is prepared and the through hole 1a is formed. Next, as shown in FIG. 2 (b), resin sheets 52a and 52b each having a release film 9a and 9b attached to one side of the prepregs 2a and 2b are prepared, and the metal plate 1 provided with the through holes 1a. It arrange | positions so that the exposed surface of prepreg 2a, 2b may overlap with both front and back. The prepregs 2a and 2b are used in a semi-cured state (B stage). For the release film, for example, a PET (polyethylene terephthalate) film is used.

続いて、このように配置した樹脂シート52a、52bを、真空状態で加熱加圧する。図2(c)に示すように、プリプレグ2a、2bは溶融し、貫通穴1aをボイドや凹みなく埋めて、金属板1をラミネートする。ラミネート後、離型フィルム9a、9bを剥がす。   Subsequently, the resin sheets 52a and 52b arranged in this way are heated and pressurized in a vacuum state. As shown in FIG. 2C, the prepregs 2a and 2b are melted, and the metal plate 1 is laminated by filling the through holes 1a without voids or dents. After lamination, the release films 9a and 9b are peeled off.

次に、図2(d)に示すように、プリプレグ4a、4bの片面に離型フィルム10a、10bが貼付された樹脂シート53a、53bを準備し、プリプレグ2a、2bでラミネートされた金属板1の表裏両面に、それぞれガラスクロス3a、3bを挟んで、ガラスクロス3a、3bに、それぞれプリプレグ4a、4bの露出面が重なるように配置する。プリプレグ4a、4bは、半硬化状態(Bステージ)のものが使用される。   Next, as shown in FIG. 2 (d), resin sheets 53a and 53b having release films 10a and 10b attached to one side of the prepregs 4a and 4b are prepared, and the metal plate 1 laminated with the prepregs 2a and 2b. The glass cloths 3a and 3b are respectively sandwiched between the front and back surfaces of the glass cloth 3a and 3b so that the exposed surfaces of the prepregs 4a and 4b overlap the glass cloths 3a and 3b. The prepregs 4a and 4b are used in a semi-cured state (B stage).

続いて、このように配置した樹脂シート53a、53bを、真空状態で加熱加圧する。図2(e)に示すように、プリプレグ4a、4b、及びプリプレグ2a、2bは溶融し、プリプレグ2aとプリプレグ4a、及びプリプレグ2bと4bを、それぞれガラスクロス3a、3bを挟んでラミネートする。さらに加熱加圧を続け、プリプレグ2a、2b、4a、及び4bを完全硬化することにより、金属板1に絶縁層50a、50bが形成される。   Subsequently, the resin sheets 53a and 53b arranged in this way are heated and pressurized in a vacuum state. As shown in FIG. 2E, the prepregs 4a and 4b and the prepregs 2a and 2b are melted, and the prepreg 2a and the prepreg 4a, and the prepregs 2b and 4b are laminated with the glass cloths 3a and 3b interposed therebetween, respectively. Further, heating and pressurization is continued to completely cure the prepregs 2a, 2b, 4a, and 4b, whereby the insulating layers 50a and 50b are formed on the metal plate 1.

次いで、回路層51a、51bの製造工程では、まず、図3(a)に示すように、絶縁層50a、50bを形成した金属板1から、離型フィルム10a、10bを剥がす。次に、図3(b)に示すように、配線層7aと7c、及び配線層7bと7dを形成したプリプレグ6a、6bを準備し、絶縁層50a、50bの両表面に、プリプレグ5a、5bを挟んで、プリプレグ5a、5bに、それぞれプリプレグ6a、6bの配線層7c、7dを形成した面が重なるように配置する。   Next, in the manufacturing process of the circuit layers 51a and 51b, first, as shown in FIG. 3A, the release films 10a and 10b are peeled off from the metal plate 1 on which the insulating layers 50a and 50b are formed. Next, as shown in FIG. 3B, prepregs 6a and 6b on which wiring layers 7a and 7c and wiring layers 7b and 7d are formed are prepared, and prepregs 5a and 5b are formed on both surfaces of the insulating layers 50a and 50b. The prepregs 5a and 5b are arranged so that the surfaces of the prepregs 6a and 6b on which the wiring layers 7c and 7d are formed overlap each other.

プリプレグ5a、5bは、それぞれ半硬化状態(Bステージ)のものを使用する。プリプレグ6a、6bは、両面に銅箔を積層して完全硬化後、片面のみ配線層7c、7dを所定のパターンで形成したものを用いる。ここでは、プリプレグ5a、5b、6a、及び6bは、ガラスクロスに熱硬化性樹脂を含浸した通常のプリプレグを用いた。 The prepregs 5a and 5b are each in a semi-cured state (B stage). The prepregs 6a and 6b are formed by laminating copper foils on both sides and completely curing, and then forming wiring layers 7c and 7d in a predetermined pattern only on one side. Here, as the prepregs 5a, 5b, 6a, and 6b, ordinary prepregs in which a glass cloth was impregnated with a thermosetting resin were used.

続いて、このように配置したプリプレグ6a、6bを、真空状態で加熱加圧する。図3(c)に示すように、プリプレグ5a、5bは溶融し、絶縁層50a、50bの両表面上にプリプレグ6a、6bを、それぞれの配線層7c、7dとの段差を埋めて接着する。
さらに加熱加圧を続け、プリプレグ5a、5b、6a、及び6bを完全硬化することにより、絶縁層50a、50bの両表面上に回路層51a、51bが形成される。
Subsequently, the prepregs 6a and 6b arranged in this way are heated and pressurized in a vacuum state. As shown in FIG. 3C, the prepregs 5a and 5b are melted, and the prepregs 6a and 6b are bonded to both surfaces of the insulating layers 50a and 50b while filling the steps with the respective wiring layers 7c and 7d.
Further, heating and pressurization are continued to completely cure the prepregs 5a, 5b, 6a, and 6b, whereby circuit layers 51a and 51b are formed on both surfaces of the insulating layers 50a and 50b.

次に、図3(d)に示すように、プリプレグ2a、2bで埋められた貫通穴1aと同軸上に、貫通穴1aより径の小さいスルーホール8用の貫通穴8aを設ける。この貫通穴8aの内壁面に銅めっきを施してスルーホール8を形成後、配線層7a、7bに所定のパターニングを施し、さらに後工程として、外形加工、ソルダーレジスト塗工、ガスレベラー処理によるはんだコートを行うことで図1に示すようなプリント配線板が得られる。   Next, as shown in FIG. 3D, a through hole 8a for the through hole 8 having a smaller diameter than the through hole 1a is provided coaxially with the through hole 1a filled with the prepregs 2a and 2b. After the through-hole 8 is formed by performing copper plating on the inner wall surface of the through-hole 8a, the wiring layers 7a and 7b are subjected to predetermined patterning, and soldering by external processing, solder resist coating, and gas leveler processing as subsequent processes. By performing the coating, a printed wiring board as shown in FIG. 1 is obtained.

以上のように、本実施の形態では、コア層としての金属板1をラミネートする絶縁層50a、50bに、無機フィラーを含有したプリプレグ2a、2b、4a、4bを用いたので、発熱部品からの熱がスルーホールの内壁面を通して穴埋め樹脂部によりコア層まで充分に伝熱できるため、放熱性の向上を図ることができる。   As described above, in the present embodiment, since the prepregs 2a, 2b, 4a, and 4b containing the inorganic filler are used for the insulating layers 50a and 50b for laminating the metal plate 1 as the core layer, Since heat can be sufficiently transferred to the core layer by the hole filling resin portion through the inner wall surface of the through hole, the heat dissipation can be improved.

また、プリプレグ2a、2b、及び4a、4bを、多段で積層するようにしたので、コア層の貫通穴を穴埋め樹脂部でボイドなく埋めることができ、スルーホールの信頼性の向上を図ることができる。   Further, since the prepregs 2a, 2b, and 4a, 4b are laminated in multiple stages, the through hole of the core layer can be filled with a void filling resin portion without voids, thereby improving the reliability of the through hole. it can.

なお、本実施の形態では、絶縁層50a、50bに無機フィラーを含有したプリプレグ2a、2b、4a、4bを用いた場合を説明したが、更にエラストマーを含有したプリプレグを使用してもよい。この場合、弾性率の低下により貫通穴周囲の穴埋め樹脂に発生するクラックを抑制でき、実装信頼性の向上を図ることができる。   In the present embodiment, the case where the prepregs 2a, 2b, 4a, and 4b containing the inorganic filler are used for the insulating layers 50a and 50b has been described. However, a prepreg that further contains an elastomer may be used. In this case, cracks generated in the hole-filling resin around the through hole due to the decrease in the elastic modulus can be suppressed, and the mounting reliability can be improved.

エラストマーとしては、相溶性の観点から、CTBN(Carboxy−terminated butadiene−acrylonitrile)、ATBN(Amine−terminated butadiene−acrylonitrile)等が挙げられる。   Examples of the elastomer include CTBN (Carboxy-terminated butadiene-acrylonitrile), ATBN (Amine-terminated buta-ylene) and the like from the viewpoint of compatibility.

また、プリプレグにエラストマーを含有させることにより、樹脂部の流動性を低減できることから、無機フィラーの充填量を増大でき、更に放熱性の向上を図ることができる。無機フィラーの含有率は、プリプレグ層中80vol%以下が好ましく、エラストマーの含有率は、プリプレグ層の樹脂部中50vol%以下であることが好ましい。   Moreover, since the fluidity | liquidity of a resin part can be reduced by making an prepreg contain an elastomer, the filling amount of an inorganic filler can be increased and the improvement of heat dissipation can be aimed at. The inorganic filler content is preferably 80 vol% or less in the prepreg layer, and the elastomer content is preferably 50 vol% or less in the resin portion of the prepreg layer.

無機フィラーの充填率が80vol%を超えると貫通穴1aの穴埋め性が低下する。エラストマーの含有率が、50vol%を超えるとプリプレグの接着性が低下する。   When the filling rate of the inorganic filler exceeds 80 vol%, the filling property of the through hole 1a is lowered. When the elastomer content exceeds 50 vol%, the adhesiveness of the prepreg is lowered.

また、本実施の形態では、コア層として金属板1を用いた場合を説明したが、CFRP板を用いてもよい。この場合、軽量化・高強度化を図ることができるだけでなく、プリプレグに無機フィラーを含有させることにより、放熱性を更に向上させることができる。また、プリプレグにエラストマーを含有させることにより、貫通穴周囲の穴埋め樹脂でのクラックの発生を抑制でき、スルーホールの信頼性の向上を図ることができる。   Moreover, although the case where the metal plate 1 was used as a core layer was demonstrated in this Embodiment, you may use a CFRP board. In this case, not only can the weight and strength be increased, but the heat dissipation can be further improved by adding an inorganic filler to the prepreg. In addition, by including an elastomer in the prepreg, the occurrence of cracks in the hole-filling resin around the through hole can be suppressed, and the reliability of the through hole can be improved.

コア層にCFRP板を用いた場合、無機フィラーの含有率は、プリプレグ層中60〜80vol%が好ましく、エラストマーの含有率は、プリプレグ層の樹脂部中10〜50vol%であることが好ましい。   When a CFRP plate is used for the core layer, the content of the inorganic filler is preferably 60 to 80 vol% in the prepreg layer, and the content of the elastomer is preferably 10 to 50 vol% in the resin portion of the prepreg layer.

無機フィラーの充填率は、80vol%を超えると貫通穴1aの穴埋め性が低下する。エラストマーの含有率は、50vol%を超えるとプリプレグの接着性が低下する。無機フィラーの充填率が60vol%未満、もしくはエラストマーの含有率が10vol%未満では、コア層の貫通穴周囲にクラックが発生しスルーホールの信頼性が低下する。   When the filling rate of the inorganic filler exceeds 80 vol%, the filling property of the through hole 1a is lowered. If the elastomer content exceeds 50 vol%, the adhesiveness of the prepreg is lowered. When the filling rate of the inorganic filler is less than 60 vol% or the content of the elastomer is less than 10 vol%, cracks are generated around the through hole of the core layer, and the reliability of the through hole is lowered.

また、本実施の形態では、4層の回路層51a、51bを積層した場合について説明したが、これに限るものではない。例えば、図2(d)に示す、樹脂シート53a、53bを真空状態で加熱加圧する工程において、ラミネート後、加熱加圧を中断し、半硬化状態(Bステージ)のプリプレグ4a、4bに、配線層を設けた回路層を直接、接着することもできる。図4は、配線層7a、7bを設けたプリプレグ11a、11bを直接、接着して2層の回路層54a、54bを積層したプリント配線板101を示す。   In the present embodiment, the case where the four circuit layers 51a and 51b are stacked has been described. However, the present invention is not limited to this. For example, in the step of heating and pressurizing the resin sheets 53a and 53b in a vacuum state as shown in FIG. 2D, the heating and pressurization is interrupted after laminating, and the semi-cured (B stage) prepregs 4a and 4b are wired. It is also possible to directly bond the circuit layer provided with the layer. FIG. 4 shows a printed wiring board 101 in which two circuit layers 54a and 54b are laminated by directly bonding prepregs 11a and 11b provided with wiring layers 7a and 7b.

さらに、例えば、予め準備した4層の回路層を、プリプレグ4a、4bにそれぞれ接着すれば、図5に示すように、8層の回路層55a、55bを積層したプリント配線板102も得られる。   Further, for example, if four previously prepared circuit layers are bonded to the prepregs 4a and 4b, respectively, as shown in FIG. 5, a printed wiring board 102 in which eight circuit layers 55a and 55b are laminated can also be obtained.

次に、本発明の実施例及び比較例により更に詳細に説明する。なお、実施例及び比較例において用いられた評価及び物性の測定は以下に示す方法で行った。   Next, examples and comparative examples of the present invention will be described in more detail. In addition, the evaluation used in the Example and the comparative example and the measurement of the physical property were performed by the method shown below.

(1)熱伝導率
ASTM−E1461に準拠し、熱伝導測定装置(LFA447、NETZSCH製)を用いて測定した(単位:W/m・K)。
(1) Thermal conductivity Based on ASTM-E1461, it measured using the heat conductivity measuring apparatus (LFA447, product made from NETZSCH) (unit: W / m * K).

(2)溶融粘度
プリプレグを直径12.6mmの円形に切り出したものを試験片とし、粘弾性測定装置(Dynamic AnalyzerRDA2、Pheometrics製)を用いて、真空プレス時の加熱加圧条件と同様の条件で測定した(単位:Pa・s)。
(2) Melt Viscosity A prepreg cut into a circular shape with a diameter of 12.6 mm is used as a test piece, and a viscoelasticity measuring device (Dynamic Analyzer RDA2, manufactured by Pheometrics) is used under the same conditions as the heating and pressing conditions during vacuum pressing. Measured (unit: Pa · s).

(3)穴埋め性、スルーホール信頼性、接着性
作製したプリント配線板のヒートサイクル試験を実施した後、断面を顕微鏡で観察して目視評価した。ヒートサイクル試験は、−65℃で15分間放置後、125℃で15分間放置し、これを1サイクルとして500サイクル繰り返した。判定基準は、下記のとおり。
・穴埋め性−○:ボイドなし、×:ボイドあり
・スルーホール信頼性−○:クラックなし、×:クラックあり
・接着性−○:剥離なし、×:剥離あり
(3) Hole filling, through-hole reliability, adhesiveness After carrying out a heat cycle test of the produced printed wiring board, the cross section was observed with a microscope and visually evaluated. The heat cycle test was allowed to stand at −65 ° C. for 15 minutes, then left at 125 ° C. for 15 minutes, and this was repeated for 500 cycles. Judgment criteria are as follows.
・ Hole filling ability-○: No void ×: With void ・ Through hole reliability-○: No crack ×: With crack ・ Adhesiveness-○: No peeling ×: With peeling

(4)粒径
JIS R1620に準拠し、レーザー回折法により粒度分布測定装置(LA920、堀場製作所製)を用いて測定した(単位:μm)。
(4) Particle size Based on JIS R1620, the particle size was measured by a laser diffraction method using a particle size distribution measuring device (LA920, manufactured by Horiba, Ltd.) (unit: μm).

実施例1〜9、比較例1〜3
コア層の金属板1として、アルミニウム板(厚み:0.5mm、縦:405mm、横:340mm)を準備し、ドリルにより直径1.5mmの貫通穴1aを設けた(図2(a)参照)。
Examples 1-9, Comparative Examples 1-3
An aluminum plate (thickness: 0.5 mm, length: 405 mm, width: 340 mm) was prepared as the metal plate 1 of the core layer, and a through hole 1a having a diameter of 1.5 mm was provided by a drill (see FIG. 2 (a)). .

次に、図6に示す充填率で無機フィラー含有するプリプレグ2a、2bと離型フィルム9a、9bからなる樹脂シート52a、52b、及びプリプレグ4a、4bと離型フィルム10a、10bからなる樹脂シート52a、52bを準備した。無機フィラーには粒径が0.1〜50μmのアルミナを用い、プリプレグ2a、2b、及びプリプレグ4a、4bは、それぞれ厚みが240μm、120μmの半硬化状態(Bステージ)のエポキシ樹脂を用いた。   Next, resin sheets 52a and 52b made of prepregs 2a and 2b and release films 9a and 9b containing inorganic filler at a filling rate shown in FIG. 6 and resin sheets 52a made of prepregs 4a and 4b and release films 10a and 10b. , 52b was prepared. As the inorganic filler, alumina having a particle size of 0.1 to 50 μm was used, and the prepregs 2a and 2b and the prepregs 4a and 4b were made of a semi-cured (B stage) epoxy resin having thicknesses of 240 μm and 120 μm, respectively.

次に、アルミニウム板を挟んで樹脂シート52a、52bを配置し(図2(b)参照)、プリプレグ2a、2bを真空ラミネートした(図2(c)参照)。この真空ラミネートでは、150℃で1分間真空引きした後、更に10kg/cmで2分間加熱加圧した。ここで、加熱加圧したプリプレグの最低溶融粘度は、30000Pa・s以下であることが好ましい。30000Pa・s以上を超えると貫通穴1aの穴埋め性が低下する。 Next, resin sheets 52a and 52b were disposed with an aluminum plate in between (see FIG. 2 (b)), and the prepregs 2a and 2b were vacuum-laminated (see FIG. 2 (c)). In this vacuum lamination, vacuuming was performed at 150 ° C. for 1 minute, and then heating and pressing were further performed at 10 kg / cm 2 for 2 minutes. Here, the minimum melt viscosity of the heated and pressurized prepreg is preferably 30000 Pa · s or less. When it exceeds 30000 Pa · s, the filling property of the through hole 1 a is lowered.

次に、離型フィルム9a、9bを剥がし、厚み55μmのガラスクロス3a、3bを挟んで、樹脂シート52a、52bを配置し(図2(d)参照)、プリプレグ4a、4bを真空ラミネートした(図2(e)参照)。この真空ラミネートでは、150℃で20秒間真空引きした後、更に10kg/cmで20秒間加熱加圧した。続いて、昇温速度3℃/minで昇温し、190℃、30kg/cmで1時間加熱加圧することにより、完全硬化した絶縁層50a、50bを得た。 Next, the release films 9a and 9b are peeled off, the resin sheets 52a and 52b are arranged with the glass cloths 3a and 3b having a thickness of 55 μm interposed therebetween (see FIG. 2D), and the prepregs 4a and 4b are vacuum-laminated ( (Refer FIG.2 (e)). In this vacuum lamination, vacuuming was performed at 150 ° C. for 20 seconds, followed by further heating and pressing at 10 kg / cm 2 for 20 seconds. Subsequently, the temperature was raised at a rate of temperature rise of 3 ° C./min, and heat-pressed at 190 ° C. and 30 kg / cm 2 for 1 hour to obtain completely cured insulating layers 50a and 50b.

次に、絶縁層50a、50bを形成したアルミニウム板に(図3(a)参照)、厚みが60μmの半硬化状態(Bステージ)のプリプレグ5a、5bを挟んで、厚みが70μm配線層7a、7c、及び配線層7b、7dを設けた厚みが200μmのプリプレグ6a、6bを配置し(図3(b)参照)、昇温速度3℃/minで昇温し、180℃、30kg/cmで1時間加熱加圧して積層することにより、完全硬化した回路層51a、51bを得た(図3(c)参照)。プリプレグ5a、5b、6a、及び6bは、ガラスクロスにエポキシ樹脂を含浸した通常のプリプレグを用いた。 Next, an aluminum plate on which the insulating layers 50a and 50b are formed (see FIG. 3A) is sandwiched between prepregs 5a and 5b in a semi-cured state (B stage) having a thickness of 60 μm, and a wiring layer 7a having a thickness of 70 μm. 7c and prepregs 6a and 6b having a thickness of 200 μm provided with wiring layers 7b and 7d are arranged (see FIG. 3B), the temperature is increased at a rate of temperature increase of 3 ° C./min, 180 ° C., 30 kg / cm 2. Then, by heating and pressing for 1 hour and laminating, completely cured circuit layers 51a and 51b were obtained (see FIG. 3C). As the prepregs 5a, 5b, 6a, and 6b, ordinary prepregs in which a glass cloth was impregnated with an epoxy resin were used.

次に、回路層51a、51bまで形成したアルミニウム板に、貫通穴1aと同軸上に直径0.9mmのスルーホール8用の貫通穴8aを設けた(図3(d)参照)。続いて、貫通穴8aの内壁面に銅めっきを施してスルーホール8を形成後、配線層7a、7bに所定のパターニングを施し、さらに後工程として、外形加工、ソルダーレジスト塗工、ガスレベラー処理によるはんだコートを行うことでプリント配線板を得た(図1参照)。   Next, on the aluminum plate formed up to the circuit layers 51a and 51b, a through hole 8a for the through hole 8 having a diameter of 0.9 mm was provided coaxially with the through hole 1a (see FIG. 3D). Subsequently, after copper plating is applied to the inner wall surface of the through hole 8a to form the through hole 8, the wiring layers 7a and 7b are subjected to predetermined patterning, and as subsequent processes, external processing, solder resist coating, gas leveler processing The printed wiring board was obtained by performing the solder coat by (refer FIG. 1).

実施例1〜9及び比較例1〜3に係るプリント配線板のBステージシート化、熱伝導率、穴埋め性、スルーホール信頼性、及び接着性についての評価結果を図6に示す。図6の結果から明らかなように、無機フィラーであるアルミナを含有していない比較例1では、熱伝導率が0.2W/m・Kと低い値を示すのに対して、アルミナを含有した実施例1〜9では、アルミナの充填率が増加するに従い熱伝導率が向上していることがわかる。   FIG. 6 shows the evaluation results of the printed wiring boards according to Examples 1 to 9 and Comparative Examples 1 to 3 as B-stage sheets, thermal conductivity, hole filling properties, through-hole reliability, and adhesiveness. As is clear from the results of FIG. 6, in Comparative Example 1 not containing alumina as an inorganic filler, the thermal conductivity was as low as 0.2 W / m · K, whereas alumina was contained. In Examples 1-9, it turns out that thermal conductivity is improving as the filling rate of alumina increases.

特に、プリプレグ層中のアルミナの充填率が65〜75vol%の範囲では、3W/m・K以上の熱伝導率が得られ、充分な放熱効果を得ることができる。80vol%では穴埋め性が低下し、85vol%ではBステージシート化も困難であることがわかる。   In particular, when the alumina filling rate in the prepreg layer is in the range of 65 to 75 vol%, a thermal conductivity of 3 W / m · K or more is obtained, and a sufficient heat dissipation effect can be obtained. It can be seen that 80% by volume lowers the hole filling property and 85% by volume makes it difficult to form a B stage sheet.

実施例10〜21、比較例4〜10
コア層にアルミニウム板を用い、アルミナとエラストマーを含有したプリプレグを用いて、実施例1〜9と同様の方法により、図7に示すアルミナの充填率とエラストマーの混合比で、プリント配線板を形成した。エラストマーにはCTBNを用いた。
Examples 10-21, Comparative Examples 4-10
Using an aluminum plate for the core layer and a prepreg containing alumina and an elastomer, a printed wiring board is formed by the same method as in Examples 1 to 9 with the alumina filling rate and the elastomer mixing ratio shown in FIG. did. CTBN was used as the elastomer.

実施例10〜21及び比較例4〜10に係るプリント配線板の評価結果を図7に示す。CTBNをプリプレグ層の樹脂部中5〜30vol%の範囲で含有することにより、プリプレグ層中のアルミナの充填率の範囲が80vol%以下まで広がり、更に熱伝導率が向上していることがわかる。CTBNを30vol%で混合した場合、アルミナの充填率が80vol%で熱伝導率8W/m・Kが得られた。   The evaluation result of the printed wiring board which concerns on Examples 10-21 and Comparative Examples 4-10 is shown in FIG. By containing CTBN in the range of 5 to 30 vol% in the resin part of the prepreg layer, it can be seen that the range of the alumina filling rate in the prepreg layer is expanded to 80 vol% or less, and the thermal conductivity is further improved. When CTBN was mixed at 30 vol%, an alumina filling rate of 80 vol% and a thermal conductivity of 8 W / m · K were obtained.

アルミナの充填率が80vol%でもCTBNが10vol%と少ない場合は、穴埋め性に劣る。CTBNを30vol%混合した場合であっても、アルミナの充填率が85vol%になるとBステージシート化も困難となる。アルミナの充填率が75vol%でもCTBNの含有率が50vol%を超えるとプリプレグの接着性が低下することがわかる。   When the filling rate of alumina is 80 vol%, if CTBN is as low as 10 vol%, the hole filling property is inferior. Even when 30 vol% of CTBN is mixed, it becomes difficult to form a B stage sheet when the alumina filling rate is 85 vol%. It can be seen that even when the alumina filling ratio is 75 vol%, the adhesiveness of the prepreg is lowered when the CTBN content exceeds 50 vol%.

実施例22〜24、比較例11、12
コア層として、アルミニウム板の替わりに、CFRP板(厚み:0.5mm、縦:405mm、横:340mm)を用い、アルミナを含有したプリプレグを用いて、実施例1〜9と同様の方法で、図8に示すアルミナの充填率でのプリント配線板を形成した。
Examples 22 to 24, Comparative Examples 11 and 12
As a core layer, instead of an aluminum plate, a CFRP plate (thickness: 0.5 mm, length: 405 mm, width: 340 mm) is used, and a prepreg containing alumina is used in the same manner as in Examples 1 to 9, A printed wiring board having the alumina filling rate shown in FIG. 8 was formed.

実施例22〜24及び比較例11、12に係るプリント配線板の評価結果を図8に示す。プリプレグ層中のアルミナの充填率が60〜70vol%の範囲で、実施例1〜9と同様、熱伝導率が向上しており、特に、アルミナの充填率が65〜70vol%の範囲で、3W/m・K以上の熱伝導率が得られ、充分な放熱効果を得ることができる。この範囲外では、50vol%でも、75vol%でもスルーホールの信頼性に劣ることがわかる。   The evaluation results of the printed wiring boards according to Examples 22 to 24 and Comparative Examples 11 and 12 are shown in FIG. In the range of 60 to 70 vol% of the alumina filling rate in the prepreg layer, the thermal conductivity is improved in the same manner as in Examples 1 to 9, and in particular, 3 W in the range of 65 to 70 vol% alumina filling rate. / M · K or higher thermal conductivity can be obtained, and a sufficient heat dissipation effect can be obtained. Outside this range, it can be seen that the reliability of the through hole is inferior even at 50 vol% or 75 vol%.

実施例25〜35、比較例13〜20
コア層にCFRP板を用い、アルミナとCTBNを含有したプリプレグを用いて、実施例1〜9と同様の方法により、図9に示すアルミナの充填率とCTBNの混合比で、プリント配線板を形成した。
Examples 25-35, Comparative Examples 13-20
Using a CFRP plate for the core layer and a prepreg containing alumina and CTBN, a printed wiring board is formed in the same manner as in Examples 1 to 9 with the alumina filling ratio and CTBN mixing ratio shown in FIG. did.

実施例25〜35及び比較例13〜20に係るプリント配線板の評価結果を図9に示す。CTBNをプリプレグ層の樹脂部中10〜30vol%の範囲で含有することにより、CFPR板をコア層に用いた場合であっても、プリプレグ層中のアルミナの充填率の範囲が65〜80vol%の範囲で、スルーホールの信頼性の高いプリント配線板を形成できることがわかる。CTBNを20〜30vol%で混合した場合に、アルミナの充填率が80vol%で熱伝導率8W/m・Kが得られた。   The evaluation result of the printed wiring board which concerns on Examples 25-35 and Comparative Examples 13-20 is shown in FIG. By containing CTBN in the range of 10 to 30 vol% in the resin part of the prepreg layer, even when the CFPR plate is used for the core layer, the alumina filling rate in the prepreg layer is in the range of 65 to 80 vol%. It can be seen that a printed wiring board with high through-hole reliability can be formed. When CTBN was mixed at 20 to 30 vol%, a thermal conductivity of 8 W / m · K was obtained with an alumina filling rate of 80 vol%.

CTBNが5vol%と少ない場合は、アルミナの充填率が75vol%でもスルーホールの信頼性が劣る。CTBNが10vol%であっても、アルミナの充填率が80vol%の場合は穴埋め性に劣り、85vol%ではBステージシート化も困難となる。アルミナの充填率が75vol%でもCTBNの含有率が50vol%を超えるとプリプレグの接着性が低下することがわかる。   When CTBN is as small as 5 vol%, the reliability of the through hole is inferior even if the alumina filling rate is 75 vol%. Even if CTBN is 10 vol%, when the filling rate of alumina is 80 vol%, the hole filling property is inferior, and at 85 vol%, it becomes difficult to form a B stage sheet. It can be seen that even when the alumina filling ratio is 75 vol%, the adhesiveness of the prepreg is lowered when the CTBN content exceeds 50 vol%.

本発明に係るプリント配線板の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the printed wiring board which concerns on this invention. 本発明に係るプリント配線板の製造方法の一実施形態を示す工程図である。It is process drawing which shows one Embodiment of the manufacturing method of the printed wiring board which concerns on this invention. 本発明に係るプリント配線板の製造方法の一実施形態を示す工程図である。It is process drawing which shows one Embodiment of the manufacturing method of the printed wiring board which concerns on this invention. 本発明に係るプリント配線板の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of the printed wiring board which concerns on this invention. 本発明に係るプリント配線板の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of the printed wiring board which concerns on this invention. 本発明に係るプリント配線板の実施例1〜9における成形品の特性を評価した結果を示す図である。It is a figure which shows the result of having evaluated the characteristic of the molded article in Examples 1-9 of the printed wiring board which concerns on this invention. 本発明に係るプリント配線板の実施例10〜21における成形品の特性を評価した結果を示す図である。It is a figure which shows the result of having evaluated the characteristic of the molded article in Examples 10-21 of the printed wiring board which concerns on this invention. 本発明に係るプリント配線板の実施例22〜24における成形品の特性を評価した結果を示す図である。It is a figure which shows the result of having evaluated the characteristic of the molded article in Examples 22-24 of the printed wiring board which concerns on this invention. 本発明に係るプリント配線板の実施例25〜35における成形品の特性を評価した結果を示す図である。It is a figure which shows the result of having evaluated the characteristic of the molded article in Examples 25-35 of the printed wiring board concerning this invention.

符号の説明Explanation of symbols

1 金属板
1a 貫通穴
2a、2b、2c、4a、4b、 プリプレグ
3a、3b ガラスクロス
5a、5b、6a、6b、11a、11b、12a、12b、13a、13b ガラスクロスを含むプリプレグ
7a、7b、7c、7d、7e、7f、7g、7h、7i 配線層
8 スルーホール
100、101、102 プリント配線板
DESCRIPTION OF SYMBOLS 1 Metal plate 1a Through-hole 2a, 2b, 2c, 4a, 4b, Prepreg 3a, 3b Glass cloth 5a, 5b, 6a, 6b, 11a, 11b, 12a, 12b, 13a, 13b Prepreg 7a, 7b containing glass cloth 7c, 7d, 7e, 7f, 7g, 7h, 7i Wiring layer 8 Through hole 100, 101, 102 Printed wiring board

Claims (3)

貫通穴が設けられた炭素繊維強化プラスチック(CFRP)材からなるコア層の両表面に、無機フィラーを含有するプリプレグを加熱圧着することにより、前記貫通穴内を埋め、前記コア層を覆うプリプレグ層を形成する工程を有するプリント配線板の製造方法であって、
前記プリプレグ層を形成する工程が、前記貫通穴が設けられた前記コア層の両表面に、無機フィラーを含有する第一のプリプレグを加熱圧着することにより、前記貫通穴内を埋め、前記コア層を覆う第一のプリプレグ層を形成する工程と、この第一のプリプレグ層の両表面に、ガラスクロスを挟んで無機フィラーを含有する第二のプリプレグを加熱圧着することにより、前記第一のプリプレグ層と前記ガラスクロスを挟持する第二のプリプレグ層を形成する工程を含むプリント配線板の製造方法。
A prepreg layer that covers the core layer by filling the inside of the through hole by heat-pressing a prepreg containing an inorganic filler on both surfaces of a core layer made of a carbon fiber reinforced plastic (CFRP) material provided with a through hole. A method of manufacturing a printed wiring board having a step of forming,
The step of forming the prepreg layer is on both surfaces of the core layer wherein a through hole is provided, by heating bonding the first prepreg containing an inorganic filler, filling the through hole, said core layer The step of forming a first prepreg layer to be covered and the first prepreg layer by thermocompression bonding a second prepreg containing an inorganic filler with a glass cloth sandwiched between both surfaces of the first prepreg layer. the second method for producing a free Mpu printed wiring board and forming a prepreg layers sandwiching the glass cloth with.
第二のプリプレグ層を形成後、更にこの第二のプリプレグ層の両表面に、第三のプリプレグ層を挟み、配線が設けられた第四のプリプレグ層を加熱圧着することにより、第三のプリプレグ層と第四のプリプレグ層を形成する工程と、第一のプリプレグ層で埋められた貫通穴と略同軸の位置で小径のスルーホールを形成する工程と、このスルーホールの内壁面に配線を設け、前記第四のプリプレグ層の両配線を接続する工程を有する請求項に記載のプリント配線板の製造方法。 After forming the second prepreg layer, the third prepreg layer is sandwiched between both surfaces of the second prepreg layer, and the fourth prepreg layer provided with wiring is thermocompression bonded. Forming a layer and a fourth prepreg layer, forming a through hole having a small diameter at a position substantially coaxial with the through hole filled with the first prepreg layer, and providing wiring on the inner wall surface of the through hole the fabrication method for a printed wiring board according to claim 1 comprising the step of connecting both wiring of the fourth layer of prepreg. プリプレグが、更にエラストマーを含有することを特徴とする請求項1または2に記載のプリント配線板の製造方法。 Prepreg further method for manufacturing a printed wiring board according to claim 1 or 2, characterized in that it contains an elastomer.
JP2006226775A 2006-08-23 2006-08-23 Method for manufacturing printed wiring board Expired - Fee Related JP4992342B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006226775A JP4992342B2 (en) 2006-08-23 2006-08-23 Method for manufacturing printed wiring board
US11/832,376 US8148647B2 (en) 2006-08-23 2007-08-01 Printed circuit board and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006226775A JP4992342B2 (en) 2006-08-23 2006-08-23 Method for manufacturing printed wiring board

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011282502A Division JP5389148B2 (en) 2011-12-23 2011-12-23 Printed wiring board and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008053362A JP2008053362A (en) 2008-03-06
JP4992342B2 true JP4992342B2 (en) 2012-08-08

Family

ID=39237143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006226775A Expired - Fee Related JP4992342B2 (en) 2006-08-23 2006-08-23 Method for manufacturing printed wiring board

Country Status (1)

Country Link
JP (1) JP4992342B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5085266B2 (en) 2007-10-12 2012-11-28 富士通株式会社 Wiring board and manufacturing method thereof
JP5207919B2 (en) * 2008-10-29 2013-06-12 京セラ株式会社 Wiring board and mounting structure
US8186053B2 (en) 2008-11-14 2012-05-29 Fujitsu Limited Circuit board and method of manufacturing the same
WO2010074121A1 (en) * 2008-12-25 2010-07-01 三菱電機株式会社 Method for manufacturing printed wiring board
JP5378590B2 (en) * 2010-02-26 2013-12-25 三菱電機株式会社 Printed wiring board manufacturing method and printed wiring board
JP2012138528A (en) * 2010-12-27 2012-07-19 Tanaka Kikinzoku Kogyo Kk High heat dissipation/high reliability metal core wiring board
BR112013022101A2 (en) * 2011-03-03 2016-12-06 Koninkl Philips Nv circuit board set
KR101824001B1 (en) 2015-12-29 2018-03-22 주식회사디케이이 Radiating durable printed circuit board and method for manufacturing the same
CN111343803A (en) * 2019-12-30 2020-06-26 广德新三联电子有限公司 Manufacturing process of new energy automobile power control multilayer board

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0823165A (en) * 1994-07-08 1996-01-23 Hitachi Chem Co Ltd Manufacture of metal cored wiring board using copper foil with insulating bonding agent
JPH09331123A (en) * 1996-06-13 1997-12-22 Furukawa Electric Co Ltd:The Metallic base multilayer wiring board
JPH1140902A (en) * 1997-07-18 1999-02-12 Cmk Corp Printed wiring board and manufacture thereof
JP2001196747A (en) * 2000-01-11 2001-07-19 Toshiba Chem Corp Built-up multilayered substrate and method for manufacturing built-up multilayered substrate
JP2003101183A (en) * 2001-09-20 2003-04-04 Matsushita Electric Ind Co Ltd Circuit board, power converting module and production method therefor

Also Published As

Publication number Publication date
JP2008053362A (en) 2008-03-06

Similar Documents

Publication Publication Date Title
JP4992342B2 (en) Method for manufacturing printed wiring board
US9313903B2 (en) Method of manufacturing printed wiring board
JP4902606B2 (en) Semiconductor package manufacturing method and semiconductor plastic package using the same
JP2011091423A (en) Multilayered printed circuit board and fabricating method thereof
JP2009246333A (en) Insulating sheet and manufacturing method therefor, and printed circuit board using the sheet, and manufacturing method for the printed circuit board
US8134085B2 (en) Printed interconnection board having a core including carbon fiber reinforced plastic
JP5076196B2 (en) Printed wiring board and manufacturing method thereof
JP2004274035A (en) Module having built-in electronic parts and method of manufacturing same
KR102026214B1 (en) Printed circuit board and manufacturing method thereof
JP4816343B2 (en) High heat dissipation substrate and manufacturing method thereof
JP5081267B2 (en) Circuit component built-in module and method for manufacturing circuit component built-in module
JP5389148B2 (en) Printed wiring board and manufacturing method thereof
JP3969477B2 (en) Multilayer wiring board and manufacturing method thereof
JP3440174B2 (en) Multilayer printed wiring board and method of manufacturing the same
WO2011105440A1 (en) Method of manufacturing printed circuit board and printed circuit board
JP5623364B2 (en) Wiring board, mounting structure, and electronic device
JP4591181B2 (en) Printed wiring board
TWI770047B (en) Printed wiring boards, printed circuit boards, prepregs
JP2003218287A (en) Board for mounting semiconductor element and semiconductor device
JP2015060912A (en) Package substrate for mounting semiconductor element
JP2004128481A (en) Wiring board and its manufacturing method
JP5264651B2 (en) Method for manufacturing printed wiring board
JP5783837B2 (en) Laminated board with metal foil and wiring board
JPH10163594A (en) Electronic circuit board and its manufacture
JP2005159201A (en) Wiring board and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111223

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4992342

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees