JP4989854B2 - 半導体装置の作製方法 - Google Patents

半導体装置の作製方法 Download PDF

Info

Publication number
JP4989854B2
JP4989854B2 JP2005024826A JP2005024826A JP4989854B2 JP 4989854 B2 JP4989854 B2 JP 4989854B2 JP 2005024826 A JP2005024826 A JP 2005024826A JP 2005024826 A JP2005024826 A JP 2005024826A JP 4989854 B2 JP4989854 B2 JP 4989854B2
Authority
JP
Japan
Prior art keywords
film
substrate
integrated circuit
chip
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005024826A
Other languages
English (en)
Other versions
JP2005252243A (ja
JP2005252243A5 (ja
Inventor
康行 荒井
祐子 舘村
洋平 神野
麻衣 秋葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2005024826A priority Critical patent/JP4989854B2/ja
Publication of JP2005252243A publication Critical patent/JP2005252243A/ja
Publication of JP2005252243A5 publication Critical patent/JP2005252243A5/ja
Application granted granted Critical
Publication of JP4989854B2 publication Critical patent/JP4989854B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)

Description

本発明は、無線での通信が可能な半導体装置に関する。
無線で識別情報などのデータの送受信が可能なIDチップに代表される半導体装置は、様々な分野において実用化が進められており、新しい形態の通信情報端末としてさらなる市場の拡大が見込まれている。IDチップは、無線タグ、RFID(Radio Frequency Identification)タグ、ICタグとも呼ばれており、アンテナと、半導体基板を用いて形成された集積回路とを有しているタイプが現在実用化されつつある。
IDチップの信頼性は、IDチップが有する集積回路に用いられている半導体素子の信頼性に左右される。半導体素子の信頼性を高めることで、IDチップを使用できる環境の条件を広げることができ、延いてはIDチップの用途の幅を広げることが可能になる。しかしIDチップを使用する環境によっては、Naなどのアルカリ金属やアルカリ土類金属、または水分に半導体素子が汚染されやすい場合も想定される。半導体素子に用いられている半導体膜中に、アルカリ金属、アルカリ土類金属または水分が拡散すると、半導体素子の特性が劣化するため、信頼性を高めることが難しい。
また原理的にIDチップは、磁気カード、バーコードなどよりも小型化が可能であり、よってその用途の幅をさらに拡大することが期待されている。ところがIDチップは、用途によって紙、プラスチックなどの可撓性を有する素材(フレキシブルな素材)に取り付けられることも想定されるが、半導体基板は上述した素材に比べると機械的強度が低い。よって、フレキシブルな素材を支持体として用いている包装材、タグ、証書、紙幣及び有価証券などにIDチップを形成すると、使用の過程においてIDチップが破損する恐れがあり、実用性に乏しい。
なおIDチップ自体の面積を縮小化することで、機械的強度をある程度向上させることはできる。しかしこの場合、回路規模の確保が難しくなり、IDチップの用途が制限されるので好ましくない。従ってIDチップの回路規模の確保を重要視すると、やみくもにIDチップの面積を縮小化することはできず、機械的強度の向上にも限界が生じる。
さらに半導体基板を用いて形成されたIDチップの場合、半導体基板が導体として機能し電波を遮蔽するので、送信されてくる電波の方向によっては信号が減衰しやすいという問題もあった。
上記問題に鑑み、本発明は、半導体素子の信頼性を高め、回路規模を抑えることなく機械的強度を高めることができる、半導体装置の提供を課題とする。
本発明の半導体装置は、絶縁分離された薄膜の半導体膜で形成されたTFT(薄膜トランジスタ)を集積回路に用いる。そして該集積回路は、複数の絶縁膜が積層された膜(封止膜とする)に挟まれている。
封止膜は、Naなどのアルカリ金属やアルカリ土類金属、または水分などが、半導体素子に用いられている半導体膜中に拡散するのを防ぐことができる、無機物からなる複数の絶縁膜(バリア膜とする)と、該バリア膜よりも応力の小さい絶縁膜(応力緩和膜)とを有する。応力緩和膜は単数であっても複数であっても良く、バリア膜の間に形成する。
アルカリ金属、アルカリ土類金属または水分が半導体膜中に拡散するのを防ぐことができるバリア膜として、窒化珪素または窒化酸化珪素などに代表される無機絶縁膜を用いることができる。
また集積回路は、基板上に形成されていても良いし、基板上に形成した後、別途用意されたフレキシブルな(可撓性を有する)基板に貼り合わされていても良い。そして本発明のIDチップは、集積回路に加えアンテナを有した形態も取りうる。集積回路は、アンテナで発生した交流の電圧を用いて動作を行ない、またアンテナに印加する交流の電圧を変調することで、リーダ/ライタへの信号の送信を行なうことができる。なおアンテナは、集積回路と共に形成しても良いし、集積回路とは別個に形成し、後に電気的に接続するようにしても良い。
集積回路の貼り合わせは、耐熱性の高い基板と集積回路の間に金属酸化膜を設け、該金属酸化膜を脆弱化して集積回路を剥離し、貼り合わせる方法、耐熱性の高い基板と集積回路の間に剥離層を設け、レーザ光の照射またはエッチングにより該剥離層を除去することで基板と集積回路とを剥離し、貼り合わせる方法、集積回路が形成された耐熱性の高い基板を機械的に削除または溶液やガスによるエッチングで除去することで集積回路を基板から切り離し、貼り合わせる方法等、様々な方法を用いることができる。
また、別途作製された集積回路どうしを貼り合わせることで、集積回路を積層し、回路規模やメモリの容量を大きくするようにしても良い。集積回路は半導体基板で作製したIDチップに比べて飛躍的に薄いので、複数の集積回路を積層させてもIDチップの機械的強度をある程度維持することができる。積層した集積回路どうしの接続は、フリップチップ法、TAB(Tape Automated Bonding)法、ワイヤボンディング法などの、公知の接続方法を用いることができる。
バリア膜を用いることで、アルカリ金属、アルカリ土類金属または水分が半導体膜中に拡散するのを防ぐことができ、半導体素子の信頼性を高めることができる。なお、これらのバリア膜に用いられる無機絶縁膜は、応力が比較的大きいため、例えば移動度がシフトするなど、無機絶縁膜を用いることで反って半導体素子の特性に悪影響が生じる場合も有る。しかし本発明では、バリア膜の間に応力緩和膜を有する封止膜を用いることで、応力緩和膜によりバリア膜の応力を緩和し、応力により半導体素子の特性に悪影響が生じるのを防ぐことができる。
また、アルカリ金属、アルカリ土類金属または水分の半導体膜への拡散を防ぐために、バリア膜の膜厚を単純に厚くするのではなく、本発明のようにバリア膜を複数設けることで、バリア膜1枚あたりの応力を抑え、バリア膜にクラックが発生するのを防止することができ、なおかつアルカリ金属、アルカリ土類金属または水分が半導体膜中に拡散するのをも防ぐことができる。
特にIDチップの基板として、プラスチック基板や紙などのフレキシブルな基板を用いる場合、基板に応力が加えられる場合も想定される。しかし本発明では、バリア膜を複数設けることで、バリア膜1枚あたりの応力を抑え、さらに応力緩和膜により該応力をある程度緩和するこができる。よって、応力により、或いはアルカリ金属、アルカリ土類金属または水分の半導体膜中への拡散により、半導体素子の特性に悪影響が出るのを防ぐことができる。
また、プラスチック基板や紙などのフレキシブルな基板は、一般的にガラス基板や半導体基板などに比べて水分を透過しやすい傾向を有している。しかし本発明では、バリア膜を用いているので、上記フレキシブルな基板を用いても、水分が半導体膜に拡散するのを防ぐことができる。
また、プラスチック基板や紙などのフレキシブルな基板は、一般的にガラス基板や半導体基板などに比べて耐熱性に劣っている。しかし本発明では、フレキシブルな基板の耐熱性を考慮して成膜温度を低くしたがために、バリア膜の膜質が低下するようなことがあっても、複数のバリア膜を積層することで、アルカリ金属、アルカリ土類金属または水分が半導体膜中に拡散するのを防ぐことができる。
また本発明のIDチップは、絶縁分離されたTFTを用いて集積回路を形成するので、フレキシブルな基板を用いることが可能である。この場合、半導体基板を用いたIDチップほど面積を小さくせずとも、高い機械的強度を得ることができる。よって、回路規模を抑えなくともIDチップの機械的強度を高め、IDチップの用途範囲をより広げることができる。
また本発明のIDチップでは、絶縁分離されたTFTを用いて集積回路を形成するので、半導体基板に形成されたトランジスタとは異なり、基板との間に寄生のダイオードが形成されにくい。従って、ソース領域またはドレイン領域与えられた交流の信号の電位によって、ドレイン領域に大量の電流が流れ込むことがなく、劣化または破壊が起こりにくい。また本発明のIDチップでは、半導体基板を用いて形成されたIDチップよりも電波が遮蔽されにくく、電波の遮蔽により信号が減衰するのを防ぐことができるというメリットを有している。
以下、本発明の実施の形態について図面を参照しながら説明する。但し、本発明は多くの異なる態様で実施することが可能であり、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本実施の形態の記載内容に限定して解釈されるものではない。
図1を用いて、本発明のIDチップの構成について説明する。図1(A)に、本発明のIDチップの一形態を斜視図で示す。また図1(B)に、図1(A)のA−A’における断面図を示す。100は集積回路、101はアンテナに相当し、アンテナ101は集積回路100に電気的に接続されている。102は基板、103はカバー材に相当し、集積回路100は基板102とカバー材103の間に挟まれている。
なお図1(A)では、アンテナ101が、集積回路100と共に基板102とカバー材103の間に挟まれている様子を示しているが、本発明はこの構成に限定されない。例えば、カバー材103の基板102とは反対側にアンテナ101を形成しておき、カバー材103に開口部を形成し、該開口部を介して集積回路100とアンテナ101を電気的に接続するようにしても良い。
次に、図1(B)の破線104で囲んだ、IDチップの断面の拡大図を、図1(C)に示す。TFT105は、集積回路100に用いられている半導体素子の1つに相当する。なお図1(C)では、集積回路100に用いられている半導体素子としてTFTを例示しているが、本発明はこの構成に限定されない。集積回路100に用いられる半導体素子はこれに限定されず、あらゆる回路素子を用いることができる。例えば、TFTの他に、記憶素子、ダイオード、光電変換素子、抵抗素子、コイル、容量素子、インダクタなどが代表的に挙げられる。
そしてTFT105は、封止膜106、107に挟まれている。具体的に図1(C)では、基板102とTFT105の間に封止膜106が、カバー材103とTFT105の間に封止膜107が、それぞれ設けられている。そして封止膜106は、基板102側から順に積層されたバリア膜106aと、応力緩和膜106bと、バリア膜106cとを有している。また封止膜107は、TFT105側から順に積層されたバリア膜107aと、応力緩和膜107bと、バリア膜107cとを有している。
なお図1(C)では、封止膜106、107がそれぞれ1つの応力緩和膜106b、107bを有する例について示しているが、本発明はこの構成に限定されない。バリア膜が3つ以上である場合、応力緩和膜を複数設けるようにしても良い。
バリア膜106a、106c、107a、107cには、Naなどのアルカリ金属やアルカリ土類金属、または水分などが、半導体素子に用いられている半導体膜中に拡散するのを防ぐことができる、無機物からなる複数の絶縁膜を用いる。例えば、窒化珪素、窒化酸化珪素、酸化アルミニウム、窒化アルミニウム、窒化酸化アルミニウムまたは窒化酸化珪化アルミニウムなどを、バリア膜106a、106c、107a、107cとして用いることができる。
また応力緩和膜106b、107bには、バリア膜106a、106c、107a、107cよりも応力の小さい絶縁膜を用いることができる。例えば、ポリイミド、アクリル、ポリアミド、ポリイミドアミド、ベンゾシクロブテンまたはエポキシ樹脂などを、応力緩和膜106b、107bとして用いることができる。
なお、図1ではカバー材103を用いてIDチップの機械的強度を高めている例を示しているが、本発明のIDチップは必ずしもカバー材103を用いる必要はない。例えば、封止膜107の表面に樹脂等を塗布することで、IDチップの機械的強度を高めるようにしても良い。
また、基板102の耐熱温度が、集積回路100の作製工程における熱処理に耐えうる程度であれば、基板102上に集積回路100を直接形成しても良い。ただし、例えばプラスチック基板など耐熱性に劣る基板を用いる場合、耐熱性を有する基板上に集積回路を形成した後、別途用意されたプラスチックなどのフレキシブルな基板に該集積回路を貼り合わせても良い。この場合、予め耐熱性を有する基板上に、集積回路と共に封止膜を形成し、集積回路と封止膜とを一緒にフレキシブルな基板上に貼り合わせても良い。或いは、フレキシブルな基板上に予め封止膜を形成しておき、該封止膜上に集積回路を貼り合わせるようにしても良い。
集積回路と封止膜とを一緒にフレキシブルな基板上に貼り合わせる場合、剥離、貼り合わせなどの一連の工程において、半導体素子が有する半導体膜に、アルカリ金属、アルカリ土類金属または水分などが拡散するのを封止膜によって、防ぐことができる。また上記一連の工程において、何かのタイミングで、封止膜または集積回路に応力がかかり、封止膜に含まれる複数のバリア膜のいずれかにクラックが入っても、他のバリア膜でアルカリ金属、アルカリ土類金属または水分の拡散の防止をカバーすることができる。さらに上記一連の工程において、封止膜または集積回路に応力がかかっても、応力を緩和することで、半導体素子の特性が劣化するのを防ぐことができる。
次に、本発明のIDチップの詳しい作製方法について説明する。なお本実施の形態では、半導体素子として絶縁分離されたTFTを例示するが、集積回路に含まれる半導体素子はこれに限定されず、あらゆる回路素子を用いることができる。
まず図2(A)に示すように、スパッタ法を用いて耐熱性を有する基板(第1の基板)500上に剥離層501を形成する。第1の基板500として、例えばバリウムホウケイ酸ガラスや、アルミノホウケイ酸ガラスなどのガラス基板等、後の作製工程における処理温度に耐え得る基板を用いる。
剥離層501は、非晶質シリコン、多結晶シリコン、単結晶シリコン、微結晶シリコン(セミアモルファスシリコンを含む)等、シリコンを主成分とする層を用いることができる。剥離層501は、スパッタ法、プラズマCVD法等を用いて形成することができる。本実施の形態では、膜厚500nm程度の非晶質シリコンをスパッタ法で形成し、剥離層501として用いる。なお剥離層501はシリコンに限定されず、エッチングにより選択的に除去できる材料で、剥離層501を形成すれば良い。
次に、剥離層501上に封止膜502を形成する。封止膜502は、少なくとも2以上のバリア膜と、該バリア膜の間に積層された1以上の応力緩和膜とを有していれば良い。
例えば本実施の形態では、剥離層501上にバリア膜502a、応力緩和膜502b、バリア膜502cが順に積層されている。そしてバリア膜502a、502cは、例えば窒化珪素を用い、スパッタ法で形成する。応力緩和膜502bには例えばポリイミドを用いる。
バリア膜502a、502cに用いる窒化珪素は、アルゴンを導入し、基板温度を150℃に保ち、スパッタ圧力0.4Pa程度で成膜を行なう。そしてターゲットとして珪素を用い、アルゴンの他に窒素及び水素を導入して成膜を行なう。窒化酸化珪素の場合、アルゴンを導入し、基板温度を150℃に保ち、スパッタ圧力0.4Pa程度で成膜を行なう。そしてターゲットとして珪素を用い、アルゴンの他に窒素、ニ酸化窒素及び水素を導入して成膜を行なう。なおターゲットとして酸化珪素を用いても良い。
バリア膜502a、502cの膜厚は50nm〜3μmの範囲であることが望ましい。本実施の形態では、窒化珪素を1μmの膜厚で形成した。なお、バリア膜の形成方法はスパッタのみに限定されず、実施者が適宜設定することができる。例えば、LPCVD法、プラズマCVD法等を用いて形成しても良い。
なおバリア膜502a、502cは、窒化珪素の他、窒化酸化珪素、酸化アルミニウム、窒化アルミニウム、窒化酸化アルミニウムまたは窒化酸化珪化アルミニウム(AlSiON)を用いることができる。窒化酸化珪化アルミニウムは熱伝導度が比較的高いので、バリア膜に用いることで、半導体素子で発生した熱を効率良く放熱することができる。
また、応力緩和膜502bには、透光性を有する樹脂を用いることができる。代表的には、ポリイミドの他、アクリル、ポリアミド、ポリイミドアミド、ベンゾシクロブテンもしくはエポキシ樹脂等を用いることができる。なお、上述した以外の樹脂を用いることもできる。ここでは、熱重合するタイプのポリイミドを塗布後、焼成して応力緩和膜502bを形成する。
応力緩和膜502bの膜厚は、200nm〜2μmの範囲であることが望ましい。本実施の形態では、ポリイミドを1μmの膜厚で形成した。
なお、バリア膜502a、応力緩和膜502b、バリア膜502cは、後に剥離層501を除去する際に選択比のとれる材料を用いる必要がある。
封止膜502は、後に半導体素子を第2の基板上に接着剤で貼り合わせる際に、第2の基板や接着剤中に含まれる、Naなどのアルカリ金属やアルカリ土類金属、水分が、半導体素子に用いられている半導体膜中に拡散し、半導体素子の特性に悪影響を及ぼすのを防ぐために形成する。また封止膜502は、剥離層501をエッチングする際、エッチャントから半導体素子を保護する役割も有する。
次に、封止膜502上に半導体膜を形成する。半導体膜は、封止膜502を形成した後、大気に曝さずに形成することが望ましい。半導体膜の膜厚は20〜200nm(望ましくは40〜170nm、好ましくは50〜150nm)とする。なお半導体膜は、非晶質半導体であっても良いし、セミアモルファス半導体であっても良いし、多結晶半導体であっても良い。また半導体は珪素だけではなくシリコンゲルマニウムも用いることができる。シリコンゲルマニウムを用いる場合、ゲルマニウムの濃度は0.01〜4.5atomic%程度であることが好ましい。
なお半導体膜は、公知の技術により結晶化しても良い。公知の結晶化方法としては、レーザ光を用いたレーザ結晶化法、触媒元素を用いる結晶化法がある。或いは、触媒元素を用いる結晶化法とレーザ結晶化法とを組み合わせて用いることもできる。また、基板500として石英のような耐熱性に優れている基板を用いる場合、電熱炉を使用した熱結晶化方法、赤外光を用いたランプアニール結晶化法、触媒元素を用いる結晶化法と、950℃程度の高温アニールを組み合わせた結晶法を用いても良い。
例えばレーザ結晶化を用いる場合、レーザ結晶化の前に、レーザに対する半導体膜の耐性を高めるために、500℃、1時間の熱アニールを該半導体膜に対して行なう。そして連続発振が可能な固体レーザを用い、基本波の第2高調波〜第4高調波のレーザ光を照射することで、大粒径の結晶を得ることができる。例えば、代表的には、Nd:YVO4レーザ(基本波1064nm)の第2高調波(532nm)や第3高調波(355nm)を用いるのが望ましい。具体的には、連続発振のYVO4レーザから射出されたレーザ光を非線形光学素子により高調波に変換し、出力10Wのレーザ光を得る。そして、好ましくは光学系により照射面にて矩形状または楕円形状のレーザ光に成形して、半導体膜に照射する。このときのエネルギー密度は0.01〜100MW/cm2程度(好ましくは0.1〜10MW/cm2)が必要である。そして、走査速度を10〜2000cm/sec程度とし、照射する。
また、パルス発振のレーザ光の発振周波数を10MHz以上とし、通常用いられている数十Hz〜数百Hzの周波数帯よりも著しく高い周波数帯を用いてレーザ結晶化を行なっても良い。パルス発振でレーザ光を半導体膜に照射してから半導体膜が完全に固化するまでの時間は数十nsec〜数百nsecと言われている。よって上記周波数帯を用いることで、半導体膜がレーザ光によって溶融してから固化するまでに、次のパルスのレーザ光を照射できる。したがって、半導体膜中において固液界面を連続的に移動させることができるので、走査方向に向かって連続的に成長した結晶粒を有する半導体膜が形成される。具体的には、含まれる結晶粒の走査方向における幅が10〜30μm、走査方向に対して垂直な方向における幅が1〜5μm程度の結晶粒の集合を形成することができる。該走査方向に沿って長く延びた単結晶の結晶粒を形成することで、少なくともTFTのチャネル方向には結晶粒界のほとんど存在しない半導体膜の形成が可能となる。
なおレーザ結晶化は、連続発振の基本波のレーザ光と連続発振の高調波のレーザ光とを並行して照射するようにしても良いし、連続発振の基本波のレーザ光とパルス発振の高調波のレーザ光とを並行して照射するようにしても良い。
なお、希ガスや窒素などの不活性ガス雰囲気中でレーザ光を照射するようにしても良い。これにより、レーザ光照射による半導体表面の荒れを抑えることができ、界面準位密度のばらつきによって生じる閾値のばらつきを抑えることができる。
上述した半導体膜へのレーザ光の照射により、結晶性がより高められた半導体膜が形成される。なお、予め多結晶半導体を、スパッタ法、プラズマCVD法、熱CVD法などで形成するようにしても良い。
また本実施の形態では半導体膜を結晶化しているが、結晶化せずに非晶質珪素膜または微結晶半導体膜のまま、後述のプロセスに進んでも良い。非晶質半導体、微結晶半導体を用いたTFTは、多結晶半導体を用いたTFTよりも作製工程が少ない分、コストを抑え、歩留まりを高くすることができるというメリットを有している。
非晶質半導体は、珪化物気体をグロー放電分解することにより得ることができる。代表的な珪化物気体としては、SiH4、Si26が挙げられる。この珪化物気体を、水素、水素とヘリウムで希釈して用いても良い。
なおセミアモルファス半導体とは、非晶質半導体と結晶構造を有する半導体(単結晶、多結晶を含む)の中間的な構造の半導体を含む膜である。このセミアモルファス半導体は、自由エネルギー的に安定な第3の状態を有する半導体であって、短距離秩序を持ち格子歪みを有する結晶質なものであり、その粒径を0.5〜20nmとして非単結晶半導体中に分散させて存在せしめることが可能である。セミアモルファス半導体は、そのラマンスペクトルが520cm-1よりも低波数側にシフトしており、またX線回折ではSi結晶格子に由来するとされる(111)、(220)の回折ピークが観測される。また、未結合手(ダングリングボンド)の中和剤として水素またはハロゲンを少なくとも1原子%またはそれ以上含ませている。ここでは便宜上、このような半導体をセミアモルファス半導体(SAS)と呼ぶ。さらに、ヘリウム、アルゴン、クリプトン、ネオンなどの希ガス元素を含ませて格子歪みをさらに助長させることで安定性が増し良好なセミアモルファス半導体が得られる。
またSASは珪化物気体をグロー放電分解することにより得ることができる。代表的な珪化物気体としては、SiH4であり、その他にもSi26、SiH2Cl2、SiHCl3、SiCl4、SiF4などを用いることができる。また水素や、水素にヘリウム、アルゴン、クリプトン、ネオンから選ばれた一種または複数種の希ガス元素を加えたガスで、この珪化物気体を希釈して用いることで、SASの形成を容易なものとすることができる。希釈率は2倍〜1000倍の範囲で珪化物気体を希釈することが好ましい。またさらに、珪化物気体中に、CH4、C26などの炭化物気体、GeH4、GeF4などのゲルマニウム化気体、F2などを混入させて、エネルギーバンド幅を1.5〜2.4eV、若しくは0.9〜1.1eVに調節しても良い。
例えば、SiH4にH2を添加したガスを用いる場合、或いはSiH4にF2を添加したガスを用いる場合、形成したセミアモルファス半導体を用いてTFTを作製すると、該TFTのサブスレッショルド係数(S値)を0.35V/sec以下、代表的には0.25〜0.09V/secとし、移動度を10cm2/Vsecとすることができる。そして上記セミアモルファス半導体を用いたTFTで、例えばリングオシレータを形成した場合、駆動電圧3〜5V程度で、10MHz以上で動作させることができる。そして、各段あたりの周波数特性を、駆動電圧3〜5V程度で、100kHz以上、好ましくは1MHz以上とすることができる。
次に、図2(A)に示すように半導体膜をパターニングし、島状の半導体膜503を形成する。そして図2(B)に示すように、該島状の半導体膜503を用いて、TFTに代表される各種の半導体素子を形成する。なお図2(B)では、封止膜502と島状の半導体膜503とが接しているが、半導体素子によっては、封止膜502と島状の半導体膜503との間に、電極や絶縁膜等が形成されていても良い。例えば半導体素子の1つであるボトムゲート型のTFTの場合、封止膜502と島状の半導体膜503との間に、ゲート電極とゲート絶縁膜が形成される。
図2(B)では、島状の半導体膜503を用いてトップゲート型のTFT504を形成する。具体的には、島状の半導体膜503を覆うようにゲート絶縁膜507を形成し、ゲート絶縁膜507上に導電膜を形成し、パターニングすることで、ゲート電極508を形成する。そして、ゲート電極508や、あるいはレジストを形成しパターニングしたものをマスクとして用い、島状の半導体膜503にn型を付与する不純物を添加し、ソース領域、ドレイン領域、さらにはLDD領域等を形成する。なおここではTFT504をn型とするが、p型のTFTの場合は、p型の導電性を付与する不純物を添加する。上記一連の工程によってTFT504を形成することができる。
なお、ゲート絶縁膜507を形成した後、3〜100%の水素を含む雰囲気中で、300〜450℃で1〜12時間の熱処理を行ない、島状の半導体膜503を水素化する工程を行なっても良い。また、水素化の他の手段として、プラズマ水素化(プラズマにより励起された水素を用いる)を行っても良い。この水素化の工程により、熱的に励起された水素によりダングリングボンドを終端することができる。また、後の工程において可撓性を有する第2の基板上に半導体素子を貼り合わせた後、第2の基板を曲げることにより半導体膜中に欠陥が形成されたとしても、水素化により半導体膜中の水素の濃度を、1×1019〜1×1022atoms/cm3好ましくは1×1019〜5×1020atoms/cm3とすることで、半導体膜に含まれている水素によって該欠陥を終端させることができる。また該欠陥を終端させるために、半導体膜中にハロゲンを含ませておいても良い。
なおTFTの作製方法は上述した構成に限定されない。
次にTFT504を覆って、パッシベーション膜505を形成する。パッシベーション膜505は、アルカリ金属やアルカリ土類金属のTFT504への侵入を防ぐことができる、窒化珪素膜または窒化酸化珪素膜を用いるのが望ましい。上記構成により、TFT504が封止膜502とパッシベーション膜505とで覆われるため、Naなどのアルカリ金属やアルカリ土類金属が、半導体素子に用いられている半導体膜中に拡散し、半導体素子の特性に悪影響を及ぼすのをより防ぐことができる。
次にパッシベーション膜505を覆って、第1の層間絶縁膜510を形成する。そして、ゲート絶縁膜507、パッシベーション膜505及び第1の層間絶縁膜510にコンタクトホールを形成した後、コンタクトホールを介してTFT504と接続する配線513、514を、第1の層間絶縁膜510に接するように形成する。
次に図2(C)に示すように、第1の層間絶縁膜510上に第2の層間絶縁膜515を形成する。第2の層間絶縁膜515は、配線514が一部露出する様な位置に開口部を有するように形成する。なお、第1の層間絶縁膜510、第2の層間絶縁膜515として、有機樹脂膜、無機絶縁膜、シロキサン系材料を出発材料として形成されたSi−O−Si結合を含む絶縁膜(以下、シロキサン系絶縁膜と呼ぶ)等を用いることができる。シロキサン系絶縁膜は、置換基に水素の他、フッ素、アルキル基、または芳香族炭化水素のうち少なくとも1種を有していても良い。
次に図2(D)に示すように、第2の層間絶縁膜515上にアンテナ519を形成する。アンテナ519は、Ag、Au、Cu、Pd、Cr、Mo、Ti、Ta、W、Alなどの金属、金属化合物を1つまたは複数有する導電材料を用いることができる。そしてアンテナ519は、配線514と接続されている。なお図2(D)では、アンテナ519が配線514と直接接続されているが、本発明のIDチップはこの構成に限定されない。例えば別途形成した配線を用いて、アンテナ519と配線514とを電気的に接続するようにしても良い。
アンテナ519は印刷法、フォトリソグラフィ法、蒸着法または液滴吐出法などを用いて形成することができる。本実施の形態では、アンテナ519が単層の導電膜で形成されているが、複数の導電膜が積層されたアンテナ519を形成することも可能である。
なお液滴吐出法とは、所定の組成物を含む液滴を細孔から吐出して所定のパターンを形成する方法を意味し、インクジェット法などがその範疇に含まれる。また印刷法にはスクリーン印刷法、オフセット印刷法などが含まれる。印刷法、液滴吐出法を用いることで、露光用のマスクを用いずとも、アンテナ519を形成することが可能になる。また、液滴吐出法、印刷法だと、フォトリソグラフィ法と異なり、エッチングにより除去されてしまうような材料の無駄がない。また高価な露光用のマスクを用いなくとも良いので、IDチップの作製に費やされるコストを抑えることができる。
液滴吐出法または各種印刷法を用いる場合、例えば、CuをAgでコートした導電粒子なども用いることが可能である。なお液滴吐出法を用いてアンテナ519を形成する場合、該アンテナ519の密着性が高まるような処理を、第2の層間絶縁膜515の表面に施すことが望ましい。
密着性を高めることができる方法として、具体的には、例えば触媒作用により導電膜または絶縁膜の密着性を高めることができる金属または金属化合物を第2の層間絶縁膜515の表面に付着させる方法、形成される導電膜または絶縁膜との密着性が高い有機系の絶縁膜、金属、金属化合物を第2の層間絶縁膜515の表面に付着させる方法、第2の層間絶縁膜515の表面に大気圧下または減圧下においてプラズマ処理を施し、表面改質を行なう方法などが挙げられる。また、上記導電膜または絶縁膜との密着性が高い金属として、チタン、チタン酸化物の他、3d遷移元素であるSc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Znなどが挙げられる。また金属化合物として、上述した金属の酸化物、窒化物、酸窒化物などが挙げられる。上記有機系の絶縁膜として、例えばポリイミド、シロキサン系絶縁膜等が挙げられる。
第2の層間絶縁膜515に付着させる金属または金属化合物が導電性を有する場合、アンテナの正常な動作が妨げられないように、そのシート抵抗を制御する。具体的には、導電性を有する金属または金属化合物の平均の厚さを、例えば1〜10nmとなるように制御したり、該金属または金属化合物を酸化により部分的に、または全体的に絶縁化したりすれば良い。或いは、密着性を高めたい領域以外は、付着した金属または金属化合物をエッチングにより選択的に除去しても良い。また金属または金属化合物を、予め基板の全面に付着させるのではなく、液滴吐出法、印刷法、ゾル−ゲル法などを用いて特定の領域にのみ選択的に付着させても良い。なお金属または金属化合物は、第2の層間絶縁膜515の表面において完全に連続した膜状である必要はなく、ある程度分散した状態であっても良い。
そしてアンテナ519を形成した後、アンテナ519を覆うように、第2の層間絶縁膜515上に保護層521を形成する。保護層521は、後に剥離層501をエッチングにより除去する際に、アンテナ519を保護することができる材料を用いる。例えば、水またはアルコール類に可溶なエポキシ系、アクリレート系、シリコン系の樹脂を全面に塗布することで保護層521を形成することができる。
本実施の形態では、スピンコート法で水溶性樹脂(東亜合成製:VL−WSHL10)を膜厚30μmとなるように塗布し、仮硬化させるために2分間の露光を行ったあと、UV光を裏面から2.5分、表面から10分、合計12.5分の露光を行って本硬化させて、保護層521を形成する。なお、複数の有機樹脂を積層する場合、有機樹脂同士では使用している溶媒によって塗布または焼成時に一部溶解したり、密着性が高くなりすぎたりする恐れがある。従って、第2の層間絶縁膜515と保護層521を共に同じ溶媒に可溶な有機樹脂を用いる場合、後の工程において保護層521の除去がスムーズに行なわれるように、第2の層間絶縁膜515を覆うように、無機絶縁膜(SiNX膜、SiNXY膜、AlNX膜、またはAlNXY膜)を形成しておくことが好ましい。
次に図3(A)に示すように、IDチップどうしを分離するために溝522を形成する。溝522は、剥離層501が露出する程度であれば良い。溝522の形成は、ダイシング、スクライビングなどを用いることができる。なお、第1の基板500上に形成されているIDチップを分離する必要がない場合、必ずしも溝522を形成する必要はない。
次に図3(B)に示すように、剥離層501をエッチングにより除去する。本実施の形態では、エッチングガスとしてハロゲン化物を用い、該ガスを溝522から導入する。本実施の形態では、例えばClF3(三フッ化塩素)を用い、温度:350℃、流量:300sccm、気圧:6Torr、時間:3hの条件で行なう。また、ClF3ガスに窒素を混ぜたガスを用いても良い。ClF3NF3(三フッ化窒素)、BrF3(三フッ化臭素)、HF(フッ化水素)等のハロゲン化物を用いることで、剥離層501が選択的にエッチングされ、第1の基板500をTFT504から剥離することができる。HFを用いる場合、剥離層には酸化珪素膜を用いる。なおハロゲン化物は、気体であっても液体であってもどちらでも良い。
次に図3(C)に示すように、剥離されたTFT504及びアンテナ519を、接着剤530を用いて第2の基板531に貼り合わせる。接着剤530は、第2の基板531と封止膜502とを貼り合わせることができる材料を用いる。接着剤530は、例えば反応硬化型接着剤、熱硬化型接着剤、紫外線硬化型接着剤等の光硬化型接着剤、嫌気型接着剤などの各種硬化型接着剤を用いることができる。
第2の基板531として、フレキシブルな紙またはプラスチックなどの有機材料を用いることができる。または第2の基板531として、フレキシブル無機材料を用いていても良い。プラスチック基板は、極性基のついたポリノルボルネンからなるARTON(JSR製)を用いることができる。また、ポリエチレンテレフタレート(PET)に代表されるポリエステル、ポリエーテルスルホン(PES)、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、ナイロン、ポリエーテルエーテルケトン(PEEK)、ポリスルホン(PSF)、ポリエーテルイミド(PEI)、ポリアリレート(PAR)、ポリブチレンテレフタレート(PBT)、ポリイミド、アクリロニトリルブタジエンスチレン樹脂、ポリ塩化ビニル、ポリプロピレン、ポリ酢酸ビニル、アクリル樹脂などが挙げられる。第2の基板531は集積回路において発生した熱を拡散させるために、2〜30W/mK程度の高い熱伝導率を有する方が望ましい。
次に図4(A)に示すように、保護層521を除去した後、アンテナ519を覆うように接着剤532を第2の層間絶縁膜515上に塗布し、カバー材533を貼り合わせる。カバー材533は第2の基板531と同様に、フレキシブルな紙またはプラスチックなどの有機材料を用いることができる。接着剤532の厚さは、例えば10〜200μmとすれば良い。
カバー材533の表面に、予め封止膜540を形成しておく。本実施の形態では、封止膜540は、カバー材533側から順に積層された、バリア膜540a、応力緩和膜540b、バリア膜540cを有している。バリア膜540a、応力緩和膜540b、バリア膜540cの構成及び作製方法については、封止膜502についての記述を参照することができるので、ここでは説明を省略する。カバー材533は、封止膜540が、カバー材533とTFT504の間に挟まれるように、第2の層間絶縁膜515に貼り合わせる。
また接着剤532は、カバー材533と第2の層間絶縁膜515及びアンテナ519とを貼り合わせることができる材料を用いる。接着剤532は、例えば反応硬化型接着剤、熱硬化型接着剤、紫外線硬化型接着剤等の光硬化型接着剤、嫌気型接着剤などの各種硬化型接着剤を用いることができる。
上述した各工程を経て、IDチップが完成する。上記作製方法によって、トータルの膜厚0.3μm以上3μm以下、代表的には2μm程度の飛躍的に薄い集積回路を第2の基板531とカバー材533との間に形成することができる。なお集積回路の厚さは、半導体素子自体の厚さのみならず、接着剤530と接着剤532間に形成された各種絶縁膜及び層間絶縁膜の厚さを含めるものとする。またIDチップが有する集積回路の占める面積を、5mm四方(25mm2)以下、より望ましくは0.3mm四方(0.09mm2)〜4mm四方(16mm2)程度とすることができる。
なお集積回路を、第2の基板531とカバー材533の間のより中央に位置させることで、IDチップの機械的強度を高めることができる。具体的には、第2の基板531とカバー材533の間の距離をdとすると、第2の基板531と、集積回路の厚さ方向における中心との距離が、以下の数1を満たすように、接着剤530、接着剤532の厚さを制御することが望ましい。
Figure 0004989854
また好ましくは、以下の数2を満たすように、接着剤530、接着剤532の厚さを制御する。
Figure 0004989854
なおIDチップに用いられる半導体膜や絶縁膜等に、シリアルナンバーを刻印しておけば、例えばROMにデータを記憶させる前のIDチップが、盗難等により第三者に不正に渡ったとしても、シリアルナンバーからその流通のルートをある程度割り出すことが可能である。この場合、復元不可能な程度に半導体装置を分解しないと消せないような位置に、シリアルナンバーを刻印しておくとより効果的である。
なお図4(A)では、カバー材533を用いる例を示しているが、本発明はこの構成に限定されない。例えば図3(C)に示した工程まで終了したら、保護層521を除去せずに、図4(B)に示すように、保護層521を覆うように封止膜541を形成しても良い。封止膜541は、保護層521側から順に積層されたバリア膜541a、応力緩和膜541b、バリア膜541cを有する。バリア膜541a、応力緩和膜541b、バリア膜541cの構成及び作製方法については、封止膜502についての記述を参照することができるので、ここでは説明を省略する。
なお集積回路を第1の基板500から剥離する方法は、本実施の形態で示したように珪素膜のエッチングを用いる方法に限定されず、他の様々な方法を用いることができる。例えば、耐熱性の高い基板と集積回路の間に金属酸化膜を設け、該金属酸化膜を結晶化により脆弱化して集積回路を剥離することができる。また例えば、剥離層をレーザ光の照射により破壊し、集積回路を基板から剥離することもできる。また例えば、集積回路が形成された基板を機械的に削除または溶液やガスによるエッチングで除去することで、集積回路を基板から剥離することもできる。
またIDチップの可撓性を確保するために、封止膜502に接する接着剤530に有機樹脂を用いる場合、封止膜502が有するバリア膜502a、502cとして窒化珪素膜または窒化酸化珪素膜を用いることで、有機樹脂からNaなどのアルカリ金属やアルカリ土類金属が半導体膜中に拡散するのを防ぐことができる。
また対象物の表面が曲面を有しており、それにより該曲面貼り合わされたIDチップの第2の基板が、錐面、柱面などの母線の移動によって描かれる曲面を有するように曲がってしまう場合、該母線の方向とTFTのキャリアが移動する方向とを揃えておくことが望ましい。上記構成により、第2の基板が曲がっても、それによってTFTの特性に影響が出るのを抑えることができる。また、島状の半導体膜が集積回路内において占める面積の割合を、1〜30%とすることで、第2の基板が曲がっても、それによってTFTの特性に影響が出るのをより抑えることができる。
なお本実施の形態では、アンテナを集積回路と同じ基板上に形成している例について説明したが、本発明はこの構成に限定されない。別の基板上に形成したアンテナと集積回路とを、後に貼り合わせることで、電気的に接続するようにしても良い。
また本実施の形態では、封止膜502と集積回路とを共に剥離して基板に貼り合わせる例を示したが、本発明はこの構成に限定されない。集積回路を貼り合わせる基板に、予め封止膜を形成しておいても良い。ただしこの場合、剥離層と半導体素子との間に、アルカリ金属やアルカリ土類金属が、半導体素子に用いられている半導体膜中に拡散するのを防ぎ、剥離する工程において半導体素子を保護するための絶縁膜(下地膜)を形成しておく。
図14に、集積回路を貼り合わせる基板に予め封止膜を形成しておく場合の、IDチップの一形態を、断面図で示す。図14に示すように、基板560に予め封止膜561を形成しておく場合、集積回路が有するTFT562と封止膜561との間に、接着剤563を設け、TFT562と封止膜561とを貼り合わせる。そして接着剤563に含まれるアルカリ金属やアルカリ土類金属が、半導体素子に用いられている半導体膜中に拡散するのを防ぎ、剥離する工程においてTFT562を保護するための下地膜564を、TFT562と接着剤563の間に形成しておく。下地膜564は、Naなどのアルカリ金属やアルカリ土類金属、または水分などが、半導体素子に用いられている半導体膜中に拡散するのを防ぐことができる、無機絶縁膜を用いる。例えば、窒化珪素、窒化酸化珪素、酸化アルミニウム、窒化アルミニウム、窒化酸化アルミニウムまたは窒化酸化珪化アルミニウムなどを、下地膜564として用いることができる。なお下地膜564は単数の絶縁膜を用いていても、複数の絶縁膜を用いていても良い。ただし下地膜564に複数の絶縁膜を用いる場合、該複数の絶縁膜のうちのいずれか1つが、上述した無機絶縁膜であれば良い。
或いは、集積回路を貼り合わせる基板に、予め封止膜を形成しておくことに加え、剥離層と半導体素子との間にも別の封止膜を形成しておいても良い。
さらに本実施の形態では、耐熱性の高い基板と集積回路の間に剥離層を設け、エッチングにより該剥離層を除去することで基板と集積回路とを剥離する方法について示したが、本発明のIDチップの作製方法は、この構成に限定されない。例えば、耐熱性の高い基板と集積回路の間に金属酸化膜を設け、該金属酸化膜を結晶化により脆弱化して集積回路を剥離しても良い。或いは、耐熱性の高い基板と集積回路の間に、水素を含む非晶質半導体膜を用いた剥離層を設け、レーザ光の照射により該剥離層を除去することで基板と集積回路とを剥離しても良い。或いは、集積回路が形成された耐熱性の高い基板を機械的に削除または溶液やガスによるエッチングで除去することで集積回路を基板から切り離しても良い。
なお一般的にIDチップで用いられている電波の周波数は、13.56MHz、2.45GHzが多く、該周波数の電波を検波できるようにIDチップを形成することが、汎用性を高める上で非常に重要である。
また本実施の形態のIDチップでは、半導体基板を用いて形成されたIDチップよりも電波が遮蔽されにくく、電波の遮蔽により信号が減衰するのを防ぐことができるというメリットを有している。よって、半導体基板を用いずに済むので、IDチップのコストを大幅に低くすることができる。例えば、直径12インチのシリコン基板を用いた場合と、730×920mm2のガラス基板を用いた場合とを比較する。前者のシリコン基板の面積は約73000mm2であるが、後者のガラス基板の面積は約672000mm2であり、ガラス基板はシリコン基板の約9.2倍に相当する。後者のガラス基板の面積は約672000mm2では、基板の分断により消費される面積を無視すると、1mm四方のIDチップが約672000個形成できる計算になり、該個数はシリコン基板の約9.2倍の数に相当する。そしてIDチップの量産化を行なうための設備投資は、730×920mm2のガラス基板を用いた場合の方が直径12インチのシリコン基板を用いた場合よりも工程数が少なくて済むため、額を3分の1で済ませることができる。さらに本発明では、集積回路を剥離した後、ガラス基板を再び利用できる。よって、破損したガラス基板を補填したり、ガラス基板の表面を清浄化したりする費用を踏まえても、シリコン基板を用いる場合より大幅にコストを抑えることができる。またガラス基板を再利用せずに廃棄していったとしても、730×920mm2のガラス基板の値段は、直径12インチのシリコン基板の半分程度で済むので、IDチップのコストを大幅に低くすることができることがわかる。
従って、730×920mm2のガラス基板を用いた場合、直径12インチのシリコン基板を用いた場合よりも、IDチップの値段を約30分の1程度に抑えることができることがわかる。IDチップは、使い捨てを前提とした用途も期待されているので、コストを大幅に低くすることができる本発明のIDチップは上記用途に非常に有用である。
本実施例では、図2〜図4とは異なり、別の基板上に形成したアンテナと集積回路とを電気的に接続する、IDチップの作製方法について説明する。
まず図2(C)に示すように、開口部を有する第2の層間絶縁膜515を形成した後、図5(A)に示すように、配線514に接続された配線550を、第2の層間絶縁膜515に接するように形成する。そして配線550を覆うように、第2の層間絶縁膜515上に保護層551を形成する。保護層551の構成及び作製方法については、図2(D)において示した保護層521についての記載を参照することができる。
次に、IDチップどうしを分離するために溝552を形成した後、図5(B)に示すように、剥離層501をエッチングにより除去する。溝552の作製方法及び剥離層501のエッチングの具体的な方法については、図3(A)、図3(B)を用いて既に示してあるので、ここでは説明を省略する。
そして図5(C)に示すように、剥離されたTFT504を、接着剤553を用いて第2の基板554に貼り合わせる。接着剤553は、第2の基板554と封止膜502とを貼り合わせることができる材料を用いる。接着剤553は、例えば反応硬化型接着剤、熱硬化型接着剤、紫外線硬化型接着剤等の光硬化型接着剤、嫌気型接着剤などの各種硬化型接着剤を用いることができる。
そして、保護層551を除去した後、配線550を覆うように接着剤558を第2の層間絶縁膜515上に塗布し、カバー材555を貼り合わせる。カバー材555は第2の基板554と同様に、フレキシブルな紙またはプラスチックなどの有機材料を用いることができる。
カバー材555には、予め封止膜556と、アンテナ557が形成されている。本実施例では、封止膜556は、カバー材555側から順に積層された、バリア膜556a、応力緩和膜556b、バリア膜556cを有している。バリア膜556a、応力緩和膜556b、バリア膜556cの構成及び作製方法については、封止膜502についての記述を参照することができるので、ここでは説明を省略する。カバー材555は、封止膜556が、カバー材555とTFT504の間に挟まれるように、第2の層間絶縁膜515に貼り合わせる。
アンテナ557は、カバー材555の封止膜556とは反対側に形成されており、その一部が、カバー材555及び封止膜556に形成されたコンタクトホールを介して、配線550側に露出している。そして接着剤558に異方導電性樹脂を用い、アンテナ557と配線550とを電気的に接続する。
異方導電性樹脂は、樹脂中に導電材料を分散させた材料である。樹脂として、例えばエポキシ系、ウレタン系、アクリル系などの熱硬化性を有するもの、ポリエチレン系、ポリプロピレン系などの熱可塑性を有するもの、シロキサン系材料などを用いることができる。また導電材料として、例えばポリスチレン、エポキシなどのプラスチック製の粒子にNi、Auなどをめっきしたもの、Ni、Au、Ag、はんだなどの金属粒子、粒子状または繊維状のカーボン、繊維状のNiにAuをめっきしたものなどを用いることができる。導電材料のサイズは、アンテナ557と配線550のピッチに合わせて決めることが望ましい。
またアンテナ557と配線550との間において、異方導電性樹脂に超音波を加えながら圧着させても良いし、紫外線の照射で硬化させながら圧着させても良い。
なお本実施例では、異方導電性樹脂を用いた接着剤558でアンテナ557と配線550とを電気的に接続する例を示しているが、本発明はこの構成に限定されない。接着剤558の代わりに、異方導電性フィルムを用い、該異方導電性フィルムを圧着することで、アンテナ557と配線550とを電気的に接続しても良い。
また本実施例では、封止膜502と集積回路とを共に剥離して基板に貼り合わせる例を示したが、本発明はこの構成に限定されない。集積回路を貼り合わせる基板に、予め封止膜を形成しておいても良い。ただしこの場合、剥離層と半導体素子との間に、アルカリ金属やアルカリ土類金属が、半導体素子に用いられている半導体膜中に拡散するのを防ぎ、剥離する工程において半導体素子を保護するための絶縁膜(下地膜)を形成しておく。或いは、集積回路を貼り合わせる基板に、予め封止膜を形成しておくことに加え、剥離層と半導体素子との間にも別の封止膜を形成しておいても良い。
さらに本実施例では、耐熱性の高い基板と集積回路の間に剥離層を設け、エッチングにより該剥離層を除去することで基板と集積回路とを剥離する方法について示したが、本発明の作製方法はこの構成に限定されない。例えば、耐熱性の高い基板と集積回路の間に金属酸化膜を設け、該金属酸化膜を結晶化により脆弱化して集積回路を剥離しても良い。或いは、耐熱性の高い基板と集積回路の間に、水素を含む非晶質半導体膜を用いた剥離層を設け、レーザ光の照射により該剥離層を除去することで基板と集積回路とを剥離しても良い。或いは、集積回路が形成された耐熱性の高い基板を機械的に削除または溶液やガスによるエッチングで除去することで集積回路を基板から切り離しても良い。
なお本実施例では、集積回路を剥離して、可撓性を有する基板に貼り合わせる例について説明したが、本発明はこの構成に限定されない。例えばガラス基板のように、集積回路の作製工程における熱処理に耐えうるような、耐熱温度を有している基板を用いる場合、必ずしも集積回路を剥離する必要はない。図15に、ガラス基板を用いて形成された、IDチップの一形態を、断面図で示す。
図15に示すIDチップでは、基板560としてガラス基板を用いており、集積回路に用いられるTFT562と基板560との間に、接着剤を間に挟まずに、封止膜561が接するように形成されている。上記構成により、接着剤に含まれているNaなどのアルカリ金属やアルカリ土類金属、または水分などが、半導体素子に用いられている半導体膜中に拡散する恐れがなくなる。
本実施例では、1つの導電膜をパターニングすることで、TFTに接続されている配線と、アンテナとを共に形成する場合の、IDチップの構成について説明する。図6(A)に、本実施例のIDチップの断面図を示す。
図6(A)において、601はTFTに相当する。TFT601は、半導体膜602と、半導体膜602を覆っているゲート絶縁膜603と、ゲート絶縁膜603を間に挟んで半導体膜602と重なっているゲート電極604とを有している。またTFT601は、パッシベーション膜605及び第1の層間絶縁膜606に覆われている。そして第1の層間絶縁膜606に上に形成された配線607は、ゲート絶縁膜603、パッシベーション膜605及び第1の層間絶縁膜606に形成されたコンタクトホールを介して、半導体膜602に接続されている。
また第1の層間絶縁膜606上には、アンテナ608が形成されている。配線607とアンテナ608は、第1の層間絶縁膜606上に導電膜を形成し、該導電膜をパターニングすることで形成することができる。アンテナ608を配線607と共に形成することで、IDチップの作製工程数を抑えることができる。
本実施例では、1つの導電膜をパターニングすることで、TFTのゲート電極と、アンテナとを共に形成する場合の、IDチップの構成について説明する。図6(B)に、本実施例のIDチップの断面図を示す。
図6(B)において、611はTFTに相当する。TFT611は、半導体膜612と、半導体膜612を覆っているゲート絶縁膜613と、ゲート絶縁膜613を間に挟んで半導体膜612と重なっているゲート電極614とを有している。またゲート絶縁膜613上には、アンテナ618が形成されている。ゲート電極614とアンテナ618は、ゲート絶縁膜613上に導電膜を形成し、該導電膜をパターニングすることで形成することができる。アンテナ618をゲート電極614と共に形成することで、IDチップの作製工程数を抑えることができる。
本実施例では、大型の基板を用いて、複数のIDチップを作製する方法について説明する。
まず、耐熱性を有する基板上に集積回路701及びアンテナ702を形成した後、剥離し、図7(A)に示すように、別途用意した基板703上に、接着剤704を用いて貼り合わせる。なお図7(A)では、集積回路701及びアンテナ702を一組づつ基板703上に貼り合わせている様子を示しているが、本発明はこの構成に限定されない。集積回路701及びアンテナ702の組を、互いに繋がった状態で剥離し、一度に基板703上に貼り合わせるようにしても良い。
次に図7(B)に示すように、間に集積回路701及びアンテナ702を挟むように、基板703にカバー材705を貼り合わせる。このとき、集積回路701及びアンテナ702を覆うように、基板703上に接着剤706を塗布しておく。カバー材705を基板703に貼り合わせることで、図7(C)に示す状態が得られる。なお、図7(C)では、集積回路701及びアンテナ702の位置を明確にするために、カバー材705を通して透けて見えるように、集積回路701及びアンテナ702を図示している。
次に図7(D)に示すように、ダイシングまたはスクライブにより、集積回路701及びアンテナ702を互いに分離することで、IDチップ707を完成させる。
なお本実施例では、アンテナ702を集積回路701と共に剥離する例を示しているが、本実施例はこの構成に限定されない。予め基板703上にアンテナを形成しておき、集積回路701を貼り合わせる際に、集積回路701とアンテナを電気的に接続しても良い。或いは、集積回路701を基板703に貼り合わせた後、集積回路701に電気的に接続するようにアンテナを貼り合わせても良い。或いは、予めカバー材705上に703上にアンテナを形成しておき、カバー材705を基板703に貼り合わせる際に、集積回路701とアンテナを電気的に接続しても良い。
なお、基板703とカバー材705とがフレキシブルである場合、図8に示すように、応力を加えた状態でIDチップ707を使用することも可能である。本発明では、応力緩和膜によりIDチップ707に加えられる応力をある程度緩和するこができる。またバリア膜を複数設けることで、バリア膜1枚あたりの応力を抑えることができるので、応力により、或いはアルカリ金属、アルカリ土類金属または水分の半導体膜中への拡散により、半導体素子の特性に悪影響が出るのを防ぐことができる。
なお、ガラス基板を用いたIDチップをIDGチップ(Identification Glass Chip)、フレキシブルな基板を用いたIDチップをIDFチップ(Identification Flexible Chip)と呼ぶことができる。
本実施例では、図9を用いて、本発明のIDチップの、機能的な構成の一形態について説明する。
図9において、900はアンテナ、901は集積回路に相当する。アンテナ900は、アンテナコイル902と、アンテナコイル902内で形成される容量素子903とを有する。また、集積回路901は、復調回路909、変調回路904、整流回路905、マイクロプロセッサ906、メモリ907、負荷変調をアンテナ900に与えるためのスイッチ908とを有している。なおメモリ907は1つに限定されず、複数であっても良く、SRAM、フラッシュメモリ、ROMまたはFRAM(登録商標)などを用いることができる。
リーダ/ライタから電波として送られてきた信号は、アンテナコイル902において電磁誘導により交流の電気信号に変換される。復調回路909では該交流の電気信号を復調し、後段のマイクロプロセッサ906に送信する。また整流回路905では、交流の電気信号を用いて電源電圧を生成し、後段のマイクロプロセッサ906に供給する。
マイクロプロセッサ906では、入力された信号に従って各種演算処理を行なう。メモリ907にはマイクロプロセッサ906において用いられるプログラム、データなどが記憶されている他、演算処理時の作業エリアとしても用いることができる。そしてマイクロプロセッサ906から変調回路904に送られた信号は、交流の電気信号に変調される。スイッチ908は、変調回路904からの交流の電気信号に従って、アンテナコイル902に負荷変調を加えることができる。リーダ/ライタは、アンテナコイル902に加えられた負荷変調を電波で受け取ることで、結果的にマイクロプロセッサ906からの信号を読み取ることができる。
なお本発明のIDチップは、必ずしもアンテナ900を有している必要はない。アンテナ900を有さない場合、IDチップに、アンテナ900との電気的な接続を行なうための接続端子を設けるようにする。
なお、図9に示すIDチップは、本発明の検査装置において、検査対象として用いられるIDチップの一形態を示したのに過ぎず、本発明は上記構成に限定されない。信号の伝送方式は、図9に示したような電磁誘導方式に限定されず、電磁結合方式、マイクロ波方式やその他の伝送方式を用いていても良い。
本実施例は、実施例1〜実施例4と組み合わせて実施することが可能である。
本実施例では、1つの基板上に形成された複数の集積回路を剥離する際、形成される溝の形状について説明する。図10(A)に、溝801が形成された基板803の上面図を示す。また図10(B)に、図10(A)のA−A’における断面図を示す。
集積回路802は、剥離層804上に形成されており、剥離層804は基板803上に形成されている。溝801は各集積回路802の間に形成されており、なおかつ剥離層804が露出する程度の深さを有している。また本実施例では、複数の集積回路802は溝801によって完全にではなく部分的に分離されている。
次に図10(A)、図10(B)に示した溝801からエッチングガスを流し込み、剥離層804をエッチングにより除去した後の様子を、図10(C)、図10(D)に示す。図10(C)は、溝801が形成された基板803の上面図に相当し、図10(D)は、図10(C)のA−A’における断面図に相当する。エッチングにより溝801から破線805に示す領域まで、剥離層804のエッチングが進んだものとする。図10(C)、図10(D)に示すように、複数の集積回路802が、完全にではなく互いに一部繋がった状態で溝801により分離されていることで、剥離層804をエッチングした後に各集積回路802が支えをなくして移動してしまうのを防ぐことができる。
図10(C)、図10(D)に示した状態まで形成したら、接着剤が付着したテープや、基板等を別途用意し、集積回路802を基板803から剥離する。そして剥離された複数の集積回路802は、互いに分断される前またはされた後に、支持体に貼りあわせられる。
なお本実施例では、IDチップの作製方法の一例を示しており、本発明のIDチップの作製方法は本実施例で示した構成に限定されない。
本実施例は、実施例1〜実施例5と組み合わせて実施することが可能である。
本実施例では、本発明のIDチップの利用について説明する。
本発明のIDチップは、フレキシブルな基板を用いている場合、可撓性を有する対象物、或いは曲面を有する対象物に、貼り合わせるのに好適である。また本発明のIDチップが有する集積回路の中に、データの書き換えができないROMなどのメモリを形成しておけば、IDチップが取り付けられた対象物の偽造を防止することができる。また例えば、産地、生産者などによって商品価値が大きく左右される食料品に、本発明のIDチップを用いることは、産地、生産者などの偽装を低いコストで防止するのに有用である。
具体的に本発明のIDチップは、例えば、荷札、値札、名札など、対象物の情報を有するタグに取り付けて用いることができる。或いは、本発明のIDチップ自体をタグとして用いても良い。また例えば、戸籍謄本、住民票、パスポート、免許証、身分証、会員証、鑑定書、クレジットカード、キャッシュカード、プリペイドカード、診察券、定期券など、事実を証明する文書に相当する証書に取り付けても良い。また例えば、手形、小切手、貨物引換証、船貨証券、倉庫証券、株券、債券、商品券、抵当証券など、私法上の財産権を表示する証券に相当する有価証券に取り付けても良い。
図11(A)に、本発明のIDチップ1302を取り付けた小切手1301の一例を示す。図11(A)では、IDチップ1302が小切手1301の内部に取り付けられているが、表に露出させておいても良い。
図11(B)に、本発明のIDチップ1303を取り付けたパスポート1304の一例を示す。図11(B)では、IDチップ1303がパスポート1304の表紙に取り付けられているが、パスポート1304が有する他のページに取り付けられていても良い。
図11(C)に、本発明のIDチップ1305を取り付けた、商品券1306の一例を示す。なおIDチップ1305は商品券1306の内部に形成しても良いし、商品券1306の表面に露出させるように形成しても良い。
またTFTを有する集積回路を用いたIDチップは、安価、かつ薄型である。そのため本発明のIDチップは、最終的に消費者によって使い捨てられるような用途に向いている。特に、数円、数十円単位の値段の差が売り上げに大きく影響する商品に用いる場合、本発明の安価でかつ薄型のIDチップを有する包装材は、非常に有用である。包装材とは、ラップ、ペットボトル、トレイ、カプセルなど、対象物を包装するために成形が可能な、或いは成形された支持体に相当する。
図12(A)に、本発明のIDチップ1307が取り付けられた包装材1308で、販売用のお弁当1309を包装している様子を示す。IDチップ1307内に商品の価格などを記録しておくことで、リーダ/ライタとしての機能を有するレジスターでお弁当1309の代金を清算することができる。
また例えば、商品のラベルに本発明のIDチップを付けておき、該IDチップを用いて商品の流通を管理するような利用の仕方も可能である。
図12(B)に示すように、裏面が粘着性を有する商品のラベル1310などの支持体に、本発明のIDチップ1311を取り付ける。そして、IDチップ1311が取り付けられたラベル1310を、商品1312に装着する。商品1312に関する識別情報は、ラベル1310に貼り合わされたIDチップ1311から、無線で読み取ることが可能である。よってIDチップ1311により、流通の過程において、商品の管理が容易になる。
例えば、IDチップ1311内の集積回路が有するメモリとして、不揮発性メモリを用いている場合、商品1312の流通のプロセスを記録することができる。また商品の生産段階におけるプロセスを記録しておくことで、卸売業者、小売業者、消費者が、産地、生産者、製造年月日、加工方法などを把握することが容易になる。
本実施例は、実施例1〜実施例6の構成と組み合わせて実施することが可能である。
本実施例では、本発明のIDチップに用いられるTFTの構成について説明する。
図13(A)に、本実施例のTFTの断面図を示す。401はnチャネル型TFT、402はpチャネル型TFTに相当する。nチャネル型TFT401を例に挙げて、より詳しい構成について説明する。
nチャネル型TFT401は活性層405を有しており、該活性層405は、ソース領域またはドレイン領域として用いる2つの不純物領域403と、該2つの不純物領域403の間に挟まれているチャネル形成領域404と、2つの不純物領域403とチャネル形成領域404の間に挟まれている2つのLDD(Light Doped Drain)領域410とを有している。またnチャネル型TFT401は、ゲート絶縁膜406と、ゲート電極407と、絶縁膜で形成された2つのサイドウォール408、409とを有している。
なお本実施例ではゲート電極407が、2層の導電膜407a、407bを有しているが、本発明はこの構成に限定されない。ゲート電極407は1層の導電膜で形成されていても良いし、2層以上の導電膜で形成されていても良い。ゲート電極407は、ゲート絶縁膜406を間に挟んで、活性層405が有するチャネル形成領域404と重なっている。またサイドウォール408、409は、ゲート絶縁膜406を間に挟んで、活性層405が有する2つのLDD領域410と重なっている。
サイドウォール408は、例えば膜厚100nmの酸化珪素膜をエッチングすることで、サイドウォール409は、例えば膜厚200nmのLTO膜(Low Temperature Oxide、低温酸化膜)をエッチングすることで形成することができる。本実施例では、サイドウォール408に用いられる酸化珪素膜をプラズマCVD法で形成し、サイドウォール409に用いられるLTO膜を、酸化珪素膜を減圧CVD法で形成する。なお酸化珪素膜には、窒素が混じっていても良いが、該窒素原子数は酸素原子数よりも少ないものとする。
不純物領域403及びLDD領域410は、ゲート電極407をマスクにして活性層405にn型の不純物をドーピングした後、サイドウォール408、409を形成し、該サイドウォール408、409マスクとして活性層405にn型の不純物をドーピングすることで、作り分けることができる。
なおpチャネル型TFT402は、nチャネル型TFT401と構成はほとんど同じであるが、pチャネル型TFT402が有する活性層411の構成のみ異なっている。活性層411はLDD領域を有しておらず、2つの不純物領域412と、該2つの不純物領域412に挟まれているチャネル形成領域413とを有している。そして、不純物領域412には、p型の不純物がドーピングされている。なお図13(A)では、pチャネル型TFT402がLDD領域を有していない例を示しているが、本発明はこの構成に限定されない。pチャネル型TFT402がLDD領域を有していても良い。
図13(B)に、図13(A)に示したTFTにおいて、サイドウォールが1つである場合を示す。図13(B)に示すnチャネル型TFT421と、pチャネル型TFT422は、それぞれ1つのサイドウォール428、429を有している。サイドウォール428、429は、例えば膜厚100nmの酸化珪素膜をエッチングすることで形成することができる。本実施例では、サイドウォール428に用いられる酸化珪素膜をプラズマCVD法で形成する。なお酸化珪素膜には、窒素が混じっていても良いが、該窒素原子数は酸素原子数よりも少ないものとする。
次に図13(C)に、図13(B)に示したTFTにおいて、ゲート電極をマスクにしてゲート絶縁膜をエッチングしてから、サイドウォールを形成する例について説明する。図13(C)に示すnチャネル型TFT431と、pチャネル型TFT432は、それぞれゲート電極433、434と、ゲート絶縁膜435、436を有しており、ゲート絶縁膜435、436は、ゲート電極433、434をマスクとしてエッチングすることで形成されている。
なお本実施例ではゲート電極433、434が、それぞれ2層の導電膜433a、433bと、2層の導電膜434a、434bとを有しているが、本発明はこの構成に限定されない。ゲート電極433、434は1層の導電膜で形成されていても良いし、2層以上の導電膜で形成されていても良い。
次に図13(D)に、ボトムゲート型のTFTの構成を示す。441はnチャネル型TFT、442はpチャネル型TFTに相当する。nチャネル型TFT441を例に挙げて、より詳しい構成について説明する。
図13(D)において、nチャネル型TFT441は活性層445を有しており、該活性層445は、ソース領域またはドレイン領域として用いる2つの不純物領域443と、該2つの不純物領域443の間に挟まれているチャネル形成領域444と、2つの不純物領域443とチャネル形成領域444の間に挟まれている2つのLDD(Light Doped Drain)領域450とを有している。またnチャネル型TFT441は、ゲート絶縁膜446と、ゲート電極447と、絶縁膜で形成された保護膜448を有している。
ゲート電極447は、ゲート絶縁膜446を間に挟んで、活性層445が有するチャネル形成領域444と重なっている。ゲート絶縁膜446は、ゲート電極447が形成された後に形成されており、活性層445はゲート絶縁膜446が形成された後に形成されている。また保護膜448は、チャネル形成領域444を間に挟んでゲート絶縁膜446と重なっている。
保護膜448は、例えば膜厚100nmの酸化珪素膜をエッチングすることで形成することができる。本実施例では、保護膜448に用いられる酸化珪素膜をプラズマCVD法で形成する。なお酸化珪素膜には、窒素が混じっていても良いが、該窒素原子数は酸素原子数よりも少ないものとする。
不純物領域443及びLDD領域450は、レジストで形成したマスクを用いて活性層445にn型の不純物をドーピングした後、保護膜448を形成し、該保護膜448マスクとして活性層445にn型の不純物をドーピングすることで、作り分けることができる。
なおpチャネル型TFT442は、nチャネル型TFT441と構成はほとんど同じであるが、pチャネル型TFT442が有する活性層451の構成のみ異なっている。活性層451はLDD領域を有しておらず、2つの不純物領域452と、該2つの不純物領域452に挟まれているチャネル形成領域453とを有している。そして、不純物領域452には、p型の不純物がドーピングされている。なお図13(A)では、pチャネル型TFT442がLDD領域を有していない例を示しているが、本発明はこの構成に限定されない。pチャネル型TFT442がLDD領域を有していても良い。
本実施例は、実施例1〜実施例7の構成と組み合わせて実施することが可能である。
本発明のIDチップの外観図及び断面図。 本発明のIDチップの作製方法を示す図。 本発明のIDチップの作製方法を示す図。 本発明のIDチップの作製方法を示す図。 本発明のIDチップの作製方法を示す図。 本発明のIDチップの断面図。 大型の基板を用いて、本発明のIDチップを複数作製する方法を示す図。 応力を加えた状態のIDチップの外観図。 本発明のIDチップの、機能的な構成の一形態を示すブロック図。 1つの基板上に形成された複数の集積回路を剥離する際、形成される溝の形状を示す図。 本発明のIDチップの利用方法について示す図。 本発明のIDチップの利用方法について示す図。 本発明のIDチップに用いられるTFTの構成を示す図。 本発明のIDチップの断面図。 本発明のIDチップの断面図。
符号の説明
100 集積回路
101 アンテナ
102 基板
103 カバー材
104 破線
105 TFT
106 封止膜
106a バリア膜
106b 応力緩和膜
106c バリア膜
107 封止膜
107a バリア膜
107b 応力緩和膜
107c バリア膜
1301 小切手
1302 IDチップ
1303 IDチップ
1304 パスポート
1305 IDチップ
1306 商品券
1307 IDチップ
1308 包装材
1309 弁当
1310 ラベル
1311 IDチップ
1312 商品
401 nチャネル型TFT
402 pチャネル型TFT
403 不純物領域
404 チャネル形成領域
405 活性層
406 ゲート絶縁膜
407 ゲート電極
407a 導電膜
407b 導電膜
408 サイドウォール
409 サイドウォール
410 LDD領域
411 活性層
412 不純物領域
413 チャネル形成領域
421 nチャネル型TFT
422 pチャネル型TFT
428 サイドウォール
429 サイドウォール
431 nチャネル型TFT
432 pチャネル型TFT
433 ゲート電極
433a 導電膜
433b 導電膜
434 ゲート電極
434a 導電膜
434b 導電膜
435 ゲート絶縁膜
436 ゲート絶縁膜
441 nチャネル型TFT
442 pチャネル型TFT
443 不純物領域
444 チャネル形成領域
445 活性層
446 ゲート絶縁膜
447 ゲート電極
448 保護膜
450 LDD領域
451 活性層
452 不純物領域
453 チャネル形成領域
500 基板
501 剥離層
502 封止膜
502a バリア膜
502b 応力緩和膜
502c バリア膜
503 半導体膜
504 TFT
505 パッシベーション膜
507 ゲート絶縁膜
508 ゲート電極
510 層間絶縁膜
513 配線
514 配線
515 層間絶縁膜
519 アンテナ
521 保護層
522 溝
530 接着剤
531 基板
532 接着剤
533 カバー材
540 封止膜
540a バリア膜
540b 応力緩和膜
540c バリア膜
541 封止膜
541a バリア膜
541b バリア膜
541c 応力緩和膜
550 配線
551 保護層
552 溝
553 接着剤
554 基板
555 カバー材
556 封止膜
556a バリア膜
556b 応力緩和膜
556c バリア膜
557 アンテナ
558 接着剤
560 基板
561 封止膜
562 TFT
563 接着剤
564 下地膜
601 TFT
602 半導体膜
603 ゲート絶縁膜
604 ゲート電極
605 パッシベーション膜
606 層間絶縁膜
607 配線
608 アンテナ
611 TFT
612 半導体膜
613 ゲート絶縁膜
614 ゲート電極
618 アンテナ
701 集積回路
702 アンテナ
703 基板
704 接着剤
705 カバー材
706 接着剤
707 IDチップ
801 溝
802 集積回路
803 基板
804 剥離層
805 破線
900 アンテナ
901 集積回路
902 アンテナコイル
903 容量素子
904 変調回路
905 整流回路
906 マイクロプロセッサ
907 メモリ
908 スイッチ
909 復調回路

Claims (3)

  1. 第1の基板上に剥離層を形成し、
    前記剥離層上に第1の封止膜を形成し、
    前記第1の封止膜上に薄膜トランジスタを用いた第1の集積回路及び第2の集積回路と、前記第1の集積回路と電気的に接続された第1のアンテナ、及び前記第2の集積回路と電気的に接続された第2のアンテナとを形成し、
    前記第1の集積回路と、前記第2の集積回路との間の前記剥離層を露出するように溝を形成し、
    前記剥離層を除去するための気体又は液体でなる材料を前記溝から導入し、前記剥離層を除去するとともに、前記第1の基板と、前記第1の集積回路及び前記第2の集積回路とは剥離され、
    前記第1の集積回路及び前記第2の集積回路は、前記第1の封止膜を間にして第2の基板に貼り合わせ、
    前記第2の基板に貼り合わされた前記第1の集積回路と電気的に接続された第1のアンテナ、及び前記第2の集積回路と電気的に接続された第2のアンテナは、第2の封止膜を間にして第3の基板と貼り合わされることを特徴とする半導体装置の作製方法であって、
    前記溝は、前記第1の集積回路と、前記第2の集積回路とが一部繋がった状態に形成され、
    前記第1の集積回路と、前記第2の集積回路とは、前記第1の基板とから剥離された後に分断されることを特徴とする半導体装置の作製方法。
  2. 請求項において、
    ダイシング又はスクライブを用いて、前記第1の集積回路と、前記第2の集積回路とを分断することを特徴とする半導体装置の作製方法。
  3. 請求項又は請求項において、
    前記第1の封止膜は、複数の第1の絶縁膜と、前記複数の第1の絶縁膜の間に挟まれた単数または複数の第2の絶縁膜とを有し、
    前記第2の封止膜は、複数の第3の絶縁膜と、前記複数の第3の絶縁膜の間に挟まれた単数または複数の第4の絶縁膜とを有し、
    前記第2の絶縁膜は前記第1の絶縁膜よりも応力が小さく、
    前記第4の絶縁膜は前記第3の絶縁膜よりも応力が小さく、
    前記第1の絶縁膜及び前記第3の絶縁膜は無機絶縁膜であることを特徴とする半導体装置の作製方法。
JP2005024826A 2004-02-06 2005-02-01 半導体装置の作製方法 Expired - Fee Related JP4989854B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005024826A JP4989854B2 (ja) 2004-02-06 2005-02-01 半導体装置の作製方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004030369 2004-02-06
JP2004030369 2004-02-06
JP2005024826A JP4989854B2 (ja) 2004-02-06 2005-02-01 半導体装置の作製方法

Publications (3)

Publication Number Publication Date
JP2005252243A JP2005252243A (ja) 2005-09-15
JP2005252243A5 JP2005252243A5 (ja) 2008-03-13
JP4989854B2 true JP4989854B2 (ja) 2012-08-01

Family

ID=35032390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005024826A Expired - Fee Related JP4989854B2 (ja) 2004-02-06 2005-02-01 半導体装置の作製方法

Country Status (1)

Country Link
JP (1) JP4989854B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5132135B2 (ja) * 2005-12-02 2013-01-30 株式会社半導体エネルギー研究所 半導体装置の作製方法
KR101319468B1 (ko) * 2005-12-02 2013-10-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체장치의 제조방법
US7968382B2 (en) * 2007-02-02 2011-06-28 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
US7994607B2 (en) 2007-02-02 2011-08-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR101363835B1 (ko) * 2007-02-05 2014-02-17 엘지디스플레이 주식회사 표시장치 및 이의 제조 방법
EP1970951A3 (en) * 2007-03-13 2009-05-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
CN101803008B (zh) 2007-09-07 2012-11-28 株式会社半导体能源研究所 半导体装置及其制造方法
US8093136B2 (en) * 2007-12-28 2012-01-10 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing SOI substrate
KR102340066B1 (ko) * 2016-04-07 2021-12-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 박리 방법 및 플렉시블 디바이스의 제작 방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000020665A (ja) * 1998-06-30 2000-01-21 Toshiba Corp 半導体装置
JP4748859B2 (ja) * 2000-01-17 2011-08-17 株式会社半導体エネルギー研究所 発光装置の作製方法
JP2002353235A (ja) * 2001-05-23 2002-12-06 Matsushita Electric Ind Co Ltd アクティブマトリクス基板とそれを用いた表示装置およびその製造方法
JP4244120B2 (ja) * 2001-06-20 2009-03-25 株式会社半導体エネルギー研究所 発光装置及びその作製方法
JP4524561B2 (ja) * 2001-07-24 2010-08-18 セイコーエプソン株式会社 転写方法

Also Published As

Publication number Publication date
JP2005252243A (ja) 2005-09-15

Similar Documents

Publication Publication Date Title
US7994617B2 (en) Semiconductor device
JP4989854B2 (ja) 半導体装置の作製方法
US8289164B2 (en) Semiconductor device and manufacturing method thereof
JP4610348B2 (ja) 半導体装置
KR101161361B1 (ko) 반도체장치
US8546912B2 (en) Semiconductor device
US7714633B2 (en) Limiter and semiconductor device using the same
JP2005285109A (ja) 半導体装置、icカード
JP4836465B2 (ja) 薄膜集積回路の作製方法及び薄膜集積回路用素子基板
JP4566794B2 (ja) 半導体装置
JP5041672B2 (ja) 半導体装置
JP4718863B2 (ja) 半導体装置及び半導体装置の作製方法
JP4545617B2 (ja) 半導体装置
JP2005229098A (ja) 半導体装置及び半導体装置の作製方法
JP5352045B2 (ja) 集積回路装置の作製方法
JP4877870B2 (ja) 半導体装置の製造方法
JP4908936B2 (ja) 半導体装置の作製方法

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110531

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120216

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120501

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees