JP4961232B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP4961232B2
JP4961232B2 JP2007069784A JP2007069784A JP4961232B2 JP 4961232 B2 JP4961232 B2 JP 4961232B2 JP 2007069784 A JP2007069784 A JP 2007069784A JP 2007069784 A JP2007069784 A JP 2007069784A JP 4961232 B2 JP4961232 B2 JP 4961232B2
Authority
JP
Japan
Prior art keywords
pattern
insulating film
semiconductor device
manufacturing
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007069784A
Other languages
Japanese (ja)
Other versions
JP2008235382A (en
Inventor
圭介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lapis Semiconductor Co Ltd
Original Assignee
Lapis Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lapis Semiconductor Co Ltd filed Critical Lapis Semiconductor Co Ltd
Priority to JP2007069784A priority Critical patent/JP4961232B2/en
Publication of JP2008235382A publication Critical patent/JP2008235382A/en
Application granted granted Critical
Publication of JP4961232B2 publication Critical patent/JP4961232B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、半導体装置の製造工程(プロセス)で生じるウェハ等の基板の段差を抑制し、ホトエッチング(「ホトリソグラフィ」ともいう。)の際のデフォーカス(defocus、露光工程におけるフォーカス(焦点)ずれ)によるパターン不良が発生することを防止する半導体装置の製造方法に関するものである。   The present invention suppresses a step of a substrate such as a wafer that occurs in a manufacturing process (process) of a semiconductor device, and defocuses during defocusing (photofocusing). The present invention relates to a method for manufacturing a semiconductor device that prevents occurrence of pattern defects due to deviation.

半導体装置の製造方法において、ウェア等の基板上に絶縁膜を介して配線パターンを形成するためのホトエッチング工程では、例えば、次の(1)〜(7)のような処理が行われる。   In the method for manufacturing a semiconductor device, the following processes (1) to (7) are performed, for example, in a photoetching process for forming a wiring pattern on a substrate such as wear via an insulating film.

(1) 金属膜の形成
基板上に形成した絶縁膜の全面に、配線パターン用の金属膜を被着する。
(1) Formation of metal film A metal film for wiring pattern is deposited on the entire surface of the insulating film formed on the substrate.

(2) ホトレジスト塗布
金属膜の全面にホトレジストを塗布する。
(2) Photoresist application A photoresist is applied to the entire surface of the metal film.

(3) 位置合わせ・露光
半導体装置の製造工程では、数回のホトエッチング工程を行うため、ホトマスクのパターンと基板上のパターンとの相対的な位置を合わせる必要がある。これをマスク合わせという。その後、紫外光(以下「UV光」という。)をホトマスクを通してホトレジストに照射する(露光)。
(3) Positioning / Exposure In the manufacturing process of a semiconductor device, since the photoetching process is performed several times, it is necessary to match the relative positions of the pattern of the photomask and the pattern on the substrate. This is called mask alignment. Thereafter, the photoresist is irradiated with ultraviolet light (hereinafter referred to as “UV light”) through a photomask (exposure).

(4) 現像
露光後、有機溶剤等で現像レジストパターンを得る(現像)。
(4) Development After exposure, a development resist pattern is obtained with an organic solvent or the like (development).

(5) エッチング
レジストパターンをマスクにして、金属膜をエッチングし、配線パターンを形成する。
(5) Etching Using the resist pattern as a mask, the metal film is etched to form a wiring pattern.

(6) レジスト除去
エッチング後、不必要になったレジストパターンを除去する(レジスト除去)。
(6) Resist removal After etching, an unnecessary resist pattern is removed (resist removal).

(7) 絶縁膜形成
配線パターンを保護するため、この配線パターン上に絶縁膜を形成する。
(7) Insulating film formation In order to protect the wiring pattern, an insulating film is formed on the wiring pattern.

この絶縁膜の段差を抑えるため、従来、例えば、下記の文献等に記載されているように、回転可能な研磨パッドを用いてウェハ上の絶縁膜表面を平坦化する化学的機械的研磨(Chemical Mechanical Polishing、以下「CMP」という。)が用いられている。   In order to suppress the step of the insulating film, chemical mechanical polishing (Chemical polishing) that planarizes the surface of the insulating film on the wafer using a rotatable polishing pad, for example, as described in the following documents, etc. Mechanical Polishing, hereinafter referred to as “CMP”) is used.

特開2003−140319号公報JP 2003-140319 A

図3(A)、(B)は、前記特許文献1等に記載された従来の半導体装置の製造方法における一部の製造工程図である。   3A and 3B are partial manufacturing process diagrams in the conventional method for manufacturing a semiconductor device described in Patent Document 1 and the like.

図3(A)の絶縁膜形成工程において、ウェハ等の基板1上に絶縁膜を介して形成された配線パターン2−1上に、高密度プラズマCVD(high DensityPlasma-Chemical Vapor Deposition、以下「HD−CVD」という。)等により、被研磨膜(例えば、二酸化シリコン(SiO2)等の酸化膜や層間絶縁膜)3−1が堆積される。被研磨膜3−1の表面は、配線パターン2−1の凹凸等に依存して局所的な凹凸や段差が生じる。これにより、高集積化のための多層配線構造等において、層間のショート、配線間のショート、オープン等の不具合が生じて歩留まりや信頼性低下の原因となるため、平坦化処理が必要になる。   In the insulating film forming step of FIG. 3A, a high density plasma CVD (High Density Plasma-Chemical Vapor Deposition, hereinafter referred to as “HD”) is formed on the wiring pattern 2-1 formed on the substrate 1 such as a wafer via the insulating film. A film to be polished (for example, an oxide film such as silicon dioxide (SiO 2) or an interlayer insulating film) 3-1 is deposited by “-CVD”) or the like. The surface of the film to be polished 3-1 has local unevenness and steps depending on the unevenness of the wiring pattern 2-1. As a result, in a multi-layer wiring structure or the like for high integration, a defect such as a short circuit between layers, a short circuit between wirings, and an open occurs, resulting in a decrease in yield and reliability. Therefore, a flattening process is necessary.

図3(B)の平坦化工程において、CMPを用いて被研磨膜3−1を平坦化すると、平坦化後の被研磨膜3−1aにおいて、下地の配線パターン密度(基板上の配線パターンが配置される面積が基板全体の面積に占める割合)によって研磨レートに差が生じる。例えば、図3(B)に示す被研磨膜3−1aの左側の配線パターン密度が高い領域(密な領域)の膜厚D1に比べて、右側の配線パターン密度が低い領域(疎な領域)の膜厚D2が小さくなり(D1>D2)、残膜厚差(=D1−D2、このCMP後の残膜厚差を以下「グローバル段差」という。)が生じる。このグローバル段差の発生を抑えるために、図4(A)、(B)に示すような方法が提案されている。   In the planarization step of FIG. 3B, when the polishing target film 3-1 is planarized using CMP, the underlying wiring pattern density (the wiring pattern on the substrate is changed) in the polished target film 3-1a. The polishing rate varies depending on the ratio of the area to be disposed to the total area of the substrate. For example, a region (sparse region) where the wiring pattern density on the right side is lower than the film thickness D1 of a region (dense region) where the wiring pattern density on the left side of the film 3-1a to be polished shown in FIG. The film thickness D2 becomes smaller (D1> D2), and a remaining film thickness difference (= D1-D2, the remaining film thickness difference after CMP is hereinafter referred to as “global step”) is generated. In order to suppress the occurrence of this global level difference, methods as shown in FIGS. 4A and 4B have been proposed.

図4(A)、(B)は、前記特許文献1等に記載された従来の半導体装置の製造方法における一部の製造工程図であり、従来の図3中の要素と共通の要素には共通の符号が付されている。   4A and 4B are partial manufacturing process diagrams in the conventional method for manufacturing a semiconductor device described in Patent Document 1 and the like. Elements common to those in FIG. The common code | symbol is attached | subjected.

図4(A)の配線パターン形成工程において、ウェハ等の基板1上に絶縁膜を介して配線パターン2−1を形成する場合に、配線パターン2−1の例えば右側の疎な領域にダミー(疑似)配線パターン4を形成し、これらの配線パターン2−1及びダミー配線パターン4の上に、HD−CVD等により堆積する被研磨膜3−1の表面を平らにする工夫をしている。   4A, when the wiring pattern 2-1 is formed on the substrate 1 such as a wafer via an insulating film, a dummy (for example, a sparse region on the right side of the wiring pattern 2-1 is formed. A pseudo) wiring pattern 4 is formed, and the surface of the film to be polished 3-1 deposited by HD-CVD or the like is flattened on the wiring pattern 2-1 and the dummy wiring pattern 4.

これにより、図4(B)の平坦化工程において、CMPを用いて被研磨膜3−1を平坦化すると、平坦化後の被研磨膜3−1aにおいて、下地のパターン密度が均一化されているので、図4(B)の左側の領域の膜厚D1と右側の領域の膜厚D2とがほぼ等しくなり、グローバル段差の発生を抑えることが可能になる。   4B, when the polishing target film 3-1 is flattened using CMP in the flattening step of FIG. 4B, the pattern density of the base is uniformized in the flattened polishing film 3-1a. Therefore, the film thickness D1 in the left region and the film thickness D2 in the right region in FIG. 4B are substantially equal, and the occurrence of a global step can be suppressed.

図5は、従来の半導体装置の製造方法における課題を説明するための製造工程図であり、従来の図3及び図4中の要素と共通の要素には共通の符号が付されている。   FIG. 5 is a manufacturing process diagram for explaining a problem in the conventional method of manufacturing a semiconductor device, and common elements to those in FIGS. 3 and 4 are denoted by common reference numerals.

従来の図4に示すようなダミー配線パターン4を形成する製造方法では、例えば、メタル配線のような遮光性(非透明性)のダミー配線パターン4を生成すべき箇所の下側に位置する基板1上に、光電変換素子(例えば、光センサのような受光素子)5を作成する場合、この上に、図5の破線で示されるようなダミー配線パターン4を配置すると、上方から被研磨膜3−1aを通して入射される光が受光素子5まで到達しないため、ダミー配線パターン4の配置を行えない箇所が発生するので、ダミー配線パターン方法を採用できない。   In the conventional manufacturing method for forming the dummy wiring pattern 4 as shown in FIG. 4, for example, a substrate located below the portion where the light-shielding (non-transparent) dummy wiring pattern 4 such as a metal wiring is to be generated. When a photoelectric conversion element (for example, a light receiving element such as an optical sensor) 5 is formed on 1, a dummy wiring pattern 4 as shown by a broken line in FIG. Since the light incident through 3-1a does not reach the light receiving element 5, a portion where the dummy wiring pattern 4 cannot be arranged is generated, so the dummy wiring pattern method cannot be adopted.

しかしながら、ダミー配線パターン方法を採用しない場合、特に、多層配線構造では、例えば、1層目の被研磨膜3−1a上に、2層目の配線パターン2−2が形成され、更に、この上に、2層目の被研磨膜3−2a、及び3層目の配線パターン2−3等が順に積層され、各層の被研磨膜3−1a,3−2a,・・・毎にCMPが繰り返される。この結果、図5の実線で示すように、多層配線でCMPを繰り返す場合は、左側の領域の全膜厚D11と右側の領域の全膜厚D12とのグローバル段差(=D11−D12)が著しく増大し、ホトエッチング工程において、例えば、右側の領域における2層目の被研磨膜3−2aを生成する際の露光時の焦点深度が確保できなくなり、パターン不良が発生するという課題があった。   However, when the dummy wiring pattern method is not adopted, particularly in the multilayer wiring structure, for example, a second-layer wiring pattern 2-2 is formed on the first-layer polishing film 3-1a. In addition, a second layer of the polished film 3-2a, a third layer of the wiring pattern 2-3, and the like are sequentially stacked, and CMP is repeated for each of the layers of the polished film 3-1a, 3-2a,. It is. As a result, as shown by the solid line in FIG. 5, when CMP is repeated with multilayer wiring, the global step (= D11−D12) between the total film thickness D11 in the left region and the total film thickness D12 in the right region is significant. In the photoetching process, for example, there is a problem that the depth of focus at the time of exposure when the second layer of the polishing target film 3-2a in the right region is generated cannot be secured, and a pattern defect occurs.

本発明の半導体装置の製造方法では、基板上に搭載された光電変換素子(例えば、受光素子)及び回路部を被覆する第1絶縁膜を形成する第1工程と、CMPにより、前記第1絶縁膜の表面を平坦化する第2工程と、表面が平坦化された前記第1絶縁膜上において、前記回路部上に位置して前記回路部に対して電気的に接続される遮光性の配線パターンと、前記光電変換素子上に位置して前記光電変換素子を覆うグローバル段差抑制用のダミーパターンと、を形成する第3工程と、前記配線パターン及び前記ダミーパターンを被覆する第2絶縁膜を形成する第4工程と、CMPにより、前記第2絶縁膜の表面を平坦化する第5工程と、前記ダミーパターンとこの下に位置する前記第1絶縁膜及び前記第2絶縁膜とをエッチングにより選択的に除去して前記光電変換素子を露出する第工程とを有している。 In the method of manufacturing the semiconductor device of the present invention, the photoelectric conversion elements mounted on a substrate (e.g., light receiving element) a first step of forming a first insulating film you covering and the circuit section, by CMP, the first A second step of planarizing the surface of the insulating film; and a light-shielding property that is located on the circuit unit and electrically connected to the circuit unit on the first insulating film having a planarized surface. A third step of forming a wiring pattern and a dummy pattern for suppressing a global step located on the photoelectric conversion element and covering the photoelectric conversion element; and a second insulating film covering the wiring pattern and the dummy pattern Etching the fourth step of forming the fifth step, planarizing the surface of the second insulating film by CMP, etching the dummy pattern and the first insulating film and the second insulating film located therebelow Selectively And a sixth step of exposing the photoelectric conversion element removed by.

本発明における半導体装置の製造方法によれば、光電変換素子を覆う領域にグローバル段差抑制用のダミーパターンを配置するので、上層の工程で光電変換素子領域は過剰に凹まず、一定の範囲にグローバル段差を保つことができる。これにより、上層のホールや配線パターン等を作成する際のホトエッチングの露光工程において焦点ずれによるパターン不良を防止することが可能となる。   According to the method for manufacturing a semiconductor device of the present invention, since the dummy step for suppressing the global level difference is arranged in the region covering the photoelectric conversion element, the photoelectric conversion element region is not excessively recessed in the upper layer process, and the global range is kept within a certain range. A step can be maintained. This makes it possible to prevent pattern defects due to defocusing in the photoetching exposure process when creating an upper layer hole, wiring pattern, or the like.

半導体装置の製造方法では、基板上に搭載された光電変換素子(例えば、受光素子)及び回路部を被覆する第1絶縁膜を形成する第1工程と、CMPにより、前記第1絶縁膜の表面を平坦化する第2工程と、表面が平坦化された前記第1絶縁膜上において、前記回路部上に位置して前記回路部に対して電気的に接続される遮光性の配線パターンと、前記光電変換素子上に位置して前記光電変換素子を覆うグローバル段差抑制用のダミーパターンと、を形成する第3工程と、前記配線パターン及び前記ダミーパターンを被覆する第2絶縁膜を形成する第4工程と、CMPにより、前記第2絶縁膜の表面を平坦化する第5工程と、前記ダミーパターンとこの下に位置する前記第1絶縁膜及び前記第2絶縁膜とをエッチングにより選択的に除去して前記光電変換素子を露出する第工程とを有している。 In the method of manufacturing a semiconductor device, the photoelectric conversion elements mounted on a substrate (e.g., light receiving element) a first step of forming a first insulating film you covering and the circuit section, by CMP, the first insulating film A second step of planarizing the surface, and a light-shielding wiring pattern located on the circuit unit and electrically connected to the circuit unit on the first insulating film having the planarized surface A third step of forming a global step suppressing dummy pattern located on the photoelectric conversion element and covering the photoelectric conversion element, and forming a second insulating film covering the wiring pattern and the dummy pattern A fourth step, a fifth step of planarizing the surface of the second insulating film by CMP, and selective etching of the dummy pattern and the first insulating film and the second insulating film located therebelow. To remove And a sixth step of exposing the serial photoelectric conversion element.

前記第工程では、例えば、ホトエッチングにより、レジストパターンをマスクにして、前記ダミーパターンとこの下に位置する前記第1絶縁膜及び前記第2絶縁膜とを除去する。 In the sixth step, for example, the dummy pattern and the first insulating film and the second insulating film located therebelow are removed by photo-etching using the resist pattern as a mask.

(実施例1の製造方法)
図2−1(a)〜(e)、図2−2(f)〜(i)、及び図2−3(j)〜(l)は、本発明の実施例1の多層配線構造における半導体装置の製造方法を示す概略の縦断面の製造工程図である。及び、図1(A)〜(C)は、図2−3(j)〜(l)と対応する同一の製造工程図である。
(Manufacturing method of Example 1)
FIGS. 2-1 (a) to (e), FIGS. 2-2 (f) to (i), and FIGS. 2-3 (j) to (l) are semiconductors in the multilayer wiring structure of Example 1 of the present invention. It is a manufacturing process figure of the general | schematic longitudinal cross-section which shows the manufacturing method of an apparatus. 1 (A) to 1 (C) are the same manufacturing process diagrams corresponding to FIGS. 2-3 (j) to (l).

本実施例1の多層配線構造における半導体装置の製造方法では、例えば、次の(1)〜(12)の工程により製造される。   In the manufacturing method of the semiconductor device in the multilayer wiring structure of the first embodiment, for example, it is manufactured by the following steps (1) to (12).

(1) 図2−1(a)の金属膜形成・レジスト塗布工程
Siウェハ等の基板10を用意する。この基板10の領域は、配線部11と光電変換部(例えば、受光素子部)12とに分けられる。基板10の配線部11には、図示しない半導体素子等が形成され、更に、基板10の受光素子部12には、入射光を電気に変換するための平面の長さL1の受光素子(例えば、ホトダイオード、ホトトランジスタ等)13が形成されている。基板10の配線部11上には、図示しない絶縁膜(例えば、SiO2等)を介して、配線パターン用の1層目の遮光性の金属膜(メタル膜)14−1を形成する。この時、受光素子部12上には、金属膜14−1を形成しない。受光素子部12を除き、金属膜14−1の全面にホトレジスト15−1を塗布する。レジスト塗布後、必要に応じて、塗布膜中に残存する溶剤を除くために、熱処理(プリベーク)をする。
(1) Metal film formation / resist coating process of FIG. 2-1 (a) A substrate 10 such as a Si wafer is prepared. The area of the substrate 10 is divided into a wiring part 11 and a photoelectric conversion part (for example, a light receiving element part) 12. A semiconductor element or the like (not shown) is formed on the wiring portion 11 of the substrate 10, and the light receiving element portion 12 of the substrate 10 has a light receiving element (for example, a planar length L 1 for converting incident light into electricity) (Photodiode, phototransistor, etc.) 13 is formed. On the wiring part 11 of the substrate 10, a first light-shielding metal film (metal film) 14-1 for a wiring pattern is formed via an insulating film (for example, SiO2) not shown. At this time, the metal film 14-1 is not formed on the light receiving element portion 12. A photoresist 15-1 is applied to the entire surface of the metal film 14-1, except for the light receiving element portion 12. After applying the resist, if necessary, heat treatment (pre-baking) is performed to remove the solvent remaining in the coating film.

(2) 図2−1(b)の位置合わせ・露光工程
半導体装置の製造工程では、数回のホトエッチング工程を行うため、ホトマスク16のパターンと基板上のパターンとの相対的な位置合わせを行う(マスク合わせ)。その後、UV光17を照射する(露光)。
(2) Alignment / Exposure Process in FIG. 2-1 (b) In the manufacturing process of the semiconductor device, since the photoetching process is performed several times, relative alignment between the pattern of the photomask 16 and the pattern on the substrate is performed. Perform (mask alignment). Thereafter, UV light 17 is irradiated (exposure).

(3) 図2−1(c)の現像工程
露光後、有機溶剤等で現像してホトレジスト15−1のレジストパターン15−1aを得る(現像)。現像後、必要に応じて、エッチング前にレジストパターン15−1aと1層目の金属膜14−1との密着性を良くするために、熱処理(ポストベーク)をする。
(3) Development Step in FIG. 2-1 (c) After exposure, development is performed with an organic solvent or the like to obtain a resist pattern 15-1a of the photoresist 15-1 (development). After development, if necessary, heat treatment (post-bake) is performed to improve the adhesion between the resist pattern 15-1a and the first metal film 14-1 before etching.

(4) 図2−1(d)のエッチング工程
レジストパターン15−1aをマスクにして1層目の金属膜14−1をエッチングする。
(4) Etching Step in FIG. 2-1 (d) Using the resist pattern 15-1a as a mask, the first metal film 14-1 is etched.

(5) 図2−1(e)のレジスト剥離工程
不要になったレジストパターン15−1aを剥離除去すると、配線部11上に1層目の金属製配線パターン14−1aが得られる。
(5) Resist Stripping Step in FIG. 2-1 (e) When the resist pattern 15-1a that is no longer needed is stripped and removed, a first-layer metal wiring pattern 14-1a is obtained on the wiring portion 11.

(6) 図2−2(f)の絶縁膜形成工程
DP−CVD等を用いて、全面に1層目の第1絶縁膜である被研磨膜(例えば、SiO2等の酸化膜や層間絶縁膜)20−1を所定の厚さに堆積する。被研磨膜20−1の表面は、配線パターン14−1aの凹凸等に依存して局所的な凹凸や段差が生じるので、平坦化処理が必要になる。
(6) Insulating film forming step in FIG. 2-2 (f) A film to be polished which is the first insulating film of the first layer (for example, an oxide film such as SiO 2 or an interlayer insulating film) is formed on the entire surface by using DP-CVD or the like. ) 20-1 is deposited to a predetermined thickness. Since the surface of the film to be polished 20-1 has local unevenness and steps depending on the unevenness of the wiring pattern 14-1a, a planarization process is required.

(7) 図2−2(g)の平坦化工程
CMPを用いて1層目の被研磨膜20−1の表面を平坦化する。この平坦化処理では、下地の配線パターン密度によって研磨レートに差が生じる。例えば、図2−2(g)の左側の配線部11における配線パターン密度が高い領域(密な領域)の研磨後の被研磨膜20−1aの膜厚d1に比べて、右側の受光素子部12及び配線部11における配線パターン密度が低い領域(疎な領域)の研磨後の被研磨膜20−1bの膜厚d2が小さくなり(d1>d2)、グローバル段差(=d1−d2)が生じる。
(7) Flattening Step in FIG. 2-2 (g) The surface of the first film to be polished 20-1 is flattened using CMP. In this flattening process, the polishing rate varies depending on the underlying wiring pattern density. For example, the light receiving element portion on the right side as compared with the film thickness d1 of the polished film 20-1a after polishing in the region (dense region) where the wiring pattern density is high in the wiring portion 11 on the left side in FIG. 12 and the thickness d2 of the polished film 20-1b after polishing in the region (sparse region) where the wiring pattern density is low in the wiring part 11 are reduced (d1> d2), and a global step (= d1-d2) is generated. .

(8) 図2−2(h)のレジストパターン形成工程
研磨後の被研磨膜20−1a,20−1bの全面にホトレジストを塗布し、前記と同様に、ホトマスクを用いた露光、及び現像を行ってそのホトレジストのレジストパターン15−2aを形成する。
(8) Resist pattern forming step in FIG. 2-2 (h) Photoresist is applied to the entire surfaces of the polished films 20-1a and 20-1b after polishing, and exposure and development using a photomask are performed in the same manner as described above. Then, a resist pattern 15-2a of the photoresist is formed.

(9) 図2−2(i)の導電体埋設工程
レジストパターン15−2aをマスクにして、2層目の被研磨膜20−1a,20−1bをエッチングし、1層目の配線パターン14−1a上に、縦方向に筒状に延びる複数のホール(開口部)を形成し、これらの筒状のホールをタングステン等の導電体22−1で埋める。その後、レジストパターン15−2aを除去すれば、1層目の配線パターン14−1aに対して縦方向に電気的に接続された柱状をなす複数の導電体22−1からなるホールパターンが形成される
(9) Conductor Embedding Step in FIG. 2-2 (i) Using the resist pattern 15-2a as a mask, the second-layer polished films 20-1a and 20-1b are etched to form the first-layer wiring pattern 14 A plurality of holes (openings) extending in a cylindrical shape in the vertical direction are formed on -1a, and these cylindrical holes are filled with a conductor 22-1, such as tungsten. Thereafter, if the resist pattern 15-2a is removed, a hole pattern made of a plurality of columnar conductors 22-1 electrically connected in the vertical direction to the first wiring pattern 14-1a is formed. Ru

(10) 図2−3(j)、図1(A)の配線パターン・被研磨膜形成工程
前記(a)とほぼ同様に、1層目の被研磨膜20−1a,20−1bの全面に2層目の遮光性の金属膜を形成し、この金属膜の全面にホトレジストを塗布する。前記(b)とほぼ同様に、マスク合わせを行い、露光した後、前記(c)とほぼ同様に、現像してレジストパターンを得る。前記(d)とほぼ同様に、レジストパターンをマスクにして2層目の金属膜をエッチングした後、前記(e)と同様に、不要になったレジストパターンを剥離除去し、複数の導電体22−1からなるホールパターン上に、2層目の金属製配線パターン14−2aを形成すると共に、受光素子部12上の1層目の被研磨膜20−1b箇所に、グローバル段差抑制用のダミーパターン(例えば、遮光性のメタルパターン)23を形成する。メタルパターン23は、この周辺の配線パターン14−2aの高さとほぼ同一の高さの膜厚を有すると共に、受光素子12の平面の長さL1よりも大きな平面の長さL2を有し、受光素子13の全面を覆うように形成される。
(10) Wiring pattern / polished film forming step of FIGS. 2-3 (j) and 1 (A) Almost the same as the above (a), the entire surface of the first film to be polished 20-1a, 20-1b Then, a second light-shielding metal film is formed, and a photoresist is applied to the entire surface of the metal film. In substantially the same manner as in (b), mask alignment is performed, and after exposure, development is performed in substantially the same manner as in (c) to obtain a resist pattern. In substantially the same manner as in (d) above, after etching the second metal film using the resist pattern as a mask, the unnecessary resist pattern is peeled off and removed in the same manner as in (e) above. A second metal wiring pattern 14-2a is formed on the hole pattern made of -1 and a dummy for suppressing a global level difference is formed at the location of the first layer to be polished 20-1b on the light receiving element portion 12. A pattern (for example, a light shielding metal pattern) 23 is formed. The metal pattern 23 has a film thickness that is almost the same as the height of the peripheral wiring pattern 14-2a, and has a planar length L2 that is larger than the planar length L1 of the light receiving element 12. It is formed so as to cover the entire surface of the element 13.

前記(f)とほぼ同様に、DP−CVD等を用いて、全面に2層目の第2絶縁膜である被研磨膜(例えば、SiO2等の酸化膜や層間絶縁膜)20−2を所定の厚さに堆積する。被研磨膜20−2の表面は、配線パターン14−2a及びメタルパターン23の凹凸等に依存して局所的な凹凸や段差が生じるので、平坦化処理が必要になる。 In substantially the same manner as in (f) , a film to be polished (for example, an oxide film such as SiO 2 or an interlayer insulating film) 20-2, which is a second insulating film of the second layer, is formed on the entire surface using DP-CVD or the like. To a thickness of. Since the surface of the film to be polished 20-2 has local unevenness and steps depending on the unevenness of the wiring pattern 14-2a and the metal pattern 23, a flattening process is necessary.

(11) 図2−3(k)、図1(B)の平坦化・導電体埋設工程
前記(g)とほぼ同様に、CMPを用いて2層目の被研磨膜20−2の表面を平坦化する。この平坦化処理では、下地の配線パターン密度及びメタルパターン23の有無によって研磨レートに差が生じる。例えば、図2−3(k)、図1(B)の左側の配線部11においては、配線パターン密度が高い領域(密な領域)であるので、研磨後の被研磨膜20−2aの膜厚がd11となる。これに対し、右側の配線部11においては、配線パターン密度が低いが、受光素子部12を覆うメタルパターン23が形成されているので、右側全体のパターン密度が左側のパターン密度とほぼ同一になる。そのため、右側の配線部11及び受光素子部12の研磨後の被研磨膜20−2bの膜厚がd12となる。従って、研磨後の左側の被研磨膜20−1a,20−2a全体の膜厚d11と、右側の被研磨膜20−1b,20−2b全体の膜厚d12との大小の関係は、従来のようにd11>>d12ではなく、d11>d12、d11<d12、あるいは、d11=d12となり、仮に、グローバル段差(=d11−d12)が生じたとしても、従来に比べて著しく小さい。
(11) Planarization and conductor embedding step in FIGS. 2-3 (k) and 1 (B) In substantially the same manner as in (g), the surface of the second layer 20-2 to be polished is subjected to CMP. Flatten. In this flattening process, the polishing rate varies depending on the underlying wiring pattern density and the presence or absence of the metal pattern 23. For example, in the wiring portion 11 on the left side of FIGS. 2-3 (k) and 1 (B), since the wiring pattern density is a high region (dense region), the polished film 20-2a after polishing is a film. The thickness is d11. On the other hand, the wiring pattern density on the right wiring part 11 is low, but the metal pattern 23 covering the light receiving element part 12 is formed, so that the pattern density on the entire right side is almost the same as the pattern density on the left side. . Therefore, the film thickness of the polishing target film 20-2b after polishing the right wiring part 11 and the light receiving element part 12 is d12. Therefore, the magnitude relationship between the film thickness d11 of the entire polished film 20-1a and 20-2a on the left side after polishing and the film thickness d12 of the entire film to be polished 20-1b and 20-2b on the right side is the conventional relationship. Thus, not d11 >> d12 but d11> d12, d11 <d12, or d11 = d12, and even if a global step (= d11−d12) occurs, it is significantly smaller than the conventional case.

平坦化処理後、前記(h)とほぼ同様に、研磨後の2層目の被研磨膜20−2a,20−2bの全面にホトレジストを塗布し、ホトマスクを用いた露光、及び現像を行ってそのホトレジストのレジストパターンを形成する。次に、そのレジストパターンをマスクにして、前記(i)とほぼ同様に、2層目の被研磨膜20−1a,20−1bをエッチングし、2層目の配線パターン14−2a上に、縦方向に筒状に延びる複数のホールを形成し、これらの筒状のホールをタングステン等の導電体22−2で埋める。その後、不要になったレジストパターンを除去すれば、2層目の配線パターン14−2aに対して縦方向に電気的に接続された柱状をなす複数の導電体22−2からなるホールパターンが形成される。メタルパターン23上には、導電体22−2が形成されていない。   After the planarization treatment, a photoresist is applied to the entire surface of the second polished films 20-2a and 20-2b after polishing, and exposure and development using a photomask are performed in substantially the same manner as in (h) above. A resist pattern of the photoresist is formed. Next, using the resist pattern as a mask, the second-layer polished films 20-1a and 20-1b are etched in substantially the same manner as in (i) above, and on the second-layer wiring pattern 14-2a, A plurality of holes extending in a cylindrical shape in the vertical direction are formed, and these cylindrical holes are filled with a conductor 22-2 such as tungsten. Thereafter, if the resist pattern that is no longer needed is removed, a hole pattern composed of a plurality of columnar conductors 22-2 electrically connected in the vertical direction to the second-layer wiring pattern 14-2a is formed. Is done. On the metal pattern 23, the conductor 22-2 is not formed.

(12) 図2−3(l)、図1(C)の配線パターン形成・受光素子開口工程
前記(j)とほぼ同様に、2層目の被研磨膜20−2a,20−2bの全面に3層目の遮光性の金属膜を形成し、この金属膜の全面にホトレジストを塗布する。次に、マスク合わせを行い、露光した後、現像してレジストパターンを得る。このレジストパターンをマスクにして3層目の金属膜をエッチングした後、不要になったレジストパターンを剥離除去し、複数の導電体22−2からなるホールパターン上に、3層目の金属製配線パターン14−3aを形成する。これと同時に、あるいは、その後、受光素子13上に積層されている2層目の被研磨膜20−2b、メタルパターン23、及び1層目の被研磨膜20−1bを上から順に、マスク等を用いてエッチングにより除去し、受光素子13の平面の長さL1とほぼ同様の平面の長さL3を有する開口部24を形成し、受光素子13を露出させる。この際、開口部24の長さL3は、メタルパターン23の長さL2よりも小さいので、このメタルパターン23の両端部23aが残渣として残るが、受光素子13に対する外部からの入射光の妨げにはならない。その後、3層目の配線パターン14−3a上に保護膜を被覆する等すれば、受光素子13を有する3層配線構造の半導体装置の製造が終了する。
(12) Wiring pattern formation / light-receiving element opening process in FIGS. 2-3 (l) and 1 (C) In substantially the same manner as in (j) above, the entire surfaces of the second polishing films 20-2a and 20-2b A third light-shielding metal film is formed, and a photoresist is applied to the entire surface of the metal film. Next, mask alignment is performed, exposure is performed, and development is performed to obtain a resist pattern. After etching the third layer metal film using this resist pattern as a mask, the unnecessary resist pattern is peeled and removed, and the third layer metal wiring is formed on the hole pattern made of a plurality of conductors 22-2. Pattern 14-3a is formed. At the same time, or thereafter, the second polishing film 20-2b, the metal pattern 23, and the first polishing film 20-1b stacked on the light receiving element 13 are sequentially masked from the top. Then, an opening 24 having a plane length L3 substantially the same as the plane length L1 of the light receiving element 13 is formed, and the light receiving element 13 is exposed. At this time, since the length L3 of the opening 24 is smaller than the length L2 of the metal pattern 23, both end portions 23a of the metal pattern 23 remain as residues, but it interferes with incident light from the outside to the light receiving element 13. Must not. Thereafter, if a protective film is coated on the third-layer wiring pattern 14-3a, the manufacture of the semiconductor device having the three-layer wiring structure having the light receiving element 13 is completed.

(実施例1の効果)
本実施例1の製造方法によれば、次の(a)〜(c)のような効果がある。
(Effect of Example 1)
According to the manufacturing method of Example 1, the following effects (a) to (c) are obtained.

(a) 受光素子13を覆う領域にメタルパターン23を配置するので、上層の工程で受光素子部12は過剰に凹まず、一定の範囲にグローバル段差(=d11−d12)を保つことができる。これにより、上層のホールやメタルパターン23を作成する際のホトエッチング工程の露光処理において焦点ずれによるパターン不良を防止することが可能となる。   (A) Since the metal pattern 23 is disposed in a region covering the light receiving element 13, the light receiving element portion 12 is not excessively recessed in the upper layer process, and a global step (= d11−d12) can be maintained within a certain range. As a result, it is possible to prevent pattern defects due to defocusing in the exposure process of the photoetching process when creating the upper hole or the metal pattern 23.

(b) 受光素子12の全面を覆うメタルパターン23を配置するようにしたので、後工程において、エッチングでメタルパターン除去を行う時に、エッチング深さを一定に保つことができる。即ち、受光素子12の一部ではなく全面を覆うメタルパターン23とすることで、後工程でメタルパターン23をエッチングで完全に除去する際に、エッチング深さが均一に進み、受光素子13までエッチングして素子を破壊することの防止が容易となる。   (B) Since the metal pattern 23 covering the entire surface of the light receiving element 12 is disposed, the etching depth can be kept constant when the metal pattern is removed by etching in a subsequent process. That is, by forming the metal pattern 23 that covers the entire surface, not a part of the light receiving element 12, when the metal pattern 23 is completely removed by etching in a later process, the etching depth progresses uniformly, and the light receiving element 13 is etched. Thus, it becomes easy to prevent the element from being destroyed.

(c) 図2−3(j)〜(l)及び図1(A)〜(C)に示す工程では、
工程1:金属製の配線パターン14−1aを作成するが、この時、受光素子部12上には配線パターンを配置しない、
工程2:絶縁膜である被研磨膜20−1を積層する、
工程3:堆積した被研磨膜20−1をCMPによって平坦化処理する、
工程4:平坦化された被研磨面20−1a,20−1bにおいて、配線パターン14−1a上に複数のホールを形成し、これらのホールを導電体22−1で埋める。
(C) In the steps shown in FIGS. 2-3 (j) to (l) and FIGS. 1 (A) to (C),
Step 1: Create a metal wiring pattern 14-1a, but do not place a wiring pattern on the light receiving element 12 at this time.
Step 2: Laminating a polishing target film 20-1 that is an insulating film,
Step 3: The deposited polishing target film 20-1 is planarized by CMP.
Step 4: In the planarized polished surfaces 20-1a and 20-1b, a plurality of holes are formed on the wiring pattern 14-1a, and these holes are filled with the conductor 22-1.

以下、工程1〜4をn回繰り返すことで、n層配線を積層するが、途中のx回目(1≦x≦n)で、受光素子13の全面を覆うメタルパターン23を形成する。図2−3(j)〜(l)及び図1(A)〜(C)では、n=2回目の例が示されている。このようにして形成された多層配線構造のうち、受光素子全面を覆うメタルパターン23をエッチングによって除去する。そのため、任意の階層数の多層配線構造を簡単に形成でき、これにより、前記(a)及び(b)のような効果が容易に得られる。   Thereafter, the n-layer wiring is stacked by repeating steps 1 to 4 n times, and the metal pattern 23 covering the entire surface of the light receiving element 13 is formed in the middle x-th (1 ≦ x ≦ n). In FIGS. 2-3 (j) to (l) and FIGS. 1 (A) to (C), an example of n = 2 is shown. In the multilayer wiring structure thus formed, the metal pattern 23 covering the entire surface of the light receiving element is removed by etching. Therefore, a multilayer wiring structure having an arbitrary number of layers can be easily formed, and the effects (a) and (b) can be easily obtained.

(実施例2の製造方法)
本発明の実施例2における半導体装置の製造方法を、図1(A)〜(C)を参照しつつ、以下、説明する。
(Production method of Example 2)
A method for manufacturing a semiconductor device according to Example 2 of the present invention will be described below with reference to FIGS.

平面の長さL1の受光素子13の全面を覆っていたメタルパターン23を、受光素子部12より外側に拡大して作成する。図示しないが、この時のメタルパターン23の平面の長さをL4とする。受光素子全面を覆うメタルパターン23を除去するためのホトエッチングのマスクとなるレジストパターンを形成する工程において、開口部24を形成するためのレジストパターンの抜き領域は、受光素子部12より大きく、受光素子全面を覆うメタルパターン23の長さL4より小さいものとする。このような製造方法にすれば、最終的に受光素子部12の直上はメタルパターン23が消失し、受光素子部12の周囲にメタルパターン23の両端部23aが残ることになる。   A metal pattern 23 covering the entire surface of the light receiving element 13 having a planar length L1 is created by enlarging the light receiving element portion 12 to the outside. Although not shown, the plane length of the metal pattern 23 at this time is L4. In the step of forming a resist pattern that serves as a photo-etching mask for removing the metal pattern 23 covering the entire surface of the light receiving element, the region of the resist pattern that is used to form the opening 24 is larger than that of the light receiving element portion 12, It is assumed that the metal pattern 23 covering the entire surface of the element is smaller than the length L4. According to such a manufacturing method, the metal pattern 23 finally disappears immediately above the light receiving element portion 12, and both end portions 23 a of the metal pattern 23 remain around the light receiving element portion 12.

(実施例2の効果)
本実施例2によれば、レジストパターンの平面の長さがメタルパターン23の平面の長さL4より小さいため、露光機の重ね合わせずれが生じ、結果として、メタルパターン23が無い箇所を過剰に深くエッチングして、受光素子近傍の回路に損傷を与えることを防ぐことができる。しかも、受光素子13より大きな領域で遮光性のメタルパターン23を除去できるため、同様に合わせずれで受光素子直上に遮光物を残すことを防ぐことができる。
(Effect of Example 2)
According to the second embodiment, since the plane length of the resist pattern is shorter than the plane length L4 of the metal pattern 23, the overlay of the exposure machine is generated, and as a result, the portion without the metal pattern 23 is excessive. It is possible to prevent the circuit near the light receiving element from being damaged by deep etching. Moreover, since the light-shielding metal pattern 23 can be removed in a larger area than the light receiving element 13, it is possible to prevent the light shielding material from being left immediately above the light receiving element due to misalignment.

(変形例)
本発明は、上記実施例1、2に限定されず、種々の利用形態や変形が可能である。この利用形態や変形例としては、例えば、次の(a)〜(c)のようなものがある。
(Modification)
The present invention is not limited to the first and second embodiments, and various usage forms and modifications are possible. For example, the following forms (a) to (c) are available as usage forms and modifications.

(a) 金属製の配線パターン14−1a,14−2a,14−3a、メタルパターン23、及び、金属製の導電体22−1,22−2に代えて、これらを金属以外のポリシリコン等の導電性の非透光材を使用しても良い。   (A) Instead of metal wiring patterns 14-1a, 14-2a, 14-3a, metal pattern 23, and metal conductors 22-1, 22-2, these may be polysilicon other than metal, etc. Alternatively, a conductive non-light-transmitting material may be used.

(b) 非透光膜を覆うメタルパターン23は1層のみの例で説明したが、複数層に適用可能である。又、多層配線構造について説明したが、単層配線構造についても、本発明を適用できる。   (B) Although the metal pattern 23 covering the non-light-transmitting film has been described as an example of only one layer, it can be applied to a plurality of layers. Although the multilayer wiring structure has been described, the present invention can also be applied to a single-layer wiring structure.

(c) 受光素子12に代えて、発光ダイオード等の発光素子といった他の光電変換素子にも適用可能である。   (C) Instead of the light receiving element 12, the present invention can also be applied to other photoelectric conversion elements such as light emitting elements such as light emitting diodes.

本発明の実施例1における半導体装置の製造方法を示す図2−3の製造工程に対応する同一の製造工程図である。It is the same manufacturing process figure corresponding to the manufacturing process of FIGS. 2-3 which shows the manufacturing method of the semiconductor device in Example 1 of this invention. 本発明の実施例1の多層配線構造における半導体装置の製造方法を示す概略の縦断面の製造工程図である。It is a manufacturing process figure of the general | schematic longitudinal cross-section which shows the manufacturing method of the semiconductor device in the multilayer wiring structure of Example 1 of this invention. 本発明の実施例1の多層配線構造における半導体装置の製造方法を示す概略の縦断面の製造工程図である。It is a manufacturing process figure of the general | schematic longitudinal cross-section which shows the manufacturing method of the semiconductor device in the multilayer wiring structure of Example 1 of this invention. 本発明の実施例1の多層配線構造における半導体装置の製造方法を示す概略の縦断面の製造工程図である。It is a manufacturing process figure of the general | schematic longitudinal cross-section which shows the manufacturing method of the semiconductor device in the multilayer wiring structure of Example 1 of this invention. 従来の半導体装置の製造方法における一部の製造工程図である。It is a part manufacturing process figure in the manufacturing method of the conventional semiconductor device. 従来の半導体装置の製造方法における一部の製造工程図である。It is a part manufacturing process figure in the manufacturing method of the conventional semiconductor device. 従来の半導体装置の製造方法における課題を説明するための製造工程図である。It is a manufacturing process figure for demonstrating the subject in the manufacturing method of the conventional semiconductor device.

符号の説明Explanation of symbols

10 基板
11 配線部
12 受光素子部
13 受光素子
14−1 金属膜
14−1a,14−2a,14−3a 配線パターン
15 ホトレジスト
15−1a,15−2a レジストパターン
16 ホトマスク
20−1,20−2 被研磨膜
20−1a,20−1b,20−2a,20−2b 研磨後の被研磨膜
22−1,22−2 導電体
23 メタルパターン
24 開口部
DESCRIPTION OF SYMBOLS 10 Board | substrate 11 Wiring part 12 Light receiving element part 13 Light receiving element 14-1 Metal film 14-1a, 14-2a, 14-3a Wiring pattern 15 Photoresist 15-1a, 15-2a Resist pattern 16 Photomask 20-1, 20-2 Films to be polished 20-1a, 20-1b, 20-2a, 20-2b Films to be polished after polishing 22-1 and 22-2 Conductor 23 Metal pattern 24 Opening

Claims (6)

基板上に搭載された光電変換素子及び回路部を被覆する第1絶縁膜を形成する第1工程と、
化学的機械的研磨により、前記第1絶縁膜の表面を平坦化する第2工程と、
表面が平坦化された前記第1絶縁膜上において、前記回路部上に位置して前記回路部に対して電気的に接続される遮光性の配線パターンと、前記光電変換素子上に位置して前記光電変換素子を覆う残膜厚差抑制用のダミーパターンと、を形成する第3工程と、
前記配線パターン及び前記ダミーパターンを被覆する第2絶縁膜を形成する第4工程と、
化学的機械的研磨により、前記第2絶縁膜の表面を平坦化する第5工程と、
前記ダミーパターンとこの下に位置する前記第1絶縁膜及び前記第2絶縁膜とをエッチングにより選択的に除去して前記光電変換素子を露出する第工程と、
を有することを特徴とする半導体装置の製造方法。
A first step of forming a first insulating film you cover the photoelectric conversion element and a circuit portion mounted on the substrate,
A second step of planarizing the surface of the first insulating film by chemical mechanical polishing;
A light-shielding wiring pattern located on the circuit portion and electrically connected to the circuit portion on the first insulating film having a planarized surface, and located on the photoelectric conversion element A third step of forming a residual film thickness difference dummy pattern covering the photoelectric conversion element;
A fourth step of forming a second insulating film covering the wiring pattern and the dummy pattern;
A fifth step of planarizing the surface of the second insulating film by chemical mechanical polishing;
A sixth step of exposing the photoelectric conversion element by selectively removing the dummy pattern and the first insulating film and the second insulating film located thereunder by etching;
A method for manufacturing a semiconductor device, comprising:
前記第3工程において、前記ダミーパターンは、前記光電変換素子の全面を覆うように形成することを特徴とする請求項1記載の半導体装置の製造方法。   2. The method of manufacturing a semiconductor device according to claim 1, wherein, in the third step, the dummy pattern is formed so as to cover the entire surface of the photoelectric conversion element. 前記第工程において、ホトエッチングにより、レジストパターンをマスクにして、前記ダミーパターンとこの下に位置する前記第1絶縁膜及び前記第2絶縁膜とを除去して開口部を形成することを特徴とする請求項2記載の半導体装置の製造方法。 In the sixth step, an opening is formed by removing the dummy pattern and the first insulating film and the second insulating film located therebelow by photoetching using the resist pattern as a mask. A method for manufacturing a semiconductor device according to claim 2. 前記開口部の平面の長さは、前記ダミーパターンの平面の長さより小さく、前記光電変換素子の平面の長さとほぼ同一であることを特徴とする請求項3記載の半導体装置の製造方法。 4. The method of manufacturing a semiconductor device according to claim 3, wherein a length of the plane of the opening is smaller than a length of the plane of the dummy pattern and is substantially the same as a length of the plane of the photoelectric conversion element. 前記光電変換素子は、受光素子であることを特徴とする請求項1〜4のいずれか1項に記載の半導体装置の製造方法。   The method for manufacturing a semiconductor device according to claim 1, wherein the photoelectric conversion element is a light receiving element. 前記半導体装置は、単層配線構造又は多層配線構造であることを特徴とする請求項1〜4のいずれか1項に記載の半導体装置の製造方法。   The method for manufacturing a semiconductor device according to claim 1, wherein the semiconductor device has a single-layer wiring structure or a multilayer wiring structure.
JP2007069784A 2007-03-19 2007-03-19 Manufacturing method of semiconductor device Expired - Fee Related JP4961232B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007069784A JP4961232B2 (en) 2007-03-19 2007-03-19 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007069784A JP4961232B2 (en) 2007-03-19 2007-03-19 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2008235382A JP2008235382A (en) 2008-10-02
JP4961232B2 true JP4961232B2 (en) 2012-06-27

Family

ID=39907875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007069784A Expired - Fee Related JP4961232B2 (en) 2007-03-19 2007-03-19 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP4961232B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07273082A (en) * 1994-03-29 1995-10-20 Sharp Corp Manufacture of photodetecting apparatus with built-in circuit
JP3520700B2 (en) * 1996-02-14 2004-04-19 株式会社デンソー Optical sensor manufacturing method
JP3638778B2 (en) * 1997-03-31 2005-04-13 株式会社ルネサステクノロジ Semiconductor integrated circuit device and manufacturing method thereof
JP2002252338A (en) * 2000-12-18 2002-09-06 Canon Inc Imaging device and imaging system
US6861686B2 (en) * 2003-01-16 2005-03-01 Samsung Electronics Co., Ltd. Structure of a CMOS image sensor and method for fabricating the same

Also Published As

Publication number Publication date
JP2008235382A (en) 2008-10-02

Similar Documents

Publication Publication Date Title
JP2006108664A (en) Semiconductor wafer with improved step coverage and manufacturing method therefor
JP5427104B2 (en) Pattern formation method
JP2009099991A (en) Stacked capacitor of semiconductor element, and forming method thereof
JP4866972B1 (en) Solid-state imaging device and manufacturing method thereof
JP2009135172A (en) Method of manufacturing semiconductor device, and semiconductor device
JP2009060074A (en) Method for forming contact of semiconductor device
JP2005197692A (en) Dual-damascene patterning method of semiconductor element
JP2014078579A (en) Semiconductor device manufacturing method
JP4961232B2 (en) Manufacturing method of semiconductor device
JP2005354046A (en) Method of manufacturing semiconductor device
US9147601B2 (en) Method of forming via hole
US8709947B2 (en) Method for forming pattern
JP4680624B2 (en) Manufacturing method of semiconductor device
KR100798275B1 (en) Guard ring of semiconductor device and method for manufacturing the same
JP4023236B2 (en) Method for forming metal wiring
JP2009238801A (en) Process for fabricating semiconductor device, and patterning structure for alignment used at the time of fabricating semiconductor device
JP2015153870A (en) Method of manufacturing semiconductor device, and photoelectric conversion device
JP2007027234A (en) Semiconductor device and its manufacturing method
KR100755411B1 (en) Method of manufacturing a semiconductor device
KR100835442B1 (en) Pad structure and fabrication method of semiconductor device
KR101116350B1 (en) Method for manufacturing a semiconductor device
KR100600257B1 (en) Method of manufacturing metal interconnect of semiconductor device
TWI485772B (en) Method of forming via hole
KR20090068637A (en) Method for forming metal line of semiconductor device
KR20030066999A (en) Method for forming metal wiring of semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080925

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20081218

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120326

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees