JP4953153B2 - Microwave plasma CVD equipment - Google Patents

Microwave plasma CVD equipment Download PDF

Info

Publication number
JP4953153B2
JP4953153B2 JP2005218732A JP2005218732A JP4953153B2 JP 4953153 B2 JP4953153 B2 JP 4953153B2 JP 2005218732 A JP2005218732 A JP 2005218732A JP 2005218732 A JP2005218732 A JP 2005218732A JP 4953153 B2 JP4953153 B2 JP 4953153B2
Authority
JP
Japan
Prior art keywords
microwave
plasma
vacuum chamber
plasma cvd
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005218732A
Other languages
Japanese (ja)
Other versions
JP2007031792A (en
Inventor
暁彦 難波
貴浩 今井
良樹 西林
喜之 山本
貴一 目黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2005218732A priority Critical patent/JP4953153B2/en
Priority to TW96103552A priority patent/TW200831701A/en
Publication of JP2007031792A publication Critical patent/JP2007031792A/en
Application granted granted Critical
Publication of JP4953153B2 publication Critical patent/JP4953153B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ダイヤモンド薄膜、ダイヤモンド状炭素薄膜、カーボンナノチューブなどの炭素系薄膜、シリコン酸化薄膜、シリコン窒化薄膜、アモルファスシリコン薄膜などのシリコン系薄膜、特にダイヤモンド薄膜を形成するためのマイクロ波プラズマCVD装置に関する。   The present invention relates to a microwave plasma CVD apparatus for forming a silicon-based thin film such as a diamond thin film, a diamond-like carbon thin film, a carbon-based thin film such as a carbon nanotube, a silicon oxide thin film, a silicon nitride thin film, an amorphous silicon thin film, particularly a diamond thin film. About.

炭素系薄膜、特にダイヤモンド薄膜の形成には化学気相成長(CVD)法が広く用いられている。原料として例えばメタンと水素を使用し、マイクロ波、熱フィラメント、高周波や直流放電などの原料ガス活性化手段によってダイヤモンドの前駆体であるラジカルなどを形成し、基材にダイヤモンドを堆積させる。   Chemical vapor deposition (CVD) is widely used to form carbon-based thin films, particularly diamond thin films. For example, methane and hydrogen are used as a raw material, and a radical that is a precursor of diamond is formed by a raw material gas activation means such as a microwave, a hot filament, high frequency or direct current discharge, and diamond is deposited on a base material.

ダイヤモンドは天然に存在する物質中で最高硬度を有するため、切削工具などに利用されているが、半導体材料としても非常に優れた物性を有している。バンドギャップが約5.5eVと非常に大きく、キャリア移動度も電子・正孔ともに室温で2000cm2/Vsと高い。また、誘電率が5.7と小さく破壊電界が5×106V/cmと大きい。さらに、真空準位が伝導帯下端以下に存在する負性電子親和力というまれな特性を持つ。このため、高温環境下・宇宙環境下でも動作する耐環境デバイス、高周波・高出力で動作可能なパワーデバイスや、紫外線発光が可能な発光デバイス、あるいは低電圧駆動が可能な電子放出デバイスなど、ダイヤモンドの優れた半導体物性を積極的に利用した半導体デバイスの実用化が期待される。 Since diamond has the highest hardness among the naturally occurring substances, it is used for cutting tools and the like, but it has excellent physical properties as a semiconductor material. The band gap is as large as about 5.5 eV, and the carrier mobility is as high as 2000 cm 2 / Vs at room temperature for both electrons and holes. Further, the dielectric constant is as small as 5.7, and the breakdown electric field is as large as 5 × 10 6 V / cm. Furthermore, it has a rare characteristic of negative electron affinity in which the vacuum level exists below the lower end of the conduction band. For this reason, diamonds such as environmentally resistant devices that operate in high-temperature and space environments, power devices that can operate at high frequencies and high power, light-emitting devices that can emit ultraviolet light, and electron-emitting devices that can be driven at low voltage It is expected that semiconductor devices will be put to practical use by actively utilizing the excellent semiconductor physical properties.

半導体デバイス作製のためのダイヤモンド薄膜には高品質であることが求められる。高品質なダイヤモンド薄膜を合成する装置としては、結晶性の良いダイヤモンドが作製できる高密度プラズマを電極物質混入がない無極放電で発生させることができるマイクロ波プラズマCVD装置が用いられる。   A diamond thin film for manufacturing a semiconductor device is required to have high quality. As an apparatus for synthesizing a high-quality diamond thin film, a microwave plasma CVD apparatus capable of generating high-density plasma capable of producing diamond with good crystallinity by non-polar discharge without electrode material mixing is used.

ダイヤモンド薄膜の合成において広く用いられているマイクロ波プラズマCVD装置としては、(1)非特許文献1のような石英管チャンバの横から矩形導波管でTEモードのマイクロ波を入射してプラズマを発生させる装置、(2)特許文献1のような金属製チャンバの真上から円筒導波管でTMモードのマイクロ波を入射してプラズマを発生させる装置、(3)特許文献2のような金属製のチャンバに同軸導波管でTEMモードのマイクロ波を入射してプラズマを発生させる装置、がある。   As a microwave plasma CVD apparatus widely used in the synthesis of diamond thin films, (1) a TE mode microwave is incident on a rectangular waveguide from the side of a quartz tube chamber as in Non-Patent Document 1 to generate plasma. (2) An apparatus for generating plasma by injecting a TM mode microwave through a cylindrical waveguide from directly above a metal chamber as in Patent Document 1, and (3) Metal as in Patent Document 2 There is a device for generating plasma by injecting a microwave of TEM mode into a chamber made of coaxial material through a coaxial waveguide.

しかしながら、半導体デバイス作製に必要な大面積で高品質ダイヤモンド薄膜、具体的には、大面積に渡って均一な膜厚、均一な不純物濃度のダイヤモンド薄膜を合成するためにはそれぞれ解決すべき課題を有している。大面積の高品質ダイヤモンド薄膜を合成するためにはマイクロ波プラズマCVD装置で発生するプラズマのサイズが大きいことが必要であるが、(1)の合成装置の場合、プラズマのサイズはマイクロ波導波管及び石英管サイズによって制限を受ける。例えば、2.45GHzのマイクロ波を使用した場合、プラズマのサイズは1インチφ程度と小さく、均一な膜厚、不純物濃度が得られる領域はさらに小さい。また、プラズマサイズを大きくすると、石英管とプラズマが接触するため、石英管がプラズマで直接加熱されて破損する恐れがある。大面積で高品質なダイヤモンド薄膜を得ようとする場合、合成速度は1〜2μm/h程度であり、10μm程度の薄膜が必要な場合の長時間連続運転は困難である。   However, in order to synthesize a large-area high-quality diamond thin film necessary for semiconductor device fabrication, specifically, a diamond thin film having a uniform film thickness and uniform impurity concentration over a large area, there are problems to be solved respectively. Have. In order to synthesize a high-quality diamond thin film with a large area, it is necessary that the size of the plasma generated by the microwave plasma CVD apparatus is large. In the case of the synthesis apparatus of (1), the plasma size is a microwave waveguide. And limited by quartz tube size. For example, when a microwave of 2.45 GHz is used, the plasma size is as small as about 1 inch φ, and the region where a uniform film thickness and impurity concentration can be obtained is even smaller. Further, when the plasma size is increased, the quartz tube and the plasma come into contact with each other, so that the quartz tube may be directly heated by the plasma and damaged. When trying to obtain a high-quality diamond thin film with a large area, the synthesis rate is about 1 to 2 μm / h, and long-time continuous operation is difficult when a thin film of about 10 μm is required.

(2)の合成装置の場合も、プラズマサイズを大きくして合成する場合の長時間連続運転は困難である。(3)の合成装置の場合は、マイクロ波導入窓からプラズマは見えないので上記問題はない。しかし、プラズマを発生させながら電極と頂板間隔の調整を行うことが難しいため、基材のサイズやガス導入条件、圧力条件、マイクロ波投入電力条件などによって異なるプラズマ形状のその場調整を行うことが困難であり、所望の高品質ダイヤモンド薄膜を得るために多大な時間と労力を必要とする。   In the case of the synthesis apparatus (2), it is difficult to operate continuously for a long time when the plasma size is increased. In the case of the synthesizing apparatus (3), the plasma is not visible from the microwave introduction window, and thus the above problem does not occur. However, since it is difficult to adjust the distance between the electrode and the top plate while generating plasma, it is possible to perform in-situ adjustment of different plasma shapes depending on the size of the substrate, gas introduction conditions, pressure conditions, microwave input power conditions, etc. It is difficult and requires a great deal of time and effort to obtain the desired high quality diamond film.

(3)の問題を解決するために、特許文献3のように基体支持手段をプラズマ発生手段に対して無段階に昇降させることを可能にしてプラズマの形状を無段階に調節しようとする装置が提案されている。しかし、基体支持手段とプラズマ発生手段が特許文献3に示される平行平板構造をとる場合、マイクロ波を導入した真空槽内の定常状態における電界強度の強い領域がこれらの間で繋がるため、プラズマは基体支持手段とプラズマ発生手段の両方に接触してしまう。あるいは、電界強度が強い領域が基体支持手段とプラズマ発生手段の両方に***するため、プラズマも両方に***して発生してしまう。   In order to solve the problem (3), as disclosed in Patent Document 3, there is an apparatus for continuously adjusting the shape of the plasma by allowing the substrate supporting means to move up and down steplessly with respect to the plasma generating means. Proposed. However, when the substrate support means and the plasma generation means have a parallel plate structure shown in Patent Document 3, a region having a strong electric field strength in a steady state in a vacuum chamber into which microwaves are introduced is connected between them. Both the substrate support means and the plasma generation means come into contact. Alternatively, since the region where the electric field strength is strong is split into both the substrate support means and the plasma generation means, the plasma is also split into both.

これらのプラズマ分布傾向は高品質なダイヤモンド薄膜が形成される真空槽の圧力領域である10〜200Torrで顕著である。このようなプラズマが局在する傾向は、半導体プロセス、例えばドライエッチング装置などで使用される数Torr以下のガスを電離させるのに必要なエネルギーが比較的小さい圧力領域で高周波によりプラズマを発生させた場合の分布傾向とは大きく異なるものである。かつ、比較的高い圧力領域のプラズマであるので、ガス温度も高く、基板以外の部分でプラズマが接触すると大きなエネルギーロスが発生し、プラズマサイズを小さくする。すなわち、大面積で高品質なダイヤモンド薄膜を作製可能な条件下でのプラズマ位置制御が満足に行えるとは言い難かった。   These plasma distribution tendencies are remarkable at 10 to 200 Torr which is a pressure region of a vacuum chamber in which a high quality diamond thin film is formed. Such a tendency to localize plasma is generated by high frequency in a pressure region where energy required for ionizing a gas of several Torr or less used in a semiconductor process such as a dry etching apparatus is relatively small. This is very different from the distribution tendency. In addition, since the plasma is in a relatively high pressure region, the gas temperature is also high, and when the plasma comes into contact with a portion other than the substrate, a large energy loss occurs and the plasma size is reduced. In other words, it was difficult to say that plasma position control could be satisfactorily performed under conditions where a high-quality diamond thin film with a large area could be produced.

M.Kamo, et al, : J.Cryst. Growth, 62, p.642(1983)M. Kamo, et al,: J. Cryst. Growth, 62, p. 642 (1983) US 5,153,406US 5,153,406 US 5,556,475US 5,556,475 特開2000−54142JP 2000-54142 A

そこで本発明は、TE・TM・TEMモード等で入射されたマイクロ波によるプラズマサイズを大きくしても誘電体材料との接触がない、すなわち、大面積で高品質なダイヤモンド薄膜等が長時間合成可能で、且つ、高品質なダイヤモンド薄膜等が作製可能な条件下でのプラズマ位置制御を可能とするマイクロ波プラズマCVD装置を提供することを目的とする。   Therefore, the present invention has no contact with dielectric material even when the plasma size by microwaves incident in TE, TM, TEM mode, etc. is increased, that is, a large area high quality diamond thin film is synthesized for a long time. An object of the present invention is to provide a microwave plasma CVD apparatus capable of controlling the plasma position under conditions where a high-quality diamond thin film or the like can be produced.

上記課題を解決するために本発明者が鋭意検討を重ねた結果、マイクロ波プラズマCVD装置におけるアンテナ部先端の電極部を誘電体窓以上の大きさとし、且つ、電極部の真空槽中心部側の面の中央部に凹部を形成すれば、上記目的が達成されることを見出した。
すなわち本発明によるマイクロ波プラズマCVD装置は、少なくとも、マイクロ波を導入するための開口部を上部中心に1つ持つ真空槽と、該開口部にマイクロ波を誘導するための導波管と、該真空槽内にマイクロ波を導入するための誘電体窓と、該真空槽にマイクロ波を導入するための先端に電極部が形成されたアンテナ部と、該真空槽内の下部に基材を支持するための基材支持台とを有し、該基材支持台と前記開口部とは対向しており、該真空槽内面と電極部とで該誘電体窓を狭持したマイクロ波プラズマCVD装置であって、該電極部端面の大きさが該誘電体窓端面の大きさ以上であって、該電極部端面によって該誘電体窓端面が隠蔽されており、且つ、該電極部の真空槽中心側の面の中央部に凹部が形成されていることを特徴とする。
As a result of intensive studies by the inventor in order to solve the above-mentioned problems, the electrode part at the tip of the antenna part in the microwave plasma CVD apparatus has a size larger than that of the dielectric window, and the electrode part on the central side of the vacuum chamber It has been found that the above object can be achieved by forming a recess in the center of the surface.
That is, the microwave plasma CVD apparatus according to the present invention includes at least a vacuum chamber having an opening for introducing a microwave at the upper center, a waveguide for guiding the microwave into the opening, A dielectric window for introducing microwaves into the vacuum chamber, an antenna portion with an electrode formed at the tip for introducing microwaves into the vacuum chamber, and a substrate supported at the lower part of the vacuum chamber A microwave plasma CVD having a dielectric support window sandwiched between the inner surface of the vacuum chamber and the electrode portion. An apparatus, wherein the end face of the electrode part is larger than the end face of the dielectric window, the end face of the dielectric window is concealed by the end face of the electrode part, and the vacuum chamber of the electrode part A concave portion is formed in the central portion of the center side surface.

また、本発明によるマイクロ波プラズマCVD装置の凹部の表面が、回転楕円面であることを特徴としてもよい。
あるいは、本発明によるマイクロ波プラズマCVD装置の凹部の表面が、球面であることを特徴としてもよい。
Further, the surface of the concave portion of the microwave plasma CVD apparatus according to the present invention may be a spheroid.
Alternatively, the surface of the concave portion of the microwave plasma CVD apparatus according to the present invention may be a spherical surface.

本発明によるマイクロ波プラズマCVD装置によれば、ダイヤモンド等の長時間合成が可能で、合成圧力や投入マイクロ波電力等の合成条件を変えてもサイズが大きいプラズマを簡便に基材の真上に安定して発生させることができるため、大面積で高品質な半導体ダイヤモンド等が好適に作成可能である。   According to the microwave plasma CVD apparatus of the present invention, it is possible to synthesize diamond and the like for a long time, and even if the synthesis conditions such as synthesis pressure and input microwave power are changed, a plasma having a large size can be easily placed directly above the substrate. Since it can be generated stably, a high-quality semiconductor diamond having a large area can be suitably produced.

以下、添付図面を参照して、本発明に係るマイクロ波プラズマCVD装置の好適な実施形態について詳細に説明する。なお、図面の説明においては、同一要素には同一符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明のものと必ずしも一致していない。   DESCRIPTION OF EMBODIMENTS Hereinafter, a preferred embodiment of a microwave plasma CVD apparatus according to the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same reference numerals are assigned to the same elements, and duplicate descriptions are omitted. Further, the dimensional ratios in the drawings do not necessarily match those described.

図1は、本発明によるマイクロ波プラズマCVD装置の一実施形態を示す断面図である。
真空槽1は金属製、好ましくはステンレス製、モリブデン製、アルミ製であり、円形開口部2を上部中心に持ち、また、側面には真空槽内部3を観察するための覗き窓4を持つ。覗き窓4のポート5は、覗き窓4からマイクロ波が漏えいしないような直径及び長さが選択されている。覗き窓4は石英、コバールなど可視光に対して透明な材質が使用可能である。真空槽下部にはダイヤモンドを成長させるための下地基材10を保持するための基材支持台11が配置される。基材支持台11は真空槽と同様に金属製であり、上下の位置調整が可能であるとともに、内部には冷却水配管及びヒーターが組み込まれており、下地基材10の温度が調節可能である。
FIG. 1 is a cross-sectional view showing an embodiment of a microwave plasma CVD apparatus according to the present invention.
The vacuum chamber 1 is made of metal, preferably stainless steel, molybdenum, or aluminum, and has a circular opening 2 at the upper center, and a viewing window 4 for observing the inside 3 of the vacuum chamber on the side surface. The diameter and length of the port 5 of the viewing window 4 are selected so that the microwave does not leak from the viewing window 4. The viewing window 4 can be made of a material transparent to visible light, such as quartz or Kovar. A substrate support 11 for holding a base substrate 10 for growing diamond is disposed at the lower part of the vacuum chamber. The base material support 11 is made of metal like the vacuum chamber, and the vertical position can be adjusted, and the cooling water pipe and the heater are incorporated inside, and the temperature of the base material 10 can be adjusted. is there.

円形開口部2の真上には、円形開口部2にマイクロ波20を誘導するための円筒導波管21が配置される。円筒導波管21はステンレス、モリブデン、アルミなどの金属が好適に使用可能であるが、内面はマイクロ波20の伝送ロスを小さくするために抵抗率の小さい金属、例えば銀、金、銅などのめっきが施されていても良い。円形開口部2の周囲には真空槽内部3にマイクロ波20を導入するためのリング形状誘電体窓22が配置される。リング状誘電体窓22の材質は石英、アルミナなどが好適に使用可能である。   A cylindrical waveguide 21 for guiding the microwave 20 to the circular opening 2 is disposed immediately above the circular opening 2. The cylindrical waveguide 21 is preferably made of a metal such as stainless steel, molybdenum, or aluminum, but the inner surface is made of a metal having a low resistivity in order to reduce the transmission loss of the microwave 20, such as silver, gold, or copper. Plating may be performed. Around the circular opening 2, a ring-shaped dielectric window 22 for introducing the microwave 20 into the vacuum chamber interior 3 is disposed. Quartz, alumina or the like can be suitably used as the material for the ring-shaped dielectric window 22.

丸棒部23は円筒導波管21及び円形開口部2及びリング状誘電体窓22の中心に位置し、マイクロ波導入部の真空保持のために真空槽1の上面内側部分と組み合わせてリング状誘電体窓22を挟む円盤状の電極部24と合わせて、真空槽1にマイクロ波20を導入するためのアンテナ部25を形成している。アンテナ部25の材質は円筒導波管21と同様の金属が好適に使用可能であり、円筒導波管21と組み合わせて同軸導波管を構成し、TEMモードのマイクロ波を真空槽内部3に搬送する。マイクロ波20は典型的には、マイクロ波発振器と、アイソレータ、パワーモニタ、整合器、矩形−同軸変換器からなるマイクロ波コンポーネントで円筒導波管21及び丸棒部23で構成される同軸導波管まで伝送される。真空槽内部3には、原料ガス供給配管40により原料ガスが供給される。   The round bar portion 23 is located at the center of the cylindrical waveguide 21, the circular opening 2, and the ring-shaped dielectric window 22, and is combined with the inner portion of the upper surface of the vacuum chamber 1 to hold the microwave introduction portion in a ring shape. An antenna portion 25 for introducing the microwave 20 into the vacuum chamber 1 is formed together with the disk-shaped electrode portion 24 sandwiching the dielectric window 22. A material similar to that of the cylindrical waveguide 21 can be preferably used as the material of the antenna portion 25, and a coaxial waveguide is configured in combination with the cylindrical waveguide 21. Transport. The microwave 20 is typically a microwave component including a microwave oscillator, an isolator, a power monitor, a matching unit, and a rectangular-coaxial converter, and a coaxial waveguide composed of a cylindrical waveguide 21 and a round bar portion 23. Is transmitted to the tube. A raw material gas is supplied to the inside 3 of the vacuum chamber through a raw material gas supply pipe 40.

原料ガスとしては、水素に加えてメタン、プロパン、アセチレンなど炭素源、さらにドーピングにより半導体ダイヤモンドを作製する場合には、ホスフィン、ジボランなどの不純物源を使用する。真空槽内部3は高品質ダイヤモンドを作製するために排気配管41の圧力調整バルブを調節することで10〜200Torrの圧力に保たれており、導入されたマイクロ波により発生するプラズマ42中の活性種により、基材支持台11で700〜1200℃に温度コントロールされた下地基材10上にダイヤモンドが成長する。   As the source gas, in addition to hydrogen, a carbon source such as methane, propane, and acetylene is used. Further, when semiconductor diamond is produced by doping, an impurity source such as phosphine or diborane is used. The inside 3 of the vacuum chamber is maintained at a pressure of 10 to 200 Torr by adjusting the pressure adjusting valve of the exhaust pipe 41 in order to produce high quality diamond, and the active species in the plasma 42 generated by the introduced microwaves Thus, diamond grows on the base substrate 10 whose temperature is controlled at 700 to 1200 ° C. on the substrate support 11.

発明者は、前記マイクロ波プラズマCVD装置において、プラズマサイズを大きくしても誘電体材料との接触がない、すなわち、大面積で高品質なダイヤモンド薄膜が長時間合成可能で、且つ、高品質なダイヤモンド薄膜が作製可能な条件下でのプラズマ位置制御を可能とするための工夫について鋭意検討を行った。
その結果、アンテナ部25の先端の電極部24をリング状誘電体窓22以上の直径とし、且つ、電極部24下部に1つの凹部26を形成すれば、前記目的が達成されることを見出したものである。
The inventor has no contact with the dielectric material even if the plasma size is increased in the microwave plasma CVD apparatus, that is, a high-quality diamond thin film having a large area can be synthesized for a long time and has a high quality. We have intensively studied the device for controlling the plasma position under the condition that the diamond thin film can be produced.
As a result, it has been found that the object can be achieved if the electrode portion 24 at the tip of the antenna portion 25 has a diameter larger than that of the ring-shaped dielectric window 22 and one concave portion 26 is formed below the electrode portion 24. Is.

前記マイクロ波プラズマCVD装置において、アンテナ部25の先端の電極部24をリング状誘電体窓22以上の直径とすることで、プラズマ42からリング状誘電体窓22が直接見えないので、これらが接触することはない。また、リング状誘電体窓22付近の真空槽内はマイクロ波が通過するがその電界強度は比較的弱く、プラズマが発生するに至らない。また、覗き窓4は石英等の誘電体材料が使用されるが、ポート5は、覗き窓4からマイクロ波が漏洩しないような直径及び長さが選択されているため、覗き窓4付近では電界強度はほぼゼロに等しくプラズマは発生しない。従って、プラズマサイズを大きくしても装置を構成する誘電体と接触することはないので、大面積で高品質なダイヤモンド薄膜、具体的には、大面積に渡って均一な膜厚、均一な不純物濃度のダイヤモンド薄膜が長時間合成可能である。さらには、誘電体材料がプラズマでスパッタリングされることで発生する意図しない不純物のダイヤモンド薄膜中への混入も少ない。   In the microwave plasma CVD apparatus, since the electrode part 24 at the tip of the antenna part 25 has a diameter larger than that of the ring-shaped dielectric window 22, the ring-shaped dielectric window 22 cannot be directly seen from the plasma 42. Never do. Further, although microwaves pass through the vacuum chamber near the ring-shaped dielectric window 22, the electric field strength is relatively weak and plasma is not generated. In addition, although a dielectric material such as quartz is used for the viewing window 4, the diameter and length of the port 5 are selected so that microwaves do not leak from the viewing window 4. The intensity is almost zero and no plasma is generated. Therefore, even if the plasma size is increased, it does not come into contact with the dielectric that constitutes the device. Therefore, a diamond thin film having a large area and a high quality, specifically, a uniform film thickness and a uniform impurity over a large area. Concentration diamond thin film can be synthesized for a long time. Further, unintended impurities generated by sputtering the dielectric material with plasma are less likely to be mixed into the diamond thin film.

且つ、電極部24下部に1つの凹部26を形成することによって、プラズマが発生する程度の電界強度を持つ部分が、基板支持台11上部と電極部24下部との距離を変えてもこれらに渡って分布することはなく、また、基板支持台11上部近傍と電極部24下部近傍に***して分布することもない。すなわち、基板支持台11上部近傍のみにプラズマが発生する程度の電界強度を持つ部分が集中するため、大面積で高品質なダイヤモンド薄膜が作製可能な条件下でも基板支持台11上部近傍にサイズが大きいプラズマが安定して発生し、従来のマイクロ波プラズマCVD装置が有する位置制御の問題が発生しなくなる。   In addition, by forming one concave portion 26 under the electrode portion 24, a portion having an electric field intensity enough to generate plasma can extend over these even if the distance between the upper portion of the substrate support 11 and the lower portion of the electrode portion 24 is changed. In addition, it is not distributed near the upper part of the substrate support 11 and near the lower part of the electrode part 24. That is, since the portion having an electric field intensity enough to generate plasma is concentrated only in the vicinity of the upper portion of the substrate support 11, the size is increased in the vicinity of the upper portion of the substrate support 11 even under conditions where a large-area high-quality diamond thin film can be produced. Large plasma is stably generated, and the problem of position control of the conventional microwave plasma CVD apparatus does not occur.

さらには、図2に示すように、電極部34下面に形成された凹部の表面を回転楕円面の凹部27とすることで、基板支持台11上部近傍のみにプラズマ42が発生する程度の電界強度を持つ部分を集中させる効果が一層顕著になり、同じプラズマ発生条件でも回転楕円面の凹部27を持つ装置の方がさらに大きなプラズマが発生し、高品質ダイヤモンドの成膜面積が拡大する。   Furthermore, as shown in FIG. 2, the surface of the concave portion formed on the lower surface of the electrode portion 34 is a spheroidal concave portion 27, so that the electric field intensity is such that plasma 42 is generated only near the upper portion of the substrate support 11. The effect of concentrating the portion having the spheroid becomes more remarkable, and even in the same plasma generation condition, the device having the spheroid concave portion 27 generates a larger plasma, and the deposition area of high quality diamond is expanded.

あるいは、図3に示すように、電極部44下面に形成された凹部の表面を球面の凹部28とすることで、電極部下面に形成された凹部の表面を回転楕円面の凹部27とする場合と同様、基板支持台11上部近傍のみにプラズマが発生する程度の電界強度を持つ部分を集中させる効果が一層顕著になり、同じプラズマ発生条件でも球面の凹部28を持つ装置の方がさらに大きなプラズマが発生し、高品質ダイヤモンドの成膜面積が拡大する。   Alternatively, as shown in FIG. 3, the surface of the concave portion formed on the lower surface of the electrode portion 44 is a spherical concave portion 28, and the surface of the concave portion formed on the lower surface of the electrode portion is a spheroidal concave portion 27. Similarly, the effect of concentrating a portion having an electric field intensity enough to generate plasma only in the vicinity of the upper portion of the substrate support 11 becomes more prominent, and an apparatus having a spherical recess 28 is larger even under the same plasma generation conditions. Occurs, and the film-forming area of high-quality diamond is expanded.

以上によれば、本発明によるマイクロ波プラズマCVD装置では、大面積で高品質なダイヤモンド薄膜等の長時間合成が可能であり、合成圧力や投入マイクロ波電力等の合成条件を変えてもサイズが大きいプラズマを簡便に基材の真上に安定して発生させることができるため、大面積で高品質な半導体ダイヤモンド等が好適に作成可能である。   According to the above, the microwave plasma CVD apparatus according to the present invention can synthesize a diamond thin film having a large area and high quality for a long time, and the size can be changed even if the synthesis conditions such as synthesis pressure and input microwave power are changed. Since a large plasma can be easily and stably generated immediately above the base material, a high-quality semiconductor diamond having a large area can be suitably produced.

以下、添付図面を参考にして、本発明の実施例を説明する。
<実施例1>
図1に示すマイクロ波プラズマCVD装置を作製し、半導体ダイヤモンドの合成を試みた。装置構成部品の材質として、金属部品にはステンレスを、誘電体部品には石英を用いた。基材10としては、50mmφ×2mmtのモリブデン円板上の中心及び外周部に四回対称に、2×2×0.3mmtの高温高圧合成IIa(111)単結晶基板を配置したものを用いた。原料ガス供給配管40から、マスフローコントローラで流量を調整した水素、メタン、ホスフィンを真空槽内部3に導入した。ガス流量はそれぞれ、水素1slm、メタン0.5sccm、ホスフィン(水素希釈1,000ppm)1sccmとした。排気配管41の圧力調整バルブを調節して真空槽内部3の圧力を100Torrに保った。マイクロ波20の電力を3kWとしてプラズマ42を発生させた。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
<Example 1>
A microwave plasma CVD apparatus shown in FIG. 1 was produced and an attempt was made to synthesize semiconductor diamond. As the material of the device components, stainless steel was used for metal parts and quartz was used for dielectric parts. As the base material 10, a substrate in which a 2 × 2 × 0.3 mmt high-temperature and high-pressure synthetic IIa (111) single crystal substrate is arranged four-fold symmetrically at the center and outer periphery on a 50 mmφ × 2 mmt molybdenum disk was used. . Hydrogen, methane, and phosphine, whose flow rates were adjusted by a mass flow controller, were introduced into the inside 3 of the vacuum chamber from the source gas supply pipe 40. The gas flow rates were 1 slm for hydrogen, 0.5 sccm for methane, and 1 sccm for phosphine (hydrogen dilution 1,000 ppm), respectively. The pressure adjusting valve of the exhaust pipe 41 was adjusted to keep the pressure inside the vacuum chamber 3 at 100 Torr. Plasma 42 was generated by setting the power of the microwave 20 to 3 kW.

基材支持台11の上下位置を調整したところ、5つ配置した単結晶基板全てが半球形状のプラズマ42で覆われた。覗き窓4より放射温度計で5つの基材温度を900±10℃に保ち、6時間ダイヤモンド薄膜合成を行った。合成時間中プラズマの挙動を観察したが、基材真上で安定していた。合成後の単結晶基板表面を調べたところ、5つ全てにおいて良質なホモエピタキシャル薄膜の成長を確認した。膜厚を測定したところ、5つ全て3±0.05μm以内で収まっていた。ホール効果測定を行ったところ、5つ全てにおいて室温移動度600〜700cm2/Vsの高品質n型エピタキシャル薄膜が成長していることを確認した。SIMSによる不純物測定を行ったところ、膜中のリン濃度は5つ全てにおいて7〜8×1018cm-3の間で収まっていた。 When the vertical position of the base material support 11 was adjusted, all five single crystal substrates were covered with the hemispherical plasma 42. A diamond thin film was synthesized for 6 hours while keeping the temperature of the five substrates at 900 ± 10 ° C. with a radiation thermometer from the observation window 4. The behavior of the plasma was observed during the synthesis time, but it was stable just above the substrate. When the surface of the single crystal substrate after synthesis was examined, the growth of a good homoepitaxial thin film was confirmed in all five. When the film thickness was measured, all five were within 3 ± 0.05 μm. When the Hall effect measurement was performed, it was confirmed that a high-quality n-type epitaxial thin film having a room temperature mobility of 600 to 700 cm 2 / Vs was grown in all five. When impurity measurement was performed by SIMS, the phosphorus concentration in the film was within 7 to 8 × 10 18 cm −3 in all five.

上記条件で基材10をセットせずに真空槽内部3の圧力を10〜200Torr、マイクロ波電力を0.5〜5kWの間で調節してプラズマ42を発生させたが、基材支持台11の上下位置を調整することで、50mmφ程度の半球状のプラズマ42を基材支持台11の真上で安定して発生させることができた。   The plasma 42 was generated by adjusting the pressure inside the vacuum chamber 3 to 10 to 200 Torr and the microwave power between 0.5 to 5 kW without setting the substrate 10 under the above conditions. By adjusting the vertical position, hemispherical plasma 42 of about 50 mmφ could be stably generated immediately above the substrate support 11.

<実施例2>
図1に示すマイクロ波プラズマCVD装置のアンテナ部25を交換して図2に示す回転楕円面の凹部27を持つ構成とし、基材10として、60mmφ×2mmtのモリブデン円板上の中心及び外周部に四回対称に、2×2×0.3mmtの高温高圧合成IIa(111)単結晶基板を配置したものを用いて、実施例1と同様の実験を行った。マイクロ波20の電力を3kWとしてプラズマ42を発生させ、基材支持台11の上下位置を調整したところ、5つ配置した単結晶基板全てが半球形状のプラズマ42で覆われた。覗き窓4より放射温度計で5つの基材温度を900±10℃に保ち、6時間ダイヤモンド薄膜合成を行った。合成時間中プラズマの挙動を観察したが、基材真上で安定していた。
<Example 2>
The antenna unit 25 of the microwave plasma CVD apparatus shown in FIG. 1 is replaced with a spheroid recess 27 shown in FIG. 2, and the center 10 and the outer peripheral part on a 60 mmφ × 2 mmt molybdenum disk are used as the substrate 10. The same experiment as in Example 1 was performed using a substrate in which a 2 × 2 × 0.3 mmt high-temperature and high-pressure synthetic IIa (111) single crystal substrate was arranged four times symmetrically. When the power of the microwave 20 was set to 3 kW to generate the plasma 42 and the vertical position of the base material support 11 was adjusted, all of the five single crystal substrates arranged were covered with the hemispherical plasma 42. A diamond thin film was synthesized for 6 hours while keeping the temperature of the five substrates at 900 ± 10 ° C. with a radiation thermometer from the observation window 4. The behavior of the plasma was observed during the synthesis time, but it was stable just above the substrate.

合成後の単結晶基板表面を調べたところ、5つ全てにおいて良質なホモエピタキシャル薄膜の成長を確認した。膜厚を測定したところ、5つ全て3±0.05μm以内で収まっていた。ホール効果測定を行ったところ、5つ全てにおいて室温移動度600〜700cm2/Vsの高品質n型エピタキシャル薄膜が成長していることを確認した。SIMSによる不純物測定を行ったところ、膜中のリン濃度は5つ全てにおいて7〜8×1018cm-3の間で収まっていた。
上記条件で基材10をセットせずに真空槽内部3の圧力を10〜200Torr、マイクロ波電力を0.5〜5kWの間で調節してプラズマ42を発生させたが、基材支持台11の上下位置を調整することで、60mmφ程度の半球状のプラズマ42を基材支持台11の真上で安定して発生させることができた。
When the surface of the single crystal substrate after synthesis was examined, the growth of a good homoepitaxial thin film was confirmed in all five. When the film thickness was measured, all five were within 3 ± 0.05 μm. When the Hall effect measurement was performed, it was confirmed that a high-quality n-type epitaxial thin film having a room temperature mobility of 600 to 700 cm 2 / Vs was grown in all five. When impurity measurement was performed by SIMS, the phosphorus concentration in the film was within 7 to 8 × 10 18 cm −3 in all five.
The plasma 42 was generated by adjusting the pressure inside the vacuum chamber 3 to 10 to 200 Torr and the microwave power between 0.5 to 5 kW without setting the substrate 10 under the above conditions. By adjusting the vertical position, hemispherical plasma 42 of about 60 mmφ could be stably generated just above the substrate support 11.

<実施例3>
図1に示すマイクロ波プラズマCVD装置のアンテナ部25を交換して図3に示す球面の凹部28を持つ構成とし、基材10として、70mmφ×2mmtのモリブデン円板上の中心及び外周部に四回対称に、2×2×0.3mmtの高温高圧合成IIa(111)単結晶基板を配置したものを用いて、実施例1と同様の実験を行った。マイクロ波20の電力を3kWとしてプラズマ42を発生させ、基材支持台11の上下位置を調整したところ、5つ配置した単結晶基板全てが半球形状のプラズマ42で覆われた。覗き窓4より放射温度計で5つの基材温度を900±10℃に保ち、6時間ダイヤモンド薄膜合成を行った。合成時間中プラズマの挙動を観察したが、基材真上で安定していた。
<Example 3>
The antenna unit 25 of the microwave plasma CVD apparatus shown in FIG. 1 is replaced with a spherical concave portion 28 shown in FIG. 3, and the substrate 10 has four parts at the center and the outer peripheral part on a 70 mmφ × 2 mmt molybdenum disc. An experiment similar to that of Example 1 was performed using a 2 × 2 × 0.3 mmt high-temperature and high-pressure synthetic IIa (111) single crystal substrate arranged in a rotational symmetry. When the power of the microwave 20 was set to 3 kW to generate the plasma 42 and the vertical position of the base material support 11 was adjusted, all of the five single crystal substrates arranged were covered with the hemispherical plasma 42. A diamond thin film was synthesized for 6 hours while keeping the temperature of the five substrates at 900 ± 10 ° C. with a radiation thermometer from the observation window 4. The behavior of the plasma was observed during the synthesis time, but it was stable just above the substrate.

合成後の単結晶基板表面を調べたところ、5つ全てにおいて良質なホモエピタキシャル薄膜の成長を確認した。膜厚を測定したところ、5つ全て3±0.05μm以内で収まっていた。ホール効果測定を行ったところ、5つ全てにおいて室温移動度600〜700cm2/Vsの高品質n型エピタキシャル薄膜が成長していることを確認した。SIMSによる不純物測定を行ったところ、膜中のリン濃度は5つ全てにおいて7〜8×1018cm-3の間で収まっていた。
上記条件で基材10をセットせずに真空槽内部3の圧力を10〜200Torr、マイクロ波電力を0.5〜5kWの間で調節してプラズマ42を発生させたが、基材支持台11の上下位置を調整することで、70mmφ程度の半球状のプラズマ42を基材支持台11の真上で安定して発生させることができた。
When the surface of the single crystal substrate after synthesis was examined, the growth of a good homoepitaxial thin film was confirmed in all five. When the film thickness was measured, all five were within 3 ± 0.05 μm. When the Hall effect measurement was performed, it was confirmed that a high-quality n-type epitaxial thin film having a room temperature mobility of 600 to 700 cm 2 / Vs was grown in all five. When impurity measurement was performed by SIMS, the phosphorus concentration in the film was within 7 to 8 × 10 18 cm −3 in all five.
The plasma 42 was generated by adjusting the pressure inside the vacuum chamber 3 to 10 to 200 Torr and the microwave power between 0.5 to 5 kW without setting the substrate 10 under the above conditions. By adjusting the vertical position, hemispherical plasma 42 of about 70 mmφ could be stably generated immediately above the substrate support 11.

本発明によるマイクロ波プラズマCVD装置の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the microwave plasma CVD apparatus by this invention. 他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment. 別の実施形態を示す断面図である。It is sectional drawing which shows another embodiment.

符号の説明Explanation of symbols

1 真空槽
2 円形開口部
3 真空槽内部
4 覗き窓
5 ポート
10 下地基材
11 基材支持台
20 マイクロ波
21 円筒導波管
22 誘電体窓
23 丸棒部
24,34,44 電極部
25 アンテナ部
26,27,28 凹部
40 減量ガス供給配管
41 排気配管
42 プラズマ
DESCRIPTION OF SYMBOLS 1 Vacuum chamber 2 Circular opening part 3 Vacuum chamber inside 4 Viewing window 5 Port 10 Base material 11 Base material support base 20 Microwave 21 Cylindrical waveguide 22 Dielectric window 23 Round bar part 24, 34, 44 Electrode part 25 Antenna Portions 26, 27, 28 Concave portion 40 Weight loss gas supply piping 41 Exhaust piping 42 Plasma

Claims (3)

少なくとも、マイクロ波を導入するための開口部を上部中心に1つ持つ真空槽と、該開口部にマイクロ波を誘導するための導波管と、該真空槽内にマイクロ波を導入するための誘電体窓と、該真空槽にマイクロ波を導入するための先端に電極部が形成されたアンテナ部と、該真空槽内の下部に基材を支持するための基材支持台とを有し、該基材支持台と前記開口部とは対向しており、該真空槽内面と電極部とで該誘電体窓を狭持したマイクロ波プラズマCVD装置であって、該電極部端面の大きさが該誘電体窓端面の大きさ以上であって、該電極部端面によって該誘電体窓端面が隠蔽されており、且つ、該電極部の真空槽中心側の面の中央部に凹部が形成されていることを特徴とするマイクロ波プラズマCVD装置。 At least a vacuum chamber having an opening for introducing a microwave at the upper center, a waveguide for guiding the microwave to the opening, and a microwave for introducing the microwave into the vacuum chamber It has a dielectric window, an antenna part having an electrode part formed at the tip for introducing a microwave into the vacuum chamber, and a base material support base for supporting the base material in the lower part of the vacuum tank. The base plate support and the opening are opposed to each other, and the microwave plasma CVD apparatus sandwiches the dielectric window between the inner surface of the vacuum chamber and the electrode portion, and the size of the end surface of the electrode portion Is not less than the size of the dielectric window end face, the end face of the dielectric window is concealed by the end face of the electrode section, and a recess is formed in the center of the surface of the electrode section on the center side of the vacuum chamber The microwave plasma CVD apparatus characterized by the above-mentioned. 前記凹部の表面が、回転楕円面であることを特徴とする請求項1に記載のマイクロ波プラズマCVD装置。   The microwave plasma CVD apparatus according to claim 1, wherein the surface of the recess is a spheroid. 前記凹部の表面が、球面であることを特徴とする請求項1に記載のマイクロ波プラズマCVD装置。   The microwave plasma CVD apparatus according to claim 1, wherein a surface of the concave portion is a spherical surface.
JP2005218732A 2005-07-28 2005-07-28 Microwave plasma CVD equipment Expired - Fee Related JP4953153B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005218732A JP4953153B2 (en) 2005-07-28 2005-07-28 Microwave plasma CVD equipment
TW96103552A TW200831701A (en) 2005-07-28 2007-01-31 Microwave plasma CVD apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005218732A JP4953153B2 (en) 2005-07-28 2005-07-28 Microwave plasma CVD equipment

Publications (2)

Publication Number Publication Date
JP2007031792A JP2007031792A (en) 2007-02-08
JP4953153B2 true JP4953153B2 (en) 2012-06-13

Family

ID=37791397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005218732A Expired - Fee Related JP4953153B2 (en) 2005-07-28 2005-07-28 Microwave plasma CVD equipment

Country Status (2)

Country Link
JP (1) JP4953153B2 (en)
TW (1) TW200831701A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2555018C2 (en) 2010-12-23 2015-07-10 Элемент Сикс Лимитед Controlled doping of synthetic diamond material
JP6140397B2 (en) * 2011-06-10 2017-05-31 三星電子株式会社Samsung Electronics Co.,Ltd. Electromagnetic wave generator and electromagnetic wave generator array
CN102395244A (en) * 2011-10-21 2012-03-28 无锡绿波新能源设备有限公司 Microwave generation antenna
JP5995468B2 (en) * 2012-03-14 2016-09-21 東京エレクトロン株式会社 Manufacturing method of membrane electrode assembly
US10544505B2 (en) * 2017-03-24 2020-01-28 Applied Materials, Inc. Deposition or treatment of diamond-like carbon in a plasma reactor
CN110565160B (en) * 2018-06-05 2021-11-09 广东众元半导体科技有限公司 Microwave plasma chemical vapor deposition device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5234526A (en) * 1991-05-24 1993-08-10 Lam Research Corporation Window for microwave plasma processing device
JP3204145B2 (en) * 1997-01-31 2001-09-04 住友金属工業株式会社 Plasma processing equipment
JP2000054142A (en) * 1998-08-07 2000-02-22 Toyo Kohan Co Ltd Microwave plasma cvd device
JP3485896B2 (en) * 2000-07-11 2004-01-13 東京エレクトロン株式会社 Plasma processing equipment
JP2004200307A (en) * 2002-12-17 2004-07-15 Tokyo Electron Ltd Plasma treatment device
JP4255061B2 (en) * 2003-05-23 2009-04-15 財団法人浜松科学技術研究振興会 Microwave plasma generation method and microwave plasma generation apparatus
JP4563729B2 (en) * 2003-09-04 2010-10-13 東京エレクトロン株式会社 Plasma processing equipment

Also Published As

Publication number Publication date
JP2007031792A (en) 2007-02-08
TW200831701A (en) 2008-08-01

Similar Documents

Publication Publication Date Title
JP5142074B2 (en) Microwave plasma CVD equipment
US6015459A (en) Method for doping semiconductor materials
US5368897A (en) Method for arc discharge plasma vapor deposition of diamond
US5204145A (en) Apparatus for producing diamonds by chemical vapor deposition and articles produced therefrom
JP4953153B2 (en) Microwave plasma CVD equipment
US5879450A (en) Method of heteroepitaxial growth of beta silicon carbide on silicon
GB2497880A (en) Boron-doped single crystal diamond
JP2015518088A (en) Microwave plasma chemical vapor deposition system
Tsubota et al. Heteroepitaxial growth of diamond on an iridium (100) substrate using microwave plasma-assisted chemical vapor deposition
JP2006265079A (en) Apparatus for plasma enhanced chemical vapor deposition and method for manufacturing carbon nanotube
Mallik et al. Influence of the microwave plasma CVD reactor parameters on substrate thermal management for growing large area diamond coatings inside a 915 MHz and moderately low power unit
US5720808A (en) Method for forming diamond film
JP2016113303A (en) Synthesis method of diamond thin film by microwave plasma cvd method
US6902716B2 (en) Fabrication of single crystal diamond tips and their arrays
JP7304280B2 (en) CVD equipment for diamond synthesis
CN108975319B (en) Preparation method of P-type semiconductor graphene
EP0502657B1 (en) Improved apparatus for producing diamonds by chemical vapor deposition and articles produced thereform
US20110056433A1 (en) Device for forming diamond film
KR20200065604A (en) Diamond single crystal growth method using plasma CVD apparatus
Kusakabe et al. Electrical properties of boron-doped diamond films synthesized by MPCVD on an iridium substrate
KR100360281B1 (en) Apparatus of vapor phase-synthesis for diamond and synthesizing method using the same
RU214891U1 (en) DEVICE FOR GAS-JET DEPOSITION OF DIAMOND COATINGS
CN114232089B (en) Periodic modulation method for nucleation density of diamond on silicon carbide substrate
RU2792526C1 (en) Diamond coating device
GB2270326A (en) Growth of diamond films on silicon substrates with application of bias to substrate; tessellated patterns

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120304

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees