JP4945773B2 - Steel slab reinforcement method - Google Patents

Steel slab reinforcement method Download PDF

Info

Publication number
JP4945773B2
JP4945773B2 JP2007070440A JP2007070440A JP4945773B2 JP 4945773 B2 JP4945773 B2 JP 4945773B2 JP 2007070440 A JP2007070440 A JP 2007070440A JP 2007070440 A JP2007070440 A JP 2007070440A JP 4945773 B2 JP4945773 B2 JP 4945773B2
Authority
JP
Japan
Prior art keywords
rib
steel
lateral
closed
reinforcement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007070440A
Other languages
Japanese (ja)
Other versions
JP2008231718A (en
Inventor
佳彦 高田
浩明 佐藤
誠 瓦林
Original Assignee
阪神高速道路株式会社
社団法人 日本橋梁建設協会
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 阪神高速道路株式会社, 社団法人 日本橋梁建設協会 filed Critical 阪神高速道路株式会社
Priority to JP2007070440A priority Critical patent/JP4945773B2/en
Publication of JP2008231718A publication Critical patent/JP2008231718A/en
Application granted granted Critical
Publication of JP4945773B2 publication Critical patent/JP4945773B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Description

この発明は、例えば、デッキプレートの底面側に備えた橋軸方向の縦リブと、橋軸直角方向の横リブとで構成した鋼床版の補強工法に関する。   The present invention relates to a method for reinforcing a steel deck comprising, for example, longitudinal ribs in the bridge axis direction provided on the bottom surface side of the deck plate and lateral ribs in a direction perpendicular to the bridge axis.

軽量で、架設が容易である鋼床版は、施工の容易性もあって、多くの道路橋に採用されている。しかし、道路橋である鋼床版には、自動車車輪荷重が直接載荷されるとともに、その荷重の載荷の繰り返し数が極めて多い。したがって、例えば、縦リブと横リブの交差部のように部材交差部等において局所的に大きな応力が繰り返し発生し、その部分での疲労損傷が生じる可能性が高く、そのような鋼床版の補強工法が提案されている(特許文献1参照)。   Steel slabs that are lightweight and easy to install are used in many road bridges due to their ease of construction. However, steel wheel slabs, which are road bridges, are directly loaded with automobile wheel loads, and the number of repetitions of loading the loads is extremely large. Therefore, for example, a large stress is repeatedly generated locally at a member intersection, such as an intersection of vertical ribs and horizontal ribs, and there is a high possibility that fatigue damage will occur at that portion. A reinforcement method has been proposed (see Patent Document 1).

上記補強工法は、所定間隔を隔てて橋軸直角方向に複数配置した断面U型のU型鋼材で構成した縦リブの隣接する縦リブとの間に橋軸直角方向の補強リブを溶接やボルトで接続する補強工法である。
しかし、この補強工法はデッキプレートとUリブとの交差部における亀裂が発生した場合の補強方法であり、鋼床版における縦リブと横リブの交差部を補強するものではなかった。
In the above reinforcing method, the reinforcing ribs in the direction perpendicular to the bridge axis are welded or bolted between the adjacent vertical ribs of the vertical ribs made of U-shaped steel material having a U-shaped cross section arranged at a predetermined interval in the direction perpendicular to the bridge axis. It is a reinforcement method of connecting with.
However, this reinforcement method is a reinforcement method in the case where a crack occurs at the intersection between the deck plate and the U-rib, and does not reinforce the intersection between the vertical rib and the lateral rib in the steel deck.

特開2006−97283号公報JP 2006-97283 A

この発明は、デッキプレートの底面側に備えた橋軸方向の閉リブと、橋軸直角方向の横リブとで構成した鋼床版における閉リブと横リブの交差部を補強する補強工法を提供することを目的とする。   The present invention provides a reinforcing method for reinforcing a crossing portion of a closed rib and a lateral rib in a steel deck comprising a closed rib in a bridge axis direction provided on a bottom surface side of a deck plate and a lateral rib in a direction perpendicular to the bridge axis. The purpose is to do.

この発明は、デッキプレートと、該デッキプレートの底面側に備えた橋軸方向の縦リブと、橋軸直角方向の横リブとで構成した鋼床版の補強工法であって、前記縦リブを閉リブで構成するとともに、該閉リブと前記横リブとの交差部分の前記閉リブの底面部分におけるスカーラップの少なくとも一部を跨いで前記閉リブの底面と前記横リブとを連結部材で連結する鋼床版の補強工法であることを特徴とする。   The present invention is a method for reinforcing a steel deck comprising a deck plate, a longitudinal rib in the bridge axis direction provided on the bottom surface side of the deck plate, and a lateral rib in a direction perpendicular to the bridge axis. Constructed by a closed rib and connecting the bottom surface of the closed rib and the lateral rib with a connecting member across at least a part of the scallop at the bottom surface portion of the closed rib at the intersection of the closed rib and the lateral rib It is characterized in that it is a method of reinforcing steel slabs.

前記閉リブは、Uリブといわれる断面U型のU型鋼材やトラフリブといわれる断面台形型の台形断面鋼材であることを含む。
前記スカーラップは、橋軸方向に連続する閉リブである縦リブが横リブを貫通する態様で交差する交差部において、縦リブの底面部分において横リブと溶接されていない部分の間隙を示す。
上記構成により、直接載荷される自動車車輪荷重の繰り返しによって発生する部材交差部における局所的に大きな応力による疲労損傷が生じることを防止できる。
The closed rib includes a U-shaped steel material having a U-shaped section called a U-rib and a trapezoidal section steel material having a trapezoidal-shaped section called a truffle.
The said scallop | wrap shows the gap | interval of the part which is not welded with a horizontal rib in the bottom face part of a vertical rib in the cross | intersection part which the vertical rib which is a closed rib continuous in a bridge axis direction cross | intersects the aspect which penetrates a horizontal rib.
By the said structure, it can prevent that the fatigue damage by the locally big stress arises in the member crossing part which generate | occur | produces by the repetition of the vehicle wheel load loaded directly.

この発明の態様として、前記連結部材を、断面L型のL型鋼で構成することができる。
これにより、平面視直交する閉リブと横リブとの交差部において、閉リブの底面と横リブの平面部分との接触面積を容易に確保しながら、両リブをL型鋼で連結することができ、施工性が向上する。また、流通量の多いL型鋼を連結部材として用いることによって、本補強工法における連結部材の材料費を低減することができる。
As an aspect of this invention, the connecting member can be made of L-shaped steel having an L-shaped cross section.
As a result, both ribs can be connected with L-shaped steel while easily ensuring the contact area between the bottom surface of the closed rib and the flat portion of the horizontal rib at the intersection between the closed rib and the horizontal rib orthogonal to each other in plan view The workability is improved. Moreover, the material cost of the connection member in this reinforcement construction method can be reduced by using L-shaped steel with much circulation as a connection member.

また、この発明の態様として、前記L型鋼を、前記縦リブ及び前記横リブと高力ボルトで接続することができる。
上記高力ボルトは、引張耐力が非常に高いハイテンションボルトであることを含む。
As an aspect of the present invention, the L-shaped steel can be connected to the vertical ribs and the horizontal ribs with high-strength bolts.
The high strength bolt includes a high tension bolt having a very high tensile strength.

これにより、高力ボルトによって強く締めつけることで、部材間に生じる摩擦力によって強固に接続することができる。また、先端にピンテールと呼ばれる締付け反力を受けて破断する部分を有するトルシア形の高力ボルトを用いた場合、連結トルクを容易に管理して連結することができ、利用者の利便性が向上する。また、閉リブ及び横リブに連結部材を溶接によって接続する場合と比較して、閉リブ、横リブ、並びに連結部材が溶接による熱の影響を受けることを防止できる。   Thereby, it can connect firmly with the frictional force which arises between members by tightening firmly with a high strength volt | bolt. In addition, when a torcia-type high-strength bolt that has a portion that breaks due to a tightening reaction force called pin tail is used at the tip, the connection torque can be easily managed to improve the convenience for the user. To do. Moreover, compared with the case where a connection member is connected to a closed rib and a horizontal rib by welding, it can prevent that a closed rib, a horizontal rib, and a connection member receive the influence of the heat by welding.

また、L型鋼を連結部材として用いた場合、閉リブ及び横リブのそれぞれと連結部材との接触面積を確保できるため、部材間に生じる摩擦力を確実に確保でき、施工の信頼性をより向上することができる。   In addition, when L-shaped steel is used as the connecting member, the contact area between each of the closed ribs and the transverse ribs and the connecting member can be secured, so that the frictional force generated between the members can be reliably secured, and the construction reliability is further improved. can do.

また、この発明の態様として、前記L型鋼と前記閉リブとを接続する高力ボルトを表面側である片側からの施工によって締結可能な片側施工ボルトで構成することができる。
上記片側施工ボルトは、二部材に備えたボルト孔を連通させ、該ボルト孔に片側面から片側施工ボルトを挿入し、同じ片側面から該ボルトを締め付け回転することで螺挿できるボルトであり、いわゆるワンサイドボルトといわれるボルトであることを含む。
Moreover, as an aspect of the present invention, the high-strength bolt that connects the L-shaped steel and the closed rib can be constituted by a one-side construction bolt that can be fastened by construction from one side that is the surface side.
The one-side construction bolt is a bolt that can be screwed in by connecting the bolt hole provided in the two members, inserting the one-side construction bolt into the bolt hole from one side, and tightening and rotating the bolt from the same one side, This includes the so-called one-side bolt.

これにより、外部から閉ざされた閉空間である閉リブの内部でのナットの締め付け固定の必要性がなくなり、前記L型鋼と前記閉リブとの接続施工を容易にすることができる。また、例えば、閉リブの底面等にハンドホールを設置して開リブ内部に手を入れて上記ナットの締め付け固定をする場合と比較して、構造部材である閉リブに強度低下の要因となり得る断面欠損を設けずにL型鋼と閉リブとを接続することができる。また、底面に耐力に十分に余裕のある場合であっても、ハンドホールからは目視できない閉リブ内部での施工が不要となり、L型鋼と閉リブとの接続施工を容易に行うことができる。   This eliminates the need for tightening and fixing the nut inside the closed rib, which is a closed space closed from the outside, and facilitates the connection between the L-shaped steel and the closed rib. In addition, for example, compared to the case where a hand hole is installed on the bottom surface of the closed rib and a hand is put into the open rib and the nut is tightened and fixed, the closed rib, which is a structural member, can be a cause of a decrease in strength. The L-shaped steel and the closed rib can be connected without providing a cross-sectional defect. Further, even when the bottom surface has a sufficient margin for proof stress, the construction inside the closed rib that cannot be seen from the hand hole is unnecessary, and the connection construction between the L-shaped steel and the closed rib can be easily performed.

この発明により、デッキプレートの底面側に備えた橋軸方向の閉リブと、橋軸直角方向の横リブとで構成した鋼床版における閉リブと横リブの交差部を補強する補強工法を提供することができる。   According to the present invention, there is provided a reinforcing method for reinforcing a crossing portion of a closed rib and a horizontal rib in a steel deck slab formed by a closed rib in the bridge axis direction provided on the bottom surface side of the deck plate and a horizontal rib in a direction perpendicular to the bridge axis. can do.

この発明の一実施形態を以下図面と共に説明する。
本発明の補強工法の対象となる鋼床版100の一部の底面側からの斜視図を示す図1、横リブ20の交差貫通孔40部分の正面図を示す図2、補強前のUリブ10と横リブ20との交差部の拡大正面図を示す図3、補強後の鋼床版100の前記交差部の底面側からの拡大斜視図を示す図4、補強後のUリブ10と横リブ20との交差部の拡大正面図を示す図5、補強後のUリブ10と横リブ20との交差部の拡大縦断面を示す図6、前記交差部における応力状態についての確認試験結果を説明する説明図を示す図7、並びに前記交差部における応力状態についての解析結果を説明する説明図を示す図8とともに、スカーラップ閉塞補強工法について説明する。
An embodiment of the present invention will be described below with reference to the drawings.
FIG. 1 shows a perspective view from the bottom side of a part of a steel deck 100 to be subjected to the reinforcement method of the present invention, FIG. 2 shows a front view of a cross through hole 40 portion of a lateral rib 20, U rib before reinforcement 3 showing an enlarged front view of the intersecting portion between the rib 10 and the lateral rib 20, FIG. 4 showing an enlarged perspective view from the bottom surface side of the intersecting portion of the steel deck 100 after reinforcement, and the U rib 10 after the reinforcement and the transverse FIG. 5 showing an enlarged front view of the intersecting portion with the rib 20, FIG. 6 showing an enlarged longitudinal section of the intersecting portion between the U-rib 10 and the lateral rib 20 after reinforcement, and a confirmation test result on the stress state at the intersecting portion. The scallop blockage reinforcement construction method will be described together with FIG. 7 showing an explanatory diagram for explanation and FIG. 8 showing an explanatory diagram for explaining an analysis result of the stress state at the intersection.

軽量で、架設が容易かつその施工が速いため、道路橋に多数採用されている鋼床版100は、表面側のデッキプレート101と、該デッキプレート101の底面側に溶接接続された橋軸方向Lの縦リブであるUリブ10と、橋軸直角方向Wの横リブ20と、前記横リブ20の左右両端でUリブ10に対して略平行な垂直補剛材102とで構成されている。   Because it is lightweight, easy to erection, and fast in construction, many steel floor slabs 100 adopted for road bridges have a deck plate 101 on the surface side and a bridge axis direction welded to the bottom side of the deck plate 101. The U rib 10 is a vertical rib of L, the horizontal rib 20 in the direction W perpendicular to the bridge axis, and the vertical stiffener 102 substantially parallel to the U rib 10 at both left and right ends of the horizontal rib 20. .

Uリブ10は、上面開放の断面略逆台形型のU型鋼の側面であるウェブ部10aの両上端をデッキプレート101の底面に隅肉溶接31によって接続している。なお、本実施例においては、左右の垂直補剛材102の間において橋軸直角方向Wに等間隔を隔てて、複数のUリブ10を配置している。   The U rib 10 has both upper ends of a web portion 10 a which is a side surface of a U-shaped steel having a substantially inverted trapezoidal cross section with an open top surface connected to the bottom surface of the deck plate 101 by fillet welds 31. In this embodiment, a plurality of U ribs 10 are arranged at equal intervals in the direction W perpendicular to the bridge axis between the left and right vertical stiffeners 102.

なお、Uリブ10を縦リブとして用いた鋼床版100は、バルブリブを用いた鋼床版と比較して溶接量が少なく、コスト削減が図れる。また、Uリブ10自体のねじれ剛性が高く、橋軸方向Lへの荷重分配作用が大きいため、隣接するUリブ同士の間隔である縦リブ支間を長くとれ、鋼重量を軽減できる。   In addition, the steel deck 100 using the U rib 10 as the vertical rib has a smaller welding amount than the steel deck using the valve rib and can reduce the cost. Moreover, since the torsional rigidity of the U-rib 10 itself is high and the load distribution action in the bridge axis direction L is large, the longitudinal rib span that is the interval between adjacent U-ribs can be made long, and the steel weight can be reduced.

さらに、Uリブ10内部は密閉空間であるため、塗装面積が少なく、維持管理が容易等のメリットが多く存在する。したがって、バルブリブ構造の鋼床版に代わってUリブ10を縦リブとして用いた鋼床版100が多く採用されている。   Furthermore, since the inside of the U rib 10 is a sealed space, there are many advantages such as a small coating area and easy maintenance. Therefore, many steel floor slabs 100 using U ribs 10 as vertical ribs are employed instead of steel plate slabs having a valve rib structure.

横リブ20は、T型断面のT型鋼を上下さかさまに配置して構成し、橋軸方向Lに所定間隔を隔て、上端をデッキプレート101の底面に隅肉溶接31によって接続している。なお、隅肉溶接31は後述する円弧切欠40aで廻し溶接となり、横リブ20の表裏面を連続的に溶接している。   The transverse rib 20 is configured by arranging T-shaped steel having a T-shaped cross section in an upside down direction, and is connected to the bottom surface of the deck plate 101 by a fillet weld 31 at a predetermined interval in the bridge axis direction L. In addition, the fillet weld 31 is turned and welded by an arc notch 40a described later, and the front and back surfaces of the lateral rib 20 are continuously welded.

なお、横リブ20には、図2に示すように、Uリブ10が貫通する交差貫通孔40を所定箇所に設けている。交差貫通孔40は、Uリブ10の断面外形よりわずかに大きな略逆台形型であり、底面部分を左右及び下方向に拡張するとともに、両隅角部と両側部上端に円弧状の円弧切欠40aを備えた貫通孔である。   As shown in FIG. 2, the transverse rib 20 is provided with a cross through hole 40 through which the U rib 10 penetrates at a predetermined location. The intersecting through hole 40 has a substantially inverted trapezoidal shape slightly larger than the cross-sectional outline of the U-rib 10 and extends the bottom surface portion in the left and right and downward directions, and arc-shaped arc notches 40a at both corners and upper ends of both sides. It is a through-hole provided with.

図3に示すように、前記Uリブ10と横リブ20とは、上記交差貫通孔40を貫通する態様で交差し、その交差貫通孔40の両側面と、対向するUリブ10のウェブ部10aとを隅肉溶接31によって接続している。なお、隅肉溶接31は円弧切欠40aでまわし溶接となり、横リブ20の表裏面を連続的に溶接している。   As shown in FIG. 3, the U rib 10 and the lateral rib 20 intersect in a manner that penetrates the intersecting through hole 40, and the web portions 10 a of the U rib 10 that face both side surfaces of the intersecting through hole 40. Are connected by fillet welding 31. In addition, the fillet weld 31 is turned and welded at the arc cutout 40a, and the front and back surfaces of the lateral rib 20 are continuously welded.

このようにして、交差貫通孔40の両側面と、Uリブ10のウェブ部10aとを隅肉溶接31で接続してUリブ10と横リブ20とを一体化するとともに、隅肉溶接31によってUリブ10と接続されていない交差貫通孔40のその他の部分及び円弧切欠40aをスカーラップ42として機能させている。   In this manner, both the side surfaces of the intersecting through hole 40 and the web portion 10a of the U rib 10 are connected by the fillet weld 31 to integrate the U rib 10 and the lateral rib 20 and Other portions of the cross through hole 40 that are not connected to the U-rib 10 and the circular arc cut 40a function as the scar wrap 42.

なお、スカーラップ42は、Uリブ10とデッキプレート101の底面との隅肉溶接31による溶接線と、横リブ20とデッキプレート101の底面との隅肉溶接31による溶接線との交差を避けるとともに、Uリブ10と横リブ20との交差部における隅肉溶接31の溶接品質を確保している。   The scallop 42 avoids the intersection of the weld line by the fillet weld 31 between the U rib 10 and the bottom surface of the deck plate 101 and the weld line by the fillet weld 31 between the lateral rib 20 and the bottom surface of the deck plate 101. At the same time, the weld quality of the fillet weld 31 at the intersection between the U rib 10 and the lateral rib 20 is ensured.

このような構造で構成した鋼床版100は、1980年以降に建造された自動車橋に多く採用されており、昨今の点検整備において、下側の円弧切欠40aのスカーラップ42であり、Uリブ10のウェブ部10aと横リブ20とを接続した隅肉溶接31の下端である廻し溶接部31aから横リブ20の母材に向けた幅方向の疲労亀裂60(図3)が多く確認されている。   The steel deck 100 having such a structure is widely used in automobile bridges built after 1980, and is a scallop 42 in the lower circular arc notch 40a in the recent inspection and maintenance. Many fatigue cracks 60 (FIG. 3) in the width direction from the turn welded portion 31a, which is the lower end of the fillet weld 31 connecting the 10 web portions 10a and the lateral rib 20, to the base material of the lateral rib 20 are confirmed. Yes.

これは、Uリブ10のねじれ変形が隅肉溶接31によって溶接された横リブ20によって拘束されているため、繰返し数が極めて多く自動車輪荷重が直接載荷される鋼床版100において、応力変動が大きくなるために発生すると考えられる。また、交通量の増加や重量違反者の存在により、局所的に、さらに大きな応力が繰り返し発生し、疲労損傷に繋がると考えられている。   This is because the torsional deformation of the U-rib 10 is constrained by the lateral rib 20 welded by the fillet weld 31, so that the stress fluctuation occurs in the steel deck 100 where the number of repetitions is extremely large and the automobile wheel load is directly loaded. It is thought to occur because it grows. In addition, it is considered that a larger stress is repeatedly generated locally due to an increase in traffic volume and the existence of a weight violator, leading to fatigue damage.

本発明のスカーラップ閉塞補強工法は、上記スカーラップ42における疲労亀裂60の発生を抑制、あるいは疲労亀裂60の発生した鋼床版100を補強する工法である。
このスカーラップ閉塞補強工法は、Uリブ10と横リブ20との交差部において、スカーラップ42を跨ぐ態様のL型アングル50でUリブ10の底面10bと横リブ20とを連結するものである。
The scallop closure reinforcement method of the present invention is a method of suppressing the generation of the fatigue crack 60 in the scallop 42 or reinforcing the steel deck 100 in which the fatigue crack 60 has occurred.
In this scallop closure reinforcement method, the bottom 10b of the U rib 10 and the lateral rib 20 are connected at the intersection of the U rib 10 and the lateral rib 20 with an L-shaped angle 50 that straddles the scallop 42. .

詳述すると、交差部において横リブ20と溶接されていないUリブ10の底面10bの面と、スカーラップ42を介して対向する底面側の横リブ20とを、スカーラップ42を跨ぐ態様且つUリブ10の底面10b及び横リブ20のそれぞれの面に密接するL型アングル50によって、図6に示すように、橋軸方向Lの両側から横リブ20を挟みこんで連結する工法である。   More specifically, the surface of the bottom surface 10b of the U rib 10 that is not welded to the lateral rib 20 at the intersection and the lateral rib 20 on the bottom surface side that faces the scar wrap 42 are crossed over the scur wrap 42 and the U As shown in FIG. 6, the horizontal rib 20 is sandwiched and connected from both sides in the bridge axis direction L by L-shaped angles 50 that are in close contact with the bottom surface 10 b of the rib 10 and the respective surfaces of the horizontal rib 20.

なお、横リブ20と各L型アングル50とは、トルシア型のハイテンションボルト51で接続している。トルシア型のハイテンションボルト51は、ボルト頭部が丸く、先端にピンテールと呼ばれる締付け反力を受けて破断する部分を有した引張耐力が非常に高い高力ボルトであり、ピンテールの破断によって高力ボルトの締め付けトルクを管理することができる。   The lateral rib 20 and each L-shaped angle 50 are connected by a torcia-type high tension bolt 51. The torcia type high tension bolt 51 is a high-strength bolt having a very high tensile strength with a bolt head having a rounded head and a portion that is broken by receiving a tightening reaction force called a pin tail. The bolt tightening torque can be managed.

また、Uリブ10の底面10bと各L型アングル50とは、ワンサイドボルト型のハイテンションボルト52で接続している。ワンサイドボルト型のハイテンションボルト52は、トルシア型のハイテンションボルト51と同様に、引張耐力が非常に高い高力ボルトであり、Uリブ10の底面側からの締め付け、すなわち片側からの施工のみで締め付けることのできる高力ボルトである。   The bottom 10b of the U rib 10 and each L-shaped angle 50 are connected by a one-side bolt type high tension bolt 52. The one-side bolt type high tension bolt 52 is a high-strength bolt having a very high tensile strength like the torcia-type high tension bolt 51, and is tightened from the bottom side of the U-rib 10, that is, only applied from one side. It is a high-strength bolt that can be tightened with.

詳しくは、ワンサイドボルト型のハイテンションボルト52は、Uリブ10の底面10bとL型アングル50の両方の部材に備え、連通させたボルト孔に、底面10bの下側から挿入し、底面10bの下側から該ボルトを締め付け回転することで底面10bとL型アングル50とを締結することのできるボルトである。   Specifically, the one-side bolt type high tension bolt 52 is provided on both the bottom surface 10b of the U-rib 10 and the L-shaped angle 50, and is inserted into the communicating bolt hole from below the bottom surface 10b. It is a bolt that can fasten the bottom surface 10b and the L-shaped angle 50 by tightening and rotating the bolt from below.

このように、スカーラップ閉塞補強工法は、Uリブ10の底面10b及び横リブ20のそれぞれの面に密接するL型アングル50を、ハイテンションボルト51,52によって接続しているため、Uリブ10の底面10b及び横リブ20とL型アングル50との間で摩擦力が確実に生ずるため、ハイテンションボルト51,52による摩擦接続をより堅固なものとすることができ、施工の信頼性をより向上することができる。   As described above, since the Scar wrap closing reinforcement method connects the L-shaped angle 50 in close contact with the bottom surface 10b of the U rib 10 and the respective surfaces of the lateral rib 20 by the high tension bolts 51 and 52, the U rib 10 Since the frictional force is surely generated between the bottom surface 10b and the lateral rib 20 and the L-shaped angle 50, the frictional connection by the high tension bolts 51 and 52 can be made more robust, and the construction reliability can be further improved. Can be improved.

また、Uリブ10の底面10bとL型アングル50との接続をハイテンションボルト52で行うため、密閉空間であるUリブ10内部での施工を必要とせず、Uリブ10の底面側からの締め付け施工だけでUリブ10とL型アングル50とを接続できる。   Further, since the connection between the bottom surface 10b of the U rib 10 and the L-shaped angle 50 is performed by the high tension bolt 52, it is not necessary to perform the construction inside the U rib 10 which is a sealed space, and the U rib 10 is tightened from the bottom surface side. The U rib 10 and the L-shaped angle 50 can be connected only by construction.

上記構成のスカーラップ閉塞補強工法の補強効果確認のための確認試験及び解析結果について以下において説明する。
この確認試験は、鋼床版100をモデル化した供試体(図示省略)に対して行った静的載荷試験によってスカーラップ閉塞補強工法による応力低減効果を確認する試験である。
上記供試体は、橋軸方向3.88m×橋軸直角方向2.81mの平面寸法で形成し、4本のUリブ10と3枚の横リブ20を備えている。なお、添接部に隣接する横リブ20のスカーラップ42に疲労亀裂60の発生が集中している事実に基づいて、この供試体の橋軸方向中央付近に添接部(F点)を再現している。
A confirmation test and an analysis result for confirming the reinforcing effect of the scalloped block reinforcement method having the above configuration will be described below.
This confirmation test is a test for confirming the stress reduction effect by the scallop closure reinforcement method by a static loading test performed on a specimen (not shown) that models the steel deck 100.
The specimen is formed with a planar dimension of 3.88 m in the bridge axis direction × 2.81 m in the direction perpendicular to the bridge axis, and includes four U ribs 10 and three lateral ribs 20. Based on the fact that fatigue cracks 60 are concentrated on the scallop 42 of the lateral rib 20 adjacent to the attachment portion, the attachment portion (point F) is reproduced near the center of the specimen in the bridge axis direction. is doing.

118kNの載荷荷重を、図7(e)に示すように、上記F点を中心とした橋軸方向の2mの範囲において11箇所(A点〜K点)で載荷した状態で発生する応力を測定している。なお、C点,I点は、横リブ20の直上の載荷ポイントである。   As shown in FIG. 7E, the stress generated in a state where a load of 118 kN is loaded at 11 locations (points A to K) in the range of 2 m in the bridge axis direction centered on the point F is measured. is doing. Note that points C and I are loading points immediately above the lateral rib 20.

応力測定位置は、図7(a),(b)に示すように、橋軸直角方向に併設したNO1とNO2の2本のUリブ10のうち右側のNO2Uリブ10の左右両側のウェブ部10aの下端であり、隅肉溶接31によって横リブ20と接続した隅肉溶接31の下端部分である廻し溶接部31aを着目点とした着目点aに設置した5連式応力集中ゲージによって、疲労亀裂60が発生する廻し溶接部31aに発生する応力を測定している。   As shown in FIGS. 7 (a) and 7 (b), the stress measurement positions are the web portions 10a on the left and right sides of the NO2U rib 10 on the right side of the two U1 ribs NO1 and NO2 provided side by side in the direction perpendicular to the bridge axis. Fatigue cracks are caused by a five-point stress concentration gauge installed at a point of interest a which is a turning weld 31a which is a lower end of the fillet weld 31 connected to the lateral rib 20 by the fillet weld 31. The stress which generate | occur | produces in the rotation welding part 31a which 60 generate | occur | produces is measured.

また、応力測定結果は、NO2Uリブ10のNO1側の着目点aと垂直補剛材102側の着目点aとに発生する応力をスカーラップ閉塞補強工法による補強前と補強後とで測定して比較している。   The stress measurement results were obtained by measuring the stress generated at the point of interest a on the NO1 side of the NO2U rib 10 and the point of interest a on the vertical stiffener 102 before and after reinforcement by the scallop closure reinforcement method. Comparing.

測定結果を示す図7(c),(d)について説明すると、図7(c)はNO2Uリブ10のNO1側の着目点aの測定結果を示し、図7(d)は垂直補剛材102側の着目点aの測定結果を示す。そして、図7(c),(d)はともに、橋軸方向の載荷点(A〜K)毎に発生した応力を示し、(2)、(5)は本工法による補強前の5連式応力集中ゲージの2番端子と5番端子での測定結果であり、(2’),(5’)は対策後の前記2番端子と前記5番端子での測定結果を示す。   7C and 7D showing the measurement results will be described. FIG. 7C shows the measurement results of the point of interest a on the NO1 side of the NO 2 U rib 10, and FIG. 7D shows the vertical stiffener 102. The measurement result of the point of interest a on the side is shown. 7 (c) and 7 (d) both show the stress generated for each loading point (A to K) in the bridge axis direction, and (2) and (5) are five-series before reinforcement by this construction method. It is a measurement result in the 2nd terminal and the 5th terminal of a stress concentration gauge, and (2 ') and (5') show a measurement result in the 2nd terminal and the 5th terminal after measures.

このように示した図7(c),(d)から、本工法による補強前では、添接部上であるF点載荷時の発生応力が最も高く、C点載荷時の発生応力の3倍程度であることが確認できる。本工法による補強前は、図7(c)で示す発生応力は全て引張領域であり、図7(d)では全て圧縮領域となっていることからUリブ10はねじり力が卓越していると考えられる。   As shown in FIGS. 7C and 7D, before the reinforcement by the present construction method, the generated stress at the F point loading on the attachment portion is the highest, and is three times the generated stress at the C point loading. It can be confirmed that Before the reinforcement by this construction method, the generated stress shown in FIG. 7 (c) is all in the tension region, and in FIG. 7 (d), all is in the compression region. Conceivable.

本工法による補強の前後を比較すると、図7(c)の(2)と(2’)において最大値となるF点の載荷では122N/mmから29N/mmと1/5程度に低下していることが確認できる。一方、補強後A点〜E点の載荷において、C点で−27N/mmの圧縮応力が発生しており、応力が引張領域から圧縮領域に変化している。しかし、本工法の補強によって、応力範囲は約1/2となり、疲労耐久性は向上すると考えられる。図7(d)においても同様に比較すると、本工法による補強前後で最大−96N/mmから4N/mm、応力範囲が大幅に低下することが確認できる。 Comparing before and after reinforcement by this construction method, the load at point F, which is the maximum value in (2) and (2 ') of FIG. 7 (c), decreases from 122 N / mm 2 to 29 N / mm 2 to about 1/5. You can confirm that On the other hand, in the loading from point A to point E after reinforcement, a compressive stress of −27 N / mm 2 is generated at the point C, and the stress changes from the tensile region to the compressive region. However, it is considered that the stress range becomes about ½ and the fatigue durability is improved by the reinforcement of this construction method. Even when compared in the same manner in FIG. 7 (d), the maximum -96N / mm 2 from 4N / mm 2 before and after reinforcement by the present method, it can be confirmed that the stress range is greatly reduced.

このようにして、スカーラップ閉塞補強工法の補強効果確認のための確認試験において、NO1側の着目点a及び垂直補剛材102側の着目点aともに、応力範囲が低減し、明確に本工法による補強効果があることが確認できた。   In this way, in the confirmation test for confirming the reinforcing effect of the scallop closure reinforcement method, the stress range is reduced for both the point of interest a on the NO1 side and the point of interest a on the vertical stiffener 102 side, and this method is clearly defined. It was confirmed that there was a reinforcing effect by.

また、上記確認試験において用いた供試体をモデル化してFEM解析した結果について説明する。
このFEM解析においては、着目点a近傍をソリッド要素、それ以外の部分をシェル要素とビーム要素でモデル化し、上記F点に載荷荷重118kNを載荷した際に着目点aに発生する応力を補強前後で比較した。
The results of FEM analysis after modeling the specimen used in the confirmation test will be described.
In this FEM analysis, the vicinity of the point of interest a is modeled as a solid element, the other portions are modeled as shell elements and beam elements, and the stress generated at the point of interest a when the loaded load 118 kN is loaded at the point F is before and after reinforcement. Compared.

この着目点aに発生する補強前後の応力を示す図8からわかるように、補強前の着目点aに発生していた最大応力133MPaが、補強によって18MPaに低減していることが確認できる。   As can be seen from FIG. 8 showing the stress before and after reinforcement generated at the point of interest a, it can be confirmed that the maximum stress 133 MPa generated at the point of interest a before reinforcement is reduced to 18 MPa by reinforcement.

このように、本発明のスカーラップ閉塞補強工法は、補強効果確認のための確認試験と同様に、FEM解析においても、着目点aにおける発生応力を低減する効果があると評価できる。したがって、スカーラップ閉塞補強工法でUリブ10と横リブ20との交差部分を補強することにより、直接載荷される自動車車輪荷重の繰り返しによって発生するUリブ10と横リブ20との交差部における局所的に大きな応力に起因する横リブ20に疲労損傷の進行及び新たな発生を防止することができる。   As described above, the scallop closure reinforcement method of the present invention can be evaluated as having an effect of reducing the generated stress at the point of interest a in the FEM analysis as well as the confirmation test for confirming the reinforcement effect. Therefore, by reinforcing the intersecting portion of the U rib 10 and the lateral rib 20 by the scallop closing reinforcement method, the local portion at the intersecting portion of the U rib 10 and the lateral rib 20 generated by the repetition of the directly loaded automobile wheel load is used. Thus, the progress and new generation of fatigue damage can be prevented from occurring in the lateral rib 20 caused by a large stress.

また、単純な形状、且つ流通量が多く安価なL型アングル50でスカーラップ42を跨ぎ、橋軸方向Lの両側から横リブ20を挟みこんで、Uリブ10の底面10bと横リブ20と連結することができる。また、Uリブ10の底面10bと横リブ20の平面部分とをL型アングル50で連結するため、Uリブ10と横リブ20との交差部を容易に連結して補強することができる。したがって、スカーラップ閉塞補強工法による補強に要する補強費用を材料費及び工費ともに低減することができる。   In addition, the L-shaped angle 50 having a simple shape and a large amount of circulation spans the scallop 42, sandwiches the lateral ribs 20 from both sides in the bridge axis direction L, and the bottom surface 10b of the U rib 10 and the lateral ribs 20 Can be linked. Further, since the bottom surface 10b of the U rib 10 and the planar portion of the lateral rib 20 are connected by the L-shaped angle 50, the intersection between the U rib 10 and the lateral rib 20 can be easily connected and reinforced. Therefore, it is possible to reduce both the material cost and the construction cost for the reinforcement cost required for the reinforcement by the scar wrap closing reinforcement method.

また、各L型アングル50をハイテンションボルト51,52で接続したため、Uリブ10の底面10bと各L型アングル50、及び横リブ20と各L型アングル50との連結トルクを容易に管理して、Uリブ10と横リブ20とを連結することができるため、利用者の利便性が向上する。また、L型アングル50を溶接によってUリブ10の底面10bや横リブ20に接続する場合と比較して、Uリブ10、横リブ20並びにL型アングル50に溶接による熱の影響による強度低下することを防止できる。   Further, since each L-shaped angle 50 is connected by high tension bolts 51 and 52, the connecting torque between the bottom surface 10b of the U-rib 10 and each L-shaped angle 50 and between the lateral rib 20 and each L-shaped angle 50 can be easily managed. Thus, since the U rib 10 and the lateral rib 20 can be connected, the convenience for the user is improved. Moreover, compared with the case where the L-shaped angle 50 is connected to the bottom surface 10b of the U-rib 10 or the lateral rib 20 by welding, the strength of the U-rib 10, the lateral rib 20 and the L-shaped angle 50 is reduced due to the influence of heat from welding. Can be prevented.

上述した効果確認試験及びFEM解析結果からもわかるように、Uリブ10及び横リブ20を用いた鋼床版100における疲労亀裂60は、そのほとんどが縦リブと横リブの交差部で発生しており、疲労亀裂60が大規模になると施工が大がかりとなるが、本発明のスカーラップ閉塞補強工法によって、従来スカーラップ42によって連結されていなかったUリブ10の底面10bと横リブ20とを連結することでUリブ10と横リブ20とが、さらに一体化され、これにより、横リブ20に発生する応力を低減でき、疲労亀裂60の発生を防止できる。なお、スカーラップ閉塞補強工法は、デッキプレート101の底面側のみの施工によって実現できるため、上面側である車道面を交通規制することなく、Uリブ10と横リブ20との交差部を補強でき、利用者の満足度を向上することができる。   As can be seen from the effect confirmation test and the FEM analysis results described above, most of the fatigue cracks 60 in the steel deck 100 using the U rib 10 and the transverse rib 20 are generated at the intersection of the longitudinal rib and the transverse rib. However, when the fatigue crack 60 becomes large, the construction becomes large, but the bottom 10b of the U-rib 10 and the lateral rib 20 that are not conventionally connected by the scallop 42 are connected by the scallop closure reinforcement method of the present invention. By doing so, the U rib 10 and the lateral rib 20 are further integrated, whereby the stress generated in the lateral rib 20 can be reduced and the occurrence of the fatigue crack 60 can be prevented. Since the scallop closure reinforcement method can be realized by construction only on the bottom surface side of the deck plate 101, the intersection of the U rib 10 and the lateral rib 20 can be reinforced without restricting traffic on the road surface on the top surface side. , User satisfaction can be improved.

なお、本実施例においては、Uリブ10と横リブ20との交差部に疲労亀裂60が既に生じている鋼床版100をスカーラップ閉塞補強工法で補強したが、疲労亀裂60が生じていない鋼床版100を補強してもよい。これにより、疲労亀裂60の発生を防止することができる。   In the present embodiment, the steel deck slab 100 in which the fatigue crack 60 has already occurred at the intersection between the U rib 10 and the lateral rib 20 is reinforced by the scallop closure reinforcement method, but the fatigue crack 60 does not occur. The steel deck 100 may be reinforced. Thereby, generation | occurrence | production of the fatigue crack 60 can be prevented.

また、本実施例においては、橋軸方向Lの両側から横リブ20を挟みこむ態様の2枚のL型アングル50でUリブ10の底面10bと横リブ20とを連結したが、橋軸方向Lの2枚のL型アングル50のうちいずれか一方のL型アングル50で、Uリブ10の底面10bと横リブ20とを連結してもよい。   In the present embodiment, the bottom surface 10b of the U rib 10 and the lateral rib 20 are connected by the two L-shaped angles 50 sandwiching the lateral rib 20 from both sides in the bridge axial direction L. The bottom surface 10b of the U rib 10 and the lateral rib 20 may be connected by one of the two L-shaped angles 50 of L.

この発明の構成と、上述の実施形態との対応において、
この発明の閉リブは、Uリブ10に対応し、
以下同様に、
連結部材は、L型アングル50、及びハイテンションボルト51,52に対応し、
L型鋼は、L型アングル50に対応し、
高力ボルトは、ハイテンションボルト51に対応し、
片側施工ボルトは、ワンサイド型のハイテンションボルト52に対応するも、
この発明は、上述の実施形態の構成のみに限定されるものではなく、多くの実施の形態を得ることができる。
In correspondence between the configuration of the present invention and the above-described embodiment,
The closed rib of the present invention corresponds to the U-rib 10,
Similarly,
The connecting member corresponds to the L-shaped angle 50 and the high tension bolts 51 and 52,
L-shaped steel corresponds to L-shaped angle 50,
The high strength bolt corresponds to the high tension bolt 51,
One side construction bolt corresponds to one side type high tension bolt 52,
The present invention is not limited only to the configuration of the above-described embodiment, and many embodiments can be obtained.

鋼床版の一部の底面側からの斜視図。The perspective view from the bottom face side of a part of steel deck. 横リブの交差貫通孔部分の正面図。The front view of the crossing through-hole part of a horizontal rib. 補強前のUリブと横リブとの交差部の拡大正面図。The enlarged front view of the crossing part of the U rib before reinforcement and a horizontal rib. 補強後の鋼床版の前記交差部の底面側からの拡大斜視図。The expansion perspective view from the bottom face side of the said crossing part of the steel slab after reinforcement. 補強後のUリブと横リブとの交差部の拡大正面図。The enlarged front view of the cross | intersection part of the U rib and horizontal rib after reinforcement. 補強後のUリブと横リブとの交差部の拡大縦断面。The expanded longitudinal cross-section of the cross | intersection part of the U rib and horizontal rib after reinforcement. 交差部における応力状態についての確認試験結果を説明する説明図。Explanatory drawing explaining the confirmation test result about the stress state in a cross | intersection part. 交差部における応力状態についての解析結果を説明する説明図。Explanatory drawing explaining the analysis result about the stress state in a cross | intersection part.

符号の説明Explanation of symbols

10…Uリブ、20…横リブ、42…スカーラップ、50…L型アングル、51,52…ハイテンションボルト、100…鋼床版、101…デッキプレート 10 ... U ribs, 20 ... lateral ribs, 42 ... scar wraps, 50 ... L-shaped angles, 51,52 ... high tension bolts, 100 ... steel decks, 101 ... deck plates

Claims (4)

デッキプレートと、該デッキプレートの底面側に備えた橋軸方向の縦リブと、橋軸直角方向の横リブとで構成した鋼床版の補強工法であって、
前記縦リブを閉リブで構成するとともに、
該閉リブと前記横リブとの交差部分の前記閉リブの底面部分におけるスカーラップの少なくとも一部を跨いで前記閉リブの底面と前記横リブとを連結部材で連結する
鋼床版の補強工法。
A steel plate slab reinforcement method comprising a deck plate, a longitudinal rib in the bridge axis direction provided on the bottom side of the deck plate, and a lateral rib in a direction perpendicular to the bridge axis,
While configuring the vertical rib with a closed rib,
A steel plate slab reinforcement method for connecting the bottom surface of the closed rib and the lateral rib with a connecting member across at least a part of the scallop at the bottom surface portion of the closed rib at the intersection of the closed rib and the lateral rib. .
前記連結部材を、
断面L型のL型鋼で構成した
請求項1に記載の鋼床版の補強工法。
The connecting member;
The steel floor slab reinforcing method according to claim 1, wherein the steel deck is made of L-shaped steel having an L-shaped cross section.
前記L型鋼を、
前記閉リブ及び前記横リブと高力ボルトで接続した
請求項2に記載の鋼床版の補強工法。
The L-shaped steel,
The method for reinforcing a steel slab according to claim 2, wherein the closed rib and the lateral rib are connected to each other with a high-strength bolt.
前記L型鋼と前記閉リブとを接続する高力ボルトを
表面側である片側からの施工によって締結可能な片側施工ボルトで構成した
請求項3に記載の鋼床版の補強工法。
The reinforcing method for a steel slab according to claim 3, wherein the high-strength bolt that connects the L-shaped steel and the closed rib is constituted by a one-side construction bolt that can be fastened by construction from one side that is the surface side.
JP2007070440A 2007-03-19 2007-03-19 Steel slab reinforcement method Active JP4945773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007070440A JP4945773B2 (en) 2007-03-19 2007-03-19 Steel slab reinforcement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007070440A JP4945773B2 (en) 2007-03-19 2007-03-19 Steel slab reinforcement method

Publications (2)

Publication Number Publication Date
JP2008231718A JP2008231718A (en) 2008-10-02
JP4945773B2 true JP4945773B2 (en) 2012-06-06

Family

ID=39904854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007070440A Active JP4945773B2 (en) 2007-03-19 2007-03-19 Steel slab reinforcement method

Country Status (1)

Country Link
JP (1) JP4945773B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4705607B2 (en) * 2007-05-10 2011-06-22 新日本製鐵株式会社 Steel slab and method for producing steel slab
JP4751369B2 (en) * 2007-06-14 2011-08-17 首都高速道路株式会社 U-rib steel slab
JP4607245B1 (en) * 2010-07-23 2011-01-05 株式会社Ihi Reinforcement structure and reinforcement method for welded part of vertical stiffener for steel deck
JP5961041B2 (en) * 2012-05-24 2016-08-02 阪神高速道路株式会社 Steel slab and steel slab bridge equipped with the same
JP6478948B2 (en) * 2016-07-14 2019-03-06 昌弘 坂野 Steel bridge with steel deck structure with vertical rib and deck plate joined with one side bolt
JP6925851B2 (en) * 2017-04-24 2021-08-25 日本製鉄株式会社 Louver system and its manufacturing method
CN108797389A (en) * 2018-06-26 2018-11-13 辽宁省交通规划设计院有限责任公司 Enhance Hollow Slab Beam Bridge lateral ties ruggedized construction and its construction method
CN108797390A (en) * 2018-06-26 2018-11-13 辽宁省交通规划设计院有限责任公司 Hollow Slab Beam Bridge lateral ties ruggedized construction and its construction method
CN108824224A (en) * 2018-07-28 2018-11-16 上海同派建筑科技有限公司 A kind of steel structural bridge girder connection assembled reinforcing construction

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2675717B2 (en) * 1992-06-24 1997-11-12 大和ハウス工業株式会社 Column base structure of square steel tubular column
JP2752905B2 (en) * 1994-06-14 1998-05-18 大和ハウス工業株式会社 Column / beam joint structure using one side bolt
JP2001055809A (en) * 1999-08-19 2001-02-27 Topy Ind Ltd Steel-concrete combined girder
JP4293696B2 (en) * 1999-12-28 2009-07-08 ショーボンド建設株式会社 Construction method of composite floor slab bridge
JP4238461B2 (en) * 2000-06-22 2009-03-18 Jfeエンジニアリング株式会社 Joint device for panel members in composite floor slabs
JP2003049404A (en) * 2001-08-07 2003-02-21 Topy Ind Ltd Reinforcing structure for steel rigid-frame bridge pier
JP2003183769A (en) * 2001-12-11 2003-07-03 Nippon Steel Corp Long-life steel structure
JP4347158B2 (en) * 2004-08-03 2009-10-21 三菱重工鉄構エンジニアリング株式会社 Steel bridge, steel bridge reinforcement method and repair method
JP4680556B2 (en) * 2004-09-29 2011-05-11 Jfeエンジニアリング株式会社 Steel slab reinforcement method
JP2007032056A (en) * 2005-07-26 2007-02-08 Kawada Industries Inc Reinforced structure of steel floor slab and its method

Also Published As

Publication number Publication date
JP2008231718A (en) 2008-10-02

Similar Documents

Publication Publication Date Title
JP4945773B2 (en) Steel slab reinforcement method
Chen et al. Evaluation of reinforced connections between steel beams and box columns
JP5961041B2 (en) Steel slab and steel slab bridge equipped with the same
JP4668760B2 (en) Steel bridge repair and reinforcement structure and method
JP2008050774A (en) Method of repairing steel floor plate
JP2006070570A (en) Vertical rib for steel floor slab and its installation method
JP4751369B2 (en) U-rib steel slab
JP4347158B2 (en) Steel bridge, steel bridge reinforcement method and repair method
JP2008156967A (en) Composite truss girder structure
JP4682839B2 (en) Steel slab reinforcement structure and steel slab reinforcement method
KR20110098713A (en) Column-beam connection structure
JP4391011B2 (en) Fixing jig for construction steel material
JP5358231B2 (en) Joint reinforcement structure
JP5682960B2 (en) Steel structure reinforcement structure and reinforcement method
Plumier et al. Two INnovations for Earthquake Resistant Design: The INERD Project.
JP6335489B2 (en) Movement limiter and construction method of movement limiter
JP5721687B2 (en) Steel deck and bridge
JP4705607B2 (en) Steel slab and method for producing steel slab
JP2008231719A (en) Reinforcing method for steel floor slab
Ahn et al. Fatigue behavior and statistical evaluation of the stress category for a steel–concrete composite bridge deck
JP4823966B2 (en) Steel slab and method for producing steel slab
JP2008231688A (en) Bridge structure using composite floor slab, its construction method, and form for composite floor slab
JP2007327256A (en) Fatigue-resistant steel floor slab
JP5378324B2 (en) Steel slab rib crossing joint structure and bridge
JP2022069006A (en) Beam joint structure and beam joint method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4945773

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250