JP2008156967A - Composite truss girder structure - Google Patents

Composite truss girder structure Download PDF

Info

Publication number
JP2008156967A
JP2008156967A JP2006348926A JP2006348926A JP2008156967A JP 2008156967 A JP2008156967 A JP 2008156967A JP 2006348926 A JP2006348926 A JP 2006348926A JP 2006348926 A JP2006348926 A JP 2006348926A JP 2008156967 A JP2008156967 A JP 2008156967A
Authority
JP
Japan
Prior art keywords
truss
concrete
steel
floor slab
girder structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006348926A
Other languages
Japanese (ja)
Inventor
Shinichi Hino
伸一 日野
Daien Gen
大淵 元
Tadahiko Tsutsumi
忠彦 堤
Yuji Sato
有次 左東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji PS Corp
Original Assignee
Fuji PS Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji PS Corp filed Critical Fuji PS Corp
Priority to JP2006348926A priority Critical patent/JP2008156967A/en
Publication of JP2008156967A publication Critical patent/JP2008156967A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite truss girder structure by which the bending moment applied to a truss member can be reduced. <P>SOLUTION: The composite truss girder structure includes a concrete-based upper floor slab and a concrete-based lower floor slab which are mutually connected by the steel truss members. Since joint panel points of the concrete-based floor slabs and the steel truss members have a semi-hinge structure, the bending moment generated in the steel truss members by the load applied onto the concrete-based upper floor slab can be reduced. Therefore, since it is sufficient that the steel truss members can bear an axial force and the small bending moment, a cross section of each of the members can be reduced, which is economical. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、上下のコンクリート系床版と鋼材トラス(腹部材)を結合した合成トラス桁構造の改良に関するものである。   The present invention relates to an improvement in a composite truss girder structure in which upper and lower concrete slabs and steel trusses (abdominal members) are combined.

一般に、合成トラス桁構造は、上下のコンクリート系床版を鋼トラス材で結合したトラス構造のPC桁構造である。このような合成トラス桁構造は、圧縮応力を受ける部分に主にコンクリート部材を使用し、引っ張り応力を受ける部分に鋼材を使用して両者の利点を生かしている。
例えば、図9、10に開示されたものは、上下のコンクリート床版1、2を鋼腹部材3で結合して、トラス構造のPC橋を構成した例である。ここに示す合成トラス桁構造は、コンクリート床版1、2と棒状の鋼腹部材3との格点部4がコンクリート床版内に設置した鋼製ボックス或いはリング鋼板内に挿入して形成されている。したがって、格点部4は剛結合となして形成されている(引用文献1、2参照)。
また、特許文献3に開示されたプレストレス合成トラス桁においても、プレストレスコンクリート床版を垂直材と斜材からトラスで剛結合して合成トラス桁を構成したものです。
In general, the synthetic truss girder structure is a PC girder structure of a truss structure in which upper and lower concrete-based floor slabs are joined by a steel truss material. In such a synthetic truss girder structure, a concrete member is mainly used for a portion subjected to compressive stress, and a steel material is used for a portion subjected to tensile stress, thereby taking advantage of both advantages.
For example, what is disclosed in FIGS. 9 and 10 is an example in which an upper and lower concrete floor slabs 1 and 2 are connected by a steel web member 3 to form a truss-structured PC bridge. The composite truss girder structure shown here is formed by inserting a grading portion 4 between the concrete floor slabs 1 and 2 and the rod-shaped steel bell member 3 into a steel box or ring steel plate installed in the concrete floor slab. Yes. Therefore, the grading part 4 is formed as a rigid bond (see cited documents 1 and 2).
The prestressed composite truss girder disclosed in Patent Document 3 is also composed of a prestressed concrete floor slab that is rigidly connected with a truss from vertical and diagonal materials to form a composite truss girder.

更に、図11に示すようにコンクリート製の上下床版を鋼トラスのウェブで連結した鋼トラスウェブPC橋における格点構造であって、鋼管で構成した圧縮側トラス材5及び引張り側トラス材6のそれぞれ端部に、前後一対のガセットプレート7、7’、8、8’を鋼管の周囲に相対峙して固着し、その圧縮側トラス材の前後一対のガセットプレートと引張り側トラス材の前後一対のガセットプレートを、それぞれ添接板を介して高力ボルトで接合一体化したものである(引用文献4参照)。
特開2000−170263号公報 特開2000−170264号公報 特表2004−520511号公報 特開2004−197516号公報
Further, as shown in FIG. 11, the steel truss web PC bridge is constructed by connecting concrete upper and lower floor slabs with steel truss webs, and includes a compression side truss member 5 and a tension side truss member 6 made of steel pipes. A pair of front and rear gusset plates 7, 7 ′, 8, and 8 ′ are fixed to the ends of the steel pipe relative to the periphery of the steel pipe, and the front and rear pair of gusset plates of the compression side truss and the front and back of the tension side truss A pair of gusset plates are joined and integrated with a high-strength bolt via an attachment plate, respectively (see cited document 4).
JP 2000-170263 A JP 2000-170264 A JP-T-2004-520511 JP 2004-197516 A

しかし、上記従来の種々合成トラス桁構造において、格点部が全て剛結合であるために格点部の曲げ剛性が大きく、上床版に自動車等の載荷が生じた際に鋼腹部材に軸力に加えて、曲げモーメントが生じ、鋼腹部材の設計にあたり軸力と曲げモーメントの双方を考慮しなければならないと云う欠点が存在した。   However, in the conventional various composite truss girder structures described above, since the grading portions are all rigidly connected, the bending rigidity of the grading portions is large, and when an automobile or the like is loaded on the upper floor slab, the axial force is applied to the steel web member. In addition to this, a bending moment is generated, and there is a drawback that both the axial force and the bending moment must be considered in designing the steel bell member.

この発明は上記に鑑み提案されたもので、上下のコンクリート床版を鋼製の腹部材で連結してトラス構造のPC桁とした合成トラス桁構造を構成するとともに、トラスの格点部をヒンジ結合に近づけて、腹部材に生じる曲げモーメントを減少させた合成トラス桁構造を提供することを目的とする。   The present invention has been proposed in view of the above, and constitutes a composite truss girder structure in which upper and lower concrete floor slabs are connected by steel abdominal members to form a PC girder of the truss structure, and the slat portion of the truss is hinged An object of the present invention is to provide a composite truss girder structure in which the bending moment generated in the abdominal member is reduced close to the coupling.

上記目的を達成するために、本発明はコンクリート系上床版と、コンクリート系下床版とを鋼製トラス材で結合した合成トラス桁構造であって、前記コンクリート系床版と鋼製トラス材との接合格点をセミヒンジ構造としたことを特徴としている。   In order to achieve the above object, the present invention provides a composite truss girder structure in which a concrete upper floor slab and a concrete lower floor slab are joined with a steel truss material, the concrete floor slab and the steel truss material, It is characterized by a semi-hinge structure.

また、本発明において、前記接合格点は、ガセットプレートと繋ぎ板から構成されたことを特徴とする。   In the present invention, the joint rating point includes a gusset plate and a connecting plate.

また、本発明において、前記接合格点は、ガセットプレートと接合される繋ぎ板が桁軸方向面に対して垂直に配設されたことを特徴とする。   In the present invention, the joint rating point is characterized in that a connecting plate to be joined to the gusset plate is arranged perpendicularly to the plane in the spar axis direction.

また、本発明において、前記接合格点は、桁軸方向の剛性が桁幅方向の剛性より小さく構成されたことを特徴としている。   In the present invention, the joint rating point is characterized in that the rigidity in the girder axis direction is smaller than the rigidity in the girder width direction.

また、本発明において、前記鋼製トラス材は、鋼管であることを特徴とする。   In the present invention, the steel truss material is a steel pipe.

また、本発明において、前記ガセットプレートは、コンクリート系上床版内に配設された上弦材に固着されたことを特徴とする。   In the present invention, the gusset plate is fixed to an upper chord member disposed in a concrete upper floor slab.

この発明は上記した構成からなるので、以下に説明するような効果を奏することができる。   Since this invention consists of an above-described structure, there can exist an effect which is demonstrated below.

本発明では、コンクリート系上床版と、コンクリート系下床版とを鋼製トラス材で結合した合成トラス桁構造であって、前記コンクリート系床版と鋼製トラス材との接合格点をセミヒンジ構造としたので、格点部がヒンジ結合に近い構造特性を示し、コンクリート系上床版に自動車等の荷重が負荷された際にも、トラス材に軸力と小さな曲げモーメントが発生する。したがって、トラス材の断面積を小さくすることができ、軽量化を達成することができる。   In the present invention, a synthetic truss girder structure in which a concrete upper floor slab and a concrete lower floor slab are joined by a steel truss material, and a joint rating point between the concrete floor slab and the steel truss material is a semi-hinge structure. As a result, the grading part shows structural characteristics close to the hinge connection, and an axial force and a small bending moment are generated in the truss material even when a load such as an automobile is applied to the concrete upper floor slab. Therefore, the cross-sectional area of the truss material can be reduced, and weight reduction can be achieved.

また、本発明では、前記接合格点は、ガセットプレートと繋ぎ板から構成されたので、上下のコンクリート床版と鋼製トラス材をヒンジ結合に近い状態で結合することができる。   In the present invention, since the joint rating point is composed of a gusset plate and a connecting plate, the upper and lower concrete floor slabs and the steel truss member can be coupled in a state close to hinge coupling.

また、本発明では、前記接合格点は、ガセットプレートと接合される繋ぎ板が桁軸方向面に対して垂直に配設されたので、鋼製トラス材を桁軸方向に曲がり易く取り付けることができ、ヒンジ結合に近い形状とすることができる。   Further, in the present invention, the joint rating point is that the connecting plate to be joined to the gusset plate is disposed perpendicular to the girder axial surface, so that the steel truss can be easily bent in the girder axial direction. It can be a shape close to hinge coupling.

また、本発明では、前記接合格点は、桁軸方向の剛性が桁幅方向の剛性より小さく構成されたので、コンクリート系上床版に自動車等の荷重が負荷された際に、トラス材に発生する曲げモーメントを小さくすることができる。   Further, in the present invention, since the joint grade is configured such that the rigidity in the girder axis direction is smaller than the rigidity in the girder width direction, it occurs in the truss material when a load such as an automobile is applied to the concrete upper floor slab. The bending moment to be reduced can be reduced.

また、本発明では、前記鋼製トラス材は、鋼管であるので、製品の軽量化を達成することができる。   Moreover, in this invention, since the said steel truss material is a steel pipe, the weight reduction of a product can be achieved.

また、本発明では、前記ガセットプレートは、コンクリート系上床版内に配設された上弦材に固着されたので、鋼製トラス材とコンクリート系上床版との接続を容易にすることができる。   In the present invention, since the gusset plate is fixed to the upper chord member disposed in the concrete upper floor slab, the connection between the steel truss material and the concrete upper floor slab can be facilitated.

コンクリート系上床版とコンクリート系下床版とを鋼製トラス材で結合した合成トラス桁構造であって、コンクリート系床版と鋼製トラス材との接合格点をセミヒンジ構造としたので、鋼製トラス材に発生する曲げモーメントを小さくして、軸力のみを考慮して設計を可能にすることができる。また、トラス材の断面積を小さくして、軽量化を図ることができる。   A composite truss girder structure in which a concrete upper floor slab and a concrete lower floor slab are joined with a steel truss material, and the joint rating point between the concrete floor slab and the steel truss material is a semi-hinge structure. The bending moment generated in the truss material can be reduced, and the design can be made considering only the axial force. Further, the cross-sectional area of the truss material can be reduced to reduce the weight.

以下、一実施の形態を示す図面に基づいて本発明を詳細に説明する。図1は本発明に係る合成トラス桁構造の一例を示す側面図、図2は本発明の合成トラス桁構造の一例を示す縦断面図である。ここで、本発明の合成トラス桁構造10は、コンクリート系上床版11と、コンクリート系下床版12とを鋼製トラス材13で結合したものであって、前記上下のコンクリート系床版と鋼製トラス材13との接合格点14をセミヒンジ構造としている。   Hereinafter, the present invention will be described in detail with reference to the drawings illustrating an embodiment. FIG. 1 is a side view showing an example of a synthetic truss girder structure according to the present invention, and FIG. 2 is a longitudinal sectional view showing an example of a synthetic truss girder structure of the present invention. Here, the composite truss girder structure 10 of the present invention is obtained by connecting a concrete upper floor slab 11 and a concrete lower floor slab 12 with a steel truss material 13, and the upper and lower concrete floor slabs and steel The joint rating point 14 with the truss material 13 is a semi-hinge structure.

また、接合格点14は、図3に拡大して示すようにガセットプレート15と繋ぎ板16と溶接結合されている。ガセットプレート15は、複数の孔17を有しており、この孔17に鉄筋を挿通してコンクリート床版と結合する。ガセットプレート15は、コンクリート床版の長手方向に平行に配設されており、繋ぎ板16はこのガセットプレート15に対して垂直に配設される。つまり、繋ぎ板16は、桁軸方向面に対して垂直に配設されるとともに、鋼製トラス材13の設置角度に平行に配設される。繋ぎ板16は、ガセットプレート15に溶接されるとともに、鋼製トラス材13の端部に溶接する。また、鋼製トラス材13は、鋼管を使用する場合には、端部に蓋体18を取り付ける。蓋体18は、半円状の板体を繋ぎ板16の両側から溶着する。鋼製トラス材13としては、鋼管の他にH形鋼、L形鋼、みぞ形鋼等を使用することができる。   The joint rating point 14 is welded to the gusset plate 15 and the connecting plate 16 as shown in an enlarged view in FIG. The gusset plate 15 has a plurality of holes 17, and a reinforcing bar is inserted into the holes 17 to be coupled to the concrete floor slab. The gusset plate 15 is disposed parallel to the longitudinal direction of the concrete floor slab, and the connecting plate 16 is disposed perpendicular to the gusset plate 15. That is, the connecting plate 16 is disposed perpendicularly to the girder axial surface and is disposed in parallel with the installation angle of the steel truss material 13. The connecting plate 16 is welded to the gusset plate 15 and is welded to the end portion of the steel truss material 13. Moreover, the steel truss material 13 attaches the cover body 18 to an edge part, when using a steel pipe. The lid 18 welds a semicircular plate from both sides of the connecting plate 16. As the steel truss member 13, in addition to the steel pipe, H-shaped steel, L-shaped steel, groove-shaped steel, or the like can be used.

図4は、本発明を鋼コンクリート合成床版に適用した場合を示す側面図、図5は、図4に示す合成トラス桁構造の縦断面図である。本実施例において合成トラス桁構造20は、コンクリート系上床版21と、コンクリート系下床版22とを鋼製トラス材23で結合したものであって、コンクリート系床版21、22と鋼製トラス材23との接合格点をセミヒンジ構造としている。そして、接合格点24は、ガセットプレート25と繋ぎ板26から構成され、ガセットプレート25はコンクリート系上床版21に配設された上弦材27と溶着されている。   FIG. 4 is a side view showing the case where the present invention is applied to a steel-concrete composite floor slab, and FIG. 5 is a longitudinal sectional view of the synthetic truss girder structure shown in FIG. In this embodiment, the composite truss girder structure 20 is a concrete upper floor slab 21 and a concrete lower floor slab 22 joined together by a steel truss 23, and the concrete floor slabs 21, 22 and the steel truss The junction point with the material 23 is a semi-hinge structure. The joint rating point 24 is composed of a gusset plate 25 and a connecting plate 26, and the gusset plate 25 is welded to an upper chord material 27 disposed on the concrete upper floor slab 21.

以上のように本発明の合成トラス桁構造は、上床版を鋼コンクリート合成床版とした合成トラス橋にも適用することができる。   As described above, the composite truss girder structure of the present invention can also be applied to a composite truss bridge in which the upper floor slab is a steel concrete composite floor slab.

次に、図6に従って本発明の合成トラス桁構造における格点部の施工手順を説明する。先ず、図6(a)に示すガセットプレート15にスリット16aを有する繋ぎ板16を所定角度で挿入する(図6(b))。繋ぎ板16の挿入角度は、後から取り付ける鋼製トラス材13の取り付け角度に合わせてある。また、図6(c)に示すようにガセットプレート15と繋ぎ板16は、溶接により固着する。次に、図6(d)に示すように繋ぎ板16に鋼製トラス材13の端部に形成されたスリット13aを挿入した後に溶接する。更に、図6(f)、(g)に示すように鋼管から成る鋼製トラス材13の端部も円板状の蓋体18を取り付け溶着する。このようにして、ガセットプレート15、繋ぎ板16、鋼製トラス材13が一体化される。一体化されたガセットプレート15、繋ぎ板16、鋼製トラス材13は、コンクリート系床版に一体化され、合成トラス桁構造となる。   Next, the construction procedure of the grading part in the synthetic truss girder structure of the present invention will be described according to FIG. First, the connecting plate 16 having the slits 16a is inserted into the gusset plate 15 shown in FIG. 6A at a predetermined angle (FIG. 6B). The insertion angle of the connecting plate 16 is adjusted to the attachment angle of the steel truss member 13 to be attached later. Moreover, as shown in FIG.6 (c), the gusset plate 15 and the connection board 16 adhere by welding. Next, as shown in FIG. 6 (d), the slit 13 a formed at the end of the steel truss member 13 is inserted into the connecting plate 16 and then welded. Further, as shown in FIGS. 6 (f) and 6 (g), a disc-shaped lid 18 is attached and welded to the end portion of the steel truss member 13 made of a steel pipe. In this way, the gusset plate 15, the connecting plate 16, and the steel truss material 13 are integrated. The integrated gusset plate 15, connecting plate 16, and steel truss material 13 are integrated with a concrete floor slab to form a synthetic truss girder structure.

[実験結果]
実験は、合成トラス桁構造のコンクリート床版と腹部材(鋼製トラス材)の格点部を模した図7に示す剛結合型の供試体と図8に示すセミヒンジ型の供試体を作成して、水平載荷試験を行い、格点部に応力特性を測定した。水平載荷試験は、最大荷重2000kNの水平載荷試験装置で行った。図7に示すものは、ガセットプレートと繋ぎ板、鋼製トラス材、蓋体が溶着されており、剛結合に近い挙動を示すものである。表1、2は、鋼製トラス材の荷重−ひずみ曲線を示し、ひずみは、鋼製トラス材に発生した曲げモーメントによるひずみである。荷重の増加により引張側を示す表1、圧縮側を示す表2ともに曲げモーメントによるひずみが各測定点P1〜P13で増加している。
[Experimental result]
In the experiment, a rigid joint type specimen shown in FIG. 7 and a semi-hinge type specimen shown in FIG. Then, a horizontal loading test was performed, and the stress characteristics were measured at the rating part. The horizontal loading test was performed with a horizontal loading test apparatus having a maximum load of 2000 kN. In the structure shown in FIG. 7, a gusset plate, a connecting plate, a steel truss material, and a lid are welded to each other, and shows a behavior close to a rigid connection. Tables 1 and 2 show load-strain curves of the steel truss material, and the strain is a strain due to the bending moment generated in the steel truss material. The strain due to the bending moment increases at each measurement point P1 to P13 in both Table 1 showing the tension side and Table 2 showing the compression side due to the increase in load.

Figure 2008156967
Figure 2008156967

Figure 2008156967
Figure 2008156967

図8に示す供試体は、ガセットプレートと繋ぎ板および繋ぎ板と鋼製トラス材とのみが溶着されており、ヒンジに近い挙動を示すものである。鋼製トラス材の荷重−ひずみ曲線を表3、表4に示す。ここで、ひずみは、鋼製トラス材に発生した曲げモーメントによるひずみである。荷重の増加に対して表3に示す引張側では、殆どひずみの増加はなく、曲げモーメントが殆ど発生していないことがわかる。また、表4に示す圧縮側も、ひずみは多少増加しているが表2に示す場合に比べるとひずみの発生は小さい。
以上の結果から、図8に示す供試体では、曲げモーメントの発生が小さく、ヒンジ結合に近いものであることが確認できた。
In the specimen shown in FIG. 8, only the gusset plate and the connecting plate, and the connecting plate and the steel truss material are welded, and the behavior is close to that of the hinge. Tables 3 and 4 show the load-strain curves of the steel truss material. Here, the strain is a strain due to a bending moment generated in the steel truss material. It can be seen that on the tension side shown in Table 3 with respect to the increase in load, there is almost no increase in strain and almost no bending moment is generated. In addition, although the strain on the compression side shown in Table 4 is slightly increased, the generation of strain is small compared to the case shown in Table 2.
From the above results, it was confirmed that the specimen shown in FIG. 8 has a small bending moment and is close to hinge coupling.

Figure 2008156967
Figure 2008156967

Figure 2008156967
Figure 2008156967

図1は、本発明に係る合成トラス桁構造の一例を示す側面図である。FIG. 1 is a side view showing an example of a synthetic truss girder structure according to the present invention. 図2は、同合成トラス桁構造の一例を示す縦断面図である。FIG. 2 is a longitudinal sectional view showing an example of the synthetic truss girder structure. 図3は、同合成トラス桁構造における格点部を示す説明図である。FIG. 3 is an explanatory view showing a rating part in the composite truss girder structure. 図4は、本発明を鋼コンクリート合成床版に適用した場合を示す側面図である。FIG. 4 is a side view showing a case where the present invention is applied to a steel concrete composite slab. 図5は、図4に示す合成トラス桁構造の縦断面図である。FIG. 5 is a longitudinal sectional view of the synthetic truss girder structure shown in FIG. 図6は、本発明の合成トラス桁構造における格点部の施工手順を示す説明図である。FIG. 6 is an explanatory diagram showing a construction procedure of a grading portion in the synthetic truss girder structure of the present invention. 図7は、格点部のガセットプレートと繋ぎ板を溶着した剛結合型の供試体である。FIG. 7 shows a rigidly-coupled specimen in which a gusset plate and a connecting plate are welded. 図8は、水平載荷試験による応力特性を測定するため、本発明に係る合成トラス桁構造の格点部を模したセミヒンジ型の供試体である。FIG. 8 shows a semi-hinged specimen that imitates the grading part of the synthetic truss girder structure according to the present invention in order to measure the stress characteristics by the horizontal loading test. 図9は、従来の合成トラス桁構造の一例を示す側面図である。FIG. 9 is a side view showing an example of a conventional synthetic truss girder structure. 図10は、従来の合成トラス桁構造の一例を示す縦断面図である。FIG. 10 is a longitudinal sectional view showing an example of a conventional synthetic truss girder structure. 図11は、従来の合成トラス桁構造の他の例を示す縦断面図である。FIG. 11 is a longitudinal sectional view showing another example of a conventional synthetic truss girder structure.

符号の説明Explanation of symbols

10 合成トラス桁構造
11 コンクリート系上床版
12 コンクリート系下床版
13 鋼製トラス材
14 接合格点
15 ガセットプレート
16 繋ぎ板
17 孔
18 蓋体
20 合成トラス桁構造
21 コンクリート系上床版
22 コンクリート系下床版
23 鋼製トラス材
24 接合格点
25 ガセットプレート
26 繋ぎ板
27 上弦材
DESCRIPTION OF SYMBOLS 10 Composite truss girder structure 11 Concrete upper floor slab 12 Concrete lower floor slab 13 Steel truss material 14 Joint grade 15 Gusset plate 16 Connecting board 17 Hole 18 Lid 20 Synthetic truss girder structure 21 Concrete upper floor slab 22 Concrete bottom Floor slab 23 Steel truss 24 Joint rating point 25 Gusset plate 26 Tie plate 27 Upper chord material

Claims (6)

コンクリート系上床版と、
コンクリート系下床版とを鋼製トラス材で結合した合成トラス桁構造であって、
前記コンクリート系床版と鋼製トラス材との接合格点をセミヒンジ構造としたことを特徴とする合成トラス桁構造。
Concrete floor deck,
A composite truss girder structure in which a concrete lower floor slab is joined with a steel truss material,
A composite truss girder structure characterized in that a joint rating point between the concrete floor slab and the steel truss material is a semi-hinge structure.
前記接合格点は、ガセットプレートと繋ぎ板とから構成されたことを特徴とする請求項1に記載の合成トラス桁構造。   The composite truss girder structure according to claim 1, wherein the joint rating point includes a gusset plate and a connecting plate. 前記接合格点は、ガセットプレートと接合される繋ぎ板が桁軸方向面に対して垂直に配設されたことを特徴とする請求項1または2に記載の合成トラス桁構造。   3. The composite truss girder structure according to claim 1, wherein a connecting plate to be joined to the gusset plate is disposed perpendicular to the girder axial direction surface. 前記接合格点は、桁軸方向の剛性が桁幅方向の剛性より小さく構成されたことを特徴とする請求項1〜3の何れか1に記載の合成トラス桁構造。   The composite truss girder structure according to any one of claims 1 to 3, wherein the joint rating point is configured such that rigidity in a girder axis direction is smaller than rigidity in a girder width direction. 前記鋼製トラス材は、鋼管であることを特徴とする請求項1〜4の何れか1に記載の合成トラス桁構造。   The synthetic truss girder structure according to any one of claims 1 to 4, wherein the steel truss material is a steel pipe. 前記ガセットプレートは、コンクリート系上床版内に配設された上弦材に固着されたことを特徴とする請求項1〜5の何れか1に記載の合成トラス桁構造。   The synthetic truss girder structure according to any one of claims 1 to 5, wherein the gusset plate is fixed to an upper chord member disposed in a concrete upper floor slab.
JP2006348926A 2006-12-26 2006-12-26 Composite truss girder structure Pending JP2008156967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006348926A JP2008156967A (en) 2006-12-26 2006-12-26 Composite truss girder structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006348926A JP2008156967A (en) 2006-12-26 2006-12-26 Composite truss girder structure

Publications (1)

Publication Number Publication Date
JP2008156967A true JP2008156967A (en) 2008-07-10

Family

ID=39658189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006348926A Pending JP2008156967A (en) 2006-12-26 2006-12-26 Composite truss girder structure

Country Status (1)

Country Link
JP (1) JP2008156967A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101831868A (en) * 2010-05-07 2010-09-15 同济大学 Connecting node structure of steel rod elements and concrete plate
WO2010123211A2 (en) * 2009-04-20 2010-10-28 Girder Innovation Forever Co., Ltd. Web member of composite truss girder and node connecting structure of composite truss girder using the same
KR100994960B1 (en) 2010-07-28 2010-11-17 고재욱 Reinforcement joint connecting pipe truss members and method constructing a pipe truss bridge therewith
CN102776829A (en) * 2012-08-16 2012-11-14 安徽省交通规划设计研究院有限公司 Steel pipe concrete combined truss bridge
WO2013172598A1 (en) * 2012-05-15 2013-11-21 (유)하남종합건설 Web member for improving node-connecting structure of composite truss girder bridge
JP2014136887A (en) * 2013-01-16 2014-07-28 Tomoe Corp Structure of junction of rc frame and brace, and rc frame attached with brace
CN107524081A (en) * 2017-09-30 2017-12-29 东南大学 A kind of steel truss abdomen Combined concrete node

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004197516A (en) * 2002-12-20 2004-07-15 Haltec:Kk Panel point structure of steel truss web prestressed concrete bridge
JP2005351024A (en) * 2004-06-14 2005-12-22 Ohbayashi Corp Structure for joining a pair of steel pipes together by using concrete

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004197516A (en) * 2002-12-20 2004-07-15 Haltec:Kk Panel point structure of steel truss web prestressed concrete bridge
JP2005351024A (en) * 2004-06-14 2005-12-22 Ohbayashi Corp Structure for joining a pair of steel pipes together by using concrete

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010123211A2 (en) * 2009-04-20 2010-10-28 Girder Innovation Forever Co., Ltd. Web member of composite truss girder and node connecting structure of composite truss girder using the same
WO2010123211A3 (en) * 2009-04-20 2011-01-13 Girder Innovation Forever Co., Ltd. Web member of composite truss girder and node connecting structure of composite truss girder using the same
JP2012524193A (en) * 2009-04-20 2012-10-11 ガーダー イノベーション フォーエバー カンパニー,リミテッド Abdomen of composite truss girder bridge and joint connection structure of composite truss girder bridge using the same
KR101226597B1 (en) * 2009-04-20 2013-02-05 원대연 Web member of Composite Truss Girder and, node connecting structure having the same
CN101831868A (en) * 2010-05-07 2010-09-15 同济大学 Connecting node structure of steel rod elements and concrete plate
KR100994960B1 (en) 2010-07-28 2010-11-17 고재욱 Reinforcement joint connecting pipe truss members and method constructing a pipe truss bridge therewith
WO2013172598A1 (en) * 2012-05-15 2013-11-21 (유)하남종합건설 Web member for improving node-connecting structure of composite truss girder bridge
CN102776829A (en) * 2012-08-16 2012-11-14 安徽省交通规划设计研究院有限公司 Steel pipe concrete combined truss bridge
JP2014136887A (en) * 2013-01-16 2014-07-28 Tomoe Corp Structure of junction of rc frame and brace, and rc frame attached with brace
CN107524081A (en) * 2017-09-30 2017-12-29 东南大学 A kind of steel truss abdomen Combined concrete node

Similar Documents

Publication Publication Date Title
JP2008156967A (en) Composite truss girder structure
JP2010101094A (en) Structure for rigidly connecting bridge pier and concrete girder together
JP2008063803A (en) Composite floor slab formed of shape steel with inner rib, composite floor slab bridge, or composite girder bridge
JP2007023714A (en) Composite floor slab using shape steel, composite floor slab bridge or composite girder bridge and its construction method
JP4819605B2 (en) Precast prestressed concrete beams using tendons with different strength at the end and center
KR101740598B1 (en) Steel girder having hollow cap beam reinforcement material
JP2012057419A (en) Steel beam joint structure
JP3830767B2 (en) Continuous girder for bridge
JP4644146B2 (en) PC box girder bridge
JP2000355906A (en) Connecting section structure of corrugated steel plate and concrete floor slab in corrugated steel-plate web pc box girder bridge
JP7169174B2 (en) Building
JP7070890B2 (en) Joint structure
JP4101397B2 (en) Method of joining concrete slab and corrugated steel in corrugated steel web bridge
JP4344488B2 (en) Rigid structure of upper and lower composite members
JP4492422B2 (en) Structure near the intermediate fulcrum of continuous I-girder bridge
JP2010144512A (en) Structure near intermediate supporting point of continuous i-beam bridge
KR101154121B1 (en) Steel built up beam and steel concrete composite beam using the same
JP2963879B2 (en) Bridge girder
JP6753043B2 (en) Beam joining structure and beam joining method
JP5047060B2 (en) Synthetic floor slab and its reinforcement method
KR20070111241A (en) Bottom tube composite(btc) steel girder bridge system
JP4654138B2 (en) Joint structure of steel main girder and substructure
KR102271672B1 (en) Advanced Interlocking Girder adapt to Load Factor Resistance Design Method
JP3996043B2 (en) Joint structure of bridge corrugated steel web composite girder
KR102056313B1 (en) Hybrid Beam Consisted Using Compressive Member and Lattice

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20081016

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100610

A131 Notification of reasons for refusal

Effective date: 20100622

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101124