JP5721687B2 - Steel deck and bridge - Google Patents

Steel deck and bridge Download PDF

Info

Publication number
JP5721687B2
JP5721687B2 JP2012244671A JP2012244671A JP5721687B2 JP 5721687 B2 JP5721687 B2 JP 5721687B2 JP 2012244671 A JP2012244671 A JP 2012244671A JP 2012244671 A JP2012244671 A JP 2012244671A JP 5721687 B2 JP5721687 B2 JP 5721687B2
Authority
JP
Japan
Prior art keywords
deck plate
steel
rib
deck
reinforcing member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012244671A
Other languages
Japanese (ja)
Other versions
JP2014092000A (en
Inventor
祐琢 工藤
祐琢 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MM Bridge Co Ltd
Original Assignee
Mitsubishi Heavy Industries Bridge and Steel Structures Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Bridge and Steel Structures Engineering Co Ltd filed Critical Mitsubishi Heavy Industries Bridge and Steel Structures Engineering Co Ltd
Priority to JP2012244671A priority Critical patent/JP5721687B2/en
Publication of JP2014092000A publication Critical patent/JP2014092000A/en
Application granted granted Critical
Publication of JP5721687B2 publication Critical patent/JP5721687B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Description

本発明は、閉断面リブを有する鋼床版および橋梁に関する。   The present invention relates to a steel deck and a bridge having closed cross-section ribs.

橋梁の床組構造として、鋼床版がある。鋼床版は軽量であることや、工場にて予め製作したものを現場で接合することができるため、施工工期を短縮化することが可能であるという特長がある。この鋼床版の多くは、比較的剛性が高い閉断面の縦リブ(例えば、Uリブ)が用いられている。閉断面リブは、その開口側の両端部がデッキプレートの下面に溶接により固定されている。また、閉断面リブは、橋軸方向に所定間隔をおいて配置される横リブの切欠部に挿通され、当該切欠部の縁に溶接により固定されている。横リブは、その上端がデッキプレートの下面に溶接により固定されている。   There is a steel slab as a bridge floor structure. The steel slab is lightweight and can be pre-manufactured at the factory and can be joined on-site, so that the construction period can be shortened. Many of the steel slabs use closed ribs having a relatively high rigidity (for example, U ribs). Both ends of the closed cross-section rib are fixed to the lower surface of the deck plate by welding. Further, the closed cross-section rib is inserted into a notch portion of a lateral rib arranged at a predetermined interval in the bridge axis direction, and is fixed to an edge of the notch portion by welding. The upper end of the horizontal rib is fixed to the lower surface of the deck plate by welding.

このような鋼床版において、デッキプレート上を通過する車両の輪荷重による疲労き裂の発生が報告されている(例えば、非特許文献1、2参照)。   In such steel slabs, the occurrence of fatigue cracks due to wheel loads of vehicles passing on the deck plate has been reported (for example, see Non-Patent Documents 1 and 2).

このような疲労き裂の事象に対して、様々な対策が行われている。新設の鋼床版においては、例えば、非特許文献1のp.295〜296に記載のように、デッキプレートの厚さを増加させる。また、例えば、非特許文献2のp.63に記載のように、鋼繊維補強コンクリート舗装(SFRC舗装)を採用する。これらの対策は効果的である反面、鋼床版の重量が増したり、施工費用が嵩んだりするなどの問題がある。   Various countermeasures have been taken against such fatigue crack events. In the new steel deck, for example, p. Increase the thickness of the deck plate as described in 295-296. Also, for example, p. As described in 63, steel fiber reinforced concrete pavement (SFRC pavement) is adopted. While these measures are effective, there are problems such as an increase in the weight of the steel deck and an increase in construction costs.

一方、既設の鋼床版においては、例えば、特許文献1に記載のように、デッキプレートの下面の隣接する閉断面リブ(Uリブ)間に、閉断面リブと平行に補強リブを設ける。さらに、特許文献1に記載の補強では、補強リブが面外方向に変位するのを拘束手段により防ぐ。また、例えば、特許文献2、非特許文献4、5に記載のように、閉断面リブの一部を切除して鋼床版を補強する。具体的に、特許文献2に記載の補強は、閉断面リブの一部を切除した部分のデッキプレートの下面、および当該閉断面リブの側部となる閉断面リブ間のデッキプレートの下面に設ける複数の開断面リブ(Tリブ)を、連結材によって互いに連結するとともに、デッキプレートを挟むようにして、デッキプレートの上面に設置された平鋼板にボルトで固定し、かつ開断面リブを横リブに固定する。また、非特許文献4、5に記載の補強は、閉断面リブの一部を切除して開断面化した部分およびその近傍のデッキプレートの下面、および当該閉断面リブの側部となる閉断面リブ間のデッキプレートの下面に設ける複数のCT形鋼を、デッキプレートを挟むようにして、デッキプレートの上面に設置された平鋼板に高力ボルトで固定し、閉断面リブの一部を切除した部分を塞ぐ部材を添付板により高力ボルトで固定し、かつ閉断面リブとデッキプレートとの溶接部分を覆うR部補強部材をCT形鋼および添付板とともに高力ボルトで固定する。   On the other hand, in the existing steel deck, for example, as described in Patent Document 1, reinforcing ribs are provided in parallel with the closed cross-section ribs between adjacent closed cross-section ribs (U ribs) on the lower surface of the deck plate. Furthermore, in the reinforcement described in Patent Document 1, the restraining means prevents the reinforcing rib from being displaced in the out-of-plane direction. Moreover, for example, as described in Patent Document 2 and Non-Patent Documents 4 and 5, a part of the closed cross-section rib is cut off to reinforce the steel deck. Specifically, the reinforcement described in Patent Document 2 is provided on the lower surface of the deck plate at a portion where a part of the closed cross-section rib is cut off, and on the lower surface of the deck plate between the closed cross-section ribs that are the side portions of the closed cross-section rib. A plurality of open cross-section ribs (T-ribs) are connected to each other by a connecting material, and fixed to a flat steel plate installed on the top surface of the deck plate with bolts so as to sandwich the deck plate, and the open cross-section ribs are fixed to the horizontal ribs. To do. Further, the reinforcement described in Non-Patent Documents 4 and 5 includes a closed cross-section that is a part of the closed cross-section rib cut away to form an open cross section, a lower surface of the deck plate in the vicinity thereof, and a side portion of the closed cross-section rib. A part in which a plurality of CT steel bars provided on the bottom surface of the deck plate between the ribs are fixed to a flat steel plate installed on the top surface of the deck plate with high strength bolts so that the deck plate is sandwiched, and a part of the closed cross-section rib is cut off A member that closes the frame is fixed with a high-strength bolt by an attached plate, and an R portion reinforcing member that covers the welded portion between the closed cross-section rib and the deck plate is fixed together with the CT steel and the attached plate with a high-strength bolt.

社団法人日本道路協会 「道路橋示方書・同解説II鋼橋編」、2012年3月、p.295〜296Japan Road Association “Road Bridge Specification / Explanation II Steel Bridge”, March 2012, p. 295-296 「鋼構造シリーズ19 鋼床版の疲労 2010改訂版」、公益社団法人土木学会、2010年12月、第3章 鋼床版の疲労損傷 p.63〜68“Steel Structure Series 19 Fatigue 2010 Revision of Steel Slab”, Japan Society of Civil Engineers, December 2010, Chapter 3 Fatigue damage of steel slab p. 63-68 三木 千壽 外3名 「鋼床版箱桁橋のデッキプレート近傍に発生した疲労損傷の原因」、公益社団法人土木学会、土木学会論文集No.780/I−70、2005年1月、p.57〜69Chiaki Miki and three others “Causes of fatigue damage near the deck plate of a steel-slab slab girder bridge”, JSCE, JSCE Proceedings No. 780 / I-70, January 2005, p. 57-69 川端 篤敬 外8名 「鋼床版橋梁のデッキプレート増厚による疲労耐久性の向上」、一般社団法人日本橋梁建設協会、橋梁技術発表会資料、2010年、p.5−1〜5−12Atsushi Kawabata 8 others "Improvement of fatigue durability by increasing the deck plate thickness of steel-slab bridges," Japan Bridge Construction Association, Bridge Technology Presentation, 2010, p. 5-1-5-12 木下 広志 外4名 「Uリブ雨樋型カットによる鋼床版疲労損傷に対する補強方法の提案」、公益社団法人土木学会、第61回年次学術講演会資料、2006年9月、p.1099〜1100Hiroshi Kinoshita and 4 others "Proposal of reinforcement method for steel plate slab fatigue damage by U-rib rain gutter cut", Japan Society of Civil Engineers, 61st Annual Scientific Lecture, September 2006, p. 1099-1100 木下 広志 外5名 「Uリブ雨樋型カット工法による鋼床版疲労損傷部の補強効果確認試験報告」、公益社団法人土木学会、第62回年次学術講演会資料、2007年9月、p.33〜34Hiroshi Kinoshita and five others "A test report for confirming the reinforcement effect of steel plate slab fatigue damage by U-rib rain gutter cutting method", Japan Society of Civil Engineers, 62nd Annual Conference Lecture, September 2007, p . 33-34 特開2006−77523号公報JP 2006-77523 A 特開2007−32056号公報JP 2007-32056 A

閉断面リブをデッキプレートに溶接する溶接部は、閉断面リブ外側からの片面溶接となるため、デッキプレート上を通過する車両の輪荷重によりデッキプレートと閉断面リブとが相互変形するとき、溶接ルート部(デッキプレート母材および閉断面リブ母材に溶け込んだ溶接金属の最深部のうち、デッキプレート下面と閉断面リブ上端部の境界に位置する部分)を開閉する力の繰り返し作用が生じやすい。このため、前記溶接ルート部を起点にデッキプレートの上面に向かって進展し、デッキプレートを貫通する疲労き裂(以下、デッキ貫通き裂という)が発生する場合がある。ところで、非特許文献3において、縦リブと横リブの交差部における縦リブとデッキプレート間の縦方向溶接の溶接ルート部に発生する応力は、支間中央部のそれに比べて高く、交差部からの疲労亀裂の発生の可能性がより高いことが明らかである。また、図−24に示す交差部の変形図と供に考察すると、これは横リブ交差部では縦リブが拘束されているため、デッキプレートのたわみに対して縦リブ自体が変形できず、その変形が溶接部に集中してしまうことが原因であると考えられる。と記載されている(非特許文献3 p.65参照)。また、その対策について、縦リブの変形を拘束することは溶接部に変形を集中させてしまうため、デッキプレートのたわみを低減することが補強方法として効果的であると考えられる。と記載されている(非特許文献3 p.68参照)。   The weld that welds the closed cross-section rib to the deck plate is a single-sided weld from the outside of the closed cross-section rib, so when the deck plate and the closed cross-section rib are deformed due to the wheel load of the vehicle passing over the deck plate, welding Repeated action of the force that opens and closes the root (the portion located at the boundary between the bottom surface of the deck plate and the top end of the closed cross-section of the deepest part of the weld metal melted into the deck plate base and the closed cross-section rib base) is likely to occur. . For this reason, there is a case where a fatigue crack (hereinafter referred to as a “deck penetration crack”) that progresses toward the upper surface of the deck plate from the welding root portion and penetrates the deck plate is generated. By the way, in Non-Patent Document 3, the stress generated in the welding root portion of the longitudinal welding between the longitudinal rib and the deck plate at the intersecting portion of the longitudinal rib and the transverse rib is higher than that in the center portion of the span, and from the intersecting portion. It is clear that fatigue cracks are more likely to occur. Also, considering the deformation of the intersecting part shown in Fig. 24, this is because the vertical rib itself cannot be deformed due to the deflection of the deck plate because the vertical rib is constrained at the intersecting part of the horizontal rib. It is considered that the deformation is concentrated on the welded portion. (See Non-Patent Document 3 p.65). As a countermeasure, restraining the deformation of the longitudinal ribs concentrates the deformation on the welded portion. Therefore, it is considered that reducing the deflection of the deck plate is effective as a reinforcing method. (See Non-Patent Document 3 p.68).

デッキ貫通き裂の予防対策として、新設の鋼床版では、大型自動車の輪荷重が常時載荷される位置直下においては、デッキプレートの板厚を従来の12[mm]以上に対して16[mm]以上とすることが規定されている(非特許文献1 p.295〜296参照)。しかし、非特許文献4のp.5−6〜5−7に記載されている、交差部のデッキ貫通き裂に対するデッキ増厚効果によれば、小型試験体による疲労試験にて、デッキプレート厚を12[mm]から16[mm]に増厚することで、き裂が発生してからデッキプレートを貫通するまでの寿命が大幅に延びることが確認されているが、き裂発生までの寿命については増厚前後で顕著な差が見られない。そのため、交差部については、前記のデッキプレート増厚のみで、き裂の発生原因となる溶接ルート部の応力集中が十分に低減されているとはいえない。   As a preventive measure against deck through cracks, in the newly installed steel deck, the thickness of the deck plate is 16 [mm] compared to the conventional 12 [mm] or more just under the position where the wheel load of a large automobile is always loaded. ] Is defined (see Non-Patent Document 1, p. 295-296). However, p. According to the deck thickening effect with respect to the deck through-crack at the intersection described in 5-6 to 5-7, the deck plate thickness is changed from 12 [mm] to 16 [mm] in a fatigue test using a small specimen. ], It has been confirmed that the life until cracks penetrate through the deck plate is greatly extended, but there is a significant difference between the thickness before and after the thickness increase. Is not seen. Therefore, it cannot be said that the concentration of stress at the weld root that causes cracks is sufficiently reduced at the intersections only by increasing the thickness of the deck plate.

一方、上述した特許文献1に記載の補強は、閉断面リブ間に補強リブを設けており、閉断面リブの両ウェブ間でデッキプレートのたわみを抑制する対策が施されていないため、閉断面リブと横リブとの交差部でのデッキ貫通き裂を抑制する効果は小さい。しかも、特許文献1に記載の補強は、補強リブが面外方向に変位するのを拘束手段により防ぐことが示されているが、補強リブを拘束すると、補強リブにかかる応力が他所に伝わって集中する場合、当該他所が破損するおそれがある。   On the other hand, the reinforcement described in Patent Document 1 described above is provided with reinforcing ribs between the closed cross-section ribs, and no measures are taken to suppress the deflection of the deck plate between both webs of the closed cross-section ribs. The effect of suppressing the deck penetration crack at the intersection of the rib and the lateral rib is small. Moreover, although the reinforcement described in Patent Document 1 is shown to prevent the reinforcing rib from being displaced in the out-of-plane direction by the restraining means, if the reinforcing rib is restrained, the stress applied to the reinforcing rib is transmitted to other places. If you concentrate, you may damage other places.

また、特許文献2に記載の補強は、一部を切除した閉断面リブ内に開断面リブやCT形鋼を設けているが、閉断面リブの切除箇所は横リブ間であり、閉断面リブと横リブとの交差部にCT形鋼が設けられていることは示されていない。このため、閉断面リブと横リブとの交差部でのデッキ貫通き裂を抑制する効果は小さい。一方、非特許文献5、6に記載の補強は、一部を切除した閉断面リブ内からCT形鋼を挿入し、閉断面リブと横リブとの交差部を跨ぐ範囲にもCT形鋼を設けているが、閉断面リブと横リブとの交差部でのデッキ貫通き裂を抑制する効果について検証されていない。しかも、特許文献2、非特許文献5、6に記載の補強は、開断面リブやCT形鋼を設けるため、デッキプレートを挟むようにして、デッキプレートの上面に設置された平鋼板にボルトで固定しており、その部分だけ剛性がより高くなる。このため、補強を行う部分と補強を行わない部分との剛性差が大きくなり、その境に応力集中が発生して、き裂が発生するおそれがある。すなわち、開断面リブやCT形鋼と、平鋼板との個々の寄与について検証されていない。さらに、特許文献2、非特許文献5、6に記載の補強は、一部を切除した閉断面リブの側部となる閉断面リブ間のデッキプレートの下面にも開断面リブやCT形鋼を設けるため、前記剛性差がより大きくなる。ここでも、閉断面リブ内と閉断面リブ間との開断面リブやCT形鋼の個々の寄与について検証されていない。さらにまた、特許文献2に記載の補強は、閉断面リブの一部を切除した部分のデッキプレートの下面、および当該閉断面リブの側部となる閉断面リブ間のデッキプレートの下面に設ける複数の開断面リブ(Tリブ)を、連結材によって互いに連結しているが、特許文献1と同様に、開断面リブが拘束され、開断面リブにかかる応力が他の開断面リブや他所に伝わって集中する場合、当該他の開断面リブや他所が破損するおそれがある。   Further, the reinforcement described in Patent Document 2 is provided with an open cross-section rib or a CT-shaped steel in a closed cross-section rib partially cut away, but the cut-off location of the closed cross-section rib is between the lateral ribs. It is not shown that CT sections are provided at the intersections between the ribs and the lateral ribs. For this reason, the effect which suppresses the deck penetration crack in the cross | intersection part of a closed cross-section rib and a horizontal rib is small. On the other hand, in the reinforcement described in Non-Patent Documents 5 and 6, CT section steel is inserted into the cross section between the closed section rib and the lateral rib, and the CT section steel is inserted from the closed section rib. Although provided, the effect of suppressing the deck through crack at the intersection of the closed cross-section rib and the lateral rib has not been verified. In addition, the reinforcement described in Patent Document 2 and Non-Patent Documents 5 and 6 is provided with an open cross-section rib and CT steel, and is fixed to a flat steel plate installed on the top surface of the deck plate with bolts so as to sandwich the deck plate. And only that part becomes more rigid. For this reason, the difference in rigidity between the portion where reinforcement is performed and the portion where reinforcement is not performed becomes large, stress concentration occurs at the boundary, and a crack may occur. That is, the individual contributions of the open cross-section ribs, the CT shape steel, and the flat steel plate are not verified. Furthermore, the reinforcement described in Patent Document 2 and Non-Patent Documents 5 and 6 is also provided with an open cross-section rib or CT shape steel on the bottom surface of the deck plate between the closed cross-section ribs that are the sides of the closed cross-section rib. Because of the provision, the rigidity difference becomes larger. Again, the individual contributions of open section ribs and CT section steel between closed section ribs and between closed section ribs are not verified. Furthermore, the reinforcement described in Patent Document 2 is provided on the lower surface of the deck plate at a portion where a part of the closed cross-section rib is cut, and on the lower surface of the deck plate between the closed cross-section ribs that are the side portions of the closed cross-section rib. The open cross-section ribs (T ribs) are connected to each other by a connecting material. However, as in Patent Document 1, the open cross-section ribs are restrained, and stress applied to the open cross-section ribs is transmitted to other open cross-section ribs and other places. The other open cross-section ribs and other parts may be damaged.

本発明は上述した課題を解決するものであり、他所への影響を考慮したうえで、閉断面リブと横リブとの交差部でのデッキ貫通き裂の発生を抑制することのできる鋼床版および橋梁を提供することを目的とする。   The present invention solves the above-mentioned problems, and can take into consideration the influence on other places, and can suppress the occurrence of a deck through crack at the intersection of a closed cross-section rib and a lateral rib. And to provide bridges.

上述の目的を達成するために、第1の発明の鋼床版は、デッキプレートと、前記デッキプレートの下面にて橋軸方向に沿って延在して溶接される閉断面リブと、前記デッキプレートの下面にて橋軸方向に直交して溶接されるとともに前記閉断面リブを挿通して溶接される横リブとを有する鋼床版において、前記閉断面リブ内にのみ少なくとも前記閉断面リブと前記横リブとの交差部を含み橋軸方向に延在するように前記デッキプレートの下面に接合されて前記閉断面リブに非接触で配置される補強部材を備えることを特徴とする。   In order to achieve the above-described object, a steel deck according to a first aspect of the present invention includes a deck plate, a closed cross-section rib that extends along the bridge axis direction on the lower surface of the deck plate, and is welded to the deck. A steel deck having a transverse rib welded perpendicularly to the bridge axis direction on the lower surface of the plate and welded through the closed cross-section rib, and at least the closed cross-section rib only in the closed cross-section rib A reinforcing member is provided that is joined to the lower surface of the deck plate so as to extend in the bridge axis direction, including an intersection with the lateral rib, and disposed without contact with the closed cross-section rib.

この鋼床版によれば、デッキプレート上を通過する車両の輪荷重により、閉断面リブの両ウェブ間におけるデッキプレートが下方にたわむように変形しようとすることを補強部材により抑制する。このため、デッキプレートと閉断面リブとの溶接部に掛かる負荷を軽減し、デッキ貫通き裂の発生を抑制または防止することができる。しかも、この鋼床版によれば、補強部材が閉断面リブ内にのみに設けられているため、必要以上に剛性を高めることがなく、補強を行う部分と補強を行わない部分との剛性差が小さく、他の部分にき裂が発生する事態を防ぐことが可能になる。さらにこの鋼床版によれば、補強部材が閉断面リブに非接触で配置されているため、補強部材に掛かる応力が他所に伝わることがなく、当該他所が破損する事態を防ぐことができる。   According to this steel slab, the reinforcing member suppresses the deck plate between the webs of the closed cross-section ribs from being deformed to bend downward due to the wheel load of the vehicle passing over the deck plate. For this reason, the load concerning the welding part of a deck plate and a closed cross-section rib can be reduced, and generation | occurrence | production of a deck penetration crack can be suppressed or prevented. Moreover, according to this steel slab, since the reinforcing member is provided only in the closed cross-section rib, the rigidity does not increase more than necessary, and the difference in rigidity between the portion that performs reinforcement and the portion that does not perform reinforcement. It is possible to prevent the occurrence of cracks in other parts. Furthermore, according to this steel slab, since the reinforcing member is disposed in a non-contact manner with the closed cross-section rib, the stress applied to the reinforcing member is not transmitted to other places, and the situation where the other places are damaged can be prevented.

また、第2の発明の鋼床版は、第1の発明において、前記補強部材が前記デッキプレートの下面に溶接されることを特徴とする。   The steel deck according to the second invention is characterized in that, in the first invention, the reinforcing member is welded to the lower surface of the deck plate.

この鋼床版によれば、補強部材を溶接によりデッキプレートに接合することで、デッキプレートの上面側に突出する部分が生じたり、デッキプレートの上面に鋼板などの別の補強部材を用いたりする必要がない。このため、デッキプレートの上面に敷設する舗装の厚さが変化する事態を防ぎ、舗装を平坦にすることができる。   According to this steel deck, by joining the reinforcing member to the deck plate by welding, a portion protruding to the upper surface side of the deck plate is generated, or another reinforcing member such as a steel plate is used on the upper surface of the deck plate. There is no need. For this reason, the situation where the thickness of the pavement laid on the upper surface of the deck plate changes can be prevented, and the pavement can be made flat.

また、第3の発明の鋼床版は、第1または第2の発明において、前記補強部材が前記横リブの位置を起点として橋軸方向両側に少なくとも100[mm]の範囲に配置されることを特徴とする。   Further, in the steel deck according to the third invention, in the first or second invention, the reinforcing member is disposed in a range of at least 100 [mm] on both sides in the bridge axis direction starting from the position of the lateral rib. It is characterized by.

この鋼床版によれば、一般に用いられている厚さ12[mm]のデッキプレートと比較して、閉断面リブと横リブとの交差部でのデッキ貫通き裂の発生を抑制できる程度に相当ひずみが抑制される。このため、他所への影響を考慮したうえで、閉断面リブと横リブとの交差部でのデッキ貫通き裂の発生を抑制する効果を顕著に得ることができる。   According to this steel slab, compared to a generally used deck plate having a thickness of 12 [mm], it is possible to suppress the occurrence of a deck through crack at the intersection of the closed cross-section rib and the lateral rib. Equivalent strain is suppressed. For this reason, the effect which suppresses generation | occurrence | production of the deck penetration crack in the cross | intersection part of a closed cross-section rib and a horizontal rib can be acquired notably, considering the influence on another place.

また、第4の発明の鋼床版は、第1〜第3の何れか1つの発明において、前記デッキプレートの厚さをt[mm]として前記補強部材を用いる場合の前記交差部での前記閉断面リブ内における前記デッキプレートの鉛直方向の最大変形量をpとし、前記デッキプレートの厚さをt+1[mm]として前記補強部材を用いない場合の前記交差部での前記閉断面リブ内における前記デッキプレートの鉛直方向の最大変形量をqとしたとき、前記補強部材がp≦qの関係を満たす剛性を有することを特徴とする。   Moreover, the steel deck according to the fourth invention is the steel plate according to any one of the first to third inventions, wherein the thickness of the deck plate is t [mm] and the reinforcing member is used at the intersection. The maximum amount of vertical deformation of the deck plate in the closed cross-section rib is p, the thickness of the deck plate is t + 1 [mm], and the reinforcing member is not used in the closed cross-section rib at the intersection. When the maximum deformation amount in the vertical direction of the deck plate is q, the reinforcing member has rigidity satisfying a relation of p ≦ q.

この鋼床版によれば、輪荷重が分散されて交差部に近接するデッキプレートの局部変位を抑えることができ、単にデッキプレートの厚さを増厚した場合と比較して使用鋼材量を少なく抑えることができる。   According to this steel slab, the wheel load is dispersed and local displacement of the deck plate close to the intersection can be suppressed, and the amount of steel used is less than when the thickness of the deck plate is simply increased. Can be suppressed.

また、第5の発明の鋼床版は、第1〜第4の何れか1つの発明において、前記補強部材が橋軸方向の端部に向けて断面積が漸次小さく形成されることを特徴とする。   Further, the steel deck according to the fifth invention is characterized in that, in any one of the first to fourth inventions, the reinforcing member is formed so that a cross-sectional area is gradually reduced toward an end portion in a bridge axis direction. To do.

この鋼床版によれば、補強部材の端部の位置で剛性が急激に変化することがないため、他所への影響を考慮したうえで、閉断面リブと横リブとの交差部でのデッキ貫通き裂の発生を抑制する効果を顕著に得ることができる。   According to this steel deck, the rigidity does not change suddenly at the position of the end of the reinforcing member. Therefore, the deck at the intersection of the closed cross-section rib and the lateral rib is considered after considering the effect on other places. The effect of suppressing the occurrence of through cracks can be remarkably obtained.

上述の目的を達成するために、第6の発明の橋梁は、デッキプレートと、前記デッキプレートの下面にて橋軸方向に沿って延在して溶接される閉断面リブと、前記デッキプレートの下面にて橋軸方向に直交して溶接されるとともに前記閉断面リブを挿通して溶接される横リブとを有する鋼床版を含む橋梁において、前記鋼床版に、第1〜第5の何れか1つの発明の補強部材を備えることを特徴とする。   In order to achieve the above object, a bridge according to a sixth aspect of the present invention includes a deck plate, a closed cross-section rib that extends along the bridge axis direction on the lower surface of the deck plate, and is welded. In a bridge including a steel slab having a transverse rib welded perpendicularly to the bridge axis direction on the lower surface and inserted through the closed cross-section rib, the steel slab includes first to fifth The reinforcing member according to any one of the inventions is provided.

この橋梁によれば、第1〜第5の何れか1つの鋼床版の効果を橋梁全体として得ることができる。   According to this bridge, the effect of any one of the first to fifth steel decks can be obtained as the entire bridge.

本発明によれば、他所への影響を考慮したうえで、閉断面リブと横リブとの交差部でのデッキ貫通き裂の発生を抑制することができる。   According to the present invention, it is possible to suppress the occurrence of a deck-through crack at the intersection of the closed cross-section rib and the lateral rib in consideration of the influence on other places.

図1は、本発明の実施形態に係る鋼床版の外観斜視図である。FIG. 1 is an external perspective view of a steel deck according to an embodiment of the present invention. 図2は、本発明の実施形態に係る鋼床版のデッキプレートを外した状態の斜視図である。FIG. 2 is a perspective view of the steel deck according to the embodiment of the present invention with the deck plate removed. 図3は、本発明の実施形態に係る鋼床版の一部横断面図である。FIG. 3 is a partial cross-sectional view of a steel deck according to an embodiment of the present invention. 図4は、本発明の実施形態に係る鋼床版の一部縦断面図である。FIG. 4 is a partial longitudinal sectional view of a steel deck according to an embodiment of the present invention. 図5−1は、補強部材のない交差部での鋼床版の作用を示す一部横断面図である。FIG. 5-1 is a partial cross-sectional view showing the action of the steel deck at the intersection where there is no reinforcing member. 図5−2は、補強部材のない交差部以外での鋼床版の作用を示す一部横断面図である。FIG. 5-2 is a partial cross-sectional view showing the operation of the steel deck slab other than the intersecting portion without the reinforcing member. 図5−3は、図5−1の一部拡大図である。FIG. 5C is a partially enlarged view of FIG. 図6は、補強部材のない鋼床版の作用を示す一部縦断面図である。FIG. 6 is a partial longitudinal sectional view showing the operation of a steel deck without a reinforcing member. 図7は、本発明の実施形態に係る鋼床版の作用を示す一部横断面図である。FIG. 7 is a partial cross-sectional view showing the operation of the steel deck according to the embodiment of the present invention. 図8は、本発明の実施形態に係る鋼床版の作用を示す一部縦断面図である。FIG. 8 is a partial longitudinal sectional view showing the operation of the steel deck according to the embodiment of the present invention. 図9は、本発明の実施形態に係る補強部材の他の例を示す鋼床版の一部横断面図である。FIG. 9 is a partial cross-sectional view of a steel deck slab showing another example of a reinforcing member according to an embodiment of the present invention. 図10は、本発明の実施形態に係る補強部材の他の例を示す鋼床版の一部横断面図である。FIG. 10 is a partial cross-sectional view of a steel deck slab showing another example of a reinforcing member according to an embodiment of the present invention. 図11は、本発明の実施形態に係る補強部材の他の例を示す鋼床版の一部横断面図である。FIG. 11 is a partial cross-sectional view of a steel deck slab showing another example of a reinforcing member according to an embodiment of the present invention. 図12は、本発明の実施形態に係る補強部材の他の例を示す鋼床版の一部横断面図である。FIG. 12 is a partial cross-sectional view of a steel deck slab showing another example of a reinforcing member according to an embodiment of the present invention. 図13は、本発明の実施形態に係る補強部材の他の例を示す鋼床版の一部横断面図である。FIG. 13 is a partial cross-sectional view of a steel deck slab showing another example of a reinforcing member according to an embodiment of the present invention. 図14は、本発明の実施形態に係る補強部材の他の例を示す鋼床版の一部横断面図である。FIG. 14 is a partial cross-sectional view of a steel deck slab showing another example of a reinforcing member according to an embodiment of the present invention. 図15は、本発明の実施形態に係る補強部材の他の例を示す鋼床版の一部横断面図である。FIG. 15 is a partial cross-sectional view of a steel deck slab showing another example of a reinforcing member according to an embodiment of the present invention. 図16は、本発明の実施形態に係る補強部材の他の例を示す鋼床版の一部横断面図である。FIG. 16 is a partial cross-sectional view of a steel deck slab showing another example of a reinforcing member according to an embodiment of the present invention. 図17は、本発明の実施形態に係る補強部材の他の例を示す鋼床版の一部横断面図である。FIG. 17 is a partial cross-sectional view of a steel deck slab showing another example of a reinforcing member according to an embodiment of the present invention. 図18は、本発明の実施形態に係る補強部材の他の例を示す鋼床版の一部横断面図である。FIG. 18 is a partial cross-sectional view of a steel deck slab showing another example of a reinforcing member according to an embodiment of the present invention. 図19は、本発明の実施形態に係る補強部材の他の例を示す鋼床版の一部横断面図である。FIG. 19 is a partial cross-sectional view of a steel slab showing another example of a reinforcing member according to an embodiment of the present invention. 図20は、本発明の実施形態に係る補強部材の他の例を示す鋼床版の一部横断面図である。FIG. 20 is a partial cross-sectional view of a steel deck slab showing another example of a reinforcing member according to an embodiment of the present invention. 図21は、本発明の実施形態に係る補強部材の他の例を示す鋼床版の一部横断面図である。FIG. 21 is a partial cross-sectional view of a steel deck slab showing another example of a reinforcing member according to an embodiment of the present invention. 図22は、本発明の実施形態に係る鋼床版の縦断面図である。FIG. 22 is a longitudinal sectional view of a steel deck according to an embodiment of the present invention. 図23は、本発明の実施形態に係る鋼床版の試験結果を示す図表である。FIG. 23 is a chart showing test results of the steel deck according to the embodiment of the present invention. 図24は、本発明の実施形態に係る鋼床版の試験結果を示すグラフである。FIG. 24 is a graph showing test results of the steel deck according to the embodiment of the present invention.

以下に、本発明に係る実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。   Embodiments according to the present invention will be described below in detail with reference to the drawings. In addition, this invention is not limited by this embodiment. In addition, constituent elements in the following embodiments include those that can be easily replaced by those skilled in the art or those that are substantially the same.

図1は、本実施形態に係る鋼床版の外観斜視図であり、図2は、本実施形態に係る鋼床版のデッキプレートを外した状態の斜視図である。また、図3は、本実施形態に係る鋼床版の一部横断面図であり、図4は、本実施形態に係る鋼床版の一部縦断面図である。   FIG. 1 is an external perspective view of a steel deck according to this embodiment, and FIG. 2 is a perspective view of the steel deck according to this embodiment with a deck plate removed. FIG. 3 is a partial cross-sectional view of the steel deck according to the present embodiment, and FIG. 4 is a partial vertical sectional view of the steel deck according to the present embodiment.

閉断面リブを有する鋼床版は、鋼材からなるもので橋梁の一部をなす。この鋼床版は、デッキプレート1と、デッキプレート1の下面にて橋軸方向(橋梁の長手方向)に沿って設けられた閉断面リブ2と、デッキプレート1の下面にて橋軸方向に直交する幅方向に沿って設けられた横リブ3とを備える。   A steel deck with a closed cross-section rib is made of steel and forms part of a bridge. This steel slab has a deck plate 1, a closed cross-section rib 2 provided along the bridge axis direction (longitudinal direction of the bridge) on the lower surface of the deck plate 1, and a bridge axis direction on the lower surface of the deck plate 1. And transverse ribs 3 provided along the orthogonal width direction.

デッキプレート1は、橋梁の橋軸方向に連続するとともに、橋梁の幅方向の全域に渡り設けられた鋼板であり、車両などが走行する橋梁の床面を構成するものである。デッキプレート1の上面には、車両などの走行面として舗装などが敷設される。   The deck plate 1 is a steel plate that is continuous in the direction of the bridge axis of the bridge and is provided across the entire width direction of the bridge, and constitutes a floor surface of the bridge on which vehicles and the like travel. On the upper surface of the deck plate 1, a pavement or the like is laid as a traveling surface of a vehicle or the like.

閉断面リブ2は、鋼材からなる断面がU型、V型、丸型(図ではU型のUリブを示す)に形成されて橋軸方向に延在するとともに、幅方向で所定間隔をおいて複数並設されている。閉断面リブ2は、上方が開口するように配置され、デッキプレート1の下面に両端が溶接により接合されることで閉断面となる。   The closed cross-section rib 2 is formed of a steel material in a U-shape, V-shape, or round shape (shown in the figure as a U-shaped U-rib) and extends in the bridge axis direction with a predetermined interval in the width direction. A plurality of them are arranged side by side. The closed cross-section rib 2 is disposed so as to open upward, and has a closed cross section when both ends are joined to the lower surface of the deck plate 1 by welding.

横リブ3は、下端にフランジを有する逆T形断面として構成されて幅方向のほぼ全域に延在するとともに、橋軸方向で所定間隔をおいて複数並設されている。横リブ3は、デッキプレート1の下面に上端が溶接により接合される。   The lateral ribs 3 are configured as an inverted T-shaped cross section having a flange at the lower end, extend substantially over the entire width direction, and are arranged in parallel at predetermined intervals in the bridge axis direction. The lateral rib 3 has an upper end joined to the lower surface of the deck plate 1 by welding.

閉断面リブ2と横リブ3とは、それぞれが延在する橋軸方向と幅方向とで互いに交差して設けられている。かかる交差部においては、横リブ3のウェブに、閉断面リブ2を挿通する切欠部31が形成され、この切欠部31に閉断面リブ2を通すことで閉断面リブ2と横リブ3とが互いに交差する。さらに、切欠部31は、閉断面リブ2の下端の閉塞部分に対して一部もしくは全てが非接触となるように形成されている。そして、閉断面リブ2は、その対向する側片の外面が、横リブ3の切欠部31の内周縁に対して溶接により接合される。   The closed cross-section rib 2 and the transverse rib 3 are provided so as to intersect with each other in the bridge axis direction and the width direction in which each extends. In such a crossing portion, a notch 31 for inserting the closed cross-section rib 2 is formed in the web of the horizontal rib 3, and the closed cross-section rib 2 and the horizontal rib 3 are formed by passing the closed cross-section rib 2 through the notch 31. Cross each other. Further, the cutout portion 31 is formed so that a part or all of the cutout portion 31 is not in contact with the closed portion at the lower end of the closed cross-section rib 2. And the outer surface of the opposing side piece of the closed cross-section rib 2 is joined to the inner periphery of the notch part 31 of the horizontal rib 3 by welding.

なお、橋梁は、主桁4が設けられている。主桁4は、溶接による接合やボルトによる締結で組み付けられている。主桁4は、横リブ3に接合されるとともに、橋軸方向に延在して設けられ、各横リブ3を介してデッキプレート1を支持する。   The bridge is provided with a main girder 4. The main girder 4 is assembled by welding or fastening with bolts. The main girder 4 is joined to the lateral rib 3 and is provided so as to extend in the bridge axis direction, and supports the deck plate 1 via each lateral rib 3.

このような鋼床版においては、閉断面リブ2をデッキプレート1に接合する溶接部は閉断面リブ2の外側からの片面溶接となるため、デッキプレート1上を通過する車両の輪荷重により、デッキプレート1と閉断面リブ2とが相互変形するとき、溶接ルート部(デッキプレート1の母材および閉断面リブ2の母材に溶け込んだ溶接金属の最深部のうち、デッキプレート1の下面と閉断面リブ2の上端部の境界に位置する部分)を開閉する力の繰り返し作用が生じやすい。このため、前記溶接ルート部を起点にデッキプレート1の上面に向かって進展し、デッキプレート1を貫通する疲労き裂(以下、デッキ貫通き裂という)が生じる事象がある。   In such a steel floor slab, the welded portion that joins the closed cross-section rib 2 to the deck plate 1 is a single-sided weld from the outside of the closed cross-section rib 2, so that due to the wheel load of the vehicle passing over the deck plate 1, When the deck plate 1 and the closed cross-section rib 2 are mutually deformed, the bottom surface of the deck plate 1 of the welding root portion (the deepest portion of the weld metal melted into the base metal of the deck plate 1 and the base metal of the closed cross-section rib 2) The repeated action of the force that opens and closes the portion located at the boundary of the upper end of the closed cross-section rib 2 is likely to occur. For this reason, there is a phenomenon in which a fatigue crack (hereinafter referred to as a deck penetration crack) that propagates toward the upper surface of the deck plate 1 starting from the welding root portion and penetrates the deck plate 1 occurs.

この事象は、特に、閉断面リブ2と横リブ3との交差部のほうに発生し易い傾向がある。これは、交差部では閉断面リブ2が横リブ3のウェブにより拘束されているため、デッキプレート1のたわみに対して閉断面リブ2自体が変形できず、その変形が前記溶接ルート部に集中してしまうためである。   This phenomenon tends to occur particularly at the intersection between the closed cross-section rib 2 and the lateral rib 3. This is because the closed cross-section rib 2 is restrained by the web of the transverse rib 3 at the intersection, and therefore the closed cross-section rib 2 itself cannot be deformed with respect to the deflection of the deck plate 1, and the deformation concentrates on the welding root portion. It is because it will do.

そこで、本実施形態の鋼床版は、デッキ貫通き裂の発生を抑制または防止するため、補強部材5を備えている。補強部材5は、図3および図4に示すように、閉断面リブ2内に、少なくとも閉断面リブ2と横リブ3との交差部におけるデッキプレート1の下面に接合されている。この補強部材5は、閉断面リブ2に非接触で配置されている。また、補強部材5は、閉断面リブ2内以外には設けられていない。   Therefore, the steel slab of this embodiment includes a reinforcing member 5 in order to suppress or prevent the occurrence of a deck through crack. As shown in FIGS. 3 and 4, the reinforcing member 5 is joined in the closed cross-section rib 2 to at least the lower surface of the deck plate 1 at the intersection of the closed cross-section rib 2 and the lateral rib 3. The reinforcing member 5 is disposed in a non-contact manner on the closed cross-section rib 2. Further, the reinforcing member 5 is not provided except in the closed cross-section rib 2.

図3および図4において、補強部材5は、鋼材からなる平板状の平鋼として形成され、その上端がデッキプレート1の下面に溶接により接合されて、交差部を起点とした橋軸方向の両側に橋軸方向に沿って延在して設けられている。補強部材5の位置は、図3に示すように閉断面リブ2の幅方向の中央として示してあるが、中央でなくてもよい。   3 and 4, the reinforcing member 5 is formed as a flat steel plate made of steel, and the upper end thereof is joined to the lower surface of the deck plate 1 by welding, and both sides in the bridge axis direction starting from the intersection. And extending along the bridge axis direction. Although the position of the reinforcing member 5 is shown as the center in the width direction of the closed cross-section rib 2 as shown in FIG. 3, it does not have to be at the center.

図5−1は、補強部材のない交差部での鋼床版の作用を示す一部横断面図であり、図5−2は、補強部材のない交差部以外での鋼床版の作用を示す一部横断面図であり、図5−3は、図5−1の一部拡大図であり、図6は、補強部材のない鋼床版の作用を示す一部縦断面図である。また、図7は、本実施形態に係る鋼床版の作用を示す一部横断面図であり、図8は、本実施形態に係る鋼床版の作用を示す一部縦断面図である。   FIG. 5-1 is a partial cross-sectional view showing the action of the steel deck at the intersection without the reinforcing member, and FIG. 5-2 shows the action of the steel deck at the intersection other than the reinforcing member. FIG. 5-3 is a partially enlarged view of FIG. 5-1, and FIG. 6 is a partially longitudinal sectional view showing the operation of a steel deck without a reinforcing member. FIG. 7 is a partial cross-sectional view showing the operation of the steel deck according to the present embodiment, and FIG. 8 is a partial vertical cross-sectional view showing the operation of the steel deck according to the present embodiment.

デッキプレート1上を通過する車両の輪荷重により、デッキプレート1は、橋軸方向および幅方向に下方にたわむように変形する。輪荷重が閉断面リブ2の両ウェブ間を含む範囲に作用すると、図5−1および図6に示すように、閉断面リブ2の両上端部が内側に引っ張られることになる。交差部以外の場所では、図5−2に示すように、横リブ3が存在しないため、閉断面リブ2は、両上端部が内側を向くように変形する。すなわち、閉断面リブ2は、交差部以外の場所ではデッキプレート1の変形に追従して、閉断面リブ2の上端部とデッキプレート1が溶接部Wを介して互いになす角度の変化を緩和するような断面変形をすることができる。しかし、横リブ3がある交差部においては、横リブ3のウェブと閉断面リブ2とが接合されていることから、閉断面リブ2は、前記の断面変形を横リブ3のウェブに拘束される。このため、交差部において閉断面リブ2の両ウェブ間でデッキプレート1が下方にたわむ場合は、閉断面リブ2の上端部とデッキプレート1が溶接部Wを介して互いになす角度の変化が交差部以外の場所のように緩和されず、デッキプレート1のたわみ変形の支点となる溶接部Wのルート部に高い応力集中が発生する。そして、これが繰り返されることで、図5−1および図5−3に示すように、デッキ貫通き裂Cが発生する。   Due to the wheel load of the vehicle passing over the deck plate 1, the deck plate 1 is deformed so as to bend downward in the bridge axis direction and the width direction. When the wheel load acts on a range including between both webs of the closed cross-section rib 2, both upper ends of the closed cross-section rib 2 are pulled inward as shown in FIGS. As shown in FIG. 5B, since the lateral rib 3 does not exist at a place other than the intersection, the closed cross-section rib 2 is deformed so that both upper end portions face inward. That is, the closed cross-section rib 2 follows the deformation of the deck plate 1 at a place other than the intersecting portion, and alleviates the change in the angle between the upper end portion of the closed cross-section rib 2 and the deck plate 1 through the welded portion W. Such cross-sectional deformation can be made. However, since the web of the lateral rib 3 and the closed cross-section rib 2 are joined at the intersection where the lateral rib 3 is present, the closed cross-section rib 2 is restrained by the web of the lateral rib 3 from the above cross-sectional deformation. The For this reason, when the deck plate 1 bends downward between the two webs of the closed cross-section rib 2 at the intersection, the change in the angle between the upper end of the closed cross-section rib 2 and the deck plate 1 through the weld W intersects each other. The stress concentration is not relaxed as in a place other than the portion, and a high stress concentration is generated in the root portion of the welded portion W that is a fulcrum of the deflection deformation of the deck plate 1. And by repeating this, as shown to FIGS. 5-1 and FIGS. 5-3, the deck penetration crack C generate | occur | produces.

一方、図7および図8に示すように、補強部材5を備えている場合、デッキプレート1上を通過する車両の輪荷重により、閉断面リブ2の両ウェブ間におけるデッキプレート1が下方にたわむように変形しようとするが、交差部を含み橋軸方向に延在するように補強部材5が設けられているため、デッキプレート1の面外剛性が増大し、交差部でのデッキプレート1のたわみ変形が抑制される。このため、デッキプレート1と閉断面リブ2との溶接部Wに掛かる負荷が軽減される。この結果、デッキ貫通き裂Cの発生が抑制または防止されることになる。   On the other hand, as shown in FIGS. 7 and 8, when the reinforcing member 5 is provided, the deck plate 1 between the webs of the closed cross-section ribs 2 bends downward due to the wheel load of the vehicle passing over the deck plate 1. However, since the reinforcing member 5 is provided so as to extend in the bridge axis direction including the intersecting portion, the out-of-plane rigidity of the deck plate 1 is increased, and the deck plate 1 at the intersecting portion is increased. Deflection is suppressed. For this reason, the load concerning the welding part W of the deck plate 1 and the closed cross-section rib 2 is reduced. As a result, the occurrence of the deck through crack C is suppressed or prevented.

ところで、補強部材5は、上述した板状に限定されるものではない。図9〜図21は、本実施形態に係る補強部材の他の例を示す鋼床版の一部横断面図である。   By the way, the reinforcing member 5 is not limited to the plate shape mentioned above. FIGS. 9-21 is a partial cross-sectional view of the steel deck which shows the other example of the reinforcement member which concerns on this embodiment.

図9に示す補強部材5は、上端に球状の膨出部5aを有する球平形鋼として形成され、上端の膨出部5aがデッキプレート1の下面に溶接により接合されている。この図9に示す補強部材5は、図3に示す平鋼と比較してデッキプレート1の変形を抑制するための剛性が高い。   The reinforcing member 5 shown in FIG. 9 is formed as a spherical flat steel having a spherical bulged portion 5a at the upper end, and the bulged portion 5a at the upper end is joined to the lower surface of the deck plate 1 by welding. The reinforcing member 5 shown in FIG. 9 has high rigidity for suppressing the deformation of the deck plate 1 as compared with the flat steel shown in FIG.

図10に示す補強部材5は、上端にフランジ5bを有するT形鋼として形成され、上端のフランジ5bがデッキプレート1の下面に溶接により接合されている。なお、図10に示す補強部材5は、フランジ5bがデッキプレート1にボルト(高力ボルト)で接合されていてもよい。この図10に示す補強部材5は、図3に示す平鋼と比較してデッキプレート1の変形を抑制するための剛性が高い。   The reinforcing member 5 shown in FIG. 10 is formed as a T-shaped steel having a flange 5b at the upper end, and the upper end flange 5b is joined to the lower surface of the deck plate 1 by welding. In the reinforcing member 5 shown in FIG. 10, the flange 5 b may be joined to the deck plate 1 with a bolt (high strength bolt). The reinforcing member 5 shown in FIG. 10 has higher rigidity for suppressing the deformation of the deck plate 1 than the flat steel shown in FIG.

図11に示す補強部材5は、上端にフランジ5cを有するL形鋼として形成され、上端のフランジ5cがデッキプレート1の下面に溶接により接合されている。なお、図11に示す補強部材5は、フランジ5cがデッキプレート1にボルト(高力ボルト)で接合されていてもよい。この図11に示す補強部材5は、図3に示す平鋼と比較してデッキプレート1の変形を抑制するための剛性が高い。   The reinforcing member 5 shown in FIG. 11 is formed as an L-shaped steel having a flange 5c at the upper end, and the upper end flange 5c is joined to the lower surface of the deck plate 1 by welding. In the reinforcing member 5 shown in FIG. 11, the flange 5c may be joined to the deck plate 1 with a bolt (high-strength bolt). The reinforcing member 5 shown in FIG. 11 has higher rigidity for suppressing the deformation of the deck plate 1 than the flat steel shown in FIG.

図12に示す補強部材5は、下端に球状の膨出部5aを有する球平形鋼として形成され、上端がデッキプレート1の下面に溶接により接合されている。この図12に示す補強部材5は、図3に示す平鋼と比較してデッキプレート1の変形を抑制するための剛性が高い。   The reinforcing member 5 shown in FIG. 12 is formed as a spherical flat steel having a spherical bulging portion 5a at the lower end, and the upper end is joined to the lower surface of the deck plate 1 by welding. The reinforcing member 5 shown in FIG. 12 has high rigidity for suppressing the deformation of the deck plate 1 as compared with the flat steel shown in FIG.

図13に示す補強部材5は、下端にフランジ5bを有するT形鋼として形成され、上端がデッキプレート1の下面に溶接により接合されている。この図13に示す補強部材5は、図3に示す平鋼と比較してデッキプレート1の変形を抑制するための剛性が高い。   The reinforcing member 5 shown in FIG. 13 is formed as a T-shaped steel having a flange 5b at the lower end, and the upper end is joined to the lower surface of the deck plate 1 by welding. The reinforcing member 5 shown in FIG. 13 has higher rigidity for suppressing the deformation of the deck plate 1 than the flat steel shown in FIG.

図14に示す補強部材5は、下端にフランジ5cを有するL形鋼として形成され、上端がデッキプレート1の下面に溶接により接合されている。この図14に示す補強部材5は、図3に示す平鋼と比較してデッキプレート1の変形を抑制するための剛性が高い。   The reinforcing member 5 shown in FIG. 14 is formed as L-shaped steel having a flange 5c at the lower end, and the upper end is joined to the lower surface of the deck plate 1 by welding. The reinforcing member 5 shown in FIG. 14 has higher rigidity for suppressing the deformation of the deck plate 1 than the flat steel shown in FIG.

図15に示す補強部材5は、上端および下端にフランジ5bを有するH形鋼(またはI形鋼)として形成され、上端のフランジ5bがデッキプレート1の下面に溶接により接合されている。なお、図15に示す補強部材5は、フランジ5bがデッキプレート1にボルト(高力ボルト)で接合されていてもよい。この図15に示す補強部材5は、図3に示す平鋼と比較してデッキプレート1の変形を抑制するための剛性が高い。   The reinforcing member 5 shown in FIG. 15 is formed as an H-shaped steel (or I-shaped steel) having a flange 5b at the upper end and the lower end, and the upper end flange 5b is joined to the lower surface of the deck plate 1 by welding. In the reinforcing member 5 shown in FIG. 15, the flange 5 b may be joined to the deck plate 1 with a bolt (high strength bolt). The reinforcing member 5 shown in FIG. 15 has higher rigidity for suppressing the deformation of the deck plate 1 than the flat steel shown in FIG.

図16に示す補強部材5は、上端および下端にフランジ5cを有する溝形鋼として形成され、上端のフランジ5cがデッキプレート1の下面に溶接により接合されている。なお、図16に示す補強部材5は、フランジ5cがデッキプレート1にボルト(高力ボルト)で接合されていてもよい。この図16に示す補強部材5は、図3に示す平鋼と比較してデッキプレート1の変形を抑制するための剛性が高い。   The reinforcing member 5 shown in FIG. 16 is formed as channel steel having flanges 5 c at the upper end and the lower end, and the flange 5 c at the upper end is joined to the lower surface of the deck plate 1 by welding. In the reinforcing member 5 shown in FIG. 16, the flange 5c may be joined to the deck plate 1 with a bolt (high-strength bolt). The reinforcing member 5 shown in FIG. 16 has high rigidity for suppressing the deformation of the deck plate 1 as compared with the flat steel shown in FIG.

図17に示す補強部材5は、複数の平鋼を幅方向に並べて橋軸方向に平行に配置したもので、各平鋼の上端がデッキプレート1の下面に溶接により接合されている。この図17に示す補強部材5は、図3に示す1つの平鋼と比較してデッキプレート1の変形を抑制するための剛性が高い。   The reinforcing member 5 shown in FIG. 17 has a plurality of flat bars arranged in the width direction and arranged parallel to the bridge axis direction, and the upper ends of the flat bars are joined to the lower surface of the deck plate 1 by welding. The reinforcing member 5 shown in FIG. 17 has higher rigidity for suppressing the deformation of the deck plate 1 as compared with one flat steel shown in FIG.

図18に示す補強部材5は、鋼材により断面コ字形状に形成され、その閉側を上端とし、当該上端がデッキプレート1の下面に溶接により接合されている。なお、図18に示す補強部材5は、閉側の上端がデッキプレート1にボルト(高力ボルト)で接合されていてもよい。この図18に示す補強部材5は、図3に示す平鋼と比較してデッキプレート1の変形を抑制するための剛性が高い。   The reinforcing member 5 shown in FIG. 18 is formed of a steel material in a U-shaped cross section, and its closed side is the upper end, and the upper end is joined to the lower surface of the deck plate 1 by welding. 18 may be joined to the deck plate 1 with a bolt (high-strength bolt). The reinforcing member 5 shown in FIG. 18 has high rigidity for suppressing deformation of the deck plate 1 as compared with the flat steel shown in FIG.

図19に示す補強部材5は、鋼材により断面コ字形状に形成され、その開側を上端とし、当該上端がデッキプレート1の下面に溶接により接合されている。この図19に示す補強部材5は、図3に示す平鋼と比較してデッキプレート1の変形を抑制するための剛性が高い。   The reinforcing member 5 shown in FIG. 19 is formed of a steel material in a U-shaped cross section, and the open side is the upper end, and the upper end is joined to the lower surface of the deck plate 1 by welding. The reinforcing member 5 shown in FIG. 19 has higher rigidity for suppressing the deformation of the deck plate 1 than the flat steel shown in FIG.

図20に示す補強部材5は、鋼材により断面ロ字状に形成され、その1辺を上端とし、当該上端がデッキプレート1の下面に溶接により接合されている。この図20に示す補強部材5は、図3に示す平鋼と比較してデッキプレート1の変形を抑制するための剛性が高い。   A reinforcing member 5 shown in FIG. 20 is formed of a steel material so as to have a square cross section. One end of the reinforcing member 5 is an upper end, and the upper end is joined to the lower surface of the deck plate 1 by welding. The reinforcing member 5 shown in FIG. 20 has higher rigidity for suppressing the deformation of the deck plate 1 than the flat steel shown in FIG.

図21に示す補強部材5は、デッキプレート1の下面にスタッド5dを吊り下げる形で溶接により接合し、当該スタッド5dにコンクリート5eを打設したものである。なお、図21に示す補強部材5は、コンクリート5eに限らず、スタッド5dにより硬化して取り付けられる材料であればよい。この図21に示す補強部材5は、図3に示す平鋼と比較してデッキプレート1の変形を抑制するための剛性が高い。   The reinforcing member 5 shown in FIG. 21 is formed by joining a stud 5d to the lower surface of the deck plate 1 by welding and placing concrete 5e on the stud 5d. The reinforcing member 5 shown in FIG. 21 is not limited to the concrete 5e, but may be any material that is hardened and attached by the stud 5d. The reinforcing member 5 shown in FIG. 21 has higher rigidity for suppressing the deformation of the deck plate 1 than the flat steel shown in FIG.

このように、本実施形態の鋼床版は、デッキプレート1と、デッキプレート1の下面にて橋軸方向に沿って延在して溶接される閉断面リブ2と、デッキプレート1の下面にて橋軸方向に直交して溶接されるとともに閉断面リブ2を挿通して溶接される横リブ3とを有する鋼床版において、閉断面リブ2内にのみ少なくとも横リブ3との交差部を含み橋軸方向に延在するようにデッキプレート1の下面に接合されて閉断面リブ2に非接触で配置される補強部材5を備える。   As described above, the steel slab of the present embodiment is formed on the deck plate 1, the closed cross-section rib 2 that extends along the bridge axis direction on the lower surface of the deck plate 1, and the lower surface of the deck plate 1. In the steel slab having a transverse rib 3 welded orthogonally to the bridge axis direction and welded through the closed cross-section rib 2, at least an intersection with the transverse rib 3 is provided only in the closed cross-section rib 2. A reinforcing member 5 is provided which is joined to the lower surface of the deck plate 1 so as to extend in the direction of the bridge axis and is disposed in a non-contact manner on the closed cross-section rib 2.

この鋼床版によれば、デッキプレート1上を通過する車両の輪荷重により、閉断面リブ2の両ウェブ間におけるデッキプレート1が下方にたわむように変形しようとすることを補強部材5により抑制することで、デッキプレート1と閉断面リブ2との溶接部Wに掛かる負荷を軽減し、デッキ貫通き裂Cの発生を抑制または防止することが可能になる。しかも、この鋼床版によれば、補強部材5が閉断面リブ2内にのみに設けられているため、必要以上に剛性を高めることがなく、補強を行う部分と補強を行わない部分との剛性差が小さく、他の部分にき裂が発生する事態を防ぐことが可能になる。さらにこの鋼床版によれば、補強部材5が閉断面リブ2に非接触で配置されているため、補強部材5に掛かる応力が他所に伝わることがなく、当該他所が破損する事態を防ぐことが可能になる。   According to this steel slab, the reinforcing member 5 prevents the deck plate 1 between the webs of the closed cross-section ribs 2 from being deformed to bend downward due to the wheel load of the vehicle passing over the deck plate 1. By doing so, it is possible to reduce the load applied to the welded portion W between the deck plate 1 and the closed cross-section rib 2 and to suppress or prevent the occurrence of the deck through crack C. Moreover, according to this steel slab, since the reinforcing member 5 is provided only in the closed cross-section rib 2, the rigidity is not increased more than necessary, and the portion that performs reinforcement and the portion that does not perform reinforcement are provided. The difference in rigidity is small, and it is possible to prevent the occurrence of cracks in other parts. Furthermore, according to this steel slab, since the reinforcing member 5 is arranged in non-contact with the closed cross-section rib 2, the stress applied to the reinforcing member 5 is not transmitted to other places, and the situation where the other places are damaged is prevented. Is possible.

また、本実施形態の鋼床版は、補強部材5がデッキプレート1の下面に溶接されることが好ましい。   In the steel deck according to this embodiment, the reinforcing member 5 is preferably welded to the lower surface of the deck plate 1.

この鋼床版によれば、補強部材5を溶接によりデッキプレート1に接合することで、デッキプレート1の上面側に突出する部分が生じたり、デッキプレート1の上面に鋼板などの別の補強部材を用いたりする必要がない。このため、デッキプレート1の上面に敷設する舗装の厚さが変化する事態を防ぎ、舗装を平坦にすることが可能になる。   According to this steel deck, by joining the reinforcing member 5 to the deck plate 1 by welding, a portion protruding to the upper surface side of the deck plate 1 is generated, or another reinforcing member such as a steel plate is formed on the upper surface of the deck plate 1. There is no need to use. For this reason, the situation where the thickness of the pavement laid on the upper surface of the deck plate 1 changes can be prevented, and the pavement can be made flat.

なお、補強部材5をデッキプレート1に溶接する場合、図3、図12、図13、図14、図17に示すように、補強部材5の断面における複数の溶接部がより近い程、複数の溶接部の挙動が等しくなって溶接部の疲労が小さいため好ましい。   In addition, when welding the reinforcement member 5 to the deck plate 1, as shown in FIG.3, FIG.12, FIG.13, FIG.14, FIG. This is preferable because the behavior of the weld is equal and the fatigue of the weld is small.

また、本実施形態の鋼床版は、図22の本実施形態に係る鋼床版の縦断面図に示すように、補強部材5が横リブ3の位置(交差部)を起点として橋軸方向両側に向けて延在して設けられており、その延在長さLが少なくとも100[mm]の範囲に配置されることが好ましい。   Moreover, as shown in the longitudinal cross-sectional view of the steel deck according to the present embodiment in FIG. 22, the steel deck according to the present embodiment is in the direction of the bridge axis where the reinforcing member 5 starts from the position (intersection) of the lateral rib 3. It is preferable to extend toward both sides, and the extension length L is preferably arranged in a range of at least 100 [mm].

図23は、本実施形態に係る鋼床版の試験結果を示す図表であり、図24は、本実施形態に係る鋼床版の試験結果を示すグラフである。図23および図24の試験では、下記緒元の簡易FEM解析モデルを作成した。諸元は、高さ600[mm]×厚さ9[mm]で下フランジが幅200[mm]×厚さ10[mm]の1つの横リブ3とし、全体を横リブ3の橋軸方向両側に2500[mm]の橋軸方向長さとし、一般に用いられている厚さ12[mm]のデッキプレート1、高さ320[mm]×幅240[mm]×厚さ6[mm]で曲部半径40[mm]の2本の閉断面リブ(Uリブ)2、腹板が高さ1100[mm]×厚さ9[mm]で下フランジが幅450[mm]×厚さ34[mm]の主桁4、および高さ200[mm]で厚さ10[mm]の図12に示す球平形鋼の補強部材5を用いた。また、閉断面リブ2とデッキプレート1との間の溶接部Wは、閉断面リブ2の厚さの75[%]の溶け込みとした。変位の拘束条件は、前記デッキプレート1、前記閉断面リブ(Uリブ)2、および前記主桁4の橋軸方向の端部の断面の自由度を並進方向、回転方向ともに固定とした。そして、この諸元のモデルにおいて、交差部における閉断面リブ2の中央にデッキプレート1の直上から輪荷重50[kN]を付加した場合の着目部(交差部におけるデッキプレート1と閉断面リブ2との溶接部W)の相当ひずみ(μ)の最大値を計測した。また、比較として、厚さ12[mm]のデッキプレート1に補強部材5を用いない場合と、厚さ16[mm]のデッキプレート(大型自動車の輪荷重が常時載荷される位置直下の鋼床版において最低板厚となるデッキプレート)1に補強部材5を用いない場合とを同様に簡易FEM解析モデルにて試験した。   FIG. 23 is a chart showing the test results of the steel deck according to this embodiment, and FIG. 24 is a graph showing the test results of the steel deck according to this embodiment. In the tests of FIGS. 23 and 24, a simple FEM analysis model having the following specifications was created. The specifications are one horizontal rib 3 having a height of 600 [mm] × thickness of 9 [mm] and a lower flange of 200 [mm] × thickness of 10 [mm]. Bridge axis length of 2500 [mm] on both sides, commonly used deck plate 1 of thickness 12 [mm], height 320 [mm] x width 240 [mm] x thickness 6 [mm] Two closed cross-section ribs (U-ribs) 2 with a radius of 40 [mm], the abdomen is 1100 [mm] high by 9 [mm] thick, and the lower flange is 450 [mm] wide by 34 [mm thick ] And a reinforcing member 5 of spherical flat steel shown in FIG. 12 having a height of 200 [mm] and a thickness of 10 [mm]. Further, the welded portion W between the closed cross-section rib 2 and the deck plate 1 was melted by 75 [%] of the thickness of the closed cross-section rib 2. The displacement constraint conditions were such that the degree of freedom of the cross section of the deck plate 1, the closed cross-section rib (U-rib) 2 and the end portion of the main girder 4 in the bridge axis direction was fixed in both the translation direction and the rotation direction. In the model of this specification, when a wheel load of 50 [kN] is applied from directly above the deck plate 1 to the center of the closed cross-section rib 2 at the crossing portion (the deck plate 1 and the closed cross-section rib 2 at the crossing portion). The maximum value of the equivalent strain (μ) of the welded portion W) was measured. For comparison, a case in which the reinforcing member 5 is not used for the deck plate 1 having a thickness of 12 [mm] and a deck plate having a thickness of 16 [mm] (a steel floor immediately below a position where a wheel load of a large automobile is always loaded) The case where the reinforcing member 5 was not used for the deck plate 1 having the minimum plate thickness in the plate was similarly tested with a simple FEM analysis model.

図23および図24に示すように、試験の結果、補強部材5の長さを少なくとも100[mm]とすれば、一般に用いられている厚さ12[mm]のデッキプレート1に補強部材5を用いない場合と比較して、閉断面リブ2と横リブ3との交差部でのデッキ貫通き裂Cの発生を抑制できる程度に相当ひずみが抑制される。このため、他所への影響を考慮したうえで、閉断面リブ2と横リブ3との交差部でのデッキ貫通き裂Cの発生を抑制する効果を顕著に得ることが可能になる。なお、厚さ16[mm]のデッキプレート1を用いれば、相当ひずみは抑制されるが、当該デッキプレート1は、使用鋼材量の増加により、鋼床版(橋梁)の重量が嵩むとともに鋼材費用が嵩む点で好ましくない。本実施形態の補強部材5を断面形状と延在長さを適切に選定して用いれば、単にデッキプレート1の厚さを増厚した場合と比較して鋼床版(橋梁)の重量増加および鋼材費用の増加を抑えることが可能になる。特に、補強部材5の交差部を起点とした橋軸方向両側の延在長さLを上記のごとく規定して横リブ3の間の橋軸方向で補強部材5を分割すれば、鋼床版(橋梁)の重量増加および鋼材費用の増加をより抑えることが可能になる。また、補強部材5を車両が多く通過する部分の閉断面リブ2に適用すれば、鋼床版(橋梁)の重量増加および鋼材費用の増加をより抑えることが可能になる。   As shown in FIGS. 23 and 24, if the length of the reinforcing member 5 is at least 100 [mm] as a result of the test, the reinforcing member 5 is attached to the generally used deck plate 1 having a thickness of 12 [mm]. Compared with the case where it is not used, considerable strain is suppressed to such an extent that the occurrence of the deck through crack C at the intersection of the closed cross-section rib 2 and the lateral rib 3 can be suppressed. For this reason, it is possible to obtain the effect of suppressing the occurrence of the deck penetration crack C at the intersection of the closed cross-section rib 2 and the lateral rib 3 in consideration of the influence on other places. If the deck plate 1 having a thickness of 16 [mm] is used, considerable distortion is suppressed, but the deck plate 1 increases the weight of the steel slab (bridge) and increases the cost of the steel material due to an increase in the amount of steel used. Is not preferable in that it is bulky. If the reinforcing member 5 of the present embodiment is used by appropriately selecting the cross-sectional shape and the extension length, the weight of the steel deck (bridge) is increased as compared with the case where the thickness of the deck plate 1 is simply increased. It is possible to suppress an increase in steel material costs. In particular, if the extending length L on both sides in the bridge axis direction starting from the intersection of the reinforcing members 5 is defined as described above and the reinforcing member 5 is divided in the bridge axis direction between the lateral ribs 3, the steel deck (Bridge) weight increase and steel cost increase can be further suppressed. Further, if the reinforcing member 5 is applied to the closed cross-section rib 2 where a lot of vehicles pass, it is possible to further suppress an increase in the weight of the steel deck (bridge) and an increase in the cost of the steel material.

また、本実施形態の鋼床版は、デッキプレート1の厚さをt[mm]として前記補強部材を用いる場合の閉断面リブ2と横リブ3との交差部での閉断面リブ2内におけるデッキプレート1の鉛直方向の最大変形量をpとし、デッキプレート1の厚さをt+1[mm]として前記補強部材を用いない場合の交差部での閉断面リブ2内におけるデッキプレート1の鉛直方向の最大変形量をqとしたとき、補強部材5がp≦qの関係を満たす剛性を有することが好ましい。   Further, the steel slab of this embodiment is in the closed cross-section rib 2 at the intersection of the closed cross-section rib 2 and the lateral rib 3 when the reinforcing member is used with the thickness of the deck plate 1 being t [mm]. When the maximum deformation amount in the vertical direction of the deck plate 1 is p and the thickness of the deck plate 1 is t + 1 [mm], the vertical direction of the deck plate 1 in the closed cross-section rib 2 at the intersection when the reinforcing member is not used. When the maximum deformation amount is q, it is preferable that the reinforcing member 5 has rigidity satisfying the relationship of p ≦ q.

なお、最大変形量とは、閉断面リブ2と横リブ3との交差部での閉断面リブ2の中央直上のデッキプレート1の上面を基準とした相対変位の最大量であって、地面に対する絶対変位ではなく、輪荷重などによる局部変位である。   The maximum amount of deformation is the maximum amount of relative displacement with respect to the upper surface of the deck plate 1 immediately above the center of the closed cross-section rib 2 at the intersection of the closed cross-section rib 2 and the lateral rib 3, It is not absolute displacement but local displacement due to wheel load.

この鋼床版によれば、輪荷重が分散されて交差部に近接するデッキプレート1の局部変位を抑えることができ、単にデッキプレート1の厚さを増厚した場合と比較して使用鋼材量を少なく抑えることが可能になる。   According to this steel slab, it is possible to suppress the local displacement of the deck plate 1 that is adjacent to the intersection due to the wheel load being dispersed, and the amount of steel used compared to the case where the thickness of the deck plate 1 is simply increased. Can be reduced.

また、本実施形態の鋼床版は、図22に示すように、補強部材5が橋軸方向の端部51に向けて断面積が漸次小さく形成されることが好ましい。   Moreover, as for the steel deck of this embodiment, as shown in FIG. 22, it is preferable that the reinforcing member 5 is formed so that a cross-sectional area becomes small gradually toward the edge part 51 of a bridge axis direction.

実線で示す補強部材5の橋軸方向の端部51は、垂直の端面であって、端部51の位置で剛性が急激に変化する。これに対し、同図に一点鎖線で示す端部51は、橋軸方向の先端に向かって斜めにカットされている。また、同図に二点鎖線で示す端部51は、橋軸方向の先端向かって斜めにカットされているとともに先端が細く形成されている。また、同図に破線で示す端部51は、橋軸方向の先端に向かって円弧状にカットされているとともに先端が細く形成されている。これら一点鎖線、二点鎖線、または破線で示す端部51であれば、補強部材5の端部で剛性が急激に変化することがないため、他所への影響を考慮したうえで、閉断面リブ2と横リブ3との交差部でのデッキ貫通き裂Cの発生を抑制する効果を顕著に得ることが可能になる。   An end portion 51 in the bridge axis direction of the reinforcing member 5 indicated by a solid line is a vertical end surface, and the rigidity changes abruptly at the position of the end portion 51. On the other hand, the end 51 shown by the alternate long and short dash line in the figure is cut obliquely toward the tip in the bridge axis direction. Further, an end 51 shown by a two-dot chain line in the figure is cut obliquely toward the tip in the bridge axis direction and has a narrow tip. In addition, an end 51 shown by a broken line in the drawing is cut in an arc shape toward the tip in the bridge axis direction and has a thin tip. If the end portion 51 is indicated by the one-dot chain line, the two-dot chain line, or the broken line, the rigidity does not change abruptly at the end portion of the reinforcing member 5. The effect of suppressing the occurrence of the deck through crack C at the intersection of the 2 and the lateral rib 3 can be remarkably obtained.

また、本実施形態の橋梁は、デッキプレート1と、デッキプレート1の下面にて橋軸方向に沿って延在して溶接される閉断面リブ2と、デッキプレート1の下面にて橋軸方向に直交して溶接されるとともに閉断面リブ2を挿通して溶接される横リブ3とを有する鋼床版を含む橋梁において、前記鋼床版に、上述した補強部材5を備える。   The bridge of this embodiment includes a deck plate 1, a closed cross-section rib 2 that extends along the bridge axis direction on the lower surface of the deck plate 1, and a bridge axis direction on the lower surface of the deck plate 1. In the bridge including the steel slab having the transverse rib 3 welded orthogonally to the closed cross-section rib 2, the above-mentioned reinforcing member 5 is provided on the steel slab.

この橋梁によれば、上記鋼床版の効果を橋梁全体として得ることが可能である。   According to this bridge, it is possible to obtain the effect of the steel slab as the entire bridge.

1 デッキプレート
2 閉断面リブ
3 横リブ
4 主桁
5 補強部材
51 端部
W 溶接部
1 Deck Plate 2 Closed Section Rib 3 Horizontal Rib 4 Main Girder 5 Reinforcement Member 51 End W Weld

Claims (6)

デッキプレートと、前記デッキプレートの下面にて橋軸方向に沿って延在して溶接される閉断面リブと、前記デッキプレートの下面にて橋軸方向に直交して溶接されるとともに前記閉断面リブを挿通して溶接される横リブとを有する鋼床版において、
前記閉断面リブ内にのみ前記閉断面リブと前記横リブとの交差部を含み橋軸方向の両側に延在するように前記デッキプレートの下面に接合されて前記閉断面リブに非接触で配置される補強部材を備えることを特徴とする鋼床版。
A deck plate, a closed cross-section rib extending along the bridge axis direction on the lower surface of the deck plate, and a closed cross section welded orthogonally to the bridge axis direction on the lower surface of the deck plate In a steel slab having a transverse rib that is welded through the rib,
Non-contact with the closed section ribs are joined to the lower surface of said deck plate so as to extend on both sides of the containing bridge axis intersections between the transverse ribs and viewed before Symbol closed cross rib in the closed section in the rib A steel floor slab comprising a reinforcing member arranged in
前記補強部材が前記デッキプレートの下面に溶接されることを特徴とする請求項1に記載の鋼床版。   The steel floor slab of claim 1, wherein the reinforcing member is welded to a lower surface of the deck plate. 前記補強部材が前記横リブの位置を起点として橋軸方向両側に少なくとも100[mm]の範囲に配置されることを特徴とする請求項1または2に記載の鋼床版。   3. The steel deck according to claim 1, wherein the reinforcing member is disposed in a range of at least 100 [mm] on both sides in the bridge axis direction starting from the position of the lateral rib. 前記デッキプレートの厚さをt[mm]として前記補強部材を用いる場合の前記交差部での前記閉断面リブ内における前記デッキプレートの鉛直方向の最大変形量をpとし、前記デッキプレートの厚さをt+1[mm]として前記補強部材を用いない場合の前記交差部での前記閉断面リブ内における前記デッキプレートの鉛直方向の最大変形量をqとしたとき、前記補強部材がp≦qの関係を満たす剛性を有することを特徴とする請求項1〜3の何れか1つに記載の鋼床版。   When the thickness of the deck plate is t [mm] and the reinforcing member is used, the maximum deformation amount in the vertical direction of the deck plate in the closed cross-section rib at the intersection is p, and the thickness of the deck plate T + 1 [mm], where q is the maximum deformation amount in the vertical direction of the deck plate in the closed cross-section rib at the intersection when the reinforcing member is not used, the relationship of the reinforcing member is p ≦ q. The steel slab according to any one of claims 1 to 3, wherein the steel slab has a rigidity satisfying the following conditions. 前記補強部材が橋軸方向の端部に向けて断面積が漸次小さく形成されることを特徴とする請求項1〜4の何れか1つに記載の鋼床版。   The steel deck according to any one of claims 1 to 4, wherein the reinforcing member is formed so that a cross-sectional area gradually decreases toward an end portion in a bridge axis direction. デッキプレートと、前記デッキプレートの下面にて橋軸方向に沿って延在して溶接される閉断面リブと、前記デッキプレートの下面にて橋軸方向に直交して溶接されるとともに前記閉断面リブを挿通して溶接される横リブとを有する鋼床版を含む橋梁において、
前記鋼床版に、請求項1〜5の何れか1つに記載の補強部材を備えることを特徴とする橋梁。
A deck plate, a closed cross-section rib extending along the bridge axis direction on the lower surface of the deck plate, and a closed cross section welded orthogonally to the bridge axis direction on the lower surface of the deck plate In a bridge including a steel deck with transverse ribs that are welded through the ribs,
A bridge comprising the reinforcing member according to any one of claims 1 to 5 on the steel deck.
JP2012244671A 2012-11-06 2012-11-06 Steel deck and bridge Active JP5721687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012244671A JP5721687B2 (en) 2012-11-06 2012-11-06 Steel deck and bridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012244671A JP5721687B2 (en) 2012-11-06 2012-11-06 Steel deck and bridge

Publications (2)

Publication Number Publication Date
JP2014092000A JP2014092000A (en) 2014-05-19
JP5721687B2 true JP5721687B2 (en) 2015-05-20

Family

ID=50936299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012244671A Active JP5721687B2 (en) 2012-11-06 2012-11-06 Steel deck and bridge

Country Status (1)

Country Link
JP (1) JP5721687B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6451476B2 (en) * 2015-04-24 2019-01-16 新日鐵住金株式会社 Steel deck
JP6607132B2 (en) * 2016-04-06 2019-11-20 日本製鉄株式会社 U-rib and U-rib manufacturing method
JP6705336B2 (en) * 2016-08-12 2020-06-03 日本製鉄株式会社 Method for suppressing fatigue crack generation in steel deck, method for manufacturing steel deck, and inner surface pressing device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2523339Y2 (en) * 1991-02-28 1997-01-22 昇 渡辺 Rounded inverted trapezoidal box section steel deck slab girder bridge using vertically divided pre-cast steel pipes for lower flange
JP4368811B2 (en) * 2005-02-02 2009-11-18 トピー工業株式会社 Steel floor slab reinforcement device and reinforcement method for existing bridge
JP2007032056A (en) * 2005-07-26 2007-02-08 Kawada Industries Inc Reinforced structure of steel floor slab and its method
JP5682960B2 (en) * 2011-03-28 2015-03-11 新日鐵住金株式会社 Steel structure reinforcement structure and reinforcement method

Also Published As

Publication number Publication date
JP2014092000A (en) 2014-05-19

Similar Documents

Publication Publication Date Title
KR100555244B1 (en) The bridge construction method of having used i beam for structure reinforcement and this to which rigidity increased
JP2013245459A (en) Steel floor board and steel floor board bridge
JP2008063803A (en) Composite floor slab formed of shape steel with inner rib, composite floor slab bridge, or composite girder bridge
CN110184896B (en) Shear connector of UHPC waffle slab combined beam bridge, mounting structure and construction method
JP5721687B2 (en) Steel deck and bridge
JP4668760B2 (en) Steel bridge repair and reinforcement structure and method
JP2017133331A (en) Steel floor slab and road bridge
JP4897643B2 (en) Reinforced concrete composite steel slab girder bridge
JP4347158B2 (en) Steel bridge, steel bridge reinforcement method and repair method
JP4650255B2 (en) Steel slab reinforcement structure and existing steel slab reinforcement method
KR101186273B1 (en) Manufacturing method for preflex composite beam girder of reinforced stiffness
JP6013701B2 (en) Bridge
JP2008088634A (en) Composite steel-concrete floor slab
JP5682960B2 (en) Steel structure reinforcement structure and reinforcement method
JP4508293B2 (en) Structure near the intermediate fulcrum of continuous I-girder bridge
JP5712843B2 (en) Fatigue improving structure of lateral rib and steel deck
JP4492422B2 (en) Structure near the intermediate fulcrum of continuous I-girder bridge
JP4680556B2 (en) Steel slab reinforcement method
JP2017101514A (en) Steel floor slab, reinforcement method and manufacturing method of steel floor slab
JP4823966B2 (en) Steel slab and method for producing steel slab
JP5029271B2 (en) I-girder structure near the continuous I-girder bridge and its intermediate fulcrum
JP2008231688A (en) Bridge structure using composite floor slab, its construction method, and form for composite floor slab
JP5378324B2 (en) Steel slab rib crossing joint structure and bridge
KR101329482B1 (en) Deflection control structure of deck plate of slim floor with stiffness reinforcing link bar and construction method thereof
JP3950748B2 (en) Bridge girder

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150324

R150 Certificate of patent or registration of utility model

Ref document number: 5721687

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250