JP2004290728A - Method for manufacturing hydrogenation catalyst for light oil and hydrogenation method for light oil - Google Patents

Method for manufacturing hydrogenation catalyst for light oil and hydrogenation method for light oil Download PDF

Info

Publication number
JP2004290728A
JP2004290728A JP2003083019A JP2003083019A JP2004290728A JP 2004290728 A JP2004290728 A JP 2004290728A JP 2003083019 A JP2003083019 A JP 2003083019A JP 2003083019 A JP2003083019 A JP 2003083019A JP 2004290728 A JP2004290728 A JP 2004290728A
Authority
JP
Japan
Prior art keywords
catalyst
group
metal
mass
light oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003083019A
Other languages
Japanese (ja)
Inventor
Takashi Fujikawa
貴志 藤川
Katsuhiro Kato
勝博 加藤
Nobumasa Nakajima
伸昌 中嶋
Minoru Hashimoto
稔 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Original Assignee
Cosmo Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd filed Critical Cosmo Oil Co Ltd
Priority to JP2003083019A priority Critical patent/JP2004290728A/en
Publication of JP2004290728A publication Critical patent/JP2004290728A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a hydrogenation catalyst capable of performing the ultra-deep desulfurization of a sulfur component in light oil and at the same time capable of reducing a nitrogen component in the light oil by a simple means without requiring a severe operation condition, and a hydrogenation method for light oil using the obtained catalyst. <P>SOLUTION: The hydrogenation catalyst for light oil is manufactured by supporting 10-40 mass% of a Group VI metal in terms of an oxide on a catalyst basis, 1-15 mass% of a Group VIII metal and 0.8-8 mass% of phosphorus on an inorganic oxide carrier having a predetermined specific surface area, a predetermined pore volume and a predetermined mean pore size using a solution containing a compound which contains at least one of Group VIII metals, a compound which contains at least one of Group VI metals, an organic acid, a polyhydric alcohol and phosphoric acid, and drying the supported carrier at 200°C or below. The obtained catalyst is used in a hydrogenation method for light oil. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、軽油の水素化処理触媒の製造方法と、得られた触媒を用いた軽油の水素化処理方法とに関し、詳しくは、軽油を水素化処理する際に、軽油中の硫黄分を従来のこの種の触媒を使用する場合よりも低減することができる優れた活性を有する触媒の製造方法と、得られた触媒を用いる水素化処理方法とに関する。
【0002】
【従来の技術】
近年、大気環境改善のために、軽油の品質規制値が世界的に厳しくなる傾向にある。特に軽油中の硫黄分は、排ガス対策として期待されている酸化触媒、窒素酸化物(NOx)還元触媒、連続再生式ディーゼル排気微粒子除去フィルター等の後処理装置の耐久性に影響を及ぼす懸念があるため、軽油の低硫黄化が要請されている。
【0003】
このような状況下で、軽油中の硫黄分を大幅に除去する超深度脱硫技術の開発が重要視されつつある。軽油中の硫黄分の低減化技術として、通常、水素化脱硫の運転条件、例えば、反応温度、液空間速度等を苛酷にすることが考えられる。しかし、反応温度を上げると、触媒上に炭素質が析出して触媒の活性が急速に低下し、また液空間速度を下げると、脱硫能は向上するものの、精製処理能力が低下するため設備の規模を拡張する必要が生じる。
従って、運転条件を苛酷にしないで、軽油の超深度脱硫を達成し得る最も良い方法は、優れた脱硫活性を有する触媒を開発することである。
近年、活性金属の種類、活性金属の含浸方法、触媒担体の改良、触媒の細孔構造制御、活性化法等について多くの検討が多方面において進められており、新規深度脱硫触媒の開発成果が報告されている。
【0004】
例えば、特許文献1には、γ−アルミナ担体に、周期律表第8族金属(以下、単に「8族金属」と記す)化合物と周期律表第6族金属(以下、単に「6族金属」と記す)化合物と、リン酸を含む含浸溶液に、さらにジオールまたはエーテルを添加して得られた含浸溶液を含浸させ、これを200℃以下で乾燥させることを特徴とする方法が開示されている。
【0005】
また、特許文献2には、担体に6族金属化合物、リン成分、8族金属化合物、クエン酸からなる溶液を含浸させ、焼成を行う方法が開示されている。
【0006】
更に、特許文献3には、酸化物担体に、6族金属化合物、8族金属化合物、リン酸からなる溶液を含浸させ、200℃以下で乾燥させた触媒を得、それに特定の化学式で示される有機酸の溶液を含浸させ、200℃以下で乾燥する方法が開示されている。
【0007】
一方、有機酸を二度用いて含浸させる触媒の製造方法についても提案されている。
例えば、特許文献4には、酸化物担体に、6族金属化合物、8族金属化合物、有機酸、リン酸からなる溶液を含浸させ、200℃以下で乾燥させた触媒を得、さらに有機酸及び多価アルコールの溶液を含浸させ、200℃以下で乾燥する方法が開示されている。
【0008】
しかし、以上の触媒の製造方法は、工程が複雑であったり、また得られる触媒が軽油の超深度脱硫を行うのに適さないものもある。このようなことから、現在、より簡便な方法で、しかも運転条件を苛酷にせずに軽油の超深脱硫を実現することができる従来よりも脱硫活性の高い触媒を得る技術の開発が要求されている。
【0009】
【特許文献1】
特許第2900771号公報
【特許文献2】
特許第2832033号公報
【特許文献3】
特開平4−244238号公報
【特許文献4】
特開平6−339635号公報
【0010】
【発明が解決しようとする課題】
そこで、本発明の目的は、簡便な手段で、かつ苛酷な運転条件を必要とせずに、軽油中の硫黄分を超深度脱硫することができ、同時に窒素分を減少させることができる軽油の水素化処理触媒の製造方法を提供することであり、また、得られた触媒を使用して軽油留分を高効率で水素化処理する方法を提供することである。
【0011】
【課題を解決するための手段】
本発明者らは、上記目的を達成するために検討を行ったところ、一定の物性の無機酸化物担体に、6族金属化合物と8族金属化合物と有機酸と多価アルコールとリン酸を含む溶液を含浸させて、これらの成分の所定量を担持させ、200℃以下の温度で乾燥することによって、反応条件を苛酷にせずに超深度脱硫反応を容易に達成することができる高性能脱硫触媒を得ることができるとの知見を得た。
すなわち、本発明に係る軽油の水素化処理触媒の製造方法は、比表面積200〜500m/g、細孔容積0.5〜0.9m1/g、平均細孔直径60〜120Åである無機酸化物担体上に、8族金属から選ばれた少なくとも1種を含む化合物、6族金属から選ばれた少なくとも1種を含む化合物、有機酸、多価アルコール、及びリン酸を含有する溶液を用いて、触媒基準、酸化物換算で6族金属を10〜40質量%、8族金属を1〜15質量%、リンを0.8〜8質量%となるように担持させ、200℃以下で乾燥させることを特徴とする。
また、本発明に係る軽油の超深度脱硫のための水素化処理方法は、上記触媒の製造方法で得られた触媒の存在下、水素分圧3〜8MPa、処理温度300〜420℃、液空間速度0.3〜5hr−1の条件で、軽油留分の接触反応を行うことを特徴とする。
【0012】
本発明の処理対象油は、例えば、直留軽油、接触分解軽油、熱分解軽油、水素化処理軽油、脱硫処理軽油、減圧蒸留軽油(VGO)等の軽油留分が適している。
これら原料油の代表的な性状例として、沸点範囲が150〜450℃、硫黄分が5質量%以下のものが挙げられる。
【0013】
本発明の触媒の製造方法は、無機酸化物担体に、6族金属の少なくとも1種を含む化合物、8族金属の少なくとも1種を含む化合物、有機酸、多価アルコール、リン酸を含有する溶液を含浸させ、該含浸溶液の含有成分を担持させ、乾燥する方法によるが、具体的には、例えば、無機酸化物担体を、これらの化合物等を含有する溶液に浸漬し、乾燥する方法により行う。
【0014】
本発明の触媒に用いる無機酸化物担体は、アルミナを単独で用いることもできるが、脱硫活性をより向上させるためにはアルミナを主成分とする複合酸化物を用いることが好ましい。
アルミナは、α−アルミナ、β−アルミナ、γ−アルミナ、δ−アルミナ、アルミナ水和物等の種々のアルミナを使用することができるが、多孔質で高比表面積であるアルミナが好ましく、中でもγ−アルミナが適している。アルミナの純度は、約98質量%以上、好ましくは約99質量%以上のものが適している。
アルミナ中の不純物としては、S0 2−、Cl、Fe、NaO等が挙げられるが、これらの不純物はできるだけ少ないことが望ましく、不純物全量で2質量%以下、好ましくは1質量%以下で、成分毎ではS0 2−<1.5質量%、Cl、Fe、NaO<0.1質量%であることが好ましい。
【0015】
アルミナに複合化させる酸化物成分としては、ゼオライト、ボリア、シリカ、及びジルコニアから選ばれる一種以上が好ましい。
このうちゼオライトは、コールカウンター法(1wt%NaCl水溶液、アパーチャー30μ、超音波処理3分)での測定による平均粒子径が約2.5〜6μm、好ましくは約3〜5μm、より好ましくは約3〜4μmのものである。また、このゼオライトは、粒子径6μm以下のものがゼオライト全粒子に対して占める割合が、約70〜98%、好ましくは約75〜98%、より好ましくは約80〜98%のものである。
ゼオライトのこのような物性は、難脱硫性物質の細孔内拡散を容易にするために細孔直径を精密に制御する上で好ましく、例えば、平均粒子径が大きすぎたり、大きな粒子径の含有量が多かったりすると、複合酸化物担体を調製する過程で、アルミナ水和物(アルミナ前駆体)とゼオライトの吸着水量や結晶性の違いから、加熱焼成時のアルミナ水和物(アルミナ前駆体)とゼオライトの収縮率が異なり、複合酸化物担体の細孔として比較的大きなメゾあるいはマクロポアーが生じる傾向がある。また、これらの大きな細孔は、表面積を低下させるばかりでなく、残油を処理するような場合には触媒毒となるメタル成分の内部拡散を容易ならしめ、延いては脱硫、脱窒素及び分解活性を低下させる傾向を生じさせる。
【0016】
本発明で、アルミナに複合化させる好ましいゼオライトとしては、フォージャサイトX型ゼオライト、フォージャサイトY型ゼオライト、βゼオライト、モルデナイト型ゼオライト、ZSM系ゼオライト(ZSM−4,5,8,11,12,20,21,23,34,35,38,46等がある)、MCM−41,MCM−22,MCM−48,SSZ−33,UTD−1,CIT−5,VPI−5,TS−1,TS−2等が使用でき、特にY型ゼオライト、安定化Yゼオライト、βゼオライトが好ましい。また、ゼオライトは、プロトン型が好ましい。
上記のボリア、シリカ、ジルコニアは、一般に、この種の触媒の担体成分として使用されるものを使用することができる。
【0017】
上記のゼオライト、ボリア、シリカ、及びジルコニアは、それぞれ単独で、あるいは2種以上を組合せて使用することができる。
これらの成分の配合量は、特に制限されないが、複合酸化物担体中、アルミナが約80質量%より多く99.5質量%以下に対し、約0.5質量%以上20質量%未満であり、好ましくはアルミナが約85〜99.5質量%に対し、約0.5〜15質量%であり、より好ましくはアルミナが約90〜99.5質量%に対し、約0.5〜10質量%である。
これらの成分は、少なすぎても多すぎても細孔直径の制御がし難くなり、また少なすぎるとブレンステッド酸点やルイス酸点の付与が不十分となり、多すぎると6族金属、特にMoが高分散化し難くい傾向になる。
【0018】
無機酸化物担体の比表面積、細孔容積、平均細孔直径は、炭化水素油に対する水素化脱硫活性の高い触媒にするために、比表面積が200〜500m/g、好ましくは270〜450m/g、細孔容積が0.5〜0.9ml/g、好ましくは0.65〜0.8ml/g、平均細孔径が60〜120Å、好ましくは65〜110Åである必要がある。
【0019】
この理由は次の通りである。
担体の比表面積が200m/g未満では、含浸の際、6族金属や8族金属が形成する錯体の嵩高さのために金属の高分散化が困難となり、その結果、得られる触媒を予備硫化処理しても、活性点形成の精密な制御が困難になると推測される。
比表面積が500m/gより大きいと、細孔直径が極端に小さくなるため、触媒の直径も小さくなる。触媒の細孔直径が小さいと、硫黄化合物の触媒細孔内への拡散が不十分となり、脱硫活性が低下する。
【0020】
細孔容積が0.5ml/g未満では、通常の含浸法で触媒を調製する場合、細孔容積内に入り込む溶媒が少量となる。溶媒が少量であると、活性金属化合物の溶解性が悪くなり、金属の分散性が低下し、低活性の触媒となる。活性金属化合物の溶解性を上げるためには、硝酸等の酸を多量に加える方法があるが、余り加えすぎると担体の低表面積化が起こり、脱硫性能低下の主原因となる。
細孔容積が0.9ml/gより大きいと、比表面積が極端に小さくなって、活性金属の分散性が悪くなり、脱硫活性の低い触媒となる。
【0021】
細孔直径が60Å未満では、活性金属を担持した触媒の細孔直径も小さくなる。触媒の細孔直径が小さいと、硫黄化合物の触媒細孔内への拡散が不十分となり、脱硫活性が低下する。
細孔直径が120Åより大きいと、触媒の比表面積が小さくなる。触媒の比表面積が小さいと、活性金属の分散性が悪くなり、脱硫活性の低い触媒となる。
【0022】
本発明の触媒に含有させる6族金属は、モリブデン、タングステンが好ましく、モリブデンが特に好ましい。
使用する6族金属を含む化合物としては、三酸化モリブデン、モリブドリン酸、モリブデン酸アンモニウム、モリブデン酸等が挙げられ、好ましくは三酸化モリブデン、モリブドリン酸である。
6族金属の含有量は、触媒基準、酸化物換算で、10〜40質量%、好ましくは16〜30質量%である。
10質量%未満では、6族金属に起因する効果を発現させるには不十分であり、40質量%を超えると、6族金属の含有(担持)工程で6族金属化合物の凝集が生じ、6族金属の分散性が悪くなるばかりか、効率的に分散する6族金属含有量の限度を超えたり、触媒表面積が大幅に低下する等により、触媒活性の向上がみられない。
【0023】
8族金属は、コバルト、ニッケルが好ましい。
8族金属を含む化合物としては、炭酸コバルト、炭酸ニッケル、クエン酸コバルト化合物、クエン酸ニッケル化合物、硝酸コバルト6水和物、硝酸ニッケル6水和物等が挙げられ、好ましくは炭酸コバルト、炭酸ニッケル、クエン酸コバルト化合物、クエン酸ニッケル化合物である。
【0024】
上記のクエン酸コバルト化合物としては、クエン酸第一コバルト(Co(C)、クエン酸水素コバルト(CoHC)、クエン酸コバルトオキシ塩(Co(C・CoO)等が挙げられ、クエン酸ニッケル化合物としては、クエン酸第一ニッケル(Ni(C)、クエン酸水素ニッケル(NiHC)、クエン酸ニッケルオキシ塩(Ni(C・NiO)等が挙げられる。
これらコバルトとニッケルのクエン酸化合物の製法は、例えば、コバルトの場合、クエン酸の水溶液に炭酸コバルトを溶かすことにより得られる。このような製法で得られたクエン酸化合物の水分を、除去しないで、そのまま、触媒調製に用いてもかまわない。
【0025】
8族金属の含有量は、触媒基準、酸化物換算で、1〜15質量%、好ましくは3〜8質量%である。
1質量%未満では、8族金属に帰属する活性点が十分に得られず、15質量%を超えると、8族金属の含有(担持)工程で8族金属化合物の凝集が生じ、8族金属の分散性が悪くなることに加え、不活性なコバルト、ニッケル種であるCo種、Ni種の前駆体であるCoO種、NiO種等や、担体の格子内に取り込まれたCoスピネル種、Niスピネル種等が生成すると考えられ、触媒能の向上がみられないばかりか、却って触媒能が低下する。
【0026】
8族金属、6族金属の上記した含有量範囲において、8族金属と6族金属の最適質量比は、好ましくは、酸化物換算で、〔8族金属〕/〔8族金属+6族金属〕の値で、約0.1〜0.25である。
この値が約0.1未満では、脱硫の活性点と考えられるCoMoS相、NiMoS相等の生成が抑制され、脱硫活性向上の度合いがあまり高くならず、また、約0.25より大きいと、上記の不活性なコバルト、ニッケル種(Co種、Ni種)の生成が助長され、触媒活性向上を抑制する傾向がある。
【0027】
リン酸は、種々のリン酸、具体的には、オルトリン酸、メタリン酸、ピロリン酸、三リン酸、四リン酸、ポリリン酸等が挙げられ、特にオルトリン酸が好ましい。
リンの含有量は、触媒基準、酸化物換算で、0.8〜8質量%、好ましくは2〜5質量%である。
0.8質量%未満では、触媒表面上で6族金属がヘテロポリ酸を形成できないため、予備硫化処理で高分散なMoSが形成せず、上記の脱硫活性点を十分に配置できないと推測される。8質量%より多いと、触媒表面上で6族金属が十分にヘテロポリ酸を形成するため、予備硫化処理で高品質な上記の脱硫活性点が形成されるものの、過剰なリンが被毒物質として脱硫活性点を被覆するため、活性低下の主な原因になると推測される。
なお、リン酸は、6族金属との化合物であるモリブドリン酸を用いることもできるが、この場合、得られる触媒中に前記含有量でリンが含有されない場合には、リン酸をさらに添加する必要がある。
【0028】
有機酸としては、クエン酸1水和物、無水クエン酸、イソクエン酸、リンゴ酸、酒石酸等が挙げられる。
有機酸としてクエン酸を使用する場合は、クエン酸単独でもよいし、上記したコバルトやニッケル(8族金属)とのクエン酸化合物であってもよい。
有機酸の添加量は、特に制限はないが、8族金属に対し、モル比で、有機酸/8族金属=0.2〜1.2とすることが好ましい。このモル比が0.2未満では、8族金属に帰属する活性点が十分に得られない場合があり、1.2を超えると、含浸液が高粘度となるため、担持工程に時間を要することになる。
なお、8族金属のクエン酸化合物を用いる場合、有機酸量が不足する時は、有機酸をさらに添加する。
【0029】
多価アルコールとしては、エチレングリコール、プロピレングリコール、ジエチレングリコール、トリメチレングリコール、ジエチレングリコール、トリメチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、ポリエチレングリコール(分子量100〜1000万)が挙げられる。
多価アルコールの添加量は、特に制限はないが、活性金属に対し、モル比で、0.1〜2とすることが好ましい。また、8族金属に対し、モル比で、多価アルコール/8族金属=0.1〜2とすることが好ましい。このモル比が0.1未満では、8族金属に帰属する活性点が十分に得られない場合があり、2を超えると、含浸液が高粘度となるため、担持工程に時間を要することになる。
【0030】
有機酸及び多価アルコールは、上記の好ましい添加量とすると同時に、これらに起因する触媒上の炭素の含有量が、触媒基準で、14質量%以下、好ましくは10質量%以下であることが好ましい。
14質量%より多いと、過剰な炭素が被毒物質として脱硫活性点を被覆するため、活性低下の原因になると推測される。
【0031】
なお、上記の6族金属の化合物や、8族金属の化合物が含浸溶液に十分に溶解しない場合には、これらの化合物と共に、酸(硝酸、有機酸《クエン酸、リンゴ酸、酒石酸等》)を使用してもよく、好ましくは有機酸の使用であり、有機酸を用いる場合は、得られる触媒中に、この有機酸による炭素が残存することもあるため、触媒中の炭素含有量が上記範囲内となるようにすることが重要である。
【0032】
上記の含浸溶液において、上記の各成分を溶解させるために用いる溶媒は、水である。
溶媒の使用量は、少なすぎると、担体に充分に含浸させることができず、多すぎると、溶液過剰となり活性金属溶液全量を担体に含浸しきれないため、所望の担持量が得にくくなる。そのため、溶媒の使用量は、担体100gに対して、50〜90gが適当であり、好ましくは60〜85gである。
【0033】
上記溶媒に上記各成分を溶解させて含浸溶液を調製するが、このときの温度は、0℃を超え100℃以下でよく、この範囲内の温度であれば、上記溶媒に上記各成分を良好に溶解させることができる。
【0034】
上記含浸溶液のpHは5未満が好ましい。5以上であると水酸イオンが増え、有機酸と8族金属との間の配位能力が弱まり、8族金属の錯体形成が抑制され、その結果、脱硫活性点(CoMoS相、NiMoS相)の数を大幅に増加させることができない。
【0035】
このようにして調製した含浸溶液を、上記の無機酸化物担体に含浸させて、これら溶液中の上記の各成分を上記の無機酸化物担体に担持させる。
含浸条件は、種々の条件を採ることができるが、通常、含浸温度は、好ましくは0℃を超え100℃未満、より好ましくは10〜50℃、さらに好ましくは15〜30℃であり、含浸時間は、好ましくは15分〜3時間、より好ましくは20分〜2時間、さらに好ましくは30分〜1時間である。
なお、温度が高すぎると、含浸中に乾燥が起こり、分散度が偏ってしまう。
また、含浸中は、攪拌することが好ましい。
【0036】
上記のように無機酸化物担体に含浸溶液を含浸させ、その中の各成分を担持させた後、常温〜約80℃、窒素気流中、空気気流中、あるいは真空中で、水分をある程度(LOI《Loss on ignition》約50%以下となるように) 除去し、この後、空気気流中、窒素気流中、あるいは真空中で、200℃以下、好ましくは約80〜200℃で約10分〜24時間、より好ましくは約100〜150℃で約5〜20時間の乾燥を行う。
乾燥を、200℃より高い温度で行うと、金属と錯体化していると思われる有機酸が触媒表面から離脱し、その結果、得られる触媒を硫化処理しても上記の活性点(CoMoS相、NiMoS相等)形成の精密制御が困難となり、不活性なコバルト、ニッケル種であるCo種、Ni種等が形成され、低脱硫活性の触媒となる。
【0037】
上記のようにして本発明に従って触媒を製造するに際し、得られる触媒の軽油の水素化脱硫に対する脱硫活性を高めるために、得られる触媒の比表面積、細孔容積及び平均細孔径が、以下の範囲であることが好ましい。
比表面積(窒素吸着法(BET法)で測定した比表面積)の好ましい範囲は、約100〜300m/g、より好ましくは約150〜280m/gである。約100m/g未満では、触媒表面上で、錯体を形成していると考えられる6族金属(リン酸と配位してヘテロポリ酸)と8族金属(有機酸と配位して有機金属錯体)が、錯体の嵩高さのために、十分に高分散化しておらず、その結果、硫化処理しても、上記の活性点形成の精密制御が困難となって低脱硫活性の触媒となり、約300m/gより大きいと、触媒の細孔直径が小さくなって、水素化処理の際、硫黄化合物の触媒細孔内への拡散が不十分となり、脱硫活性が低下する。
【0038】
水銀圧入法で測定した細孔容積の好ましい範囲は、約0.35〜0.6m1/g、より好ましくは約0.38〜0.55m1/gである。約0.35m1/g未満では、水素化処理の際、硫黄化合物の触媒細孔内での拡散が不十分となって脱硫活性が不十分となり、約0.6m1/gより大きいと、触媒の比表面積が極端に小さくなって、活性金属の分散性が低下し、低脱硫活性の触媒となる。
【0039】
水銀圧入法で測定した細孔分布での平均細孔直径の好ましい範囲は、約65〜150Å、より好ましくは約70〜130Åである。約65Å未満では、反応物質が細孔内に拡散し難くなるため、脱硫反応が効率的に進行せず、約150Åより大きいと、細孔内の拡散性は良いものの、細孔内表面積が減少するため、触媒の有効比表面積が減少し、活性が低くなる。
【0040】
なお、本発明において、触媒の形状は、特に限定されず、通常、この種の触媒に用いられている種々の形状、例えば、円柱状、三葉型、四葉型等を採用することができる。触媒の大きさは、通常、直径が約1〜2mm、長さ約2〜5mmが好ましい。
触媒の機械的強度は、側面破壊強度(SCS《Side crush strength》)で約21bs/mm以上が好ましい。SCSが、これより小さいと、反応装置に充填した触媒が破壊され、反応装置内で差圧が発生し、水素化処理運転の続行が不可能となる。
触媒の最密充填かさ密度(CBD:Compacted Bulk Density)は、約0.6〜1.2(g/ml)が好ましい。
また、触媒中の活性金属の分布状態は、触媒中で活性金属が均一に分布しているユニフォーム型が好ましい。
【0041】
本発明の水素化処理方法は、水素分圧約3〜8MPa、約300〜420℃、及び液空間速度約0.3〜5hr−1の条件で、以上の本発明の製造方法で得られた触媒と硫黄化合物を含む軽油留分とを接触させて脱硫を行い、軽油留分中の難脱硫性硫黄化合物を含む硫黄化合物を減少する方法である。
本発明の方法で得られる生成油は、従来技術によるよりもより硫黄分を少なくすることができる。
【0042】
本発明の水素化処理方法を商業規模で行うには、本発明の製造方法で得られた触媒の固定床、移動床、あるいは流動床式の触媒層を反応装置内に形成し、この反応装置内に原料油を導入し、上記の条件下で水素化反応を行えばよい。
最も一般的には、固定床式触媒層を反応装置内に形成し、原料油を反応装置の上部に導入し、固定床を上から下に通過させ、反応装置の下部から生成物を流出させるものである。
また、触媒を、単独の反応装置に充填して行う一段の水素化処理方法であってもよいし、幾つかの反応装置に充填して行う多段連続水素化処理方法であってもよい。
【0043】
なお、本発明の製造方法で得られた触媒は、使用前に(すなわち、本発明の水素化処理方法を行うのに先立って)、反応装置中で予備硫化処理して活性化する。この硫化処理は、約200〜400℃、好ましくは約250〜350℃、常圧あるいはそれ以上の水素分圧の水素雰囲気下で、硫黄化合物を含む石油蒸留物、それにジメチルジスルファイドや二硫化炭素等の硫化剤を加えたもの、あるいは硫化水素を用いて行う。
【0044】
【実施例】
以下、実施例及び比較例によりさらに具体的に本発明を説明するが、本発明は以下の実施例に限定されるものではない。
【0045】
実施例1
シリカとアルミナ水和物とを混練し、押出成形後、600℃で2時間焼成して直径1/16インチの柱状成形物のシリカ−アルミナ複合担体(シリカ/アルミナ質量比=1/99、細孔容積0.70m1/g、比表面積359m/g、平均細孔直径70Å)を得た。
イオン交換水22.5gに、炭酸コバルト3.31gとリン酸(85%水溶液)1.72gを投入し、80℃に加温して10分間攪拌した。次いで、三酸化モリブデン8.33gとクエン酸1水和物1.95g、ジエチレングリコール0.7959gを投入し溶解させ、同温度で15分間攪拌して含浸用の溶液を調製した。
ナス型フラスコ中に、上記のシリカ−アルミナ複合担体30.0gを投入し、そこへ上記の含浸溶液の全量をピペットで添加し、約25℃で3時間浸漬した。
この後、窒素気流中で風乾し、マッフル炉中120℃で約16時間乾燥させ、触媒Aを得た。
【0046】
実施例2
イオン交換水22.5gに、炭酸コバルト3.31gとクエン酸1水和物1.17gとジエチレングリコール1.11gとリン酸(85%水溶液)1.73gを投入し、80℃に加温して10分間攪拌した。次いで、三酸化モリブデン8.33gを投入し溶解させ、同温度で30分間攪拌して含浸用の溶液を調製した。ナス型フラスコ中に、実施例1と同一のシリカ−アルミナ複合担体30.0gを投入し、そこへ上記の含浸溶液の全量をピペットで添加し、約25℃で3時間浸漬した。
この後、窒素気流中で風乾し、マッフル炉中120℃で約16時間乾燥させ、触媒Bを得た。
【0047】
実施例3
イオン交換水22.5gに、炭酸コバルト3.31gとクエン酸1水和物1.95gと三酸化モリブデン8.33gとリン酸1.73gとトリエチレングリコール0.80gを投入し、80℃に加温して30分間攪拌して含浸用の溶液を調製した。
ナス型フラスコ中に、実施例1と同一のシリカ−アルミナ複合担体30.0gを投入し、そこへ上記の含浸溶液の全量をピペットで添加し、約25℃で3時間浸漬した。
この後、窒素気流中で風乾し、マッフル炉中120℃で約16時間乾燥させ、触媒Cを得た。
【0048】
実施例4
イオン交換水22.5gに、炭酸コバルト3.31gとクエン酸1水和物1.95gと三酸化モリブデン8.33gとリン酸1.73gとポリエチレングリコール400((CHCHO):分子量400)0.20gを投入し、80℃に加温して30分間攪拌して含浸用の溶液を調製した。
ナス型フラスコ中に、実施例1と同一のシリカ−アルミナ複合担体30.0gを投入し、そこへ上記の含浸溶液の全量をピペットで添加し、約25℃で3時間浸漬した。
この後、窒素気流中で風乾し、マッフル炉中120℃で約16時間乾燥させ、触媒Dを得た。
【0049】
比較例1
イオン交換水21.6gに、炭酸コバルト3.31gと、モリブドリン酸11.41gと、オルトリン酸1.17gを溶解させた含浸用の溶液を調製した。
ナス型フラスコ中に、γ−アルミナ担体(細孔容積0.69m1/g、比表面積364m2/g、平均細孔直径64Å)30.0gを投入し、そこへ上記の含浸溶液の全量をピペットで添加し、約25℃で1時間浸漬した。
この後、窒素気流中で風乾し、マッフル炉中120℃で約1時間乾燥させ、500℃で4時間焼成し、触媒aを得た。
【0050】
比較例2
イオン交換水20.2gに、クエン酸コバルト7.45gとリン酸1.17gを投入し、80℃に加温して10分間攪拌した。次いで、モリブドリン酸11.41gを投入し溶解させ、同温度で15分間攪拌して含浸用の溶液を調製した。
ナス型フラスコ中に、実施例2と同一のゼオライト−アルミナ複合担体30.0gを投入し、そこへ上記の含浸溶液の全量をピペットで添加し、約25℃で3時間浸漬した。
この後、窒素気流中で風乾し、マッフル炉中120℃で約1時間乾燥させ、500℃で4時間焼成し、触媒bを得た。
【0051】
以上の実施例及び比較例で得た触媒の元素分析値と物性値を表1に示す。
なお、触媒の分析に用いた方法及び分析機器を以下に示す。
〔1〕物理性状の分析
・比表面積は、窒素吸着によるBET法により測定した。
窒素吸着装置は、日本ベル(株)製の表面積測定装置(ベルソープ28)を使用した。
・細孔容積、平均細孔直径、及び細孔分布は、水銀圧入法により測定した。
水銀圧入装置は、ポロシメーター(MICROMERITICSAUTO−PORE 9200:島津製作所製) を使用した。
測定は、試料を真空雰囲気下、400℃にて1時間、揮発分を除去して行った。
〔2〕触媒中の炭素の分析
炭素の測定は、ヤナコCHNコーダーMT−5(柳本製作所製)を用いて実施した。
測定方法は以下の通りとした。
(1)触媒をメノウ乳鉢で粉体化する。
(2)粉体化した触媒7mgを白金ボードに乗せて焼成炉に入れる。
(3)950℃にて燃焼する。
(4)燃焼生成ガスを差動熱伝導度計に導き、触媒中の炭素量を定量する。
【0052】
【表1】

Figure 2004290728
【0053】
〔直留軽油の水素化処理反応〕
上記の実施例及び比較例で調製した触媒A、B、C、D、a、bを用い、以下の要領にて、下記性状の直留軽油の水素化処理を行った。
先ず、触媒を高圧流通式反応装置に充填して固定床式触媒層を形成し、下記の条件で予備硫化処理した。
次に、反応温度に加熱した原料油と水素含有ガスとの混合流体を、反応装置の上部より導入して、下記の条件で水素化反応を進行させ、生成油とガスの混合流体を、反応装置の下部より流出させ、気液分離器で生成油を分離した。
【0054】
予備硫化処理条件:原料油による液硫化を行った。
圧力(水素分圧);4.9MPa
雰囲気;水素及び原料油(液空間速度1.5hr−1、水素/オイル比200m(normal)/kl)
温度 ;常温約22℃で水素及び原料油を導入し、20℃/hrで昇温し、300℃にて24hr維持、次いで反応温度である350℃まで20℃/hrで昇温
【0055】
水素化反応条件:
反応温度 ;350℃
圧力(水素分圧);4.9MPa
液空間速度 ;1.5hr−1
水素/オイル比 ;200m(normal)/kl
【0056】
原料油の性状:
油種 ;中東系直留軽油
密度(15/4℃);0.8609
蒸留性状 ;初留点が211.5 ℃、50%点が314.0℃、90%点が365.0℃、終点が383.5℃
硫黄成分 ;1.37質量%
窒素成分 ;210質量ppm
動粘度(@30℃);6.570cSt
流動点 ;5.0℃
くもり点 ;6.0℃
セタン指数 ;54.5
セイボルトカラー ;−11
【0057】
反応結果については、以下の方法で解析した。
350℃で反応装置を運転し、6日経過した時点で生成油を採取し、その性状を分析した。
・脱硫反応速度定数(Ks):
生成油の硫黄分(Sp)の減少量に対して、1.3次の反応次数を得る反応速度式の定数を脱硫反応速度定数(Ks)とする。
なお、反応速度定数が高い程、触媒活性が優れていることを示している。これらの結果は、表2の通りであった。
【0058】
脱硫反応速度定数=〔1/(Sp)1.3−1−1/(Sf)1.3−1〕×(LH
SV)
式中、Sf:原料油中の硫黄分(質量%)
Sp:反応生成油中の硫黄分(質量%)
LHSV:液空間速度(hr−1
比活性(%)=各脱硫反応速度定数/比較触媒aの脱硫反応速度定数×100
【0059】
【表2】
Figure 2004290728
【0060】
以上の結果から明らかなように、本発明による触媒は、従来の軽油水素化処理の場合とほぼ同じ水素分圧や反応温度等の条件下で、超深度脱硫領域での軽油の脱硫反応に対して、極めて優れた活性を有することが判る。
【0061】
【発明の効果】
本発明によれば、次のような効果を奏することができる。
(1)高い脱硫及び脱窒素活性を有するため、軽油中の硫黄分及び窒素分の含有率を、大幅に低減させることができる。
(2)反応条件を従来の水素化処理の際の反応条件とほぼ同じとすることができるため、従来の装置を大幅改造することなく転用できる。
(3)硫黄含有量及び窒素含有量の少ない軽油基材を、容易に供給することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a gas oil hydrotreating catalyst and a method for hydrotreating gas oil using the obtained catalyst.Specifically, when hydrotreating gas oil, the sulfur content in gas oil is conventionally reduced. The present invention relates to a method for producing a catalyst having excellent activity which can be reduced as compared with the case of using this kind of catalyst, and a hydrotreating method using the obtained catalyst.
[0002]
[Prior art]
2. Description of the Related Art In recent years, quality regulation values of light oil have tended to be stricter worldwide in order to improve the atmospheric environment. In particular, the sulfur content in light oil may affect the durability of post-treatment devices such as oxidation catalysts, nitrogen oxide (NOx) reduction catalysts, and continuous regeneration type diesel exhaust particulate removal filters, which are expected as measures against exhaust gas. Therefore, there is a demand for reducing the sulfur content of light oil.
[0003]
Under such circumstances, the development of an ultra-deep desulfurization technology that significantly removes the sulfur content in light oil is gaining importance. As a technique for reducing the sulfur content in light oil, it is generally considered that operating conditions for hydrodesulfurization, for example, reaction temperature, liquid hourly space velocity and the like are made severe. However, when the reaction temperature is increased, carbonaceous materials are precipitated on the catalyst, and the activity of the catalyst is rapidly decreased.When the liquid hourly space velocity is decreased, the desulfurization ability is improved, but the purification treatment capacity is decreased, so that the equipment capacity is reduced. Need to scale up.
Therefore, the best way to achieve ultra-deep desulfurization of gas oil without severe operating conditions is to develop a catalyst with excellent desulfurization activity.
In recent years, many studies have been conducted on various types of active metals, methods of impregnating active metals, improvement of catalyst carriers, control of pore structure of catalysts, activation methods, and the like. It has been reported.
[0004]
For example, Patent Literature 1 discloses that a γ-alumina support includes a compound belonging to Group 8 of the periodic table (hereinafter simply referred to as “group 8 metal”) and a metal belonging to Group 6 of the periodic table (hereinafter simply referred to as “group 6 metal”). A method comprising the steps of: impregnating an impregnating solution containing a compound and phosphoric acid, further adding a diol or an ether to the impregnating solution, and drying the impregnated solution at 200 ° C. or lower. I have.
[0005]
Patent Literature 2 discloses a method in which a support is impregnated with a solution containing a Group 6 metal compound, a phosphorus component, a Group 8 metal compound, and citric acid, followed by baking.
[0006]
Further, in Patent Document 3, an oxide carrier is impregnated with a solution comprising a Group 6 metal compound, a Group 8 metal compound, and phosphoric acid, and a catalyst dried at 200 ° C. or lower is obtained. A method of impregnating a solution of an organic acid and drying at 200 ° C. or lower is disclosed.
[0007]
On the other hand, a method for producing a catalyst that is impregnated with an organic acid twice has been proposed.
For example, in Patent Document 4, an oxide carrier is impregnated with a solution composed of a Group 6 metal compound, a Group 8 metal compound, an organic acid, and phosphoric acid, and a catalyst dried at 200 ° C. or lower is obtained. A method of impregnating a solution of a polyhydric alcohol and drying at 200 ° C. or lower is disclosed.
[0008]
However, in some of the above-mentioned catalyst production methods, the steps are complicated or the obtained catalyst is not suitable for performing ultra-deep desulfurization of light oil. For these reasons, at present, there is a demand for the development of a technology for obtaining a catalyst having a higher desulfurization activity than the conventional one, which can realize ultra-deep desulfurization of gas oil by a simpler method and without severe operating conditions. I have.
[0009]
[Patent Document 1]
Japanese Patent No. 2900771
[Patent Document 2]
Japanese Patent No. 2832033
[Patent Document 3]
JP-A-4-244238
[Patent Document 4]
JP-A-6-339635
[0010]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a simple means and without the need for severe operating conditions, to enable ultra-deep desulfurization of sulfur in light oil and simultaneously reduce hydrogen content of light oil which can reduce nitrogen content. It is an object of the present invention to provide a method for producing a hydrotreating catalyst, and to provide a method for hydrotreating a gas oil fraction with high efficiency using the obtained catalyst.
[0011]
[Means for Solving the Problems]
The present inventors have conducted studies to achieve the above object. As a result, the inorganic oxide carrier having certain physical properties includes a Group 6 metal compound, a Group 8 metal compound, an organic acid, a polyhydric alcohol, and phosphoric acid. A high-performance desulfurization catalyst capable of easily achieving an ultra-deep desulfurization reaction without severe reaction conditions by impregnating the solution, supporting a predetermined amount of these components, and drying at a temperature of 200 ° C. or less. Was obtained.
That is, the method for producing a gas oil hydrotreating catalyst according to the present invention has a specific surface area of 200 to 500 m.2/ G, a compound containing at least one selected from Group 8 metals on an inorganic oxide support having a pore volume of 0.5 to 0.9 m1 / g and an average pore diameter of 60 to 120 °, Using a solution containing at least one selected compound, an organic acid, a polyhydric alcohol, and phosphoric acid, 10 to 40% by mass of Group 6 metal and 1 of Group 8 metal in terms of oxide on a catalyst basis. -15% by mass, and 0.8 to 8% by mass of phosphorus, and dried at 200 ° C. or less.
In addition, the hydrotreating method for ultra-deep desulfurization of gas oil according to the present invention comprises a hydrogen partial pressure of 3 to 8 MPa, a treatment temperature of 300 to 420 ° C., and a liquid space in the presence of the catalyst obtained by the above-described catalyst production method. Speed 0.3-5hr-1The contact reaction of the light oil fraction is carried out under the following conditions.
[0012]
As the oil to be treated in the present invention, for example, gas oil fractions such as straight-run gas oil, catalytic cracking gas oil, pyrolysis gas oil, hydrogenated gas oil, desulfurized gas oil, and vacuum distilled gas oil (VGO) are suitable.
Typical properties of these feedstocks include those having a boiling range of 150 to 450 ° C. and a sulfur content of 5% by mass or less.
[0013]
The method for producing a catalyst according to the present invention provides a solution comprising a compound containing at least one Group 6 metal, a compound containing at least one Group 8 metal, an organic acid, a polyhydric alcohol, and phosphoric acid on an inorganic oxide carrier. Is carried out, and the components contained in the impregnating solution are supported and dried. Specifically, for example, the method is carried out by immersing an inorganic oxide carrier in a solution containing these compounds and the like, and drying. .
[0014]
As the inorganic oxide carrier used in the catalyst of the present invention, alumina alone can be used, but in order to further improve the desulfurization activity, it is preferable to use a composite oxide containing alumina as a main component.
As the alumina, various aluminas such as α-alumina, β-alumina, γ-alumina, δ-alumina, and alumina hydrate can be used.Alumina which is porous and has a high specific surface area is preferable. -Alumina is suitable. Alumina having a purity of about 98% by mass or more, preferably about 99% by mass or more is suitable.
As impurities in alumina, S04 2-, Cl, Fe2O3, Na2O and the like are mentioned, but it is desirable that these impurities are as small as possible, and the total amount of impurities is 2% by mass or less, preferably 1% by mass or less.4 2-<1.5% by mass, Cl, Fe2O3, Na2Preferably, O <0.1% by mass.
[0015]
The oxide component to be complexed with alumina is preferably at least one selected from zeolite, boria, silica, and zirconia.
Among them, zeolite has an average particle diameter of about 2.5 to 6 μm, preferably about 3 to 5 μm, more preferably about 3 to 5 μm as measured by a coal counter method (1 wt% NaCl aqueous solution, aperture 30 μ, ultrasonic treatment for 3 minutes). 44 μm. The zeolite has a particle diameter of 6 μm or less occupying about 70 to 98%, preferably about 75 to 98%, and more preferably about 80 to 98% of all the zeolite particles.
Such physical properties of the zeolite are preferable for precisely controlling the pore diameter in order to facilitate diffusion of the hardly desulfurizable substance into the pores.For example, the average particle diameter is too large, or the content of the large particle diameter is large. If the amount is large, the alumina hydrate (alumina precursor) at the time of heating and sintering due to differences in the amount of water absorbed and the crystallinity of the alumina hydrate (alumina precursor) and zeolite in the process of preparing the composite oxide carrier The zeolite has a different shrinkage ratio, and relatively large meso or macropores tend to be generated as pores of the composite oxide carrier. In addition, these large pores not only reduce the surface area, but also facilitate the internal diffusion of metal components that can be a catalyst poison in the case of treating residual oil, and eventually desulfurization, denitrification and decomposition. Produces a tendency to reduce activity.
[0016]
In the present invention, preferred zeolites to be complexed with alumina include faujasite X-type zeolite, faujasite Y-type zeolite, β zeolite, mordenite-type zeolite, and ZSM zeolite (ZSM-4, 5, 8, 11, 12). , 20, 21, 23, 34, 35, 38, 46, etc.), MCM-41, MCM-22, MCM-48, SSZ-33, UTD-1, CIT-5, VPI-5, TS-1. , TS-2 and the like can be used, and Y-type zeolite, stabilized Y zeolite and β zeolite are particularly preferable. Further, the zeolite is preferably a proton type.
As the above-mentioned boria, silica and zirconia, those generally used as a carrier component of this type of catalyst can be used.
[0017]
The above zeolite, boria, silica, and zirconia can be used alone or in combination of two or more.
The mixing amount of these components is not particularly limited, but the alumina is more than about 80% by mass and 99.5% by mass or less in the composite oxide carrier, and is about 0.5% by mass or more and less than 20% by mass. Preferably, the alumina is about 0.5-15% by weight, based on about 85-99.5% by weight, and more preferably, the alumina is about 0.5-10% by weight, based on about 90-99.5% by weight. It is.
If these components are too small or too large, it is difficult to control the pore diameter. If too small, the application of Bronsted acid sites or Lewis acid sites becomes insufficient. Mo tends to be difficult to be highly dispersed.
[0018]
The specific surface area, pore volume, and average pore diameter of the inorganic oxide carrier are 200 to 500 m in order to make the catalyst having a high hydrodesulfurization activity for hydrocarbon oil.2/ G, preferably 270-450 m2/ G, a pore volume of 0.5 to 0.9 ml / g, preferably 0.65 to 0.8 ml / g, and an average pore diameter of 60 to 120 °, preferably 65 to 110 °.
[0019]
The reason is as follows.
The specific surface area of the carrier is 200m2Is less than / g, it becomes difficult to highly disperse the metal due to the bulkiness of the complex formed by the Group 6 metal or Group 8 metal during the impregnation. Presumably, precise control of point formation becomes difficult.
Specific surface area is 500m2If it is larger than / g, the pore diameter becomes extremely small, so that the diameter of the catalyst also becomes small. If the pore diameter of the catalyst is small, the diffusion of the sulfur compound into the pores of the catalyst becomes insufficient, and the desulfurization activity decreases.
[0020]
When the pore volume is less than 0.5 ml / g, a small amount of solvent enters the pore volume when preparing a catalyst by a usual impregnation method. When the amount of the solvent is small, the solubility of the active metal compound is deteriorated, the dispersibility of the metal is reduced, and the catalyst has low activity. In order to increase the solubility of the active metal compound, there is a method of adding a large amount of an acid such as nitric acid. However, if it is added too much, the surface area of the carrier is reduced, which is a main cause of a decrease in desulfurization performance.
When the pore volume is larger than 0.9 ml / g, the specific surface area becomes extremely small, the dispersibility of the active metal becomes poor, and the catalyst has a low desulfurization activity.
[0021]
When the pore diameter is less than 60 °, the pore diameter of the catalyst supporting the active metal also becomes small. If the pore diameter of the catalyst is small, the diffusion of the sulfur compound into the pores of the catalyst becomes insufficient, and the desulfurization activity decreases.
When the pore diameter is larger than 120 °, the specific surface area of the catalyst becomes small. If the specific surface area of the catalyst is small, the dispersibility of the active metal becomes poor, resulting in a catalyst having low desulfurization activity.
[0022]
The group 6 metal contained in the catalyst of the present invention is preferably molybdenum or tungsten, and particularly preferably molybdenum.
Examples of the compound containing a Group 6 metal to be used include molybdenum trioxide, molybdophosphoric acid, ammonium molybdate, molybdic acid, and the like, and preferably molybdenum trioxide and molybdophosphoric acid.
The content of the Group 6 metal is from 10 to 40% by mass, preferably from 16 to 30% by mass, in terms of an oxide on a catalyst basis.
If the amount is less than 10% by mass, it is insufficient to exhibit the effect due to the Group 6 metal, and if it exceeds 40% by mass, the Group 6 metal compound is aggregated in the step of containing (supporting) the Group 6 metal, Not only is the dispersibility of the Group 6 metal deteriorated, but the catalytic activity is not improved because the content of the Group 6 metal that efficiently disperses is exceeded, or the surface area of the catalyst is significantly reduced.
[0023]
The group 8 metal is preferably cobalt or nickel.
Examples of the compound containing a Group 8 metal include cobalt carbonate, nickel carbonate, cobalt citrate compound, nickel citrate compound, cobalt nitrate hexahydrate, nickel nitrate hexahydrate, and the like. , A cobalt citrate compound and a nickel citrate compound.
[0024]
As the above cobalt citrate compound, cobaltous citrate (Co3(C6H5O7)2), Cobalt hydrogen citrate (CoHC)6H5O7), Cobalt citrate oxysalt (Co3(C6H5O7)2.CoO) and the like. Nickel citrate compounds include nickel nickel citrate (Ni3(C6H5O7)2), Nickel hydrogen citrate (NiHC6H5O7), Nickel citrate oxysalt (Ni3(C6H5O7)2NiO) and the like.
For example, in the case of cobalt, the method for producing these citric acid compounds of cobalt and nickel is obtained by dissolving cobalt carbonate in an aqueous solution of citric acid. The water of the citric acid compound obtained by such a production method may be used as it is for catalyst preparation without removing it.
[0025]
The content of the Group 8 metal is 1 to 15% by mass, and preferably 3 to 8% by mass in terms of an oxide in terms of a catalyst.
When the amount is less than 1% by mass, the active sites belonging to the Group 8 metal cannot be sufficiently obtained. When the amount exceeds 15% by mass, the Group 8 metal compound is aggregated in the step of containing (supporting) the Group 8 metal, and the Group 8 metal In addition to the poor dispersibility of Co, the inert cobalt and nickel species Co9S8Seed, Ni3S2It is thought that CoO species, NiO species, etc., which are the precursors of the species, and Co spinel species, Ni spinel species, etc. incorporated in the lattice of the carrier are generated. Decreases.
[0026]
In the above content ranges of the Group 8 metal and the Group 6 metal, the optimum mass ratio of the Group 8 metal to the Group 6 metal is preferably [Group 8 metal] / [Group 8 metal + Group 6 metal] in terms of oxide. Is about 0.1 to 0.25.
If this value is less than about 0.1, the formation of CoMoS phase, NiMoS phase and the like, which are considered to be the active points of desulfurization, is suppressed, and the degree of improvement of the desulfurization activity does not increase so much. Of inert cobalt and nickel species (Co9S8Seed, Ni3S2), And tends to suppress the improvement in the catalytic activity.
[0027]
Examples of the phosphoric acid include various phosphoric acids, specifically, orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, triphosphoric acid, tetraphosphoric acid, polyphosphoric acid, and the like, with orthophosphoric acid being particularly preferred.
The content of phosphorus is 0.8 to 8% by mass, preferably 2 to 5% by mass in terms of oxide on a catalyst basis.
If the amount is less than 0.8% by mass, the Group 6 metal cannot form a heteropolyacid on the catalyst surface, so that MoS which is highly dispersed in2Is not formed, and it is estimated that the above-mentioned desulfurization active sites cannot be sufficiently arranged. If the content is more than 8% by mass, the Group 6 metal forms a heteropolyacid sufficiently on the catalyst surface, so that the high-quality desulfurization active site is formed by the pre-sulfurization treatment, but excess phosphorus is a poisoning substance. It is presumed to be the main cause of activity decrease because of covering the desulfurization active sites.
As the phosphoric acid, molybdophosphoric acid, which is a compound with a Group 6 metal, can be used. In this case, if the resulting catalyst does not contain phosphorus at the above content, phosphoric acid needs to be further added. There is.
[0028]
Examples of the organic acid include citric acid monohydrate, citric anhydride, isocitric acid, malic acid, tartaric acid and the like.
When citric acid is used as the organic acid, it may be citric acid alone or a citric acid compound with the above-mentioned cobalt or nickel (group 8 metal).
The amount of the organic acid to be added is not particularly limited, but it is preferable that the molar ratio of the organic acid to the group 8 metal is 0.2 to 1.2. When the molar ratio is less than 0.2, the active sites belonging to the group 8 metal may not be sufficiently obtained. When the molar ratio exceeds 1.2, the impregnating liquid has a high viscosity, so that the supporting step requires time. Will be.
When a citrate compound of a Group 8 metal is used, an organic acid is further added when the amount of the organic acid is insufficient.
[0029]
Examples of the polyhydric alcohol include ethylene glycol, propylene glycol, diethylene glycol, trimethylene glycol, diethylene glycol, trimethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, and polyethylene glycol (molecular weight of 1 to 10,000,000).
The amount of the polyhydric alcohol to be added is not particularly limited, but is preferably from 0.1 to 2 in a molar ratio to the active metal. Further, it is preferable that the molar ratio of polyhydric alcohol / group 8 metal to the group 8 metal is 0.1 to 2. When the molar ratio is less than 0.1, the active sites attributed to the Group 8 metal may not be sufficiently obtained. When the molar ratio is more than 2, the impregnating liquid has a high viscosity, so that the supporting step requires time. Become.
[0030]
The organic acid and the polyhydric alcohol are preferably added at the above-mentioned preferable amount, and the content of carbon on the catalyst resulting therefrom is preferably 14% by mass or less, more preferably 10% by mass or less, based on the catalyst. .
If the content is more than 14% by mass, it is presumed that excess carbon covers the desulfurization active sites as a poisoning substance, thereby causing a decrease in activity.
[0031]
In the case where the above-mentioned Group 6 metal compound or Group 8 metal compound is not sufficiently dissolved in the impregnating solution, an acid (nitric acid, organic acid (citric acid, malic acid, tartaric acid, etc.)) is added together with these compounds. It is preferable to use an organic acid, and when an organic acid is used, the carbon obtained by the organic acid may remain in the obtained catalyst. It is important to stay within the range.
[0032]
In the above impregnating solution, the solvent used to dissolve each of the above components is water.
If the amount of the solvent used is too small, the carrier cannot be sufficiently impregnated. If the amount is too large, the solution becomes excessive and the entire amount of the active metal solution cannot be completely impregnated into the carrier. Therefore, the amount of the solvent to be used is appropriately 50 to 90 g, preferably 60 to 85 g, per 100 g of the carrier.
[0033]
The respective components are dissolved in the solvent to prepare an impregnation solution. The temperature at this time may be higher than 0 ° C. and equal to or lower than 100 ° C. If the temperature is within this range, the respective components are preferably dissolved in the solvent. Can be dissolved.
[0034]
The pH of the impregnating solution is preferably less than 5. If it is 5 or more, hydroxyl ions increase, the coordination ability between the organic acid and the Group 8 metal is weakened, and complex formation of the Group 8 metal is suppressed. As a result, desulfurization active sites (CoMoS phase, NiMoS phase) Can not be increased significantly.
[0035]
The impregnating solution thus prepared is impregnated on the above-mentioned inorganic oxide carrier, and the above-mentioned components in these solutions are supported on the above-mentioned inorganic oxide carrier.
The impregnation conditions can employ various conditions, and usually, the impregnation temperature is preferably higher than 0 ° C and lower than 100 ° C, more preferably 10 to 50 ° C, and still more preferably 15 to 30 ° C. Is preferably 15 minutes to 3 hours, more preferably 20 minutes to 2 hours, and still more preferably 30 minutes to 1 hour.
If the temperature is too high, drying occurs during the impregnation, and the degree of dispersion is biased.
During the impregnation, it is preferable to stir.
[0036]
After impregnating the impregnating solution on the inorganic oxide carrier as described above and supporting each component therein, a certain amount of water (LOI) is applied at room temperature to about 80 ° C. in a nitrogen stream, an air stream, or a vacuum. << Loss on ignition >> so as to be about 50% or less), and then, in an air stream, a nitrogen stream, or a vacuum, at 200 ° C. or lower, preferably at about 80 to 200 ° C. for about 10 minutes to 24 hours. The drying is carried out at a temperature of about 100 to 150 ° C. for about 5 to 20 hours.
When the drying is performed at a temperature higher than 200 ° C., the organic acid which seems to be complexed with the metal is separated from the surface of the catalyst. As a result, even when the obtained catalyst is subjected to the sulfurating treatment, the above-mentioned active sites (CoMoS phase, It becomes difficult to precisely control the formation of NiMoS phase, etc.9S8Seed, Ni3S2Seeds and the like are formed, resulting in a catalyst with low desulfurization activity.
[0037]
In producing the catalyst according to the present invention as described above, in order to increase the desulfurization activity of the resulting catalyst for hydrodesulfurization of gas oil, the specific surface area, pore volume and average pore diameter of the obtained catalyst are in the following ranges. It is preferable that
A preferred range of the specific surface area (specific surface area measured by a nitrogen adsorption method (BET method)) is about 100 to 300 m.2/ G, more preferably about 150-280 m2/ G. About 100m2If it is less than / g, a Group 6 metal (a heteropoly acid coordinating with phosphoric acid) and a Group 8 metal (an organometallic complex coordinating with an organic acid) considered to form a complex on the catalyst surface. However, due to the bulkiness of the complex, the dispersion is not sufficiently high. As a result, even if the sulfuration treatment is performed, it becomes difficult to precisely control the formation of the active sites, and the catalyst becomes a catalyst having a low desulfurization activity.2If it is larger than / g, the pore diameter of the catalyst becomes small, and the diffusion of the sulfur compound into the catalyst pores becomes insufficient during the hydrogenation treatment, and the desulfurization activity decreases.
[0038]
A preferred range of the pore volume measured by the mercury intrusion method is about 0.35 to 0.6 m1 / g, more preferably about 0.38 to 0.55 m1 / g. If it is less than about 0.35 m1 / g, during the hydrogenation treatment, the diffusion of sulfur compounds in the pores of the catalyst will be insufficient, resulting in insufficient desulfurization activity. The specific surface area becomes extremely small, the dispersibility of the active metal decreases, and the catalyst has low desulfurization activity.
[0039]
The preferred range of the average pore diameter in the pore distribution measured by the mercury intrusion method is about 65 to 150 °, more preferably about 70 to 130 °. If it is less than about 65 °, the reactants are less likely to diffuse into the pores, and the desulfurization reaction does not proceed efficiently. If it is larger than about 150 °, the diffusivity in the pores is good, but the surface area in the pores decreases. Therefore, the effective specific surface area of the catalyst decreases, and the activity decreases.
[0040]
In the present invention, the shape of the catalyst is not particularly limited, and various shapes usually used for this type of catalyst, for example, a columnar shape, a three-lobe shape, a four-lobe shape, and the like can be adopted. Usually, the size of the catalyst is preferably about 1-2 mm in diameter and about 2-5 mm in length.
The mechanical strength of the catalyst is preferably about 21 bs / mm or more in side fracture strength (SCS << Side Crush Strength >>). If the SCS is smaller than this, the catalyst charged in the reactor is destroyed, and a differential pressure is generated in the reactor, making it impossible to continue the hydrotreating operation.
The compact bulk density (CBD) of the catalyst is preferably about 0.6 to 1.2 (g / ml).
The distribution of the active metal in the catalyst is preferably a uniform type in which the active metal is uniformly distributed in the catalyst.
[0041]
The hydrotreating method of the present invention comprises a hydrogen partial pressure of about 3 to 8 MPa, about 300 to 420 ° C., and a liquid hourly space velocity of about 0.3 to 5 hr.-1Under the conditions described above, the catalyst obtained by the above production method of the present invention is brought into contact with a gas oil fraction containing a sulfur compound to perform desulfurization, and the sulfur compound containing a hardly desulfurizable sulfur compound in the gas oil fraction is reduced. Is the way.
The product oil obtained by the process of the present invention can have lower sulfur content than by the prior art.
[0042]
In order to carry out the hydrotreating method of the present invention on a commercial scale, a fixed bed, a moving bed, or a fluidized bed type catalyst layer of the catalyst obtained by the production method of the present invention is formed in a reactor. The feedstock may be introduced into the reactor and the hydrogenation reaction may be performed under the above conditions.
Most commonly, a fixed bed catalyst layer is formed in the reactor, the feedstock is introduced into the upper part of the reactor, the fixed bed is passed from top to bottom, and the product flows out from the lower part of the reactor. Things.
Further, a single-stage hydrotreating method in which the catalyst is charged into a single reactor and a multi-stage continuous hydrotreating method in which the catalyst is charged into several reactors may be used.
[0043]
The catalyst obtained by the production method of the present invention is activated by a preliminary sulfurization treatment in a reactor before use (that is, prior to performing the hydrotreating method of the present invention). This sulfurization treatment is carried out in a hydrogen atmosphere at about 200 to 400 ° C., preferably about 250 to 350 ° C., at atmospheric pressure or a hydrogen partial pressure of normal pressure or higher, a petroleum distillate containing sulfur compounds, dimethyl disulfide or disulfide. This is performed using a substance to which a sulfurizing agent such as carbon is added or hydrogen sulfide.
[0044]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.
[0045]
Example 1
Silica and alumina hydrate are kneaded, extruded, and calcined at 600 ° C. for 2 hours to form a silica-alumina composite carrier (silica / alumina mass ratio = 1/99; Pore volume 0.70m1 / g, specific surface area 359m2/ G, average pore diameter 70 °).
3.31 g of cobalt carbonate and 1.72 g of phosphoric acid (85% aqueous solution) were added to 22.5 g of ion-exchanged water, and the mixture was heated to 80 ° C. and stirred for 10 minutes. Next, 8.33 g of molybdenum trioxide, 1.95 g of citric acid monohydrate and 0.7959 g of diethylene glycol were charged and dissolved, and stirred at the same temperature for 15 minutes to prepare a solution for impregnation.
30.0 g of the above-mentioned silica-alumina composite carrier was put into an eggplant-shaped flask, and the entire amount of the above-mentioned impregnating solution was added thereto by a pipette, followed by immersion at about 25 ° C for 3 hours.
Thereafter, it was air-dried in a stream of nitrogen and dried in a muffle furnace at 120 ° C. for about 16 hours to obtain Catalyst A.
[0046]
Example 2
3.31 g of cobalt carbonate, 1.17 g of citric acid monohydrate, 1.11 g of diethylene glycol and 1.73 g of phosphoric acid (85% aqueous solution) were added to 22.5 g of ion-exchanged water, and heated to 80 ° C. Stirred for 10 minutes. Then, 8.33 g of molybdenum trioxide was charged and dissolved, and stirred at the same temperature for 30 minutes to prepare a solution for impregnation. 30.0 g of the same silica-alumina composite carrier as in Example 1 was charged into an eggplant-shaped flask, and the entire amount of the above impregnating solution was added thereto by a pipette, followed by immersion at about 25 ° C. for 3 hours.
Thereafter, it was air-dried in a nitrogen stream and dried in a muffle furnace at 120 ° C. for about 16 hours to obtain a catalyst B.
[0047]
Example 3
To 22.5 g of ion-exchanged water, 3.31 g of cobalt carbonate, 1.95 g of citric acid monohydrate, 8.33 g of molybdenum trioxide, 1.73 g of phosphoric acid, and 0.80 g of triethylene glycol were added, and the mixture was heated to 80 ° C. The mixture was heated and stirred for 30 minutes to prepare a solution for impregnation.
30.0 g of the same silica-alumina composite carrier as in Example 1 was charged into an eggplant-shaped flask, and the entire amount of the above impregnating solution was added thereto by a pipette, followed by immersion at about 25 ° C. for 3 hours.
Thereafter, it was air-dried in a nitrogen stream and dried in a muffle furnace at 120 ° C. for about 16 hours to obtain a catalyst C.
[0048]
Example 4
To 22.5 g of ion-exchanged water, 3.31 g of cobalt carbonate, 1.95 g of citric acid monohydrate, 8.33 g of molybdenum trioxide, 1.73 g of phosphoric acid, and polyethylene glycol 400 ((CH2CH2O)n: Molecular weight 400), and the mixture was heated to 80 ° C. and stirred for 30 minutes to prepare a solution for impregnation.
30.0 g of the same silica-alumina composite carrier as in Example 1 was charged into an eggplant-shaped flask, and the entire amount of the above impregnating solution was added thereto by a pipette, followed by immersion at about 25 ° C. for 3 hours.
Thereafter, it was air-dried in a nitrogen stream and dried in a muffle furnace at 120 ° C. for about 16 hours to obtain Catalyst D.
[0049]
Comparative Example 1
A solution for impregnation was prepared by dissolving 3.31 g of cobalt carbonate, 11.41 g of molybdophosphoric acid, and 1.17 g of orthophosphoric acid in 21.6 g of ion-exchanged water.
Into an eggplant type flask, 30.0 g of a γ-alumina carrier (pore volume 0.69 m1 / g, specific surface area 364 m2 / g, average pore diameter 64 °) is charged, and the entire amount of the above impregnating solution is pipetted there. And soaked at about 25 ° C. for 1 hour.
Thereafter, it was air-dried in a nitrogen stream, dried in a muffle furnace at 120 ° C. for about 1 hour, and calcined at 500 ° C. for 4 hours to obtain a catalyst a.
[0050]
Comparative Example 2
7.45 g of cobalt citrate and 1.17 g of phosphoric acid were added to 20.2 g of ion-exchanged water, heated to 80 ° C., and stirred for 10 minutes. Next, 11.41 g of molybdophosphoric acid was added and dissolved, and the mixture was stirred at the same temperature for 15 minutes to prepare a solution for impregnation.
30.0 g of the same zeolite-alumina composite carrier as in Example 2 was put into an eggplant-shaped flask, and the entire amount of the above impregnating solution was added thereto by a pipette, followed by immersion at about 25 ° C. for 3 hours.
Thereafter, it was air-dried in a nitrogen stream, dried in a muffle furnace at 120 ° C. for about 1 hour, and calcined at 500 ° C. for 4 hours to obtain a catalyst b.
[0051]
Table 1 shows the elemental analysis values and physical properties of the catalysts obtained in the above Examples and Comparative Examples.
The method and analytical equipment used for the analysis of the catalyst are shown below.
[1] Analysis of physical properties
-The specific surface area was measured by the BET method using nitrogen adsorption.
As the nitrogen adsorption device, a surface area measurement device (Bellsorb 28) manufactured by Nippon Bell Co., Ltd. was used.
-The pore volume, average pore diameter, and pore distribution were measured by a mercury intrusion method.
A porosimeter (MICROMERITIC SAUTO-PORE 9200: manufactured by Shimadzu Corporation) was used as a mercury intrusion device.
The measurement was performed by removing the volatile components from the sample at 400 ° C. for 1 hour in a vacuum atmosphere.
[2] Analysis of carbon in catalyst
The measurement of carbon was carried out using a Yanaco CHN coder MT-5 (manufactured by Yanagimoto Seisakusho).
The measuring method was as follows.
(1) Powdering the catalyst in an agate mortar.
(2) 7 mg of the powdered catalyst is put on a platinum board and placed in a firing furnace.
(3) Burn at 950 ° C.
(4) The combustion product gas is led to a differential thermal conductivity meter, and the amount of carbon in the catalyst is determined.
[0052]
[Table 1]
Figure 2004290728
[0053]
(Hydrotreating reaction of straight gas oil)
Using the catalysts A, B, C, D, a, and b prepared in the above Examples and Comparative Examples, hydrogenation treatment of straight-run gas oil having the following properties was performed in the following manner.
First, the catalyst was charged into a high-pressure flow reactor to form a fixed-bed catalyst layer, and was subjected to a preliminary sulfurization treatment under the following conditions.
Next, a mixed fluid of the feedstock oil and the hydrogen-containing gas heated to the reaction temperature is introduced from the upper part of the reactor, and the hydrogenation reaction proceeds under the following conditions. It was discharged from the lower part of the device, and the generated oil was separated by a gas-liquid separator.
[0054]
Preliminary sulfurization treatment conditions: Liquid sulfurization with a feed oil was performed.
Pressure (hydrogen partial pressure); 4.9 MPa
Atmosphere: hydrogen and feed oil (liquid hourly space velocity 1.5 hr-1, Hydrogen / oil ratio 200m3(Normal) / kl)
Temperature: Hydrogen and feedstock are introduced at a normal temperature of about 22 ° C., the temperature is raised at 20 ° C./hr, maintained at 300 ° C. for 24 hours, and then raised to the reaction temperature of 350 ° C. at 20 ° C./hr.
[0055]
Hydrogenation reaction conditions:
Reaction temperature; 350 ° C
Pressure (hydrogen partial pressure); 4.9 MPa
Liquid hourly space velocity: 1.5 hr-1
Hydrogen / oil ratio: 200m3(Normal) / kl
[0056]
Properties of feedstock:
Oil type: Middle eastern straight gas oil
Density (15/4 ° C); 0.8609
Distillation properties: Initial boiling point: 211.5 ° C, 50% point: 314.0 ° C, 90% point: 365.0 ° C, end point: 383.5 ° C
Sulfur component: 1.37% by mass
Nitrogen component: 210 mass ppm
Kinematic viscosity (@ 30 ° C.); 6.570 cSt
Pour point: 5.0 ° C
Cloud point: 6.0 ° C
Cetane index: 54.5
Saybolt color -11
[0057]
The reaction results were analyzed by the following method.
The reactor was operated at 350 ° C., and after 6 days had passed, the product oil was collected and analyzed for its properties.
-Desulfurization reaction rate constant (Ks):
The constant of the reaction rate equation for obtaining the 1.3 order of the reaction with respect to the decrease in the sulfur content (Sp) of the produced oil is defined as the desulfurization reaction rate constant (Ks).
The higher the reaction rate constant, the better the catalytic activity. The results are shown in Table 2.
[0058]
Desulfurization reaction rate constant = [1 / (Sp)1.3-1−1 / (Sf)1.3-1] X (LH
SV)
In the formula, Sf: sulfur content in feedstock (% by mass)
Sp: Sulfur content in reaction product oil (% by mass)
LHSV: liquid hourly space velocity (hr-1)
Specific activity (%) = desulfurization reaction rate constant / desulfurization reaction rate constant of comparative catalyst a × 100
[0059]
[Table 2]
Figure 2004290728
[0060]
As is evident from the above results, the catalyst according to the present invention is effective for the desulfurization reaction of gas oil in the ultra-deep desulfurization region under the same conditions of hydrogen partial pressure and reaction temperature as in the conventional gas oil hydrotreating. Thus, it is found that the composition has extremely excellent activity.
[0061]
【The invention's effect】
According to the present invention, the following effects can be obtained.
(1) Since it has high desulfurization and denitrification activities, the content of sulfur and nitrogen in gas oil can be significantly reduced.
(2) Since the reaction conditions can be made substantially the same as the reaction conditions in the conventional hydrotreating, the conventional apparatus can be diverted without significant modification.
(3) A light oil base material having a low sulfur content and a low nitrogen content can be easily supplied.

Claims (2)

比表面積200〜500m/g、細孔容積0.5〜0.9m1/g、平均細孔直径60〜120Åである無機酸化物担体上に、周期律表第8族金属から選ばれた少なくとも1種を含む化合物、周期律表第6族金属から選ばれた少なくとも1種を含む化合物、有機酸、多価アルコール及びリン酸を含有する溶液を用いて、触媒基準、酸化物換算で周期律第6族金属を10〜40質量%、周期律表第8族金属を1〜15質量%、リンを0.8〜8質量%となるように担持させ、200℃以下で乾燥させることを特徴とする軽油の水素化処理触媒の製造方法。On an inorganic oxide carrier having a specific surface area of 200 to 500 m 2 / g, a pore volume of 0.5 to 0.9 m1 / g, and an average pore diameter of 60 to 120 °, at least one selected from Group 8 metals of the periodic table. Using a compound containing at least one compound, a compound containing at least one selected from Group 6 metals of the periodic table, a solution containing an organic acid, a polyhydric alcohol, and phosphoric acid, the catalyst is used, and the periodic rule is calculated in terms of oxide. It is characterized in that a Group 6 metal is supported at 10 to 40% by mass, a Group 8 metal of the Periodic Table is supported at 1 to 15% by mass, and phosphorus is contained at 0.8 to 8% by mass, and dried at 200C or lower. A method for producing a gas oil hydrotreating catalyst. 請求項1記載の製造方法で得られた触媒の存在下、水素分圧3〜8MPa、温度300〜420℃、液空間速度0.3〜5hr−1の条件で、軽油留分の接触反応を行うことを特徴とする軽油の水素化処理方法。In the presence of the catalyst obtained by the production method according to claim 1, the catalytic reaction of the gas oil fraction is performed under the conditions of a hydrogen partial pressure of 3 to 8 MPa, a temperature of 300 to 420 ° C, and a liquid space velocity of 0.3 to 5 hr -1. A method for hydrotreating diesel oil.
JP2003083019A 2003-03-25 2003-03-25 Method for manufacturing hydrogenation catalyst for light oil and hydrogenation method for light oil Pending JP2004290728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003083019A JP2004290728A (en) 2003-03-25 2003-03-25 Method for manufacturing hydrogenation catalyst for light oil and hydrogenation method for light oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003083019A JP2004290728A (en) 2003-03-25 2003-03-25 Method for manufacturing hydrogenation catalyst for light oil and hydrogenation method for light oil

Publications (1)

Publication Number Publication Date
JP2004290728A true JP2004290728A (en) 2004-10-21

Family

ID=33398617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003083019A Pending JP2004290728A (en) 2003-03-25 2003-03-25 Method for manufacturing hydrogenation catalyst for light oil and hydrogenation method for light oil

Country Status (1)

Country Link
JP (1) JP2004290728A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007037026A1 (en) * 2005-09-28 2007-04-05 Nippon Oil Corporation Catalyst and process for producing the same
JP2009519815A (en) * 2005-12-14 2009-05-21 アドヴァンスト・リファイニング・テクノロジーズ,リミテッド・ライアビリティ・カンパニー Production process of hydrotreating catalyst
JP2013502321A (en) * 2009-08-24 2013-01-24 アルベマール・ユーロプ・エスピーアールエル Solutions and catalysts containing Group 6 metals, Group 8 metals and phosphorus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06339635A (en) * 1993-06-01 1994-12-13 Japan Energy Corp Preparation of hydrogenation catalyst
JP2000313890A (en) * 1999-04-02 2000-11-14 Akzo Nobel Nv Method for use in reforming ultradeep hds of hydrocarbon feedstock
JP2002239385A (en) * 2001-02-15 2002-08-27 Cosmo Oil Co Ltd Method for producing hydrotreatment catalyst for hydrocarbon oil and method for hydrotreating hydrocarbon oil
JP2003503193A (en) * 1999-07-05 2003-01-28 アクゾ ノーベル ナムローゼ フェンノートシャップ Method for regenerating additive-containing catalyst

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06339635A (en) * 1993-06-01 1994-12-13 Japan Energy Corp Preparation of hydrogenation catalyst
JP2000313890A (en) * 1999-04-02 2000-11-14 Akzo Nobel Nv Method for use in reforming ultradeep hds of hydrocarbon feedstock
JP2003503193A (en) * 1999-07-05 2003-01-28 アクゾ ノーベル ナムローゼ フェンノートシャップ Method for regenerating additive-containing catalyst
JP2002239385A (en) * 2001-02-15 2002-08-27 Cosmo Oil Co Ltd Method for producing hydrotreatment catalyst for hydrocarbon oil and method for hydrotreating hydrocarbon oil

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007037026A1 (en) * 2005-09-28 2007-04-05 Nippon Oil Corporation Catalyst and process for producing the same
US8222173B2 (en) 2005-09-28 2012-07-17 Nippon Oil Corporation Catalyst and method of manufacturing the same
JP5067942B2 (en) * 2005-09-28 2012-11-07 Jx日鉱日石エネルギー株式会社 Catalyst and method for producing the same
JP2009519815A (en) * 2005-12-14 2009-05-21 アドヴァンスト・リファイニング・テクノロジーズ,リミテッド・ライアビリティ・カンパニー Production process of hydrotreating catalyst
US8877671B2 (en) 2005-12-14 2014-11-04 Advanced Refining Technologies Llc Method of making hydroprocessing catalyst
US9248438B2 (en) 2005-12-14 2016-02-02 Advanced Refining Technologies Llc Method of making hydroprocessing catalyst
US9566572B2 (en) 2005-12-14 2017-02-14 Advanced Refining Technologies Llc Method of making hydroprocessing catalyst
JP2013502321A (en) * 2009-08-24 2013-01-24 アルベマール・ユーロプ・エスピーアールエル Solutions and catalysts containing Group 6 metals, Group 8 metals and phosphorus
CN106492819A (en) * 2009-08-24 2017-03-15 阿尔比马尔欧洲有限公司 Solution and catalyst comprising VI race's metal, VIII race's metal and phosphorus

Similar Documents

Publication Publication Date Title
JP4156859B2 (en) Gas oil hydrotreating catalyst, method for producing the same, and gas oil hydrotreating method
JP5015818B2 (en) Gas oil hydrotreating catalyst, method for producing the same, and gas oil hydrotreating method
JP4472556B2 (en) Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
JP6307072B2 (en) Improved residual hydrotreating catalyst containing titania
JP4864106B2 (en) Method for producing hydrocarbon oil hydrotreating catalyst
JP4545328B2 (en) Method for producing hydrotreating catalyst for hydrocarbon oil and hydrotreating method for hydrocarbon oil
JP4689198B2 (en) Hydrocarbon hydrotreating catalyst, process for producing the same, and hydrotreating process for hydrocarbon oil
JP2013027847A (en) Hydroprocessing catalyst for hydrocarbon oil, method for producing hydroprocessing catalyst for hydrocarbon oil and hydroprocessing method for hydrocarbon oil
JP3553429B2 (en) Gas oil hydrotreating catalyst and gas oil hydrotreating method
JP4954095B2 (en) Gas oil hydrotreating catalyst, method for producing the same, and gas oil hydrotreating method
JP4047044B2 (en) Heavy oil hydrodesulfurization catalyst, method for producing the same, and hydrodesulfurization method for heavy oil
JP4480120B2 (en) Gas oil hydrotreating catalyst and gas oil hydrotreating method
JP4916370B2 (en) Process for hydrotreating diesel oil
JP2004290728A (en) Method for manufacturing hydrogenation catalyst for light oil and hydrogenation method for light oil
JP2006306974A (en) Catalyst for hydrotreating hydrocarbon oil, method for producing the same and method for hydrotreating hydrocarbon oil
CN100435954C (en) Hydrotreating catalyst for gas oil, process for producing the same, and method of hydrotreating gas oil
JP2001062304A (en) Production of hydrodesulfurization catalyst of light oil and hydrogenation treatment method of light oil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050816

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060424

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080514

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080917