JP2001040368A - Hydrogenation method for gas oil - Google Patents

Hydrogenation method for gas oil

Info

Publication number
JP2001040368A
JP2001040368A JP21185199A JP21185199A JP2001040368A JP 2001040368 A JP2001040368 A JP 2001040368A JP 21185199 A JP21185199 A JP 21185199A JP 21185199 A JP21185199 A JP 21185199A JP 2001040368 A JP2001040368 A JP 2001040368A
Authority
JP
Japan
Prior art keywords
catalyst
reaction zone
metal
gas oil
desulfurization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21185199A
Other languages
Japanese (ja)
Inventor
Akira Iino
明 飯野
Yasuyuki Suzuki
康之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP21185199A priority Critical patent/JP2001040368A/en
Publication of JP2001040368A publication Critical patent/JP2001040368A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogenation method for gas oil whereby desulfurized gas oil with a sulfur content of 200 wt.ppm or lower is obtained. SOLUTION: In the first reaction zone, a catalyst which comprises a fire- resistant inorganic oxide carrier carrying cobalt and a metal of the group 6 of the periodic table and has an average micropore diameter of 50-90 Å is placed; and in each of the second and later reaction zones, a catalyst which comprises a fire-resistant inorganic oxide carrier carrying nickel and/or cobalt and a metal of the group 6 of the periodic table and has an average micropore diameter larger by 5-50 Å than that of a catalyst placed in a reaction zone immediately in front of each of the second and later reaction zones is placed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は軽油の水素化処理方
法に関する、詳しくは特定の触媒の組み合わせ下で軽油
の水素化処理を行い硫黄分を十分に低下させた軽油を製
造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for hydrotreating gas oil, and more particularly to a method for producing gas oil having a sulfur content sufficiently reduced by hydrotreating gas oil under a specific combination of catalysts.

【0002】[0002]

【従来の技術】現在は、環境規制に対応するために軽油
の硫黄分を500wtppm以下を目標として製造して
いる。しかし、最近の厳しい環境規制に対応するために
ジーゼルエンジン用の軽油の硫黄分を200wtppm
以下、できれば100wtppm以下とすること等が検
討されている。そのため、直留軽油はもとより、重質軽
油、また比較的穏和な条件で精製されていた減圧軽油や
分解軽油についても、将来の環境規制に対応するための
硫黄分、アロマ分の高度な精製技術が要求されている。
さらに窒素規制、パティキュレート規制問題等が重要視
されておりその解決が急がれている。アルミナ系無機酸
化物担体に水素化活性物質として周期律表第6族、8
族、9族、10族の金属を担持した従来型の脱硫触媒で
は、脱硫活性点を増加させるために活性金属の担持にお
ける高い分散度を得る高度な触媒調製技術が開発されて
きた。たとえば、活性金属塩溶液に有機物を添加する方
法(特開平6−228572号公報)、アルミナゲルと
金属塩溶液とをスラリー状で混合して比表面積を増大す
る方法(特開平5−115781号公報)、金属含浸後
に焼成工程を省き、金属の凝集を防止する方法(特開平
8−332385号公報、特開平8−332386号公
報)等が考案されている。しかし、いずれの方法も生成
軽油中の硫黄分は300〜500wtppm程度であ
り、このレベルの低硫黄軽油は難脱硫性の硫黄化合物と
して知られているジメチルジベンゾチオフェン類の脱硫
までは十分にされていない。このような難脱硫性の硫黄
化合物を含む軽油をさらに低硫黄化するには上記のよう
な脱硫活性点の増加技術だけでは限界があった。
2. Description of the Related Art At present, in order to comply with environmental regulations, gas oil is produced with a target of a sulfur content of 500 wtppm or less. However, to meet recent stringent environmental regulations, diesel oil for diesel engines has a sulfur content of 200 wtppm.
In the following, it is studied to reduce the content to 100 wtppm or less if possible. For this reason, advanced refining technology for sulfur and aroma to meet future environmental regulations, not only for straight-run gas oil, but also for heavy gas oil and vacuum gas oil and cracked gas oil that have been refined under relatively mild conditions. Is required.
Furthermore, nitrogen regulation and particulate regulation issues are regarded as important, and their solutions are urgently needed. Group 6 of the periodic table, 8 as a hydrogenation active substance on alumina-based inorganic oxide carriers
With regard to conventional desulfurization catalysts supporting metals of groups 9, 9 and 10, advanced catalyst preparation techniques for obtaining a high degree of dispersion in the loading of active metals have been developed in order to increase the desulfurization active points. For example, a method of adding an organic substance to an active metal salt solution (JP-A-6-228572), a method of mixing an alumina gel and a metal salt solution in a slurry form to increase the specific surface area (JP-A-5-115781) ), A method of omitting a firing step after metal impregnation and preventing aggregation of metal (JP-A-8-332385, JP-A-8-332386) and the like have been devised. However, in any of the methods, the sulfur content in the produced gas oil is about 300 to 500 wtppm, and this level of low sulfur gas oil is sufficient until the desulfurization of dimethyldibenzothiophenes, which are known as hardly desulfurizable sulfur compounds. Absent. There has been a limit to the further reduction of the sulfur content of gas oils containing such difficult-to-desulfurize sulfur compounds only by the technique for increasing the desulfurization active sites as described above.

【0003】より低い硫黄分レベルを達成するためには
軽油留分等の炭化水素油中に含まれる難脱硫成分である
ジメチルジベンゾチオフェン類の効率的な脱硫が不可欠
であり、そのため、軽油留分等の炭化水素油の高性能な
水素化脱硫方法として、従来のアルミナ系脱硫触媒の改
善と共に、難脱硫成分であるジメチルジベンゾチオフェ
ン類の効率的な脱硫のための炭化水素油の異性化、核水
素化反応を狙った触媒を水素化脱硫触媒に組み合わせて
用いる方法が考えられている。例えば、NiMo担持触
媒/CoMo担持触媒を組み合わせる脱硫方法(特開平
4−183786号公報)、第一段にNi、W、P−ア
ルミナ触媒、第二段にNi、Mo、P−アルミナ触媒を
組み合わせる脱硫方法(特開平4−288397号公
報)、ゼオライト触媒とアルミナ触媒を組み合わせる脱
硫方法(特許2567291号)、アルミナ触媒、ゼオ
ライト触媒、アルミナ触媒を組み合わせる脱硫方法(特
開昭60−195190号公報)などがあり、脱硫、脱
窒素能の向上などを図っている。しかし、上記に開示さ
れているの脱硫処理技術の組み合わせ方法では難脱硫性
硫黄化合物の脱硫は充分ではなく、生成軽油の硫黄分は
それぞれの触媒を単独で用いる場合よりも効果的ではあ
るが、目的とするところまでは容易には低下させること
はできなかった。
[0003] In order to achieve a lower sulfur content level, it is essential to efficiently desulfurize dimethyldibenzothiophenes, which are difficult-to-desulfurize components contained in hydrocarbon oils such as gas oil fractions. As a high-performance hydrodesulfurization method for hydrocarbon oils, such as the improvement of conventional alumina-based desulfurization catalysts, isomerization of hydrocarbon oils for efficient desulfurization of dimethyldibenzothiophenes, which are difficult-to-desulfurize components, A method of using a catalyst aimed at a hydrogenation reaction in combination with a hydrodesulfurization catalyst has been considered. For example, a desulfurization method combining a NiMo supported catalyst / CoMo supported catalyst (Japanese Patent Laid-Open No. 4-183786), a Ni, W, P-alumina catalyst in the first stage, and a Ni, Mo, P-alumina catalyst in the second stage Desulfurization method (JP-A-4-288397), desulfurization method combining zeolite catalyst and alumina catalyst (Japanese Patent No. 2567291), desulfurization method combining alumina catalyst, zeolite catalyst and alumina catalyst (JP-A-60-195190), etc. To improve desulfurization and denitrification capabilities. However, the desulfurization of the difficult-to-desulfurize sulfur compound is not sufficient in the combined method of the desulfurization treatment techniques disclosed above, and the sulfur content of the produced gas oil is more effective than the case where each catalyst is used alone. It could not be easily reduced to the desired point.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記のよう
な観点からなされたもので、今後要求されるであろう軽
油の品質である硫黄分200wtppm以下、さらには
100wtppm以下、あるいは、さらに低レベルの硫
黄分濃度を達成することを目指した低硫黄分の軽油の製
造方法を提供することを目的としている。
DISCLOSURE OF THE INVENTION The present invention has been made from the above-mentioned viewpoints, and the sulfur content which is required in the future is 200 wtppm or less, more preferably 100 wtppm or less. It is an object of the present invention to provide a method for producing a low-sulfur gas oil aiming at achieving a level of sulfur concentration.

【0005】[0005]

【課題を解決するための手段】本発明者等は鋭意研究を
重ねた結果、特定の水素化処理触媒の組み合わせ、すな
わち、二以上の接触的水素化処理反応帯域を有し、第一
反応帯域に耐火性無機酸化物担体に周期律表第6族金属
およびコバルトを担持し、平均細孔直径が50〜90Å
である触媒を配置し、第二反応帯域以降に耐火性無機酸
化物担体に周期律表第6族金属並びにニッケルおよび/
またはコバルトを担持し、平均細孔直径が該反応帯域の
直前の反応帯域の触媒の平均細孔直径より5〜50Å大
きい触媒を配置した軽油の水素化処理方法が、硫黄分が
200wtppm以下という低レベルの軽油を製造する
のに優れた方法であることを見い出し本発明を完成した
ものである。
Means for Solving the Problems As a result of intensive studies, the present inventors have found that a combination of specific hydrotreating catalysts, that is, two or more catalytic hydrotreating reaction zones, A refractory inorganic oxide carrier, a metal of Group 6 of the periodic table and cobalt are supported, and the average pore diameter is 50 to 90 °.
Is disposed on the refractory inorganic oxide support after the second reaction zone, and a metal belonging to Group 6 of the periodic table and nickel and / or nickel.
Alternatively, a gas oil hydrotreating method in which a catalyst carrying cobalt and having a catalyst whose average pore diameter is larger by 5 to 50 ° than the average pore diameter of the catalyst in the reaction zone immediately before the reaction zone, has a low sulfur content of 200 wtppm or less. The present invention has been found to be an excellent method for producing a level of light oil and has completed the present invention.

【0006】すなわち、本発明の要旨は下記のとおりで
ある。 (1)二以上の接触的水素化処理反応帯域において軽油
を水素化処理する方法であって、第一反応帯域に耐火性
無機酸化物担体に周期律表第6族金属およびコバルトを
担持し、平均細孔直径が50〜90Åである触媒を配置
し、第二反応帯域以降に耐火性無機酸化物担体に周期律
表第6族金属並びにニッケルおよび/またはコバルトを
担持し、平均細孔直径が該反応帯域の直前の反応帯域の
触媒の平均細孔直径より5〜50Å大きい触媒を配置し
た軽油の水素化処理方法。
That is, the gist of the present invention is as follows. (1) A method for hydrotreating light oil in two or more catalytic hydrotreating reaction zones, wherein a refractory inorganic oxide carrier carries a Group 6 metal and cobalt of the periodic table in a first reaction zone, A catalyst having an average pore diameter of 50 to 90 ° is disposed, and a refractory inorganic oxide carrier is loaded with a Group 6 metal of the periodic table and nickel and / or cobalt after the second reaction zone. A method for hydrotreating light oil comprising a catalyst 5 to 50 ° larger than the average pore diameter of the catalyst in the reaction zone immediately before the reaction zone.

【0007】(2) 反応帯域が2または3である
(1)記載の軽油の水素化処理方法。 (3) 第一反応帯域の触媒量が全触媒量に対し10〜
85wt%、第二反応帯域以降の触媒量が全触媒量に対
し15〜90wt%である(1)または(2)記載の軽
油の水素化処理方法。 (4) 水素化処理が水素化脱硫処理である(1)〜
(3)のいずれかに記載の軽油の水素化処理方法。
(2) The method for hydrotreating light oil according to (1), wherein the reaction zone is 2 or 3. (3) The amount of catalyst in the first reaction zone is 10 to 10
(1) or (2), wherein the amount of the catalyst after the second reaction zone is 15 to 90 wt% with respect to the total amount of the catalyst. (4) Hydrotreatment is hydrodesulfurization treatment (1)-
The method for hydrotreating light oil according to any one of (3).

【0008】[0008]

【発明の実施の形態】石油留分の水素化脱硫に関しては
上述したように反応帯域内での金属種や担体組成の異な
る触媒の組合せ技術は知られていた。しかし、触媒細孔
径、比表面積の異なる触媒の組合せ技術はあまり知られ
ていなかった。細孔径の異なる触媒の組合せの例として
は残油等の重質油の水素化処理において大細孔径/小細
孔径を使用して脱メタル、脱硫を促進するもの。前段の
スケール処理に大細孔径触媒を使用し、順次細孔径を縮
小し、高比表面積を有した触媒との組合せで長期安定運
転を行っている場合があるが、灯軽油等の軽質油の水素
化処理においては、今まで、細孔分布を特徴的に組合せ
る触媒システムはなかった。従来、軽油等は含有される
炭化水素が比較的低分子量であり、触媒劣化を引き起こ
すメタル分、重質炭化水素が少ないために大きい細孔径
を有する触媒を用いる必要性は無く、専ら高い脱硫性能
を引き出すために担体の比表面積を増大して水素化活性
を上げる検討が為されていた。細孔径も重質油処理10
0〜200Åに対して60〜90Å程度と小さいものが
よいとされてきた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As for hydrodesulfurization of petroleum fractions, as described above, techniques for combining catalysts having different metal species and different carrier compositions in a reaction zone have been known. However, techniques for combining catalysts having different catalyst pore diameters and specific surface areas have not been well known. An example of a combination of catalysts having different pore diameters is one that promotes demetallization and desulfurization using a large pore diameter / small pore diameter in the hydrogenation treatment of heavy oil such as residual oil. A long-term stable operation may be performed in combination with a catalyst having a high specific surface area by using a large pore diameter catalyst in the former stage scale treatment, sequentially reducing the pore diameter, and using a light oil such as kerosene gas oil. In the hydrotreating process, there has hitherto not been a catalyst system that characteristically combines the pore distribution. Conventionally, there is no need to use a catalyst with a large pore size because light oils and other hydrocarbons contain relatively low molecular weight hydrocarbons, and there are few metals and heavy hydrocarbons that cause catalyst degradation. In order to extract hydrogen, studies have been made to increase the specific surface area of the support to increase the hydrogenation activity. Pore size is heavy oil treatment 10
It has been considered that a size as small as about 60 to 90 ° relative to 0 to 200 ° is good.

【0009】本発明者らは、水素および脱硫反応により
生成する硫化水素の触媒細孔内での拡散に注目した。す
なわち、反応帯域の下流に移るにつれて増大する硫化水
素に対して、細孔内拡散を高めるように徐々に細孔直径
(細孔径)を増大させていく、触媒充填システムを検討
した。下流の反応帯域の触媒の細孔内に流入する硫化水
素が細孔外に出やすくすることができるように下流の反
応帯域の触媒の細孔径の拡大を図ることで高度な脱硫を
達成できることを見い出した。さらに、これによりフレ
ッシュな水素は細孔内へ入り易くなり、活性点に吸着し
ている硫黄分を硫化水素として除去可能となるように
し、水素化反応を促進できるようにした。
The present inventors have paid attention to the diffusion of hydrogen and hydrogen sulfide generated by the desulfurization reaction in the catalyst pores. That is, for a hydrogen sulfide that increases as it moves downstream of the reaction zone, a catalyst packing system in which the pore diameter (pore diameter) is gradually increased so as to increase diffusion in the pores was studied. To achieve high desulfurization by enlarging the pore diameter of the catalyst in the downstream reaction zone so that hydrogen sulfide flowing into the pores of the catalyst in the downstream reaction zone can easily exit the pores. I found it. Furthermore, this makes it easier for fresh hydrogen to enter the pores, so that the sulfur adsorbed at the active site can be removed as hydrogen sulfide, and the hydrogenation reaction can be promoted.

【0010】軽油中の比較的脱硫しやすい易脱硫成分は
反応塔の最前部の比表面積の大きい触媒層で速やかに脱
硫されるが、細孔内の硫化水素分圧は高く、活性点の中
では硫黄分がそのまま吸着されたままの活性点も多く、
後段の反応帯域に移るにつれ軽油分が徐々に脱硫されに
くくなり、特に難脱硫成分の脱硫効率は低下する。ここ
で硫化水素濃度の比率が徐々に増加する反応塔内部の状
態に対して、触媒層の細孔径を徐々に増大させていくこ
とにより、硫化水素を触媒細孔外に、水素を触媒細孔内
に移動しやすくする。反応塔の途中に水素供給ラインを
併設して水素濃度を高めることを合わせて行うとこの水
素置換効果はさらに増長される。
The easily desulfurized component in gas oil, which is relatively easy to desulfurize, is quickly desulfurized by the catalyst layer having a large specific surface area at the forefront of the reaction tower. Many active sites are still adsorbing sulfur,
As it moves to the subsequent reaction zone, the gas oil gradually becomes difficult to desulfurize, and in particular, the desulfurization efficiency of the hardly desulfurized component decreases. Here, with respect to the state inside the reaction tower where the ratio of the concentration of hydrogen sulfide gradually increases, by gradually increasing the pore diameter of the catalyst layer, hydrogen sulfide is moved out of the catalyst pores and hydrogen is moved into the catalyst pores. Easy to move in. This hydrogen replacement effect is further enhanced by increasing the hydrogen concentration by providing a hydrogen supply line in the middle of the reaction tower.

【0011】反応帯域の数(充填触媒層数(段数で呼ぶ
こともある。))は2段以上、好ましくは2段または3
段である。各段に充填する触媒の種類、量は原料油の
質、目標硫黄分レベルに応じて決められる。第一段目で
脱硫活性が高い比表面積の大きい(平均細孔直径は50
〜90Å)CoMo系触媒を用い易脱硫性の硫黄化合物
を脱硫する。二段目では4,6ジメチルジベンゾチオフ
ェン等の難脱硫性硫黄化合物を高い水素化活性を有する
触媒を利用してさらなる深脱を促進させる。二段目の触
媒は、CoMo系、NiMo系のどちらでも使用できる
が、水素化活性を高めたNiMo系触媒が好ましい。二
段目の触媒は難脱硫成分の芳香環を核水素化することに
より、C−S結合の切断を促進させる。
The number of reaction zones (the number of packed catalyst layers (sometimes referred to as the number of stages)) is two or more, preferably two or three.
It is a step. The type and amount of catalyst to be charged in each stage are determined according to the quality of the feedstock oil and the target sulfur level. In the first stage, the desulfurization activity is high and the specific surface area is large (the average pore diameter is 50
Å90 °) Desulfurization of easily desulfurizable sulfur compounds using a CoMo catalyst. In the second stage, further desulfurization of a non-desulfurizable sulfur compound such as 4,6 dimethyldibenzothiophene is promoted by using a catalyst having a high hydrogenation activity. As the second-stage catalyst, either a CoMo-based catalyst or a NiMo-based catalyst can be used, but a NiMo-based catalyst having enhanced hydrogenation activity is preferable. The second-stage catalyst promotes cleavage of C—S bond by nuclear hydrogenation of the aromatic ring of the hardly-desulfurized component.

【0012】一段目/二段目がNiMo/CoMoの組
み合せは特開平4-183786号公報にあるように水素化反応
を介して多環芳香族、難脱硫性硫黄化合物、窒素化合物
の水素化を促進し、その後の脱硫反応を行うシステムと
して既に開示されているが、一段目のNiMo系触媒で
水素化を効率的に行わせるためには選択的に難脱硫性硫
黄化合物や多環芳香族、窒素化合物をNiの高水素化活
性点に接触させる必要がある。この場合、全硫黄分がこ
のNiMo系触媒に接触するため、Niの活性点もその
硫黄分に使われ、当初目的の難脱硫性硫黄化合物や多環
芳香族、窒素化合物がNi活性点に吸着することができ
ない。従って、この組み合わせ触媒の方法では充分に脱
硫効果を上げることができなかった。
The combination of NiMo / CoMo in the first stage / second stage involves hydrogenation of a polycyclic aromatic compound, a non-desulfurizable sulfur compound and a nitrogen compound through a hydrogenation reaction as disclosed in JP-A-4-183786. Although it has already been disclosed as a system for promoting the subsequent desulfurization reaction, in order to efficiently perform the hydrogenation with the first-stage NiMo-based catalyst, it is difficult to selectively perform the desulfurization-resistant sulfur compound or the polycyclic aromatic compound. It is necessary to contact a nitrogen compound with the high hydrogenation active site of Ni. In this case, since the entire sulfur content comes into contact with the NiMo-based catalyst, the active site of Ni is also used for the sulfur content, and the initially desired non-desulfurizable sulfur compound, polycyclic aromatic compound, and nitrogen compound are adsorbed at the Ni active site. Can not do it. Therefore, the desulfurization effect could not be sufficiently improved by this combined catalyst method.

【0013】そこで、本発明では第一反応帯域(一段
目)には難脱硫性硫黄化合物以外の硫黄化合物に対する
脱硫活性の高いCoMo系脱硫触媒を充填する。第二反
応帯域(二段目)の触媒は難脱硫性硫黄化合物の水素化
脱硫活性の高い触媒の有する効果と細孔径を拡大し、水
素及び硫化水素の拡散を高める機能を同時に併せ持つこ
とにより、超深脱を達成する。さらに厳しい超深脱を達
成するには、第三反応帯域(三段目)で脱硫能の高いC
oMo系触媒を用い、水素化されたアルキルジベンゾチ
オフェン類の脱硫を完結させ、あるいは未反応の硫黄化
合物の脱硫を行えば好適な場合がある。この場合も、三
段目の触媒は第二段目の触媒細孔径より大きい細孔分布
を付与し、水素、硫化水素の拡散を高め活性点の吸着硫
黄を速やかに脱離させる。このように本発明の水素化処
理方法は軽油の500ppm以下の深度脱硫領域あるい
はより低い硫黄分レベル200ppm以下、さらには5
0ppm以下までの超深度脱硫領域の脱硫を促進させる
水素化処理方法である。
Accordingly, in the present invention, the first reaction zone (first stage) is filled with a CoMo-based desulfurization catalyst having a high desulfurization activity for sulfur compounds other than the non-desulfurizable sulfur compound. The catalyst in the second reaction zone (second stage) combines the effect of a catalyst with high hydrodesulfurization activity of difficult-to-desulfurize sulfur compounds with the function of enlarging the pore size and increasing the diffusion of hydrogen and hydrogen sulfide. Achieve super deep escape. In order to achieve even more severe ultra-deep desulfurization, C with high desulfurization ability in the third reaction zone (third stage)
It may be preferable to complete the desulfurization of hydrogenated alkyldibenzothiophenes or to desulfurize unreacted sulfur compounds using an oMo catalyst. Also in this case, the third-stage catalyst provides a pore distribution larger than the second-stage catalyst pore diameter, and enhances the diffusion of hydrogen and hydrogen sulfide to quickly desorb the adsorbed sulfur at the active site. As described above, the hydrotreating method of the present invention can be applied to a deep desulfurization region of gas oil of 500 ppm or less or a lower sulfur content level of 200 ppm or less, or even 5 ppm or less.
This is a hydrotreating method for promoting desulfurization in an ultra-deep desulfurization region up to 0 ppm or less.

【0014】本発明の第一反応帯域で使用される触媒
は、通常細孔径50〜90Å、好ましくは60〜80
Å、比表面積150〜300m2 /g、好ましくは20
0〜250m2 /gとする。さらに、耐火性無機酸化物
担体にコバルト、および周期律表第6族金属中から選ば
れる少なくとも1種を担持した触媒であればよい。通常
用いられる軽油の脱硫触媒のうち上記条件に適合するも
のであれば使用することができる。担体となる耐火性無
機酸化物としてはアルミナ、シリカ、マグネシアチタニ
ア、ジルコニア、アルミナ−シリカ、アルミナ−ボリ
ア、アルミナ−チタニア、チタニア−シリカ、アルミナ
−マグネシア、シリカ−マグネシア、アルミナ−ジルコ
ニアなどを単独または複数で用いることができる。これ
らの耐火性無機酸化物はゲル状物質、固体微粉末に水を
加えたもの、ゾル状物質、共沈法(コゲル法)により得
られるものなどが好適である。
The catalyst used in the first reaction zone of the present invention usually has a pore size of 50 to 90 °, preferably 60 to 80 °.
Å, specific surface area of 150 to 300 m 2 / g, preferably 20
0 to 250 m 2 / g. Further, any catalyst may be used as long as it supports cobalt and at least one selected from metals belonging to Group 6 of the periodic table on a refractory inorganic oxide carrier. Any of the commonly used gas oil desulfurization catalysts that meet the above conditions can be used. As the refractory inorganic oxide serving as a carrier, alumina, silica, magnesia titania, zirconia, alumina-silica, alumina-boria, alumina-titania, titania-silica, alumina-magnesia, silica-magnesia, alumina-zirconia alone or the like More than one can be used. These refractory inorganic oxides are preferably gel-like substances, those obtained by adding water to solid fine powder, sol-like substances, those obtained by a coprecipitation method (cogel method), and the like.

【0015】上記担体の乾燥、焼成工程につき説明す
る。乾燥条件は、乾燥温度30〜200℃、乾燥時間
0.1〜24時間が適している。焼成条件は、焼成温度
300〜750℃、好ましくは450〜700℃が適し
ている。焼成温度が300℃より低いと焼成効果(不純
物の除去)が十分でなく、750℃を越えると無機酸化
物等の変質が起こり易くなる。焼成時間1〜10時間、
好ましくは2〜7時間が適している。
The drying and firing steps of the carrier will be described. Suitable drying conditions are a drying temperature of 30 to 200 ° C. and a drying time of 0.1 to 24 hours. Suitable firing conditions are firing temperatures of 300 to 750 ° C, preferably 450 to 700 ° C. If the firing temperature is lower than 300 ° C., the firing effect (removal of impurities) is not sufficient, and if the firing temperature is higher than 750 ° C., alteration of inorganic oxides and the like tends to occur. Firing time 1-10 hours,
Preferably, 2 to 7 hours are suitable.

【0016】上記操作により得られた担体に金属を担持
する工程につき説明する。上記操作により得られた金属
担持耐火性無機酸化物担体にコバルト、並びに周期律表
第6族金属中から選ばれる少なくとも1種を担持すれば
本発明の第一反応帯域で使用される触媒が得られる。担
持する金属は水素化活性金属であり、Co、並びにMo
および/またはWであることが好ましい。さらに、担持
金属がCoが酸化物換算で1〜10wt%、好ましくは
2〜8wt%、並びにMoおよび/またはWが酸化物換
算で5〜35wt%、好ましくは8〜30wt%である
ことが望ましい。活性金属は、CoMo、CoWが母体
であるが、Mo、WにFe、Pt、Pd、Rh、Ru、
Ir、Os等の他の8,9,10族金属を少なくとも1
種以上を添加しても良い。
The step of supporting a metal on the carrier obtained by the above operation will be described. The catalyst used in the first reaction zone of the present invention can be obtained by supporting cobalt and at least one selected from the metals belonging to Group 6 of the periodic table on the metal-supported refractory inorganic oxide support obtained by the above operation. Can be The supported metals are hydrogenation active metals, Co, and Mo.
And / or W. Further, it is desirable that the supported metal is such that Co is 1 to 10 wt%, preferably 2 to 8 wt% in terms of oxide, and Mo and / or W is 5 to 35 wt%, preferably 8 to 30 wt% in terms of oxide. . The active metal is based on CoMo and CoW, but Mo and W are Fe, Pt, Pd, Rh, Ru,
At least one other Group 8, 9, 10 metal such as Ir, Os
Seeds or more may be added.

【0017】担体への金属担持法は常圧含浸法、真空含
浸法、混練法、共沈法など通常の方法を用いればよい。
金属の分散性を高めるため、金属溶液に水溶性有機溶媒
を添加しても良い。担持されたものは乾燥、焼成工程を
経て本発明の第一反応帯域で使用される触媒となる。乾
燥、焼成条件は通常の脱硫触媒の乾燥、焼成条件を適用
すればよい。具体的には、乾燥温度30〜200℃、乾
燥時間0.1〜24時間、焼成温度200〜750℃、
好ましくは300〜700℃、焼成時間1〜10時間、
好ましくは2〜7時間が好適である。焼成温度が200
℃より低いと焼成効果(不純物の除去)が不十分とな
り、750℃を越えると耐火性無機酸化物の変質、担持
金属のシンタリングによる変質などが起こり易く好まし
くない。
As the method of loading the metal on the carrier, a normal method such as a normal pressure impregnation method, a vacuum impregnation method, a kneading method and a coprecipitation method may be used.
In order to enhance the dispersibility of the metal, a water-soluble organic solvent may be added to the metal solution. The supported product becomes a catalyst to be used in the first reaction zone of the present invention through a drying and calcination process. The drying and calcining conditions may be the same as those for ordinary desulfurization catalysts. Specifically, a drying temperature of 30 to 200 ° C., a drying time of 0.1 to 24 hours, a firing temperature of 200 to 750 ° C.,
Preferably 300 to 700 ° C, firing time 1 to 10 hours,
Preferably, 2 to 7 hours are suitable. Firing temperature 200
If the temperature is lower than ℃, the firing effect (removal of impurities) becomes insufficient. If the temperature is higher than 750 ° C, deterioration of the refractory inorganic oxide and deterioration due to sintering of the supported metal tend to occur, which is not preferable.

【0018】なお、上記触媒はりんおよび/またはほう
素を含有するものが好適に使用できる。りんの含有量は
酸化物として1〜25wt%、さらには2〜20wtが
好ましい。また、ほう素の含有量は2〜30wt%、さ
らには3〜25wtが好ましい。これらの含有量が多す
ぎると担持金属のモリブデンの凝集を起こさせることが
あり、少なすぎると効果が薄い。りん、ほう素の添加方
法は無機酸化物として担体中に混合してもよいし、担持
金属と同時に担体に担持してもよい。本発明において第
一反応帯域で現実的に使用される触媒としては、Co−
Mo−PまたはCo−Mo−Bを含有する触媒が特に好
適に使用できる。
The catalyst preferably contains phosphorus and / or boron. The content of phosphorus is preferably 1 to 25% by weight, more preferably 2 to 20% by weight as an oxide. Further, the boron content is preferably 2 to 30 wt%, more preferably 3 to 25 wt%. If these contents are too large, the molybdenum of the supported metal may be agglomerated, while if too small, the effect is weak. Phosphorus or boron may be added to the carrier as an inorganic oxide or may be supported on the carrier simultaneously with the supported metal. In the present invention, the catalyst actually used in the first reaction zone includes Co-
A catalyst containing Mo-P or Co-Mo-B can be particularly preferably used.

【0019】本発明の第二反応帯域以降(二段目以降)
で使用される触媒は、細孔径はその前段より5〜50Å
大きいもの、好ましくは10〜40Å大きいものとす
る。また、比表面積は通常前段より5〜50m2 /g、
好ましくは20〜40m2 /g小さいものを用いる。ま
た、第二反応帯域以降の少なくとも一つの反応帯域の触
媒が細孔分布に二つのピークを持つものが好ましい。細
孔分布の二つのピークがそれぞれ55〜140Åおよび
500〜2000Åの範囲にあることが特に好ましい触
媒となる。なお、ピークとは細孔分布測定の両端の部分
でない細孔径の部分にあるものを言う。
The second and subsequent reaction zones of the present invention (second and subsequent stages)
The catalyst used in the above has a pore diameter of 5 to 50 °
Large, preferably 10 to 40 ° larger. Also, the specific surface area is usually 5 to 50 m 2 / g from the previous stage,
Preferably, a material smaller by 20 to 40 m 2 / g is used. Further, it is preferable that the catalyst in at least one reaction zone after the second reaction zone has two peaks in the pore distribution. A particularly preferred catalyst has two peaks in the pore distribution in the range of 55-140 ° and 500-2000 °, respectively. The peak refers to a peak at a portion of the pore diameter which is not at both ends of the pore distribution measurement.

【0020】さらに、本発明の第二反応帯域以降(二段
目以降)で使用される触媒は、耐火性無機酸化物担体に
ニッケルおよび/またはコバルト、並びに周期律表第6
族金属中から選ばれる少なくとも1種を担持した触媒で
あればよい。通常用いられる炭化水素油の脱硫触媒のう
ち上記条件に適合するものであれば使用することができ
る。担体となる耐火性無機酸化物としてはアルミナ、シ
リカ、マグネシア チタニア、ジルコニア、アルミナ−
シリカ、アルミナ−ボリア、アルミナ−チタニア、チタ
ニア−シリカ、アルミナ−マグネシア、シリカ−マグネ
シア、アルミナ−ジルコニアなどを単独または複数で用
いることができる。これらの耐火性無機酸化物はゲル状
物質、固体微粉末に水を加えたもの、ゾル状物質、共沈
法(コゲル法)により得られるものなどが好適である。
Further, the catalyst used in the second reaction zone and thereafter (second and subsequent stages) of the present invention may be a refractory inorganic oxide carrier containing nickel and / or cobalt, and the sixth element of the periodic table.
Any catalyst may be used as long as it supports at least one selected from group metals. Any of the commonly used hydrocarbon oil desulfurization catalysts that meet the above conditions can be used. Alumina, silica, magnesia titania, zirconia, alumina
Silica, alumina-boria, alumina-titania, titania-silica, alumina-magnesia, silica-magnesia, alumina-zirconia and the like can be used alone or in combination. These refractory inorganic oxides are preferably gel-like substances, those obtained by adding water to solid fine powder, sol-like substances, those obtained by a coprecipitation method (cogel method), and the like.

【0021】上記担体の乾燥、焼成工程につき説明す
る。乾燥条件は、乾燥温度30〜200℃、乾燥時間
0.1〜24時間が適している。焼成条件は、焼成温度
300〜750℃、好ましくは450〜700℃が適し
ている。焼成温度が300℃より低いと焼成効果(不純
物の除去)が十分でなく、750℃を越える無機酸化物
等の変質が起こり易くなる。焼成時間は1〜10時間、
好ましくは2〜7時間が適している。
The drying and firing steps of the carrier will be described. Suitable drying conditions are a drying temperature of 30 to 200 ° C. and a drying time of 0.1 to 24 hours. Suitable firing conditions are firing temperatures of 300 to 750 ° C, preferably 450 to 700 ° C. If the sintering temperature is lower than 300 ° C., the sintering effect (removal of impurities) is not sufficient, and the quality of the inorganic oxide or the like exceeding 750 ° C. is likely to change. Firing time is 1 to 10 hours,
Preferably, 2 to 7 hours are suitable.

【0022】上記操作により得られた担体に金属を担持
する工程につき説明する。上記操作により得られた金属
担持耐火性無機酸化物担体にニッケルおよび/またはコ
バルト、並びに周期律表第6族金属中から選ばれる少な
くとも1種を担持すれば、本発明の第二反応帯域以降で
使用される触媒が得られる。担持する金属は水素化活性
金属であり、Niおよび/またはコバルト並びにMoお
よび/またはWであることが好ましい。さらに、担持金
属がNiが酸化物換算で1〜10wt%、好ましくは2
〜8wt%、Coが酸化物換算で1〜10wt%、好ま
しくは2〜8wt%、並びにMoおよび/またはWが酸
化物換算で5〜35wt%、好ましくは8〜30wt%
であることが望ましい。活性金属は、CoMo、NiM
o、NiW、CoWが母体であるが、Mo、WにFe、
Pt、Pd、Rh、Ru、Ir、Os等の他の8,9,
10族金属を少なくとも1種以上を添加しても良い。C
oMo、NiMoが好ましい担体への金属担持法は常圧
含浸法、真空含浸法、混練法、共沈法など通常の方法を
用いればよい。金属の分散性を高めるため、金属溶液に
水溶性有機溶媒を添加しても良い。担持されたものは乾
燥、焼成工程を経て本発明の第二反応帯域で使用される
触媒となる。乾燥、焼成条件は通常の脱硫触媒の乾燥、
焼成条件を適用すればよい。具体的には、乾燥温度30
〜200℃、乾燥時間0.1〜24時間、焼成温度20
0〜750℃、好ましくは300〜700℃、焼成時間
1〜10時間、好ましくは2〜7時間が好適である。焼
成温度が200℃より低いと焼成効果(不純物の除去)
が不十分となり、750℃を越えると耐火性無機酸化物
の変質、担持金属のシンタリングによる変質などが起こ
り易く好ましくない。
The step of supporting a metal on the carrier obtained by the above operation will be described. If the metal-supported refractory inorganic oxide support obtained by the above operation supports nickel and / or cobalt, and at least one selected from the Group 6 metals of the periodic table, the second reaction zone or later of the present invention can be used. The catalyst used is obtained. The supported metal is a hydrogenation active metal, preferably Ni and / or cobalt and Mo and / or W. Further, the supported metal is Ni in an amount of 1 to 10% by weight in terms of oxide, preferably 2 to 10% by weight.
-8 wt%, Co is 1-10 wt%, preferably 2-8 wt% in terms of oxide, and Mo and / or W is 5-35 wt%, preferably 8-30 wt% in terms of oxide.
It is desirable that Active metals are CoMo, NiM
o, NiW, and CoW are the bases, but Mo and W are Fe,
Other 8, 9, Pt, Pd, Rh, Ru, Ir, Os, etc.
At least one group 10 metal may be added. C
As a method for supporting the metal on a carrier, which is preferably oMo or NiMo, a normal method such as a normal pressure impregnation method, a vacuum impregnation method, a kneading method, and a coprecipitation method may be used. In order to enhance the dispersibility of the metal, a water-soluble organic solvent may be added to the metal solution. The supported product becomes a catalyst used in the second reaction zone of the present invention through a drying and calcination process. Drying and calcination conditions are the usual drying of desulfurization catalyst,
Sintering conditions may be applied. Specifically, the drying temperature 30
~ 200 ° C, drying time 0.1 ~ 24 hours, firing temperature 20
0 to 750 ° C, preferably 300 to 700 ° C, and a firing time of 1 to 10 hours, preferably 2 to 7 hours are suitable. If the firing temperature is lower than 200 ° C., the firing effect (removal of impurities)
If the temperature exceeds 750 ° C., alteration of the refractory inorganic oxide and alteration due to sintering of the supported metal tend to occur, which is not preferable.

【0023】なお、上記触媒はりんおよび/またはほう
素を含有するものが好適に使用できる。りんの含有量は
酸化物として1〜25wt%、さらには2〜20wtが
好ましい。また、ほう素の含有量は2〜30wt%、さ
らには3〜25wtが好ましい。これらの含有量が多す
ぎると担持金属のモリブデンの凝集を起こさせることが
あり、少なすぎると効果が薄い。りん、ほう素の添加方
法は無機酸化物として担体中に混合してもよいし、担持
金属と同時に担体に担持してもよい。なお、本発明にお
いて第二反応帯域以降で使用される触媒としては、Ni
−Mo−P、Ni−Mo−B、Co−Mo−P、Co−
Mo−B、Ni−Co−Mo−P、またはNi−Co−
Mo−Bを含有する触媒が特に好適に使用できる。異性
化能を強化するために、ゼオライトの酸性質と金属の水
素化活性をバランスよく設計したゼオライト触媒を第二
反応帯域以降に使用しても効果的である。
The catalyst preferably contains phosphorus and / or boron. The content of phosphorus is preferably 1 to 25% by weight, more preferably 2 to 20% by weight as an oxide. Further, the boron content is preferably 2 to 30 wt%, more preferably 3 to 25 wt%. If these contents are too large, the molybdenum of the supported metal may be agglomerated, while if too small, the effect is weak. Phosphorus or boron may be added to the carrier as an inorganic oxide or may be supported on the carrier simultaneously with the supported metal. In the present invention, the catalyst used after the second reaction zone is Ni
-Mo-P, Ni-Mo-B, Co-Mo-P, Co-
Mo-B, Ni-Co-Mo-P, or Ni-Co-
A catalyst containing Mo-B can be particularly preferably used. In order to enhance the isomerization ability, it is effective to use a zeolite catalyst in which the acid properties of zeolite and the hydrogenation activity of the metal are well-balanced in the second and subsequent reaction zones.

【0024】それぞれの反応帯域の触媒量は、第一反応
帯域の触媒量が全触媒量に対し10〜85vol%、第
二反応帯域以降の触媒量が全触媒量に対し15〜90v
ol%であることが好ましい。なお、以上の触媒の充填
量比を満足していれば、本発明の目的を損なわない範囲
で他の反応帯域が存在し他の触媒または上記の触媒がさ
らに存在することを否定するものではない。
The amount of catalyst in each reaction zone is such that the amount of catalyst in the first reaction zone is 10 to 85 vol% with respect to the total amount of catalyst, and the amount of catalyst after the second reaction zone is 15 to 90 vol% with respect to the total amount of catalyst.
ol% is preferred. In addition, as long as the above-mentioned catalyst filling ratio is satisfied, it does not deny that other reaction zones exist and other catalysts or the above-mentioned catalysts further exist within a range that does not impair the object of the present invention. .

【0025】上記すべての応帯域で使用される触媒に共
通する代表的な製造方法につき説明しておく。担持処理
に用いられる金属化合物としては、特に限定されないが
酸化物、硫酸塩、硝酸塩、炭酸塩、塩基性炭酸塩、蓚酸
塩、酢酸塩、アンモニウム塩、有機酸塩、ハロゲン化物
等の水溶液が好適に用いられる。具体的には、パラモリ
ブデン酸塩、メタモリブデン酸塩、三酸化モリブデン、
パラタングステン酸塩、メタタングステン酸塩、三酸化
タングステン、硝酸ニッケル、硝酸コバルト、塩基性炭
酸コバルト、塩基性炭酸ニッケル等を水溶液としたもの
が挙げられる。
A typical production method common to the catalysts used in all the above zones will be described. The metal compound used for the loading treatment is not particularly limited, but is preferably an aqueous solution of an oxide, a sulfate, a nitrate, a carbonate, a basic carbonate, an oxalate, an acetate, an ammonium salt, an organic acid salt, a halide, or the like. Used for Specifically, paramolybdate, metamolybdate, molybdenum trioxide,
Examples thereof include aqueous solutions of paratungstate, metatungstate, tungsten trioxide, nickel nitrate, cobalt nitrate, basic cobalt carbonate, basic nickel carbonate, and the like.

【0026】また、金属化合物の担持処理に水酸基及び
/又はエーテル結合を有する水溶性有機化合物を用いる
と触媒上での担持金属の分散がよくなり、脱硫活性等が
向上させ得る。担持処理に用いられる水酸基及び/又は
エーテル結合を有する水溶性有機化合物としては、ポリ
オキシエチレンオクチルフェニルエーテル、ポリオキシ
エチレンフェニルエーテル、ポリエチレングリコール等
のエーテル含有水溶性高分子、ポリビニルアルコール等
のアルコール性水酸基含有水溶性高分子、サッカロー
ス、グルコース等の各糖類、メチルセルロース、デンプ
ン等の水溶性多糖類若しくはこれらの誘導体が挙げられ
る。好ましくはポリエチレングリコールが用いられる。
When a water-soluble organic compound having a hydroxyl group and / or an ether bond is used in the treatment of supporting the metal compound, the dispersion of the supported metal on the catalyst is improved, and the desulfurization activity and the like can be improved. Examples of the water-soluble organic compound having a hydroxyl group and / or an ether bond used in the supporting treatment include water-soluble polymers containing ether such as polyoxyethylene octyl phenyl ether, polyoxyethylene phenyl ether and polyethylene glycol, and alcoholic compounds such as polyvinyl alcohol. Examples thereof include water-soluble polymers containing hydroxyl groups, saccharides such as saccharose and glucose, and water-soluble polysaccharides such as methylcellulose and starch or derivatives thereof. Preferably, polyethylene glycol is used.

【0027】前記水溶性有機化合物としては分子量が3
00以上のものが用いられる。好ましくは分子量が30
0〜10,000、更に好ましくは分子量350〜6,
000のものが用いられる。300未満では触媒活性に
劣り、10,000を超えると溶解や担持工程に時間を
要し、取扱いが困難となることがある。前記水溶性有機
化合物の添加量は、耐火性酸化物担体100重量部に対
して好ましくは、0.5〜100重量部、更に好ましく
は1〜50重量部である。0.5重量部未満では、添加
効果が発揮されないことがあり、100重量部を超える
と担持が困難になることがある。
The water-soluble organic compound has a molecular weight of 3
A value of 00 or more is used. Preferably with a molecular weight of 30
0 to 10,000, more preferably 350 to 6,
000 are used. If it is less than 300, the catalytic activity is inferior, and if it exceeds 10,000, the dissolution and loading steps require time, and handling may be difficult. The amount of the water-soluble organic compound to be added is preferably 0.5 to 100 parts by weight, more preferably 1 to 50 parts by weight, based on 100 parts by weight of the refractory oxide carrier. If the amount is less than 0.5 part by weight, the effect of addition may not be exhibited, and if it exceeds 100 parts by weight, loading may be difficult.

【0028】担持法は特に限定されないが、真空含浸
法、常圧含浸法、浸漬法、混練法、塗布法等の公知の担
持操作及びこれらを組み合わせた方法が用いられる。前
記金属化合物と前記水溶性有機化合物の耐火性酸化物担
体への担持は、金属化合物と水溶性有機化合物の水溶液
を用いて同時に行うことが好ましい。あらかじめ水溶性
有機化合物又はその水溶液を用いて水溶性有機化合物を
耐火性酸化物担体上に担持し、次いで金属化合物水溶液
を用いて金属化合物を耐火性酸化物担体上に担持しても
よい。
The supporting method is not particularly limited, but known supporting operations such as vacuum impregnation method, normal pressure impregnation method, immersion method, kneading method, coating method and the like and a method combining these are used. The loading of the metal compound and the water-soluble organic compound on the refractory oxide carrier is preferably performed simultaneously using an aqueous solution of the metal compound and the water-soluble organic compound. The water-soluble organic compound or the aqueous solution thereof may be used to support the water-soluble organic compound on the refractory oxide carrier in advance, and then the metal compound may be supported on the refractory oxide carrier using the aqueous metal compound solution.

【0029】また、担持金属含浸液中に少なくとも一個
のアミノ基及び少なくとも一個のカルボキシル基を同時
に有する各種の有機化合物を存在させるとより一層脱硫
活性が向上する。少なくとも一個のアミノ基及び少なく
とも一個のカルボキシル基を同時に有する各種の有機化
合物のアミノ基及びカルボキンル基の数については、ア
ミノ基及びカルボキンル基を少なくとも一個ずつ有する
限り特に制限を受けず、例えば、モノアミノモノカルボ
ン酸、モノアミノジカルボン酸、ジアミノモノカルボン
酸等の中から自由に選択できるが、好ましいのはモノア
ミノジカルボン酸である。有機化合物構造中のアミノ基
及びカルボキシル基の結合位置についても特に制限を受
けず、例えば、α一アミノ酸、β―アミノ酸、γ一アミ
ノ酸等の中から自由に選択できるが、好ましいのはα一
アミノ酸である。総炭素数は2以上、特に3〜5の範囲
とするのが好ましい。そのようなアミノ酸としては、例
えば、グリシン、グルタミン酸、アスバラギン酸、アラ
エン等が挙げられ、これらの中で特に好ましいのはグル
タミン酸である。
When various organic compounds having at least one amino group and at least one carboxyl group are simultaneously present in the supported metal impregnating liquid, the desulfurization activity is further improved. The number of amino groups and carboquinol groups of various organic compounds having at least one amino group and at least one carboxyl group at the same time is not particularly limited as long as it has at least one amino group and at least one carboquinol group. It can be freely selected from monocarboxylic acid, monoaminodicarboxylic acid, diaminomonocarboxylic acid, and the like, and preferred is monoaminodicarboxylic acid. The bonding position of the amino group and the carboxyl group in the organic compound structure is not particularly limited, and can be freely selected from, for example, α-amino acid, β-amino acid, γ-amino acid, etc. It is. It is preferable that the total number of carbon atoms be 2 or more, particularly 3 to 5. Such amino acids include, for example, glycine, glutamic acid, aspartic acid, and araene, among which glutamic acid is particularly preferred.

【0030】成分であるアミノ酸は、担持金属成分であ
る金属化合物と水溶性の錯体を形成することにより、含
浸液中の担持金属成分の分散性を向上させてその沈殿を
防止し、含浸液を充分に安定化させる。従ってこの含浸
液を使用する場合には、担体上に活性金属化合物を均一
かつ効果的に担持できる。含浸液は前記の担持金属成分
を必要に応じて選択した溶媒に溶解することにより製造
できる。溶媒は、通常、水を使用するが含浸液の安定性
を高めるためにpHを7〜11に調整する必要がある。
pH調整剤としては、従来から一般に使用されている塩
基及び酸を使用できる。また溶媒として、初めからアン
モニア水を使用しても差し支えない。
The amino acid as a component forms a water-soluble complex with a metal compound as a supported metal component, thereby improving the dispersibility of the supported metal component in the impregnating solution, preventing precipitation of the impregnating solution, and forming the impregnating solution. Stabilize well. Therefore, when this impregnating liquid is used, the active metal compound can be uniformly and effectively supported on the carrier. The impregnating liquid can be produced by dissolving the above-mentioned supported metal component in a solvent selected as required. As the solvent, water is usually used, but it is necessary to adjust the pH to 7 to 11 in order to enhance the stability of the impregnating liquid.
As the pH adjuster, bases and acids generally used conventionally can be used. Ammonia water may be used as a solvent from the beginning.

【0031】つぎに、上記のような触媒の配置の下での
軽油の水素化処理方法について説明する。反応形式は特
に限定されないが、通常は固定床流通式反応装置を用い
て上述の触媒を上述の配置方法で配置して軽油を水素化
脱硫する。反応塔の上部から通油するダウンフロー型の
反応、反応塔の下部から通油するアップフロー型の反応
のどちらも選択できるがどちらの場合も触媒の配置は通
油の方向を基準として上述の方法で行えばよい。本発明
で使用される軽油とは、直留軽油、水素化分解軽油、接
触分解軽油、熱分解軽油、コーカーガスオイル、水素化
処理軽油、水素化脱硫軽油など軽油の基材としてそのま
ま用いられるものあるいはそれらの混合物だけでなく、
水素化脱硫その他水素化処理した灯軽油留分、重質軽
油、減圧軽油のような重質化した留分、あるいはこれら
の混合物、またはこれらと前記軽油の基材との混合物や
一部に灯油や重油、ナフサ等を含むものでもよい。
Next, a method for hydrotreating light oil under the above-described catalyst arrangement will be described. The type of reaction is not particularly limited, but usually the gas oil is hydrodesulfurized by disposing the above-mentioned catalyst by the above-mentioned disposition method using a fixed-bed flow reactor. It is possible to select either a down-flow type reaction in which oil is passed from the upper part of the reaction tower or an up-flow type reaction in which oil is passed from the lower part of the reaction tower.In either case, the arrangement of the catalyst is based on the direction of oil flow as described above. It can be done by the method. The gas oil used in the present invention is a straight-run gas oil, hydrocracked gas oil, catalytic cracking gas oil, pyrolysis gas oil, coker gas oil, hydrotreated gas oil, hydrodesulfurized gas oil, etc. Or not just their mixtures,
Hydrodesulfurization and other hydrotreated kerosene gas oil fractions, heavy gas oils, heavy fractions such as vacuum gas oils, or mixtures thereof, or mixtures of these with the base material of the gas oil or partially kerosene And heavy oil, naphtha and the like.

【0032】水素化処理条件としては、反応温度:25
0〜450℃、好ましくは300〜400℃、さらに好
ましくは320〜380℃、水素分圧:1.0〜200
kg/cm2 G、好ましくは10〜150kg/cm2
G、さらに好ましくは20〜90kg/cm2 Gが好適
である。さらに、水素/油比は10〜2,000Nm 3
/キロリットル 、好ましくは30〜1,500Nm3 /キロリットル
、さらに好ましくは50〜700Nm3 /キロリットル 、液
空間速度(LHSV)は0.1〜15h-1、好ましくは
0.2〜10h-1、さらに好ましくは0.5〜5h-1
好適である。
Hydrotreating conditions include a reaction temperature of 25.
0 to 450 ° C, preferably 300 to 400 ° C, more preferably
Preferably 320-380 ° C, hydrogen partial pressure: 1.0-200
kg / cmTwoG, preferably 10 to 150 kg / cmTwo
G, more preferably 20-90 kg / cmTwoG is preferred
It is. Further, the hydrogen / oil ratio is 10 to 2,000 Nm. Three
/ Kl, preferably 30-1,500 NmThree/ Kl
 , More preferably 50 to 700 NmThree/ Kl, liquid
Space velocity (LHSV) 0.1 ~ 15h-1,Preferably
0.2-10h-1, More preferably 0.5 to 5 h-1But
It is suitable.

【0033】上記のような本発明の軽油の水素化処理方
法によれば、高い水素化脱硫活性が発揮でき、各種軽油
の脱硫を効率良く行い、かつ生成油の安定性の悪い芳香
族による着色を防止し、しかも過分解による軽油留分の
損失を極力防止した軽油の水素化処理方法、特に硫黄分
を大幅に低減し、多環アロマの低減も併せて行うことが
できる軽油の水素化処理方法を提供することができる。
このように、本発明は平均細孔直径(細孔径)の制御さ
れた触媒を特別の状態に配置し、水素および硫化水素の
触媒活性点付近での拡散を促進すること、およびNi系
触媒等の異性化能、核水素化能を選択的に利用した軽油
の水素化脱硫等の水素化処理方法を提供し、軽油中の難
脱硫性硫黄化合物の高度な脱硫により環境問題に対応し
た軽油を製造する方法である。
According to the gas oil hydrotreating method of the present invention as described above, high hydrodesulfurization activity can be exhibited, various gas oils can be efficiently desulfurized, and the generated oil is colored with poor aromaticity. Gas oil hydrotreatment method that minimizes gas oil fraction loss due to overcracking and minimizes sulfur content, and in particular, reduces sulfur content and reduces polycyclic aroma. A method can be provided.
As described above, the present invention arranges a catalyst having a controlled average pore diameter (pore diameter) in a special state to promote the diffusion of hydrogen and hydrogen sulfide in the vicinity of a catalytically active point, and a Ni-based catalyst or the like. To provide a hydrotreating method such as hydrodesulfurization of gas oil that selectively utilizes the isomerization ability and nuclear hydrogenation ability of gas oil, and to develop a light oil that responds to environmental issues by advanced desulfurization of difficult-to-desulfurize sulfur compounds in gas oil. It is a manufacturing method.

【0034】なお、本発明における触媒細孔直径測定お
よび比表面積測定方法はBJH法(Barrett−J
oyner−Halenda法)により窒素ガス吸着法
で求めた。
The method for measuring the catalyst pore diameter and the specific surface area in the present invention is described in the BJH method (Barrett-J
Oyner-Halenda method).

【0035】[0035]

【実施例】次に、本発明を実施例により具体的に説明す
るが、本発明はこれらの実施例によりなんら制限される
ものではない。なお、最初に実施例、比較例で使用する
触媒の製造につき説明し、その触媒を用いた実施例を説
明する。 「触媒の製造」 触媒製造例1 触媒A:CoMoPアルミナ アルミナベーマイトゲル100g(乾燥重量)を混練捏
和、円柱で押出し成形し、乾燥(120℃、3時間)、
焼成(550℃,3時間)することで成形担体を用い、
ポリエチレングリコール400(分子量約400)10
g、炭酸コバルト、酸化モリブデン、正リン酸を混合し
た含浸溶液を含浸担持し、その後、乾燥(120℃,3
時間)、焼成(350℃,3時間)することでCoO
5.5wt%,MoO3 22.3wt%,P2 5
2.2wt%のCoMoPアルミナ触媒Aを得た。この
触媒AはBJH法により窒素ガス吸着法で求め、平均細
孔径は83.4Å、比表面積(SA)は210m2 /g
であった。
EXAMPLES Next, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples. The production of the catalysts used in Examples and Comparative Examples will be described first, and Examples using the catalysts will be described. "Production of Catalyst" Catalyst Production Example 1 Catalyst A: CoMoP alumina 100 g (dry weight) of alumina boehmite gel, kneaded and kneaded, extruded with a cylinder, dried (120 ° C., 3 hours),
By firing (550 ° C, 3 hours), using a molded carrier,
Polyethylene glycol 400 (molecular weight about 400) 10
g, cobalt carbonate, molybdenum oxide, and orthophosphoric acid were impregnated and supported, and then dried (120 ° C., 3
Time) and firing (350 ° C., 3 hours)
5.5 wt%, MoO 3 22.3 wt%, P 2 O 5
A 2.2 wt% CoMoP alumina catalyst A was obtained. The catalyst A was obtained by a BJH method using a nitrogen gas adsorption method, and had an average pore diameter of 83.4 ° and a specific surface area (SA) of 210 m 2 / g.
Met.

【0036】触媒製造例2 触媒B:CoMoPアルミナ 触媒Aに用いたアルミナ担体と異なる平均細孔径を有す
る成形担体を用い、ポリエチレングリコール400(分
子量約400)10gと炭酸コバルト、酸化モリブデ
ン、正リン酸を混合した含浸溶液を含浸担持し、その
後、触媒Aと同様に乾燥、焼成し、CoO 4.0wt
%,MoO3 20.4wt%,P2 52.4wt%
のCoMoP触媒Bを得た。平均細孔径は95Å、SA
は194m 2 /gであった。
Catalyst Production Example 2 Catalyst B: CoMoP alumina having an average pore diameter different from that of the alumina carrier used for Catalyst A
Polyethylene glycol 400 (min.
10 g of cobalt carbonate, molybdenum oxide
And an impregnating solution mixed with orthophosphoric acid.
Thereafter, drying and calcination were performed in the same manner as in the case of the catalyst A, and 4.0 wt.
%, MoOThree 20.4wt%, PTwoOFive2.4wt%
Of CoMoP catalyst B was obtained. Average pore size is 95 °, SA
Is 194m Two/ G.

【0037】触媒製造例3 触媒C:CoMoPアルミナ 触媒A,Bと異なる平均細孔径を持つ成形担体を用い、
ポリエチレングリコール400(分子量約400)10
gと炭酸コバルト、酸化モリブデン、正リン酸を混合し
た含浸溶液を含浸担持し、乾燥(120℃,3時間)、
焼成(350℃,3時間)することでCoO 4.2w
t%、MoO3 21.4wt%,P25 2.5w
t%のCoMoPアルミナ触媒Cを得た。平均細孔径は
102Å、SAは186m2 /gであった。
Catalyst Production Example 3 Catalyst C: CoMoP alumina A molded carrier having an average pore diameter different from that of catalysts A and B was used.
Polyethylene glycol 400 (molecular weight about 400) 10
g, cobalt carbonate, molybdenum oxide and orthophosphoric acid, impregnated and supported, and dried (120 ° C., 3 hours)
By firing (350 ° C, 3 hours), CoO 4.2w
t%, MoO 3 21.4 wt%, P 2 O 5 2.5w
t% CoMoP alumina catalyst C was obtained. The average pore diameter was 102 °, and the SA was 186 m 2 / g.

【0038】触媒製造例4 触媒D:NiMoPアルミナ 触媒Bに用いた成形担体にポリエチレングリコール40
0(分子量約400)10g炭酸ニッケル、酸化モリブ
デン、正リン酸を混合した含浸溶液を含浸担持し、Ni
O 4.2wt%,MoO3 20.8wt%,P2
5 2.6wt%のNiMoPアルミナ触媒Dを得た。
平均細孔径 95Å、SA 190m2/gであった。
Catalyst Production Example 4 Catalyst D: NiMoP alumina Polyethylene glycol 40 was used on the molded carrier used for Catalyst B.
0 (molecular weight: about 400) 10 g by impregnating and supporting an impregnating solution obtained by mixing nickel carbonate, molybdenum oxide, and orthophosphoric acid.
O 4.2 wt%, MoO 3 20.8 wt%, P 2 O
5 2.6 wt% of NiMoP alumina catalyst D was obtained.
The average pore diameter was 95 ° and the SA was 190 m 2 / g.

【0039】触媒製造例5 触媒E:NiMoPアルミナ 触媒Cに用いた成形担体にポリエチレングリコール40
0(分子量約400)10gと炭酸ニッケル、酸化モリ
ブデン、正リン酸を混合した含浸溶液を含浸担持しNi
O 5.2wt%,MoO3 22.8wt%,P2
5 2.3wt%のNiMoPアルミナ触媒Eを得た。
平均細孔径 103Å 、 SA 182m2 /gであ
った。
Catalyst Production Example 5 Catalyst E: NiMoP alumina Polyethylene glycol 40 was used as the shaped carrier used for Catalyst C.
0 (molecular weight: about 400), and impregnated with an impregnating solution in which nickel carbonate, molybdenum oxide, and orthophosphoric acid are mixed.
O 5.2 wt%, MoO 3 22.8 wt%, P 2 O
5 A 2.3 wt% NiMoP alumina catalyst E was obtained.
The average pore diameter was 103 ° and the SA was 182 m 2 / g.

【0040】触媒製造例6 触媒F:NiMoP/アルミナ 触媒Aに用いた成形担体にポリエチレングリコール40
0(分子量約400)10g、炭酸ニッケル、酸化モリ
ブデン、正リン酸を混合した含浸溶液を含浸担持し、N
iO 5.0wt%,MoO3 21.6wt%,P2
5 2.5wt%のNiMoPアルミナ触媒Fを得
た。平均細孔径 82.3Å 、SA 208m2 /g
であった。
Catalyst Production Example 6 Catalyst F: NiMoP / Alumina Polyethylene glycol 40 was used on the shaped carrier used for Catalyst A.
0 (molecular weight: about 400), impregnated with an impregnating solution obtained by mixing nickel carbonate, molybdenum oxide, and orthophosphoric acid.
iO 5.0wt%, MoO 3 21.6wt% , P 2
A NiMoP alumina catalyst F of 2.5 wt% of O 5 was obtained. Average pore diameter 82.3Å, SA 208 m 2 / g
Met.

【0041】「軽油留分の水素化脱硫処理」 (実施例1)固定床流通式反応装置の反応管に全触媒量
を100ccとし、下段からCoMoPアルミナ触媒A
を50vol%、CoMoPアルミナ触媒Bを25vo
l%、さらにCoMoPアルミナ触媒Cを25vol%
を充填した。原料油は水素ガスと共に反応管の下段から
導入するアップフロー形式で流通させて反応性を評価し
た。予備硫化及び水素化脱硫処理用原料として表1に示
す性状の中東系直留軽油(LGO)を用いた。予備硫化
は水素ガスと共に250℃24時間流通することにより
行った。予備硫化後、原料油(LGO)を水素ガスと共
に流通して水素化脱硫処理を行った。反応温度350
℃、水素分圧50kg/cm2 、水素ガス/原料油比2
50Nm3 /kl、LHSV 2.0hr-1の条件で実
施した。生成油の硫黄分の評価結果を表2に示す。
"Hydrodesulfurization Treatment of Gas Oil Fraction" (Example 1) The total catalyst amount was set to 100 cc in a reaction tube of a fixed bed flow type reactor, and CoMoP alumina catalyst A was used from the lower stage.
50 vol%, CoMoP alumina catalyst B 25 vol
1%, and further 25% by volume of CoMoP alumina catalyst C
Was charged. The feedstock was circulated together with hydrogen gas in an up-flow manner to be introduced from the lower stage of the reaction tube, and the reactivity was evaluated. As a raw material for the preliminary sulfurization and hydrodesulfurization treatment, a Middle Eastern straight-run gas oil (LGO) having the properties shown in Table 1 was used. Preliminary sulfurization was performed by flowing at 250 ° C. for 24 hours together with hydrogen gas. After the pre-sulfurization, the raw oil (LGO) was circulated together with hydrogen gas to perform hydrodesulfurization treatment. Reaction temperature 350
° C, hydrogen partial pressure 50 kg / cm 2 , hydrogen gas / feed oil ratio 2
The test was performed under the conditions of 50 Nm 3 / kl and LHSV 2.0 hr −1 . Table 2 shows the evaluation results of the sulfur content of the produced oil.

【0042】(実施例2)全触媒量を100cc、下段
からCoMoP触媒Aを50vol%、NiMoP触媒
Dを25vol%、さらにCoMoP触媒Cを25vo
l%を充填し、実施例1と同様に評価した。評価結果を
表2に示す。 (実施例3)全触媒量を100cc、下段からCoMo
P触媒Aを50vol%、NiMoP触媒Eを50vo
l%を充填し、実施例1と同様に評価した。評価結果を
表2に示す。
(Example 2) The total amount of the catalyst was 100 cc. From the lower stage, 50% by volume of CoMoP catalyst A, 25% by volume of NiMoP catalyst D, and 25% by volume of CoMoP catalyst C.
1%, and evaluated in the same manner as in Example 1. Table 2 shows the evaluation results. (Example 3) The total catalyst amount was 100 cc, and CoMo was
50 vol% of P catalyst A and 50 vol of NiMoP catalyst E
1%, and evaluated in the same manner as in Example 1. Table 2 shows the evaluation results.

【0043】(比較例1)全触媒量を100cc、Co
MoP触媒Aを100vol%充填し、実施例1と同様
に評価した。評価結果を表2に示す。 (比較例2)全触媒量を100cc、下段からCoMo
P触媒Aを50vol%、NiMoP触媒Fを50vo
l%充填し、実施例1と同様に評価した。評価結果を表
2に示す。
(Comparative Example 1) The total catalyst amount was 100 cc,
The MoP catalyst A was filled at 100 vol% and evaluated in the same manner as in Example 1. Table 2 shows the evaluation results. (Comparative Example 2) The total catalyst amount was 100 cc, and CoMo was
50 vol% of P catalyst A, 50 vol of NiMoP catalyst F
1% and evaluated in the same manner as in Example 1. Table 2 shows the evaluation results.

【0044】[0044]

【表1】 [Table 1]

【0045】[0045]

【表2】 [Table 2]

【0046】[0046]

【発明の効果】本発明の触媒の組み合わせによれば、軽
油留分は十分に脱硫され硫黄分200wtppm以下、
特に実施例のような反応条件下では85wtppm以下
の軽油の製造が可能となる。
According to the catalyst combination of the present invention, the gas oil fraction is sufficiently desulfurized and has a sulfur content of 200 wtppm or less,
In particular, under the reaction conditions as in the examples, it becomes possible to produce light oil of 85 wtppm or less.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G069 AA03 BA01A BA01B BA02A BA03A BA04A BA05A BA06A BA20A BB01B BB04A BB04B BB06A BC57A BC59A BC59B BC60A BC67A BC68A BC68B BD01A BD02B BD03A BD07B CC02 EC03Y EC14X EC14Y EC15X EC15Y EE09 4H029 CA00 DA00  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G069 AA03 BA01A BA01B BA02A BA03A BA04A BA05A BA06A BA20A BB01B BB04A BB04B BB06A BC57A BC59A BC59B BC60A BC67A BC68A BC68B BD01A BD02B BD03A BD07EC00 EC03 EC00 EC03 EC00 ECY

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 二以上の接触的水素化処理反応帯域にお
いて軽油を水素化処理する方法であって、第一反応帯域
に耐火性無機酸化物担体に周期律表第6族金属およびコ
バルトを担持し、平均細孔直径が50〜90Åである触
媒を配置し、第二反応帯域以降に耐火性無機酸化物担体
に周期律表第6族金属並びにニッケルおよび/またはコ
バルトを担持し、平均細孔直径が該反応帯域の直前の反
応帯域の触媒の平均細孔直径より5〜50Å大きい触媒
を配置した軽油の水素化処理方法。
1. A method for hydrotreating light oil in two or more catalytic hydrotreating reaction zones, wherein a refractory inorganic oxide carrier carries a Group 6 metal and cobalt of the periodic table in a first reaction zone. A catalyst having an average pore diameter of 50 to 90 ° is arranged, and a refractory inorganic oxide carrier is loaded with a Group 6 metal of the periodic table and nickel and / or cobalt on the second and subsequent reaction zones; A method for hydrotreating light oil comprising a catalyst having a diameter of 5 to 50 ° larger than the average pore diameter of the catalyst in the reaction zone immediately before the reaction zone.
【請求項2】 反応帯域が2または3である請求項1記
載の軽油の水素化処理方法。
2. The method for hydrotreating light oil according to claim 1, wherein the number of reaction zones is 2 or 3.
【請求項3】 第一反応帯域の触媒量が全触媒量に対し
10〜85wt%、第二反応帯域以降の触媒量が全触媒
量に対し15〜90wt%である請求項1または2記載
の軽油の水素化処理方法。
3. The catalyst according to claim 1, wherein the amount of the catalyst in the first reaction zone is 10 to 85 wt% with respect to the total amount of the catalyst, and the amount of the catalyst after the second reaction zone is 15 to 90 wt% with respect to the total amount of the catalyst. Hydroprocessing of light oil.
【請求項4】 水素化処理が水素化脱硫処理である請求
項1〜3のいずれかに記載の軽油の水素化処理方法。
4. The method for hydrotreating light oil according to claim 1, wherein the hydrotreating is hydrodesulfurization.
JP21185199A 1999-07-27 1999-07-27 Hydrogenation method for gas oil Pending JP2001040368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21185199A JP2001040368A (en) 1999-07-27 1999-07-27 Hydrogenation method for gas oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21185199A JP2001040368A (en) 1999-07-27 1999-07-27 Hydrogenation method for gas oil

Publications (1)

Publication Number Publication Date
JP2001040368A true JP2001040368A (en) 2001-02-13

Family

ID=16612656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21185199A Pending JP2001040368A (en) 1999-07-27 1999-07-27 Hydrogenation method for gas oil

Country Status (1)

Country Link
JP (1) JP2001040368A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012142175A (en) * 2010-12-28 2012-07-26 Jx Nippon Oil & Energy Corp Desulfurization system for fuel cell, hydrogen manufacturing system for fuel cell, fuel cell system and desulfurization method of hydrocarbon-based fuel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012142175A (en) * 2010-12-28 2012-07-26 Jx Nippon Oil & Energy Corp Desulfurization system for fuel cell, hydrogen manufacturing system for fuel cell, fuel cell system and desulfurization method of hydrocarbon-based fuel

Similar Documents

Publication Publication Date Title
US8883673B2 (en) Catalyst and process for the manufacture of ultra-low sulfur distillate product
JP2631712B2 (en) Catalyst composition for hydrotreating heavy hydrocarbon oil and hydrotreating method using the same
US8431510B2 (en) Composition useful in the catalytic hydroprocessing of hydrocarbon feedstocks, a method of making such catalyst, and a process of using such catalyst
EP0341893A2 (en) Hydroprocessing catalyst and method of preparation
US9404053B2 (en) Low-pressure process utilizing a stacked-bed system of specific catalysts for the hydrotreating of a gas oil feedstock
EP0349223B1 (en) Hydroprocessing catalytic composition and the preparation and use thereof
WO2019196836A1 (en) Hydrorefining catalyst, preparation method therefor and use thereof
KR20140079304A (en) Residue hydrotreatment catalyst comprising vanadium, and its use in a residue hydroconversion process
JP3911217B2 (en) Hydrogen conversion reaction catalyst and process
JP4230257B2 (en) Hydrocarbon oil hydrotreating process using silica-alumina hydrotreating catalyst
JP2854484B2 (en) Hydroprocessing of kerosene oil fraction
CN113862027B (en) Grading method of heavy oil hydrotreating catalyst and heavy oil hydrotreating method
JP2004043579A (en) Method for hydrogenating gas oil
JP2001040368A (en) Hydrogenation method for gas oil
JP4938178B2 (en) Hydrocarbon hydrotreating method
JP4456692B2 (en) Process for hydrotreating diesel oil
RU2610869C2 (en) Hydroprocessing catalyst and methods of making and using such catalyst
JP4778605B2 (en) Hydrodesulfurization catalyst for diesel oil fraction
JP2004115581A (en) Method for demetallating petroleum heavy oil
JP4319812B2 (en) Hydroprocessing catalyst and hydrocarbon oil hydroprocessing method
JPH08243407A (en) Preparation of hydrogenated catalyst