JP4927571B2 - Semiconductor element, semiconductor module and electronic device - Google Patents

Semiconductor element, semiconductor module and electronic device Download PDF

Info

Publication number
JP4927571B2
JP4927571B2 JP2007007657A JP2007007657A JP4927571B2 JP 4927571 B2 JP4927571 B2 JP 4927571B2 JP 2007007657 A JP2007007657 A JP 2007007657A JP 2007007657 A JP2007007657 A JP 2007007657A JP 4927571 B2 JP4927571 B2 JP 4927571B2
Authority
JP
Japan
Prior art keywords
heat
layer
anisotropic
semiconductor
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007007657A
Other languages
Japanese (ja)
Other versions
JP2007221109A (en
Inventor
英道 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2007007657A priority Critical patent/JP4927571B2/en
Publication of JP2007221109A publication Critical patent/JP2007221109A/en
Priority to SG200805132-8A priority patent/SG144915A1/en
Application granted granted Critical
Publication of JP4927571B2 publication Critical patent/JP4927571B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor element, a semiconductor module and an electronic apparatus which are space-saving and can improve the cooling efficiency. <P>SOLUTION: In this semiconductor element, release of heat of a semiconductor chip and a laser chip is enabled by using an anisotropic thermally conductive member and combining a heat sink, etc. therewith appropriately. The anisotropic thermally conductive member is a member of a lamination structure wherein the layer thickness is adjusted corresponding to the mean free path and the wavelength of a phonon, and moves the heat of the semiconductor chip and the laser chip in a specified direction to release heat to a heat lead and a heat sink, etc. Further, the anisotropic thermally conductive member is used for the semiconductor element, and the semiconductor module and the electronic apparatus using it, to provide products superior in heat dissipation property. <P>COPYRIGHT: (C)2007,JPO&amp;INPIT

Description

本発明は、熱伝導率が面に垂直方向に比して面内方向で高い異方性熱伝導部材を有する半導体素子、半導体モジュールおよび電子機器に関する。   The present invention relates to a semiconductor element, a semiconductor module, and an electronic device having an anisotropic heat conductive member whose thermal conductivity is higher in an in-plane direction than in a direction perpendicular to the surface.

従来、半導体素子、レーザ素子、及びこれらのモジュール等(以下、発熱素子等という。)の冷却は、ヒートシンクを取り付ける方法、基板に放熱する方法等がとられてきた。単体のレーザチップでは、Cu、Al等の熱伝導率の高い材料からなるヒートシンクを用いて放熱する方法が用いられ、Siチップ等の半導体素子及びこれらのモジュールでは、発熱素子等からの熱をリード経由で基板に放熱する方法が広く用いられている。   Conventionally, a semiconductor element, a laser element, and a module thereof (hereinafter referred to as a heat generating element) have been cooled by a method of attaching a heat sink, a method of radiating heat to a substrate, or the like. In the case of a single laser chip, a method of dissipating heat using a heat sink made of a material having high thermal conductivity such as Cu or Al is used. In a semiconductor element such as a Si chip and these modules, the heat from a heating element or the like is read. A method of dissipating heat to the substrate via is widely used.

近年、携帯電話機等の携帯端末には、機能の拡大、送信電力の増大等の要求が一層高まってきている。かかる要求に応えるためには、内蔵する発熱素子等からの発熱量の増大の問題を解決しなければならない。極言すると、現状のままの放熱方法では、手で持つことさえ不可能になると言われている。そのため、内蔵する発熱素子等の効率的な冷却技術がきわめて重要となってきている。また、機能の拡大に伴う部品点数の増大により、発熱素子等に用いられる冷却手段は省スペース化が可能なものでなければならない。   In recent years, demands such as expansion of functions and increase of transmission power have been further increased for mobile terminals such as mobile phones. In order to meet such a demand, the problem of an increase in the amount of heat generated from the built-in heating element or the like must be solved. In other words, it is said that the heat dissipation method as it is cannot be held by hand. For this reason, efficient cooling technology for built-in heating elements and the like has become extremely important. Further, due to the increase in the number of parts accompanying the expansion of functions, the cooling means used for the heat generating element or the like must be able to save space.

ここで、等方的な熱伝導部材を用いたのでは、熱が輸送の途中で拡散してしまい、効果的に輸送できず、冷却、熱電変換等を効率的に行うことができないという問題があった。そのため、熱伝導部材として、例えばα−Siリッチ相とβ−Siリッチ相とを交互に積層して多層化した多層熱伝導部材を形成し、異層界面におけるフォノン散乱を利用して、層に垂直な方向のフォノン散乱を生じやすくし、この方向の熱絶縁性(以下、層垂直方向熱絶縁性という。)を向上させる方法なども検討されている(例えば、特許文献1参照)。しかし、この熱絶縁材料は、固溶体のある層と固溶体のない層を積層したものであり、積層厚が100μm程度とフォノンの自由行程距離よりも大幅に大きい厚さであり、さらに本発明のように膜厚方向には熱絶縁化しているが、膜面内では高熱伝性を有していない。
特開平8−276537号公報
Here, when an isotropic heat conducting member is used, heat is diffused in the middle of transportation and cannot be transported effectively, and cooling, thermoelectric conversion, etc. cannot be performed efficiently. there were. Therefore, as a heat conduction member, for example, a multilayer heat conduction member is formed by alternately laminating α-Si 3 N 4 rich phases and β-Si 3 N 4 rich phases to form phonon scattering at the interface between different layers. Utilizing this method, it is easy to generate phonon scattering in a direction perpendicular to the layer, and a method for improving the thermal insulation in this direction (hereinafter referred to as layer perpendicular thermal insulation) has been studied (for example, Patent Documents). 1). However, this thermal insulation material is a laminate of a layer with a solid solution and a layer without a solid solution, and the laminate thickness is about 100 μm, which is much larger than the free path distance of phonons. The film is thermally insulated in the film thickness direction, but does not have high thermal conductivity in the film plane.
JP-A-8-276537

しかしながら、従来の多層熱伝導部材を有する半導体素子、レーザ素子、及びこれらのモジュール等では、熱をヒートシンクまで効率良く伝達させて冷却することができないという問題があった。これは、従来の多層熱伝導部材では、各層の膜厚が100μm程度以上と、フォノンの平均自由行程よりも大幅に大きいため、熱を効率よく多層熱伝導部材内に閉じ込めることができず、熱輸送の際に熱が拡散してしまっていたからである。   However, the conventional semiconductor element, laser element, and these modules having a multilayer heat conduction member have a problem that heat cannot be efficiently transmitted to the heat sink and cooled. This is because in the conventional multilayer heat conducting member, the thickness of each layer is about 100 μm or more, which is much larger than the mean free path of phonons, so heat cannot be efficiently confined in the multilayer heat conducting member, This is because heat was diffused during transportation.

本発明は、このような問題を解決するためになされたもので、省スペースかつ冷却効率の向上が可能な、半導体素子、半導体モジュールおよび電子機器を実現することを目的とする。   The present invention has been made to solve such a problem, and an object thereof is to realize a semiconductor element, a semiconductor module, and an electronic apparatus that can save space and improve cooling efficiency.

本発明の第1の態様に係る半導体素子は、半導体チップと、前記半導体チップの少なくとも1つの面に形成され、熱伝導率の高い材料からなる熱伝導層と層厚(t)が動作温度での対象とするフォノンの平均自由工程より短く、且つ、層厚(t)がmを自然数とし、対象とするフォノンの波長をλで記載した場合に、後述する式(1)を満たす厚さになっている熱共振体層と、前記異方性熱伝導部材内の熱を外部に放熱するヒートリードと、前記異方性熱伝導部材と前記ヒートリードとを熱的に接触させる接触層と、前記異方性熱伝導部材、ヒートリード及び前記接触層を覆う保護膜と、を備えることを特徴とする。
A semiconductor element according to a first aspect of the present invention includes a semiconductor chip, a heat conductive layer formed on at least one surface of the semiconductor chip, made of a material having high thermal conductivity, and a layer thickness (t) at an operating temperature. Is shorter than the mean free path of the target phonon, the layer thickness (t) is a natural number, and the wavelength of the target phonon is described as λ, the thickness satisfies the formula (1) described later. A thermal resonator layer , a heat lead that radiates the heat in the anisotropic heat conducting member to the outside, a contact layer that makes the anisotropic heat conducting member and the heat lead in thermal contact with each other, And a protective film that covers the anisotropic heat conductive member, the heat lead, and the contact layer.

この態様によれば、異方性熱伝導部材は、面内で高い熱伝導率を有するため、半導体チップにおける局部的に突出して温度の高い部分の温度を下げ面内の温度分布を均一化させる。異方性熱伝導部材内の熱は、接触層を介してヒートリード側に伝達し、ヒートリード130を介して放熱される。これにより、半導体チップで発生した熱を効果的に放熱できる。また、異方性熱伝導部材を用いることによって異方性熱伝導部材の層に垂直方向への熱拡散を抑えることが可能となり、ヒートシンク等への熱伝達を効率的にすることができるため、冷却効率が飛躍的に改善できる。   According to this aspect, since the anisotropic heat conducting member has a high thermal conductivity in the plane, the temperature of the high temperature portion of the semiconductor chip protruding locally is lowered, and the temperature distribution in the plane is made uniform. . The heat in the anisotropic heat conducting member is transmitted to the heat lead side through the contact layer and is radiated through the heat lead 130. Thereby, the heat generated in the semiconductor chip can be effectively radiated. In addition, by using an anisotropic heat conductive member, it becomes possible to suppress thermal diffusion in the direction perpendicular to the layer of the anisotropic heat conductive member, and heat transfer to a heat sink or the like can be made efficient. Cooling efficiency can be dramatically improved.

本発明の他の態様に係る半導体素子は、端面出射型のレーザチップと、前記レーザチップの共振方向に沿った端面であって前記レーザチップを挟む2つの積層方向の端面の少なくとも一方に形成され、熱伝導率の高い材料からなる熱伝導層と層厚(t)が動作温度での対象とするフォノンの平均自由工程より短く、且つ、層厚(t)がmを自然数とし、対象とするフォノンの波長をλで記載した場合に、後述する式(1)を満たす厚さになっている熱共振体層とが交互に積層された異方性熱伝導部材と、前記異方性熱伝導部材が形成された積層方向端面に交差する端面であって前記共振方向に沿った端面上に、接触層を介して前記異方性熱伝導部材に接触するように形成されたヒートシンクと、を備えるレーザ素子として構成され、前記レーザチップが発生する熱を前記異方性熱伝導部材を介して前記ヒートシンクに伝達させて放熱することを特徴とする。
A semiconductor element according to another aspect of the present invention is formed on at least one of an end face emitting type laser chip and an end face in the laminating direction between the end face along the resonance direction of the laser chip and sandwiching the laser chip. , A heat conductive layer made of a material having a high thermal conductivity and a layer thickness (t) shorter than the mean free process of the target phonon at the operating temperature, and the layer thickness (t) is a natural number m When the wavelength of the phonon is described as λ, the anisotropic heat conduction member in which the thermal resonator layers having a thickness satisfying the formula (1) described later are alternately laminated, and the anisotropic heat conduction A heat sink formed on the end surface that intersects the end surface in the stacking direction on which the member is formed and that is along the resonance direction so as to contact the anisotropic heat conducting member via a contact layer. Configured as a laser element, Heat the chip is generated via the anisotropic heat conducting member, characterized in that the heat radiation by transmitted to the heat sink.

この態様によれば、レーザチップが発生した熱は、異方性熱伝導部材に伝わっていき、異方性熱伝導部材内を温度勾配に応じて流れる。その熱は、異方性熱伝導部材内を温度の低いヒートシンク側に伝達し、ヒートシンクで外部に放熱される。ここで、異方性熱伝導部材は、熱伝導率の異方性が高いため、熱は、外部に拡散せず異方性熱伝導部材内の熱伝導層内に閉じ込められたままヒートシンク側に伝達する。その結果、レーザチップを効率良く冷却できると共に、小型化できる。さらに、レーザチップ内の温度分布の偏りを減少させることが可能となる。   According to this aspect, the heat generated by the laser chip is transferred to the anisotropic heat conducting member and flows in the anisotropic heat conducting member according to the temperature gradient. The heat is transmitted through the anisotropic heat conducting member to the heat sink having a low temperature, and is radiated to the outside by the heat sink. Here, since the anisotropic heat conductive member has high anisotropy of thermal conductivity, heat does not diffuse to the outside, but is confined in the heat conductive layer in the anisotropic heat conductive member, and is on the heat sink side. introduce. As a result, the laser chip can be efficiently cooled and downsized. Furthermore, it becomes possible to reduce the deviation of the temperature distribution in the laser chip.

本発明の他の態様に係る半導体素子は、端面出射型のレーザチップと、前記レーザチップの共振方向に沿った端面であって前記レーザチップを挟む2つの積層方向の端面の少なくとも一方に形成され、熱伝導率の高い材料からなる熱伝導層と層厚(t)が動作温度での対象とするフォノンの平均自由工程より短く、且つ、層厚(t)がmを自然数とし、対象とするフォノンの波長をλで記載した場合に、後述する式(1)を満たす厚さになっている熱共振体層とが交互に積層された異方性熱伝導部材と、前記レーザチップから所定距離離れた位置に形成されたヒートシンクと、を備えるレーザ素子として構成され、前記レーザチップが発生する熱を前記異方性熱伝導部材を介して前記ヒートシンクに伝達させて放熱することを特徴とする。
A semiconductor element according to another aspect of the present invention is formed on at least one of an end face emitting type laser chip and an end face in the laminating direction between the end face along the resonance direction of the laser chip and sandwiching the laser chip. , A heat conductive layer made of a material having a high thermal conductivity and a layer thickness (t) shorter than the mean free process of the target phonon at the operating temperature, and the layer thickness (t) is a natural number m When the wavelength of the phonon is described as λ, an anisotropic heat conducting member in which a thermal resonator layer having a thickness satisfying formula (1) described later is alternately laminated, and a predetermined distance from the laser chip It is comprised as a laser element provided with the heat sink formed in the distant position, The heat which the said laser chip generate | occur | produces is transmitted to the said heat sink via the said anisotropic heat conductive member, It is characterized by the above-mentioned.

本発明の他の態様に係る半導体素子は、半導体チップを有する層と、熱伝導率の高い材料からなる熱伝導層と層厚(t)が動作温度での対象とするフォノンの平均自由工程より短く、且つ、層厚(t)がmを自然数とし、対象とするフォノンの波長をλで記載した場合に、後述する式(1)を満たす厚さになっている熱共振体層とが交互に積層された異方性熱伝導部材からなる層とが交互に積層され3次元実装構造を有する3次元実装積層型半導体チップと、前記3次元実装積層型半導体チップの各層に交差する側面上に形成されたヒートシンクと、前記半導体チップの各層に接続する電極と、を備える積層型半導体素子として構成され、前記半導体チップが発生する熱を前記異方性熱伝導部材からなる層を介して前記ヒートシンクに伝達させて放熱することを特徴とする。
A semiconductor device according to another aspect of the present invention includes a layer having a semiconductor chip, a heat conductive layer made of a material having high thermal conductivity, and a mean free process of phonons whose layer thickness (t) is an object at an operating temperature. When the layer thickness (t) is short and m is a natural number, and the wavelength of the target phonon is described as λ, the thermal resonator layers having a thickness satisfying formula (1) to be described later are alternated. On the side surface intersecting with each layer of the three-dimensional mounting multilayer semiconductor chip, and the three-dimensional mounting multilayer semiconductor chip having a three-dimensional mounting structure. The heat sink is configured as a stacked semiconductor element including a formed heat sink and an electrode connected to each layer of the semiconductor chip , and the heat generated by the semiconductor chip is transmitted through the layer made of the anisotropic heat conductive member. Communicated to Characterized by radiating Te.

この態様によれば、半導体チップを有する層(半導体チップ層)で発生した熱は、周囲の異方性熱伝導部材からなる層(異方性熱伝導部材層)に伝わっていき、異方性熱伝導部材層内を温度勾配に応じて流れる。熱は、異方性熱伝導部材層内を温度の低いヒートシンク側に伝達し、ヒートシンクで外部に放熱される。ここで、異方性熱伝導部材は、熱伝導率の異方性が高いため、熱は、外部に拡散せず異方性熱伝導部材内の2次元的空間に閉じ込められたままヒートシンク側に伝達する。その結果、半導体チップ層を効率良く冷却できると共に、小型化できる。さらに、半導体チップ層内の温度分布の偏りを減少させることが可能となる。   According to this aspect, the heat generated in the layer having the semiconductor chip (semiconductor chip layer) is transferred to the surrounding layer (anisotropic heat conductive member layer) composed of the anisotropic heat conductive member, and is anisotropic. It flows in the heat conducting member layer according to the temperature gradient. Heat is transmitted through the anisotropic heat conducting member layer to the heat sink having a low temperature, and is radiated to the outside by the heat sink. Here, since the anisotropic heat conductive member has high anisotropy of thermal conductivity, the heat does not diffuse to the outside and is confined in the two-dimensional space in the anisotropic heat conductive member, and is on the heat sink side. introduce. As a result, the semiconductor chip layer can be efficiently cooled and downsized. Furthermore, it is possible to reduce the uneven temperature distribution in the semiconductor chip layer.

本発明の他の態様に係る半導体素子は、出射方向を揃えて1列に配置されたレーザチップを有する層と、熱伝導率の高い材料からなる熱伝導層と層厚(t)が動作温度での対象とするフォノンの平均自由工程より短く、且つ、層厚(t)がmを自然数とし、対象とするフォノンの波長をλで記載した場合に、後述する式(1)を満たす厚さになっている熱共振体層とが交互に積層された異方性熱伝導部材からなる層とが交互に積層された積層型高出力レーザチップと、前記レーザチップの各層に交差する側面上に前記異方性熱伝導部材に接触するように形成されたヒートシンクと、前記レーザチップの各層に接続する電極と、を備える積層型高出力レーザ素子として構成され、前記レーザチップの各層が発生する熱を前記異方性熱伝導部材からなる層を介してヒートシンクに伝達させて放熱することを特徴とする。
A semiconductor device according to another aspect of the present invention includes a layer having laser chips arranged in a line with the emission direction aligned, a heat conductive layer made of a material having a high thermal conductivity, and a layer thickness (t) of the operating temperature. And a thickness satisfying the formula (1) described later when the layer thickness (t) is m as a natural number and the wavelength of the target phonon is described as λ. A stacked high-power laser chip in which layers of anisotropic thermal conductive members alternately stacked with thermal resonator layers are stacked on a side surface intersecting each layer of the laser chip; The heat generated by each layer of the laser chip is configured as a stacked high-power laser element including a heat sink formed so as to be in contact with the anisotropic heat conducting member and an electrode connected to each layer of the laser chip. The anisotropic heat conducting member Characterized by radiating by transferred to the heat sink through the layer serving.

本発明の他の態様に係る半導体素子は、前記電極が前記半導体チップのいずれか1つ以上の層を貫通する貫通電極であることを特徴とする。
この態様によれば、動作の高速化が図れる。
The semiconductor element according to another aspect of the present invention is characterized in that the electrode is a through electrode penetrating any one or more layers of the semiconductor chip.
According to this aspect, the operation speed can be increased.

本発明の他の態様に係る半導体素子は、前記半導体チップと、前記異方性熱伝導部材とを金属粒子、酸化物粒子、およびハンダ粒子のいずれかからなるナノ粒子を介して接触させることを特徴とする。
この態様によれば、前記半導体チップと、前記異方性熱伝導部材との熱接触抵抗を低く抑えることができる。
The semiconductor device according to another aspect of the present invention, the semiconductor chip, the anisotropic heat conducting member and the metallic particles, contacting via nanoparticles consisting of any of the oxide particles, and the solder particles It is characterized by.
According to this aspect, it is possible to suppress the said semiconductor chip, low thermal contact resistance between the anisotropic heat conducting member.

本発明の他の態様に係る半導体素子は、前記レーザチップと、前記異方性熱伝導部材とを金属粒子、酸化物粒子、およびハンダ粒子のいずれかからなるナノ粒子を介して接触させることを特徴とする
この態様によれば、前記レーザチップと、前記異方性熱伝導部材との熱接触抵抗を低く抑えることができる。
In a semiconductor device according to another aspect of the present invention, the laser chip and the anisotropic heat conducting member are brought into contact with each other through nanoparticles made of any of metal particles, oxide particles, and solder particles. Features .
According to this aspect, the thermal contact resistance between the laser chip and the anisotropic heat conducting member can be kept low.

本発明の第2の態様に係る半導体モジュールは、上記第1の態様に記載の半導体素子を有することを特徴とする。   A semiconductor module according to a second aspect of the present invention includes the semiconductor element described in the first aspect.

本発明の他の態様に係るレーザモジュールは、上記他の態様のいずれか一つに記載のレーザチップを有する半導体素子を有し、レーザモジュールとして構成されたことを特徴とする。
この態様によれば、波長の安定性、高い発光効率等を確保することが可能となる。
A laser module according to another aspect of the present invention includes a semiconductor element having the laser chip according to any one of the other aspects described above, and is configured as a laser module.
According to this aspect, it is possible to ensure wavelength stability, high luminous efficiency, and the like.

本発明の他の態様に係るレーザモジュールは、上記他の態様のいずれか一つに記載の前記レーザチップを複数個並列に並べた構造を有し、レーザモジュールとして構成されたことを特徴とする。
この態様によれば、レーザチップを複数個並列に並べた構造を有するレーザモジュールにおいて、波長の安定性、高い発光効率等を確保することが可能となる。
A laser module according to another aspect of the present invention has a structure in which a plurality of the laser chips according to any one of the other aspects are arranged in parallel, and is configured as a laser module. .
According to this aspect, in a laser module having a structure in which a plurality of laser chips are arranged in parallel, it is possible to ensure wavelength stability, high light emission efficiency, and the like.

本発明の第3の態様に係る電子機器は、上記半導体モジュールを基板に組み込んだことを特徴とする。   An electronic apparatus according to a third aspect of the present invention is characterized in that the semiconductor module is incorporated in a substrate.

本発明の他の態様に係る電子機器は、自動車用制御機器であることを特徴とする。   An electronic device according to another aspect of the present invention is an automotive control device.

本発明に他の態様に係る電子機器は、熱伝導率の高い材料からなる熱伝導層と層厚(t)が動作温度での対象とするフォノンの平均自由工程より短く、且つ、層厚(t)がmを自然数とし、対象とするフォノンの波長をλで記載した場合に、後述する(1)を満たす厚さになっている熱共振体層とが交互に積層された異方性熱伝導部材を備え、発熱源から前記異方性熱伝導部材を用い基板面に平行な方向に熱を移送し、発熱源から所定距離離間した位置のヒートシンクに熱を移送し放熱を行うことを特徴とする。
In an electronic device according to another aspect of the present invention, a heat conductive layer made of a material having high thermal conductivity and a layer thickness (t) are shorter than the mean free path of the target phonon at the operating temperature, and the layer thickness ( An anisotropic heat in which t is a natural number and the wavelength of the target phonon is described as λ, and thermal resonator layers having thicknesses satisfying (1) described later are alternately laminated. A conductive member is provided, heat is transferred from a heat generation source in a direction parallel to the substrate surface using the anisotropic heat conductive member, and heat is transferred to a heat sink at a predetermined distance from the heat generation source for heat dissipation. And

本発明の第1の態様に係る半導体素子は、発光ダイオードチップと、熱伝導率の高い材料からなる熱伝導層と層厚(t)が動作温度での対象とするフォノンの平均自由工程より短く、且つ、層厚(t)がmを自然数とし、対象とするフォノンの波長をλで記載した場合に、後述する式(1)を満たす厚さになっている熱共振体層とが交互に積層された異方性熱伝導部材と、基板と、を備え、前記基板上に前記異方性熱伝導部材が形成されており、前記異方性熱伝導部材の表面上に前記発光ダイオードチップが実装されていることを特徴とする。
The semiconductor device according to the first aspect of the present invention has a light emitting diode chip, a heat conductive layer made of a material having high thermal conductivity, and a layer thickness (t) shorter than the mean free path of the target phonon at the operating temperature. In addition, when the layer thickness (t) is m as a natural number and the wavelength of the target phonon is described as λ, the thermal resonator layers having thicknesses satisfying the formula (1) described later are alternately A laminated anisotropic heat conductive member; and a substrate, wherein the anisotropic heat conductive member is formed on the substrate, and the light emitting diode chip is formed on a surface of the anisotropic heat conductive member. It is implemented.

この態様によれば、基板上に異方性熱伝導部材を形成し、この異方性熱伝導部材の表面上に発光ダイオードチップを実装することで半導体素子を作製できるので、図16に示す従来技術のような素子設計上、構造に制約がなくなる。これにより、構造が簡単で、汎用基板への高効率成膜が可能となり、製造コストを低減することができる。また、異方性熱伝導部材により発光ダイオードチップ全体の温度、特にそのピーク温度が下げられるので、発光ダイオードの長寿命化を図れる。   According to this aspect, the semiconductor element can be manufactured by forming the anisotropic heat conductive member on the substrate and mounting the light emitting diode chip on the surface of the anisotropic heat conductive member. There are no restrictions on the structure in terms of element design such as technology. As a result, the structure is simple, high-efficiency film formation on a general-purpose substrate is possible, and the manufacturing cost can be reduced. Further, the temperature of the entire light emitting diode chip, particularly its peak temperature, is lowered by the anisotropic heat conducting member, so that the life of the light emitting diode can be extended.

本発明の他の態様に係る半導体素子は、前記異方性熱伝導部材の側面と前記基板の側面のうち、少なくとも前記異方性熱伝導部材の側面に、前記発光ダイオードチップから前記異方性熱伝導部材を介して伝達した熱を吸熱して冷却または放熱する1つ以上の冷却放熱手段が設けられていることを特徴とする。   According to another aspect of the present invention, there is provided a semiconductor device comprising: the light-emitting diode chip at least on the side surface of the anisotropic heat conductive member and the anisotropic heat conductive member side surface of the anisotropic heat conductive member; One or more cooling / dissipating means for absorbing or cooling the heat transmitted through the heat conducting member to cool or dissipate the heat is provided.

この態様によれば、異方性熱伝導部材により層に垂直方向の熱浸透率である層垂直方向熱浸透率が低く抑えられると共に、発光ダイオードチップからの熱が異方性熱伝導部材を介して冷却放熱手段に伝達され、放熱されるので、省スペースかつ冷却効率および熱電変換効率の向上が可能な半導体素子を実現できる。   According to this aspect, the anisotropic heat conduction member can suppress the layer vertical heat permeability, which is the heat permeability in the direction perpendicular to the layer, and heat from the light-emitting diode chip can pass through the anisotropic heat conduction member. Since the heat is transmitted to the cooling heat radiating means and radiated, a semiconductor element that can save space and improve cooling efficiency and thermoelectric conversion efficiency can be realized.

本発明の第1の態様に係る半導体素子は、活性層および電流狭窄層を有する半導体レーザ素子と、熱伝導率の高い材料からなる熱伝導層と層厚(t)が動作温度での対象とするフォノンの平均自由工程より短く、且つ、層厚(t)がmを自然数とし、対象とするフォノンの波長をλで記載した場合に、後述する式(1)を満たす厚さになっている熱共振体層とが交互に積層された異方性熱伝導部材と、基板と、を備え、前記異方性熱伝導部材が前記電流狭窄層の内部、上部および下部のいずれかに形成されていることを特徴とする。
The semiconductor device according to the first aspect of the present invention includes a semiconductor laser device having an active layer and a current confinement layer, a heat conductive layer made of a material having a high thermal conductivity , and an object whose layer thickness (t) is an operating temperature. Is shorter than the mean free path of phonons, and when the layer thickness (t) is m as a natural number and the wavelength of the target phonon is described as λ, the thickness satisfies the formula (1) described later. An anisotropic heat conducting member in which thermal resonator layers are alternately stacked and a substrate, and the anisotropic heat conducting member is formed in any one of the inside, the upper part, and the lower part of the current confinement layer. It is characterized by being.

この態様によれば、電流狭窄層の内部、上部および下部のいずれかに形成された異方性熱伝導部材により半導体レーザ素子の活性層近傍の温度分布が平坦化されて、活性層近傍のピーク温度が下げられる。これにより、活性層近傍の低温化、特に活性層近傍のピーク温度の低温化を図ることができるので、半導体素子の長寿命化を図ることができる。
本発明の他の態様に係る半導体素子は、前記半導体レーザ素子の側面に冷却放熱手段が設けられていることを特徴とする。この態様によれば、異方性熱伝導部材により層に垂直方向の熱浸透率である層垂直方向熱浸透率が低く抑えられると共に、半導体レーザ素子からの熱が異方性熱伝導部材を介して冷却放熱手段に伝達されるので、省スペースかつ冷却効率および熱電変換効率の向上が可能な半導体素子を実現できる。
According to this aspect, the temperature distribution in the vicinity of the active layer of the semiconductor laser element is flattened by the anisotropic heat conductive member formed inside, above, or below the current confinement layer, and the peak in the vicinity of the active layer is obtained. The temperature is lowered. Thereby, the temperature near the active layer can be lowered, particularly the peak temperature near the active layer can be lowered, so that the life of the semiconductor element can be extended.
The semiconductor device according to another aspect of the present invention is characterized in that said semiconductor laser cold却放heat means on the side surface of the element is provided. According to this aspect, the anisotropic heat conducting member can suppress the layer vertical heat permeability, which is the heat permeability in the direction perpendicular to the layer, and heat from the semiconductor laser element can be transmitted through the anisotropic heat conducting member. Therefore, a semiconductor device that can save space and improve cooling efficiency and thermoelectric conversion efficiency can be realized.

本発明によれば、異方性熱伝導部材を、少なくとも1つ以上積層構造を有すると共に異方性を高くして熱を効率よく閉じ込めることができるようにし、これを用いて異方性熱伝導部材の層に垂直方向への熱拡散を低減し発熱素子等からの熱を効率よく伝播させて放熱できる構成としたため、省スペースかつ冷却効率の向上が可能な、半導体素子、レーザ素子、これらのモジュールおよび電子機器を実現できる。   According to the present invention, the anisotropic heat conducting member has at least one laminated structure and has high anisotropy so that heat can be efficiently confined, and the anisotropic heat conducting member is used. Since the heat diffusion in the direction perpendicular to the member layer is reduced and the heat from the heating element is efficiently propagated to dissipate heat, the semiconductor element, the laser element, and the like that can save space and improve the cooling efficiency. Modules and electronic devices can be realized.

以下、本発明の実施の形態について、図面を用いて詳細に説明する。
(第1の実施の態様)
図1は、本発明の第1の実施の態様の半導体素子の構成を説明するための部分断面図である。図1(a)において、半導体素子100は、半導体チップ110の少なくとも1つの面に形成された異方性熱伝導部材120と、異方性熱伝導部材120内の熱を外部に放熱するヒートリード130と、異方性熱伝導部材120とヒートリード130とを熱的に接触させる接触層140と、異方性熱伝導部材120及びヒートリード130及び接触層140を覆う保護膜150とを備えるように構成される。この構成では、半導体チップ110との導通は、例えばリードフレーム技術を用いて行われる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(First Embodiment)
FIG. 1 is a partial cross-sectional view for explaining a configuration of a semiconductor device according to a first embodiment of the present invention. In FIG. 1A, a semiconductor element 100 includes an anisotropic heat conductive member 120 formed on at least one surface of a semiconductor chip 110, and a heat lead that radiates heat inside the anisotropic heat conductive member 120 to the outside. 130, a contact layer 140 that thermally contacts the anisotropic heat conductive member 120 and the heat lead 130, and a protective film 150 that covers the anisotropic heat conductive member 120, the heat lead 130, and the contact layer 140. Configured. In this configuration, conduction with the semiconductor chip 110 is performed using, for example, a lead frame technique.

ここで、半導体チップ110とは、シリコンチップ等の半導体基板に集積回路等が形成されたものをいい、電極パッド等の所定の部分を除き、電気的な絶縁処理が施されたものをいう。ただし、絶縁処理は、半導体チップ110と異方性熱伝導部材120との間の熱接触抵抗が所定範囲内に収まるように施されているものとする。   Here, the semiconductor chip 110 refers to a semiconductor substrate such as a silicon chip on which an integrated circuit or the like is formed, and refers to a semiconductor chip that has been electrically insulated except for a predetermined portion such as an electrode pad. However, the insulation treatment is performed so that the thermal contact resistance between the semiconductor chip 110 and the anisotropic heat conducting member 120 is within a predetermined range.

異方性熱伝導部材120は、図1に示すように、半導体チップ110に直付けされている。図1(a)は、半導体チップ110の面上に、半導体チップ110を挟むように異方性熱伝導部材120が直に設けられる構成の一例を示す図である。また、図1(b)は、半導体チップ210の一方の面上に、異方性熱伝導部材220が直に設けられる構成の一例を示す図である。この構成では、半導体素子200がBGA(Ball Grid Array)用の回路基板等の所定の部材260上に形成され、ヒートリード230が接触層240を介して異方性熱伝導部材220に接合され、保護膜250が異方性熱伝導部材220上を覆うようになっている。BGA技術では、ボール状の電極端子が、部材260の半導体素子200がマウントされる面と反対側の面に多数取り出される。   The anisotropic heat conducting member 120 is directly attached to the semiconductor chip 110 as shown in FIG. FIG. 1A is a diagram illustrating an example of a configuration in which the anisotropic heat conducting member 120 is provided directly on the surface of the semiconductor chip 110 so as to sandwich the semiconductor chip 110. FIG. 1B is a diagram illustrating an example of a configuration in which the anisotropic heat conductive member 220 is provided directly on one surface of the semiconductor chip 210. In this configuration, the semiconductor element 200 is formed on a predetermined member 260 such as a BGA (Ball Grid Array) circuit board, and the heat lead 230 is joined to the anisotropic heat conducting member 220 via the contact layer 240. A protective film 250 covers the anisotropic heat conductive member 220. In the BGA technique, a large number of ball-shaped electrode terminals are taken out on the surface of the member 260 opposite to the surface on which the semiconductor element 200 is mounted.

ここで、半導体チップ110と異方性熱伝導部材120とを、ナノ粒子を介して接触させるのは、熱接触抵抗を低く抑えることができるため好ましい。以下、ナノ粒子からなる材料を主要材料として含み、形成後に主にナノ粒子から層を形成できる材料を単にナノ粒子材料という。また、半導体チップ110の一方の面上に異方性熱伝導部材120を設ける上記の構成では、発熱源側に異方性熱伝導部材120を設けるのが、放熱性を高くできるため好ましい。   Here, it is preferable to bring the semiconductor chip 110 and the anisotropic heat conducting member 120 into contact with each other through the nanoparticles because the thermal contact resistance can be kept low. Hereinafter, a material including a material composed of nanoparticles as a main material and capable of forming a layer mainly from the nanoparticles after the formation is simply referred to as a nanoparticle material. Further, in the above configuration in which the anisotropic heat conducting member 120 is provided on one surface of the semiconductor chip 110, it is preferable to provide the anisotropic heat conducting member 120 on the heat source side because heat dissipation can be improved.

図2は、本発明の第1の実施の態様の異方性熱伝導部材の断面構造の一例を模式的に示す図である。図2において、異方性熱伝導部材120は、少なくとも面内で熱伝導率の高い材料からなる複数の熱伝導層121と、各熱伝導層121を挟むように積層され層厚(t)が動作温度での対象とするフォノンの平均自由工程より短く、且つ、層厚(t)がmを自然数とし、対象とするフォノンの波長をλで記載した場合に、後述する式(1)を満たす厚さになっている熱共振体層122とを有するように構成される。ここで、熱伝導層121の層数、各熱伝導層121の層厚は、輸送しようとする熱量等に応じて決定される。
FIG. 2 is a diagram schematically showing an example of a cross-sectional structure of the anisotropic heat conducting member according to the first embodiment of the present invention. In FIG. 2, the anisotropic heat conductive member 120 is laminated so as to sandwich at least a plurality of heat conductive layers 121 made of a material having a high thermal conductivity in the plane, and has a layer thickness (t). When the mean free path of the target phonon at the operating temperature is shorter, the layer thickness (t) is m as a natural number, and the wavelength of the target phonon is described as λ, the following formula (1) is satisfied. And a thermal resonator layer 122 having a thickness . Here, the number of heat conductive layers 121 and the thickness of each heat conductive layer 121 are determined according to the amount of heat to be transported and the like.

各熱共振層122は、フォノンの平均自由行程が長い材料によって構成され、層厚が対象とするフォノンの平均自由行程よりも短く、かつ、以下の条件を満たすように厚さになっている。
mλ/2.2<t<mλ/1.8 (mは自然数(1)
ここで、mは自然数であり、λは対象とするフォノンの波長である。
Each thermal resonance layer 122 is made of a material having a long phonon mean free path, and has a layer thickness that is shorter than the target phonon mean free path and that satisfies the following conditions.
mλ / 2.2 <t <mλ / 1.8 (m is a natural number ) (1)
Here, m is a natural number, and λ is the wavelength of the target phonon.

熱伝導層121は、例えば、Au、Ag、Cu等の熱伝導率の高い材料を用いて形成され、熱共振層122は、Si等の平均自由行程を長くできる材料を用いて形成される。熱共振層122の厚さは、Siを材料に用いる場合、例えば、数nm〜数十nmとし、動作温度でのフォノンの平均自由行程よりも短くする。   The thermal conductive layer 121 is formed using a material having high thermal conductivity such as Au, Ag, or Cu, and the thermal resonance layer 122 is formed using a material such as Si that can increase the mean free path. When Si is used as the material, the thickness of the thermal resonance layer 122 is, for example, several nm to several tens of nm, and is shorter than the phonon mean free path at the operating temperature.

Agからなり厚さ6nmの熱伝導層121とSiからなり厚さ6nmの熱共振層122とを交互に50層ずつSi基板上に積層して得られた異方性熱伝導部材120と、同様の形状の単層のSiシートとを対象に、熱浸透率について比較した。サーモリフレクタンス法を用いて測定した結果、Si基板上に形成された異方性熱伝導部材120およびSiシートに対して、熱浸透率は、それぞれ、1100Js−0.5−2−1、35000Js−0.5−2−1となった。すなわち、異方性熱伝導部材120の熱浸透率がSiシートの熱浸透率の1/20以下の値となった。このように、異方性熱伝導部材120を用いることによって異方性熱伝導部材の層に垂直方向への熱拡散を抑えることが可能となり、ヒートシンク等への熱伝達を効率的にすることができるため、冷却効率が5倍以上も飛躍的に改善できる。 Similar to the anisotropic heat conductive member 120 obtained by alternately stacking 50 layers of Ag thermal conductive layers 121 made of Ag and 6 nm thick thermal resonance layers 122 of Si on the Si substrate. The thermal permeability was compared with a single-layer Si sheet of the shape. As a result of measurement using the thermoreflectance method, the thermal permeation rate was 1100 Js −0.5 m −2 K −1 for the anisotropic heat conducting member 120 and the Si sheet formed on the Si substrate, respectively. 35000 Js −0.5 m −2 K −1 . That is, the heat permeability of the anisotropic heat conductive member 120 became a value of 1/20 or less of the heat permeability of the Si sheet. Thus, by using the anisotropic heat conductive member 120, it becomes possible to suppress the thermal diffusion in the direction perpendicular to the layer of the anisotropic heat conductive member, and to efficiently transfer heat to a heat sink or the like. Therefore, the cooling efficiency can be drastically improved by 5 times or more.

次に、ヒートリード130には、熱伝導率が高く加工しやすいAuを材料として用いることが好ましいが、熱伝導率が高く加工しやすいその他の材料を用いるのでもよい。   Next, although it is preferable to use Au, which has high thermal conductivity and is easy to process, as the material for the heat lead 130, other materials having high thermal conductivity and easy to process may be used.

接触層140は、異方性熱伝導部材120とヒートリード130との間の熱接触抵抗を低く抑えることができる材料を用いて構成される。接触層140を、ナノ粒子材料を用いて形成することは、ナノ粒子が異方性熱伝導部材120とヒートリード130との間の隙間を密に埋めることができ、もって熱接触抵抗を低く抑えることができるため好ましい。また、このナノ粒子として、例えば、Au、Ag、Cu等の熱伝導率の高い物質からなるものを用いることは、熱接触抵抗を更に低く抑えることができるため好ましい。ナノ粒子材料として、例えば、Au、Ag、Cu等の金属ナノペーストを用いるのでもよい。   The contact layer 140 is configured using a material that can suppress the thermal contact resistance between the anisotropic heat conductive member 120 and the heat lead 130 to a low level. By forming the contact layer 140 using a nanoparticle material, the nanoparticles can close the gap between the anisotropic heat conductive member 120 and the heat lead 130, thereby reducing the thermal contact resistance. This is preferable. In addition, it is preferable to use a nanoparticle having a high thermal conductivity such as Au, Ag, or Cu because the thermal contact resistance can be further reduced. As the nanoparticle material, for example, a metal nanopaste such as Au, Ag, or Cu may be used.

保護膜150は、異方性熱伝導部材120、ヒートリード130、及び接触層140を覆うように形成され、異方性熱伝導部材120とヒートリード130との接合を強化し維持する機能を有する。保護膜150としては、耐久性、耐熱性等を有するものが好ましく、例えば、耐久性、耐熱性等を有する樹脂を用いるのでもよい。   The protective film 150 is formed so as to cover the anisotropic heat conductive member 120, the heat lead 130, and the contact layer 140, and has a function of strengthening and maintaining the bonding between the anisotropic heat conductive member 120 and the heat lead 130. . The protective film 150 is preferably one having durability, heat resistance, etc. For example, a resin having durability, heat resistance, etc. may be used.

以下、本発明の第1の実施の態様の半導体素子100の作用について放熱の観点から説明する。以下では、ヒートリード130は、熱伝導率の高い基板等の上に設けられ又は接続され、相対的に低い温度になっているものとする。まず、半導体チップ110が発生した熱は、異方性熱伝導部材120に伝わっていき、異方性熱伝導部材120内を温度勾配に応じて流れる。ここで、異方性熱伝導部材120は、面内で高い熱伝導率を有するため、半導体チップ110における局部的に突出して温度の高い部分の温度を下げ面内の温度分布を均一化させる。異方性熱伝導部材120内の熱は、接触層140を介して、ヒートシンクに接続されて温度が低いヒートリード130側に伝達し、ヒートリード130を介してヒートシンクに放熱される。   Hereinafter, the operation of the semiconductor element 100 according to the first embodiment of the present invention will be described from the viewpoint of heat dissipation. In the following, it is assumed that the heat lead 130 is provided on or connected to a substrate having a high thermal conductivity and has a relatively low temperature. First, the heat generated by the semiconductor chip 110 is transferred to the anisotropic heat conducting member 120 and flows in the anisotropic heat conducting member 120 according to the temperature gradient. Here, since the anisotropic heat conducting member 120 has a high thermal conductivity in the plane, it locally protrudes in the semiconductor chip 110 and lowers the temperature of the high temperature portion to make the temperature distribution in the plane uniform. The heat in the anisotropic heat conductive member 120 is transmitted to the heat lead 130 having a low temperature connected to the heat sink via the contact layer 140, and is radiated to the heat sink via the heat lead 130.

携帯機器用の半導体素子、パワー素子向けの半導体素子等で用いられるパッケージでは、半導体チップの劣化を防ぐためにラミネート加工が施されており、パッケージ内の半導体素子から熱を逃がすためにヒートシンクを取り付けても有効に熱を逃がすことが難しい。そのため、以上説明したように本発明の第1の態様では、半導体チップ上に直に異方性熱伝導部材を形成し、さらに異方性熱伝導部材の端部にヒートリードを設け、ヒートリードを介してヒートシンクに放熱する構成とし、効果的に放熱できるようにした。   Packages used for semiconductor devices for portable devices, semiconductor devices for power devices, etc. are laminated to prevent deterioration of the semiconductor chip, and a heat sink is attached to release heat from the semiconductor devices in the package. It is difficult to escape heat effectively. Therefore, as described above, in the first aspect of the present invention, the anisotropic heat conductive member is formed directly on the semiconductor chip, and the heat lead is provided at the end of the anisotropic heat conductive member. The heat sink is configured to dissipate heat to enable effective heat dissipation.

(第2の実施の態様)
図3は、本発明の第2の実施の態様のレーザ素子の断面構造を示す模式図である。図3において、レーザ素子300は、端面出射型のレーザチップ310のレーザチップ310を挟む2つの端面上にそれぞれ配置された異方性熱伝導部材320と、接触層340を介して異方性熱伝導部材320に接触するように形成されたヒートシンク330と、異方性熱伝導部材320とヒートシンク330とを熱的に接触させる接触層340とを備えるように構成される。図3において、レーザ光の出射方向はレーザチップ310の断面に垂直な方向である。
(Second Embodiment)
FIG. 3 is a schematic diagram showing a cross-sectional structure of a laser device according to the second embodiment of the present invention. In FIG. 3, a laser element 300 includes an anisotropic heat conducting member 320 disposed on two end faces sandwiching the laser chip 310 of an end face emission type laser chip 310, and an anisotropic heat via a contact layer 340. The heat sink 330 is formed so as to be in contact with the conductive member 320, and the contact layer 340 is provided to thermally contact the anisotropic heat conductive member 320 and the heat sink 330. In FIG. 3, the emission direction of the laser light is a direction perpendicular to the cross section of the laser chip 310.

異方性熱伝導部材320は、端面出射型のレーザチップ310を挟む2つの端面のうちの共振方向に沿った端面上にそれぞれ配置される。本発明の第2の実施の態様の異方性熱伝導部材320は、本発明の第1の実施の態様の異方性熱伝導部材120と同様の層構成を有するため、その説明を省略する。   The anisotropic heat conducting member 320 is respectively disposed on the end face along the resonance direction of the two end faces sandwiching the end face emission type laser chip 310. The anisotropic heat conducting member 320 according to the second embodiment of the present invention has the same layer structure as the anisotropic heat conducting member 120 according to the first embodiment of the present invention, and thus the description thereof is omitted. .

ヒートシンク330は、異方性熱伝導部材320が配置された端面に交差する端面上に配置される。ここで、ヒートシンク330は、ヒートスプレッダ331、ベース332、底板333、調心治具取付け用に使用するレーザ固定部材334、および外部ヒートシンク335によって構成され、レーザ素子300は、アース電位となる電極がヒートシンクに電気的に接続されているものとし、その他の電位となる電極は電気的に絶縁されているものとする。   The heat sink 330 is disposed on an end surface that intersects the end surface on which the anisotropic heat conducting member 320 is disposed. Here, the heat sink 330 is configured by a heat spreader 331, a base 332, a bottom plate 333, a laser fixing member 334 used for mounting an aligning jig, and an external heat sink 335. It is assumed that the electrodes at other potentials are electrically insulated.

ヒートスプレッダ331とベース332とは、レーザ固定部材334を用いて例えば溶接等によって相互に固定される。溶接の方法としては、例えばYAG溶接がある。ヒートスプレッダ331は例えばCuW等の熱膨張率が小さく熱伝導率の高い合金からなり、ベース332は例えばAlN等の熱伝導率が高く絶縁性の材料からなり、底板333および外部ヒートシンク335はCu等の熱伝導率の高い材料を用いて形成される。   The heat spreader 331 and the base 332 are fixed to each other by, for example, welding using a laser fixing member 334. As a welding method, for example, there is YAG welding. The heat spreader 331 is made of an alloy having a low thermal expansion coefficient such as CuW and high thermal conductivity, the base 332 is made of an insulating material having high thermal conductivity such as AlN, and the bottom plate 333 and the external heat sink 335 are made of Cu or the like. It is formed using a material having high thermal conductivity.

接触層340は、異方性熱伝導部材320とヒートシンク330との間の熱接触抵抗を低く抑えることができる材料を用いて構成される。接触層340を、ナノ粒子材料を用いて形成することは、ナノ粒子が異方性熱伝導部材320とヒートシンク330との間の隙間を密に埋めることができ、もって熱接触抵抗を低く抑えることができるため好ましい。ナノ粒子材料は、本発明の第1の実施の態様の説明で記載したものと同様のものを用いることができる。   The contact layer 340 is configured using a material that can suppress the thermal contact resistance between the anisotropic heat conducting member 320 and the heat sink 330. When the contact layer 340 is formed using a nanoparticle material, the nanoparticle can tightly fill a gap between the anisotropic heat conducting member 320 and the heat sink 330, thereby reducing the thermal contact resistance. Is preferable. The same nanoparticle material as that described in the description of the first embodiment of the present invention can be used.

図4は、本発明の第2の実施の態様のレーザ素子との比較例としての、従来のレーザ素子の断面構造を示す模式図である。従来のレーザ素子400は、端面出射型のレーザチップ410が複数の部材431〜433からなるヒートシンク上に設置され、レーザチップ410側の2つの部材431、432がレーザ固定部材435によって固定される構成を有する。かかる従来の構成では、レーザ素子400が発生する熱は3次元的に拡散すると共に、一方の端面側でヒートシンクに固定されるため、温度分布の偏りが生じてしまう。   FIG. 4 is a schematic diagram showing a cross-sectional structure of a conventional laser device as a comparative example with the laser device of the second embodiment of the present invention. The conventional laser element 400 has a configuration in which an edge emitting laser chip 410 is installed on a heat sink composed of a plurality of members 431 to 433 and two members 431 and 432 on the laser chip 410 side are fixed by a laser fixing member 435. Have In such a conventional configuration, the heat generated by the laser element 400 is three-dimensionally diffused and is fixed to the heat sink on one end surface side, so that the temperature distribution is biased.

以下、本発明の第2の実施の態様のレーザ素子300の作用について放熱の観点から説明する。まず、レーザチップ310が発生した熱は、異方性熱伝導部材320に伝わっていき、異方性熱伝導部材320内を温度勾配に応じて流れる。熱は、異方性熱伝導部材320内を温度の低いヒートシンク330側に伝達し、ヒートシンク330で外部に放熱される。ここで、異方性熱伝導部材320は、熱伝導率の異方性が高いため、熱は、外部に拡散せず異方性熱伝導部材320内の熱伝導層内に閉じ込められたままヒートシンク330側に伝達する。その結果、レーザチップ310を効率良く冷却できると共に、小型化できる。さらに、レーザチップ310内の温度分布の偏りを減少させることが可能となる。   Hereinafter, the operation of the laser element 300 according to the second embodiment of the present invention will be described from the viewpoint of heat dissipation. First, the heat generated by the laser chip 310 is transferred to the anisotropic heat conducting member 320 and flows in the anisotropic heat conducting member 320 according to the temperature gradient. The heat is transmitted through the anisotropic heat conducting member 320 to the heat sink 330 having a low temperature, and is radiated to the outside by the heat sink 330. Here, since the anisotropic heat conducting member 320 has a high anisotropy in thermal conductivity, heat is not diffused to the outside and is kept in the heat conducting layer in the anisotropic heat conducting member 320 while being confined in the heat sink. 330 side. As a result, the laser chip 310 can be efficiently cooled and downsized. Furthermore, it is possible to reduce the temperature distribution bias in the laser chip 310.

光通信における発光、光増幅等の用途に用いられるレーザモジュール(以下、単にレーザモジュールという。)では熱の発生量が多いため、波長の安定性、発光効率の低下が問題となる。本発明の第2の実施の態様のレーザ素子300では、異方性熱伝導部材320がヒートシンク330に直接接触する上記の構成を採用することによって、波長の安定性、高い発光効率等を確保することが可能となっている。このとき、異方性熱伝導部材をレーザモジュールの表面に形成することによって、レーザモジュールの発光領域に接近して熱を有効に抽出できるため、パッケージサイズを大幅に縮小できる。   A laser module (hereinafter simply referred to as a laser module) used for light emission, optical amplification, etc. in optical communication generates a large amount of heat, so that there is a problem of wavelength stability and reduction in light emission efficiency. In the laser element 300 according to the second embodiment of the present invention, the above-described configuration in which the anisotropic heat conducting member 320 is in direct contact with the heat sink 330 is employed to ensure wavelength stability, high light emission efficiency, and the like. It is possible. At this time, by forming the anisotropic heat conducting member on the surface of the laser module, heat can be extracted effectively by approaching the light emitting region of the laser module, so that the package size can be greatly reduced.

なお、上記では、レーザチップ310とヒートシンク330とが接触層340を介して接触するように形成される構成について説明したが、レーザチップ310とヒートシンク330とは必ずしも接触して配置される必要はなく、ヒートシンク330をレーザチップ310から所定距離離れた位置に形成し、異方性熱伝導部材320がヒートシンク330に直接接触する構成であってもよい。また、ヒートシンク330は、片側にのみ設けられるのでもよい。   In the above description, the configuration in which the laser chip 310 and the heat sink 330 are formed so as to be in contact with each other via the contact layer 340 has been described. However, the laser chip 310 and the heat sink 330 are not necessarily arranged in contact with each other. The heat sink 330 may be formed at a position away from the laser chip 310 by a predetermined distance, and the anisotropic heat conducting member 320 may be in direct contact with the heat sink 330. Moreover, the heat sink 330 may be provided only on one side.

(第3の実施の態様)
図5は、本発明の第3の実施の態様の積層型半導体素子の断面構造を示す模式図である。図5において、積層型半導体素子500は、半導体チップを有する層(以下、半導体チップ層という。)510と異方性熱伝導部材からなる層(以下、異方性熱伝導部材層という。)520とが交互に積層され3次元実装構造を有する3次元実装積層型半導体と、3次元実装積層型半導体の各層510、520に交差する側面上に形成されたヒートシンク530と、各半導体チップに接続する電極540と、基板550とを備えるように構成される。
(Third embodiment)
FIG. 5 is a schematic view showing a cross-sectional structure of a stacked semiconductor device according to the third embodiment of the present invention. In FIG. 5, a stacked semiconductor element 500 includes a layer having a semiconductor chip (hereinafter referred to as a semiconductor chip layer) 510 and a layer made of an anisotropic heat conductive member (hereinafter referred to as an anisotropic heat conductive member layer) 520. Are stacked alternately and have a three-dimensional mounting structure, a three-dimensional mounting stacked semiconductor, a heat sink 530 formed on a side surface intersecting each layer 510, 520 of the three-dimensional mounting stacked semiconductor, and connected to each semiconductor chip An electrode 540 and a substrate 550 are provided.

本発明の第3の実施の態様の異方性熱伝導部材は、本発明の第1の実施の態様の異方性熱伝導部材120と同様の層構成を有するものとし、その説明を省略する。また、半導体チップ層510と異方性熱伝導部材層520とは、本発明の第1の実施の態様で説明した構成と同様に熱接触抵抗が低くなるように積層されている。具体的には、Au、Ag、Cu等の熱伝導率の高い物質からなるナノ粒子を各界面に挟む等によって界面の接触を高め熱接触抵抗の低減が図られる。   The anisotropic heat conducting member of the third embodiment of the present invention has the same layer structure as the anisotropic heat conducting member 120 of the first embodiment of the present invention, and the description thereof is omitted. . In addition, the semiconductor chip layer 510 and the anisotropic heat conductive member layer 520 are laminated so that the thermal contact resistance is low as in the configuration described in the first embodiment of the present invention. Specifically, interfacial contact is increased by, for example, sandwiching nanoparticles made of a material having high thermal conductivity such as Au, Ag, and Cu between each interface, and thermal contact resistance is reduced.

ヒートシンク530は、発熱量が3次元実装によって増大しているため、ベースに複数のフィンを設けて放熱面積を広くしたものが熱をより効果的に放出でき、好ましい。また、ヒートシンク530を複数設けることは、上記の観点から更に好ましい。   Since the heat generation amount of the heat sink 530 is increased by the three-dimensional mounting, it is preferable to provide a plurality of fins on the base to widen the heat radiation area because heat can be released more effectively. In addition, it is more preferable to provide a plurality of heat sinks 530 from the above viewpoint.

電極540としては、所定の1層以上の層を貫通する貫通電極を用いることができる。このように構成することによって、動作の高速化が図れ、好ましい。この場合、BGA技術を用いて基板550上に電極端子を面実装して取り出すのは、出力端子数を増やすことができる等の観点から好ましい。ただし、電極540は、貫通電極に制限されるものではなく、リードフレーム技術を用いて構成されるのでもよい。リードフレーム技術を用いる場合、保護用の樹脂として熱伝導率が高いものを用い、保護層の厚さを可能な限り薄くするものとする。   As the electrode 540, a through electrode penetrating a predetermined layer or more can be used. This configuration is preferable because the operation speed can be increased. In this case, it is preferable that the electrode terminals are surface-mounted on the substrate 550 using the BGA technique and taken out from the viewpoint of increasing the number of output terminals. However, the electrode 540 is not limited to the through electrode, and may be configured using a lead frame technique. When the lead frame technology is used, a protective resin having a high thermal conductivity is used, and the thickness of the protective layer is made as thin as possible.

以下、本発明の第3の実施の態様の積層型半導体素子500の作用について放熱の観点から説明する。まず、半導体チップ層510で発生した熱は、周囲の異方性熱伝導部材層520に伝わっていき、異方性熱伝導部材層520内を温度勾配に応じて流れる。熱は、異方性熱伝導部材層520内を温度の低いヒートシンク530側に伝達し、ヒートシンク530で外部に放熱される。ここで、異方性熱伝導部材520は、熱伝導率の異方性が高いため、熱は、外部に拡散せず異方性熱伝導部材内の2次元的空間に閉じ込められたままヒートシンク530側に伝達する。その結果、半導体チップ層510を効率良く冷却できると共に、小型化できる。さらに、半導体チップ層510内の温度分布の偏りを減少させることが可能となる。   Hereinafter, the operation of the stacked semiconductor element 500 according to the third embodiment of the present invention will be described from the viewpoint of heat dissipation. First, the heat generated in the semiconductor chip layer 510 is transferred to the surrounding anisotropic heat conductive member layer 520 and flows in the anisotropic heat conductive member layer 520 according to the temperature gradient. Heat is transmitted through the anisotropic heat conducting member layer 520 to the heat sink 530 having a low temperature, and is radiated to the outside by the heat sink 530. Here, since the anisotropic heat conducting member 520 has high anisotropy in thermal conductivity, the heat does not diffuse outside and the heat sink 530 remains confined in the two-dimensional space in the anisotropic heat conducting member. To the side. As a result, the semiconductor chip layer 510 can be efficiently cooled and downsized. Furthermore, it is possible to reduce the uneven temperature distribution in the semiconductor chip layer 510.

所謂シリコン半導体パッケージ等においては、ロジックチップと大容量のメモリチップとを1つのパッケージ内に搭載するシステムインパッケージ化が進んでいるが、その実装方式として半導体チップ層を多層に積層する方法が用いられる。このように積層して得られる従来の多層チップおいては、内側の層内の半導体チップが発生する熱は、逃げ場がないためシリコン半導体パッケージ内部の温度を上昇させてしまっていた。その結果、内部温度の上昇の観点から半導体チップ層の積層数に大きな制限があった。本発明の第3の実施の態様の積層型半導体素子500では、上記のように半導体チップ層510と半導体チップ層510との間に異方性熱伝導部材層520を設けて積層することによって内部温度の上昇を大幅に緩和できるため、熱的な観点からの積層数の制限を大幅に緩和することが可能となっている。その結果、ロジック回路に接続するメモリ回路を大幅に増加させることが可能となる。   In so-called silicon semiconductor packages and the like, a system-in-package in which a logic chip and a large-capacity memory chip are mounted in one package is progressing. As a mounting method, a method of stacking semiconductor chip layers in multiple layers is used. It is done. In the conventional multilayer chip obtained by stacking in this way, the heat generated by the semiconductor chip in the inner layer has increased the temperature inside the silicon semiconductor package because there is no escape. As a result, there is a great limitation on the number of stacked semiconductor chip layers from the viewpoint of increasing the internal temperature. In the stacked semiconductor device 500 according to the third embodiment of the present invention, as described above, the anisotropic heat conductive member layer 520 is provided between the semiconductor chip layer 510 and the semiconductor chip layer 510 to be stacked, thereby forming an internal structure. Since the rise in temperature can be greatly relieved, it is possible to greatly relieve the limitation on the number of stacked layers from a thermal viewpoint. As a result, the number of memory circuits connected to the logic circuit can be greatly increased.

(第4の実施の態様)
図6は、本発明の第4の実施の態様の積層型高出力レーザ素子の断面構造を示す模式図である。図6において、積層型高出力レーザ素子600は、出射方向を揃えて1列に配置された端面出射型のレーザチップを有する層(以下、レーザチップ層)610と異方性熱伝導部材からなる層(以下、異方性熱伝導部材層)620とが交互に積層された積層型高出力レーザ素子と、積層型高出力レーザ素子の各層610、620に交差する側面上に異方性熱伝導部材層620に接触するように形成されたヒートシンク630と、各レーザチップに電流を供給するための図示しない電極とを備えるように構成される。積層型高出力レーザ素子600は、例えば、所定の平板部材640上に固定されるのでもよい。
(Fourth embodiment)
FIG. 6 is a schematic diagram showing a cross-sectional structure of a stacked high-power laser device according to a fourth embodiment of the present invention. In FIG. 6, a stacked high-power laser element 600 is composed of a layer (hereinafter referred to as a laser chip layer) 610 having end-emitting laser chips arranged in a line with the emission direction aligned, and an anisotropic heat conducting member. Layers (hereinafter referred to as anisotropic heat conducting member layers) 620 are laminated alternately, and the anisotropic heat conduction is performed on the side surface intersecting each layer 610, 620 of the laminated high power laser element. A heat sink 630 formed so as to be in contact with the member layer 620 and an electrode (not shown) for supplying a current to each laser chip are configured. The stacked high-power laser element 600 may be fixed on a predetermined flat plate member 640, for example.

図6において、異方性熱伝導部材層620は、端面出射型のレーザチップの共振方向に沿った端面上に配置される。本発明の第4の実施の態様の異方性熱伝導部材620は、それぞれ、本発明の第3の実施の態様の異方性熱伝導部材520と同様の層構成を有するものとし、その説明を省略する。また、レーザチップ層610と異方性熱伝導部材620とは、本発明の第3の実施の態様で説明した構成と同様に熱接触抵抗が低くなるように積層されている。レーザ光の出射方向は、図6に示すように、図6の右方向である。   In FIG. 6, the anisotropic heat conducting member layer 620 is disposed on the end face along the resonance direction of the edge emitting laser chip. The anisotropic heat conductive member 620 according to the fourth embodiment of the present invention has the same layer structure as the anisotropic heat conductive member 520 according to the third embodiment of the present invention. Is omitted. Further, the laser chip layer 610 and the anisotropic heat conducting member 620 are laminated so as to have a low thermal contact resistance as in the configuration described in the third embodiment of the present invention. The emission direction of the laser beam is the right direction in FIG. 6 as shown in FIG.

ヒートシンク630は、電力消費の大きいレーザチップが積層される構成では発熱量が増大しているため、ベースに複数のフィンを設けて放熱面積を広くしたものが熱をより効果的に放出でき好ましい。また、ヒートシンク630をこのように構成することによって、積層型高出力レーザ素子600の小型化も可能となり好ましい。   Since the heat sink 630 has a structure in which laser chips with high power consumption are stacked, the amount of heat generation is increased. Therefore, it is preferable to provide a plurality of fins on the base to widen the heat radiation area because heat can be emitted more effectively. In addition, it is preferable that the heat sink 630 is configured in this manner because the stacked high-power laser element 600 can be downsized.

以下、本発明の第4の実施の態様の積層型高出力レーザ素子600の作用について放熱の観点から説明する。まず、レーザチップ内で発生した熱は、周囲の異方性熱伝導部材層620に伝わっていき、異方性熱伝導部材層620内の温度勾配に応じて流れる。熱は、異方性熱伝導部材層620内を温度の低いヒートシンク630側に伝達し、ヒートシンク630で外部に放熱される。ここで、異方性熱伝導部材620は、熱伝導率の異方性が高いため、熱は、外部に拡散せず異方性熱伝導部材内の2次元的空間に閉じ込められたままヒートシンク630側に伝達する。その結果、積層型高出力レーザ素子600を効率良く冷却できると共に、小型化できる。さらに、積層型高出力レーザ素子600内の温度分布の偏りを減少させることが可能となる。   Hereinafter, the operation of the stacked high-power laser element 600 according to the fourth embodiment of the present invention will be described from the viewpoint of heat dissipation. First, the heat generated in the laser chip is transferred to the surrounding anisotropic heat conducting member layer 620 and flows according to the temperature gradient in the anisotropic heat conducting member layer 620. Heat is transmitted through the anisotropic heat conductive member layer 620 to the heat sink 630 having a low temperature, and is radiated to the outside by the heat sink 630. Here, since the anisotropic heat conductive member 620 has high anisotropy of thermal conductivity, the heat is not diffused outside and the heat sink 630 is confined in a two-dimensional space in the anisotropic heat conductive member. To the side. As a result, the stacked high-power laser element 600 can be efficiently cooled and downsized. Furthermore, it is possible to reduce the temperature distribution bias in the stacked high-power laser element 600.

レーザ加工等の分野では、高出力の半導体レーザが求められ、高出力化のためにレーザチップの多層化が進められてきている。多層化を進める場合、内部に配列された半導体チップからの熱を如何に放熱するかが大きな問題であった。本発明の第4の実施の態様の積層型高出力レーザ素子600では、上記のようにレーザチップ層610とレーザチップ層610との間に異方性熱伝導部材層620を設けて積層することによって、内部に配列されたレーザチップの温度の上昇を大幅に緩和することが可能となっている。   In the field of laser processing and the like, a high-power semiconductor laser is required, and laser chips are being multilayered to increase the power. When the number of layers is increased, how to dissipate heat from the semiconductor chips arranged inside is a big problem. In the stacked high-power laser element 600 according to the fourth embodiment of the present invention, the anisotropic heat conducting member layer 620 is provided between the laser chip layer 610 and the laser chip layer 610 as described above. As a result, it is possible to greatly mitigate the rise in temperature of the laser chips arranged inside.

なお、ナノ粒子材料を介してレーザチップ層610と異方性熱伝導部材層620とを接触させるのは、ナノ粒子がレーザチップ層610と異方性熱伝導部材層620との間の隙間を密に埋めることができ、もって熱接触抵抗を低く抑えることができるため好ましい。ここで、ナノ粒子としては、金属粒子、酸化物粒子、ハンダ粒子等からなるものを用いるのでもよい。   In addition, the laser chip layer 610 and the anisotropic heat conducting member layer 620 are brought into contact with each other through the nanoparticle material because the nanoparticle has a gap between the laser chip layer 610 and the anisotropic heat conducting member layer 620. It is preferable because it can be densely filled and the thermal contact resistance can be kept low. Here, as a nanoparticle, you may use what consists of a metal particle, an oxide particle, a solder particle, etc.

また、レーザチップは、出射方向を揃えて出射方向に直角に1列に配置される構成でも、出射方向を揃えてレーザチップを面上に積層して配列される構成でもよい。レーザチップが出射方向に直角に1列に配置される場合は、1対の異方性熱伝導部材層を用いて1列に配列されたレーザチップを挟み、隣り合うレーザチップ間に隙間を設けてこの隙間から電極をとるように構成するのでもよい。レーザチップが面上に配置される場合は、上記の1列に配列されたレーザチップからなる層と異方性熱伝導部材層とを交互に配置し、1列に配列されたレーザチップからなる層の隣り合うレーザチップ間に隙間を設けてこの隙間から電極をとるように構成するのでもよいし、面状に積層して配置されたレーザチップ間の導通を外部から異方性熱伝導部材の層をまたぐように設ける等、電極の配置は必要に応じて適宜変更することができる。   Further, the laser chips may be arranged in a single line with the emission direction aligned and perpendicular to the emission direction, or may be arranged with the laser chips stacked on the surface with the emission direction aligned. When laser chips are arranged in a line perpendicular to the emission direction, a pair of anisotropic heat conducting member layers are used to sandwich the laser chips arranged in a line, and a gap is provided between adjacent laser chips. It may be configured to take the electrode from the gap between the levers. When the laser chips are arranged on the surface, the layers composed of the laser chips arranged in one row and the anisotropic heat conducting member layers are alternately arranged, and the laser chips are arranged in one row. A gap may be provided between adjacent laser chips of the layers, and an electrode may be taken from the gap, or conduction between laser chips arranged in a planar shape may be externally conducted from an anisotropic heat conducting member. The arrangement of the electrodes can be appropriately changed as necessary, for example, so as to straddle the layers.

また、上記のように、レーザチップが出射方向を揃えて1列または面状に配列された構成の積層型高出力レーザ素子をレーザモジュールとして基板に組み込み、自動車用制御機器、高出力加工装置等に搭載し電子機器を構成するのでもよい。また、電子機器内のレーザチップ等の発熱体から異方性熱伝導部材を用い基板面に平行な方向に熱を移送し、発熱源から所定距離離間した位置のヒートシンクに熱を移送し放熱するように電子機器を構成するのでもよい。
なお、上記では、ヒートシンク630が1つの場合について説明したが、ヒートシンクは、例えば、積層型高出力レーザ素子の他の側面等に複数配置される構成でもよい。
In addition, as described above, a stacked high-power laser element having a configuration in which laser chips are aligned in a single row or a plane with the emission direction aligned is incorporated into a substrate as a laser module, and is used as an automotive control device, high-power processing device, etc. It may be mounted on the electronic device. Also, heat is transferred from a heating element such as a laser chip in an electronic device in a direction parallel to the substrate surface using an anisotropic heat conducting member, and the heat is transferred to a heat sink located at a predetermined distance from the heat generation source for heat dissipation. The electronic device may be configured as described above.
In the above description, the case where there is one heat sink 630 has been described. However, a plurality of heat sinks may be arranged on the other side surface of the stacked high-power laser element, for example.

(第5の実施の形態)
次に、本発明を具体化した第5の実施の形態に係る半導体素子を図7に基づいて説明する。
本実施形態に係る半導体素子は、上記第1の実施の形態で説明した異方性熱伝導部材(図2に示す異方性熱伝導部材120)を放熱に利用したハイパワーLED(発光ダイオード)素子である。
(Fifth embodiment)
Next, a semiconductor device according to a fifth embodiment embodying the present invention will be described with reference to FIG.
The semiconductor element according to the present embodiment is a high power LED (light emitting diode) using the anisotropic heat conductive member (the anisotropic heat conductive member 120 shown in FIG. 2) described in the first embodiment for heat dissipation. It is an element.

半導体素子としてのハイパワーLED素子70は、異方性熱伝導部材としての異方性熱伝導膜71と、発熱体としてのLEDチップ(発光ダイオードチップ)72と、基板73とを備える。基板73は汎用基板である。この基板73上に異方性熱伝導膜71が形成されている。この異方性熱伝導膜71の表面上にLEDチップ72が実装されている。異方性熱伝導膜71は、上記第1の実施の形態で説明した異方性熱伝導部材120(図2参照)と同様の構成を有する。ハイパワーLED素子70の両側面には、冷却放熱手段74が接触層75をそれぞれ介して配置されており、異方性熱伝導膜71の露出した両端面が接触層75をそれぞれ介してペルチェ素子74と熱的に良好に接触するようになっている。冷却放熱手段74としては、例えばペルチェ素子が用いられる。   A high power LED element 70 as a semiconductor element includes an anisotropic heat conductive film 71 as an anisotropic heat conductive member, an LED chip (light emitting diode chip) 72 as a heating element, and a substrate 73. The substrate 73 is a general-purpose substrate. An anisotropic heat conductive film 71 is formed on the substrate 73. An LED chip 72 is mounted on the surface of the anisotropic heat conductive film 71. The anisotropic heat conductive film 71 has the same configuration as the anisotropic heat conductive member 120 (see FIG. 2) described in the first embodiment. On both side surfaces of the high-power LED element 70, cooling heat dissipation means 74 are arranged via contact layers 75, and both exposed end faces of the anisotropic heat conductive film 71 are Peltier elements via the contact layers 75. 74 is in good thermal contact. As the cooling and heat dissipation means 74, for example, a Peltier element is used.

ここで、本実施形態に係る半導体素子70との比較例として、2つの従来技術を図10および図11に基づいて説明する   Here, as a comparative example with the semiconductor element 70 according to the present embodiment, two conventional techniques will be described with reference to FIGS. 10 and 11.

図10は、複合構造により発熱体の放熱をする従来のハイパワーLED素子を示している。このハイパワーLED素子は、金属製の基板である金属ベース76と、中央に開口部を有するように金属ベース76の表面に形成された樹脂層77と、樹脂層77の開口部で露出した金属ベース76の表面および樹脂層77の一部の表面上に、V字形状の断面を有するように形成されたAlNパッケージ78と、このAlNパッケージ78中央の平坦面上に実装されたLEDチップ79とを備えている。この従来技術では、素子設計上、構造に制約がある。   FIG. 10 shows a conventional high-power LED element that radiates heat from a heating element with a composite structure. This high power LED element includes a metal base 76 that is a metal substrate, a resin layer 77 formed on the surface of the metal base 76 so as to have an opening at the center, and a metal exposed at the opening of the resin layer 77. An AlN package 78 formed to have a V-shaped cross section on the surface of the base 76 and a part of the surface of the resin layer 77, and an LED chip 79 mounted on a flat surface in the center of the AlN package 78 It has. In this prior art, there is a restriction on the structure in terms of element design.

また、図11は、高熱発熱パッケージ構造により発熱体の放熱をする従来のハイパワーLED素子を示している。このハイパワーLED素子は、AlN製のAlN基板80と、AlN基板80中央の表面上に実装されたLEDチップ81と、LEDチップ81の周囲を囲むようにAlN基板80の表面上に形成されたAlNパッケージ82とを備えている。この従来技術では、基板自体がAlN製であり、部品コストが高くなる。   FIG. 11 shows a conventional high-power LED element that dissipates heat from the heating element using a high-heat-generation package structure. This high power LED element is formed on the surface of the AlN substrate 80 so as to surround the periphery of the LED chip 81, the AlN substrate 80 made of AlN, the LED chip 81 mounted on the center surface of the AlN substrate 80, and the LED chip 81. And an AlN package 82. In this prior art, the substrate itself is made of AlN, which increases the component cost.

以上の構成を有する第5の実施の形態によれば、以下の作用効果を奏する。
○基板73上に異方性熱伝導膜71を形成し、この異方性熱伝導膜71の表面上にLEDチップ72を実装することでハイパワーLED素子70を作製できるので、図10に示す上記従来技術のような素子設計上、構造に制約がなくなる。これと共に、基板73は汎用基板で良いので、部品コストを低減できる。これにより、構造が簡単で、汎用基板への高効率成膜が可能となり、製造コストを低減することができる。
○異方性熱伝導膜71によりLEDチップ72全体の温度分布が平坦化されて、LEDチップ72のピーク温度が下げられるので、ハイパワーLED素子70の長寿命化を図ることができる。
○異方性熱伝導膜71の露出した両端面が接触層75をそれぞれ介してペルチェ素子74と熱的に良好に接触するようになっている。このため、異方性熱伝導膜71により層に垂直方向の熱浸透率である層垂直方向熱浸透率が低く抑えられると共に、LEDチップ72からの熱が異方性熱伝導膜71を介してペルチェ素子74に伝達され、放熱されるので、省スペースかつ冷却効率および熱電変換効率の向上が可能なハイパワーLED素子を実現できる。
According to 5th Embodiment which has the above structure, there exist the following effects.
A high power LED element 70 can be manufactured by forming the anisotropic heat conductive film 71 on the substrate 73 and mounting the LED chip 72 on the surface of the anisotropic heat conductive film 71, as shown in FIG. There are no restrictions on the structure in terms of element design as in the prior art. At the same time, since the substrate 73 may be a general-purpose substrate, the component cost can be reduced. As a result, the structure is simple, high-efficiency film formation on a general-purpose substrate is possible, and the manufacturing cost can be reduced.
The temperature distribution of the entire LED chip 72 is flattened by the anisotropic heat conductive film 71 and the peak temperature of the LED chip 72 is lowered, so that the life of the high power LED element 70 can be extended.
The exposed end faces of the anisotropic heat conductive film 71 are in good thermal contact with the Peltier element 74 through the contact layers 75, respectively. For this reason, the anisotropic heat conductive film 71 can suppress the layer vertical heat permeability, which is the heat permeability in the direction perpendicular to the layer, and heat from the LED chip 72 through the anisotropic heat conductive film 71. Since it is transmitted to the Peltier element 74 and dissipated, it is possible to realize a high-power LED element that can save space and improve cooling efficiency and thermoelectric conversion efficiency.

(第6の実施の形態)
次に、本発明を具体化した第6の実施の形態に係る半導体素子を図8および図9に基づいて説明する。
(Sixth embodiment)
Next, a semiconductor device according to a sixth embodiment embodying the present invention will be described with reference to FIGS.

本実施形態に係る半導体素子は、上記第1の実施の形態で説明した異方性冷却素子の異方性熱伝導部材を放熱に利用した半導体レーザ素子である。図8はこの半導体レーザ素子の概略構成を示す斜視図で、図9はその詳細な構造を一部破断して示した斜視図である。なお、図8と図9は同じ構成の半導体素子を示しているが、図8は異方性熱伝導部材としての異方性熱伝導膜を電流狭窄層の内部に形成した例を示してあり、図9は異方性熱伝導膜を電流狭窄層の下部に形成した例を示してある。   The semiconductor element according to the present embodiment is a semiconductor laser element that uses the anisotropic heat conducting member of the anisotropic cooling element described in the first embodiment for heat dissipation. FIG. 8 is a perspective view showing a schematic configuration of the semiconductor laser device, and FIG. 9 is a perspective view showing a part of the detailed structure thereof. 8 and 9 show semiconductor elements having the same configuration, but FIG. 8 shows an example in which an anisotropic heat conductive film as an anisotropic heat conductive member is formed inside the current confinement layer. FIG. 9 shows an example in which an anisotropic heat conductive film is formed below the current confinement layer.

半導体素子としての半導体レーザ素子90は、図8に示すように、多重量子井戸(MQW)層からなる活性層91と電流狭窄層92とを有し、異方性熱伝導部材としての異方性熱伝導膜93が電流狭窄層92の内部に形成されている。   As shown in FIG. 8, a semiconductor laser element 90 as a semiconductor element has an active layer 91 made of a multiple quantum well (MQW) layer and a current confinement layer 92, and has an anisotropy as an anisotropic heat conducting member. A heat conductive film 93 is formed inside the current confinement layer 92.

また、半導体レーザ素子90は、図8および図9に示すように、基板103と、基板103の裏面側に形成された下部電極94と、基板103の表面側に順に形成されたn型下部クラッド層95、活性層91、p型上部クラッド層96、p型コンタクト層97および上部電極98と、を備える。電流狭窄層92は、n型下部クラッド層95に隣接するp型層92と、p型上部クラッド層96に隣接するn型層92とを有する。符号「99」はトンネル接合である。 Further, as shown in FIGS. 8 and 9, the semiconductor laser element 90 includes a substrate 103, a lower electrode 94 formed on the back surface side of the substrate 103, and an n-type lower cladding formed in order on the front surface side of the substrate 103. A layer 95, an active layer 91, a p-type upper cladding layer 96, a p-type contact layer 97, and an upper electrode 98. The current confinement layer 92 has a p-type layer 92 1 adjacent the n-type lower cladding layer 95, an n-type layer 92 2 adjacent to the p-type upper cladding layer 96. Reference numeral “99” is a tunnel junction.

本実施形態では、異方性熱伝導膜93は、電流狭窄層92の内部で、p型層92とn型層92との間に形成されている。この異方性熱伝導膜93は、以下の製造方法で形成する。
まず、電流狭窄のためのp型層92を形成後、異方性熱伝導膜93を形成し、その後、n型層92を形成する。
In this embodiment, the anisotropic heat conduction layer 93 is an internal current confinement layer 92 is formed between the p-type layer 92 1 and the n-type layer 92 2. This anisotropic heat conductive film 93 is formed by the following manufacturing method.
First, after forming the p-type layer 92 1 for current confinement, form an anisotropic thermal conductive film 93, then forming the n-type layer 92 2.

また、図8において、符号「160」は半導体レーザ素子90の光出射側端面に形成された反射防止膜(AR膜)或いは非反射膜であり、符号「161」はその光反射側端面に形成された高反射膜(HR膜)である。なお、図8において、反射防止膜160の奥は本来見えないが、反射防止膜160を透視的に示して半導体レーザ素子90の光出射側端面の断面構造が見えるようにしてある。そして、半導体レーザ素子90の両側面には、図7に示すハイパワーLED素子70と同様に、冷却放熱手段が接触層をそれぞれ介して配置されており、異方性熱伝導膜93の露出した両端面が接触層をそれぞれ介してペルチェ素子等の冷却放熱手段と熱的に良好に接触するようになっている。   In FIG. 8, reference numeral “160” is an antireflection film (AR film) or non-reflective film formed on the light emitting side end face of the semiconductor laser element 90, and reference numeral “161” is formed on the light reflecting side end face. This is a highly reflective film (HR film). In FIG. 8, the back of the antireflection film 160 is not originally visible, but the antireflection film 160 is shown in a transparent manner so that the cross-sectional structure of the light emitting side end face of the semiconductor laser element 90 can be seen. Then, on both side surfaces of the semiconductor laser element 90, similarly to the high power LED element 70 shown in FIG. 7, cooling and heat radiation means are arranged through the contact layers, respectively, and the anisotropic heat conductive film 93 is exposed. Both end surfaces are in good thermal contact with the cooling and radiating means such as Peltier elements through the contact layers.

このような構成を有する半導体レーザ素子90では、下部電極(陰極)94と上部電極(陽極)98間に電流を注入すると、上部電極98から注入された電流は、左右の電流狭窄層92により電流流路を制限されて横方向に流れた後、トンネル接合99を通過して流れ、正孔となって活性層91に至る。こうして活性層91に注入された正孔は、下部電極94から注入される電子と再結合されて発光する。この発光した光が光出射側端面の反射防止膜160と光反射側端面の高反射膜161間を往復することで増幅されてレーザ発振に至り、反射防止膜160を通過してレーザ光として外部へ出射される。   In the semiconductor laser device 90 having such a configuration, when a current is injected between the lower electrode (cathode) 94 and the upper electrode (anode) 98, the current injected from the upper electrode 98 is made into a current by the current confinement layers 92 on the left and right. After flowing in the lateral direction with the flow path restricted, it flows through the tunnel junction 99 and reaches the active layer 91 as holes. The holes injected into the active layer 91 in this way are recombined with electrons injected from the lower electrode 94 to emit light. The emitted light is amplified by reciprocating between the antireflection film 160 on the light emission side end face and the high reflection film 161 on the light reflection side end face to cause laser oscillation, and passes through the antireflection film 160 to be externally emitted as laser light. Is emitted.

以上の構成を有する第6の実施の形態によれば、以下の作用効果を奏する。
○電流狭窄層92内部に形成された異方性熱伝導膜93により半導体レーザ素子90の活性層91近傍の温度分布が平坦化されて、活性層91近傍のピーク温度が下げられる。これにより、活性層91近傍の低温化、特に活性層91近傍のピーク温度の低温化を図ることができるので、半導体レーザ素子90の長寿命化を図ることができる。
○半導体レーザ素子90の両側面には、冷却放熱手段が接触層をそれぞれ介して配置され、異方性熱伝導膜93の露出した両端面が接触層をそれぞれ介してペルチェ素子等の冷却放熱手段と熱的に良好に接触するようになっている。これにより、異方性熱伝導膜93により層に垂直方向の熱浸透率である層垂直方向熱浸透率が低く抑えられると共に、半導体レーザ素子90からの熱が異方性熱伝導膜93を介して冷却放熱手段に伝達されるので、省スペースかつ冷却効率および熱電変換効率の向上が可能な半導体レーザ素子90を実現できる。
According to 6th Embodiment which has the above structure, there exist the following effects.
The temperature distribution in the vicinity of the active layer 91 of the semiconductor laser element 90 is flattened by the anisotropic thermal conductive film 93 formed in the current confinement layer 92, and the peak temperature in the vicinity of the active layer 91 is lowered. As a result, the temperature near the active layer 91 can be lowered, in particular, the peak temperature near the active layer 91 can be lowered, so that the life of the semiconductor laser device 90 can be extended.
A cooling heat dissipation means is disposed on both side surfaces of the semiconductor laser element 90 via contact layers, respectively, and both exposed end faces of the anisotropic heat conductive film 93 are cooled heat dissipation means such as Peltier elements via the contact layers, respectively. And come into good thermal contact. Thereby, the anisotropic thermal conductive film 93 suppresses the layer vertical thermal permeability, which is the thermal permeability in the direction perpendicular to the layer, and heat from the semiconductor laser element 90 passes through the anisotropic thermal conductive film 93. Therefore, the semiconductor laser device 90 can be realized which can save space and improve the cooling efficiency and the thermoelectric conversion efficiency.

なお、この発明は以下のように変更して具体化することもできる。   In addition, this invention can also be changed and embodied as follows.

・図8に示す上記第6の実施の形態では、異方性熱伝導膜93を、電流狭窄層92の内部で、p型層92とn型層92との間に形成した例について説明したが、異方性熱伝導膜93を電流狭窄層92のp型層92の内部、或いは、n型層92の内部に形成しても良い。 In the above sixth embodiment shown in FIG. 8, the anisotropic thermal conductive film 93, an internal current confinement layer 92, for example formed between the p-type layer 92 1 and the n-type layer 92 2 has been described, the inside of the p-type layer 92 1 of the current confinement layer 92 an anisotropic thermal conductive film 93, or may be formed in the n-type layer 92 2.

・また、異方性熱伝導膜93を図9に示すように電流狭窄層92の下部に形成してもよい。この異方性熱伝導膜93は、次の製造方法で形成する。メサストラップを形成後、周辺部分に異方性熱伝導膜93を形成し、その上層に電流狭窄のための電流狭窄層92を構成するp型層92と、n型層92を順次形成する。 Further, the anisotropic heat conductive film 93 may be formed below the current confinement layer 92 as shown in FIG. The anisotropic heat conductive film 93 is formed by the following manufacturing method. After forming the mesa strap, forming an anisotropic thermal conductive film 93 in the peripheral portion, and the p-type layer 92 1 forming the current confinement layer 92 for current confinement thereon, sequentially forming an n-type layer 92 2 To do.

・また、異方性熱伝導膜93を電流狭窄層92の上部に形成してもよい。この異方性熱伝導膜93は、次の製造方法で形成する。電流狭窄のためのp型層92、n型層92を形成後、異方性熱伝導膜93を形成する。 Further, the anisotropic heat conductive film 93 may be formed on the current confinement layer 92. The anisotropic heat conductive film 93 is formed by the following manufacturing method. After forming the p-type layer 92 1, n-type layer 92 2 for current confinement, to form the anisotropic thermal conductive film 93.

・このように、本発明は、異方性熱伝導膜93が活性層91の近傍に配置される構成、つまり、異方性冷却素子の異方性熱伝導部材としての異方性熱伝導膜93が電流狭窄層92の内部、上部および下部のいずれかに形成されている半導体素子に広く適用可能である。   As described above, according to the present invention, the anisotropic heat conductive film 93 is disposed in the vicinity of the active layer 91, that is, the anisotropic heat conductive film as an anisotropic heat conductive member of the anisotropic cooling element. 93 is widely applicable to a semiconductor device formed inside, above or below the current confinement layer 92.

本発明に係る異方性熱伝導部材を有する半導体素子、レーザ素子、これらのモジュールおよび電子機器は、冷却効率の向上および省スペース化が可能という効果を有し、かかる効果が有効な半導体素子、レーザ素子、これらのモジュールおよび電子機器等として有用である。   The semiconductor element, the laser element, these modules, and the electronic device having the anisotropic heat conducting member according to the present invention have the effect that the cooling efficiency can be improved and the space can be saved. It is useful as a laser element, these modules, electronic equipment, and the like.

本発明の第1の実施の態様の半導体素子の構成を説明するための部分断面図。1 is a partial cross-sectional view for explaining a configuration of a semiconductor element according to a first embodiment of the present invention. 本発明の第1の実施の態様の異方性熱伝導部材の断面構造の一例を模式的に示す図。The figure which shows typically an example of the cross-section of the anisotropic heat conductive member of the 1st Embodiment of this invention. 本発明の第2の実施の態様のレーザ素子の断面構造を示す模式図。The schematic diagram which shows the cross-section of the laser element of the 2nd embodiment of this invention. 本発明の第2の実施の態様のレーザ素子との比較例としての、従来のレーザ素子の断面構造を示す模式図。The schematic diagram which shows the cross-section of the conventional laser element as a comparative example with the laser element of the 2nd Embodiment of this invention. 本発明の第3の実施の態様の積層型半導体素子の断面構造を示す模式図。The schematic diagram which shows the cross-section of the laminated semiconductor element of the 3rd embodiment of this invention. 本発明の第4の実施の態様の積層型高出力レーザ素子の断面構造を示す模式図。The schematic diagram which shows the cross-section of the lamination type high output laser element of the 4th embodiment of this invention. 本発明の第5の実施の態様に係るハイパワーLED素子の概略構成を示す断面図。Sectional drawing which shows schematic structure of the high power LED element which concerns on the 5th embodiment of this invention. 本発明の第6の実施の態様に係る半導体レーザ素子の概略構成を示す斜視図。The perspective view which shows schematic structure of the semiconductor laser element which concerns on the 6th embodiment of this invention. 同半導体レーザ素子の詳細な構造を一部破断して示した斜視図。The perspective view which showed the detailed structure of the semiconductor laser element partially broken. 発熱体の放熱をする従来のハイパワーLED素子の概略構成を示す断面図。Sectional drawing which shows schematic structure of the conventional high power LED element which thermally radiates a heat generating body. 従来のハイパワーLED素子の概略構成を示す断面図。Sectional drawing which shows schematic structure of the conventional high power LED element.

符号の説明Explanation of symbols

70 ハイパワーLED素子
71 異方性熱伝導膜
72 LEDチップ
73 基板
90 半導体レーザ素子
91 活性層
92 電流狭窄層
93 異方性熱伝導膜
100、200 半導体素子
110、210 半導体チップ
120、220、320 異方性熱伝導部材
121 熱伝導層
122 熱共振層
130、230 ヒートリード
140、240、340 接触層
150、250 保護膜
260 回路基板等の部材
300、400 レーザ素子
310、410 レーザチップ
330、530、630 ヒートシンク
331 ヒートスプレッダ
332 ベース
333、434 底板
334、435 レーザ固定部材
335 外部ヒートシンク
431〜433 ヒートシンク用部材
500 積層型半導体素子
510 半導体チップ層
520、620 異方性熱伝導部材層
540 電極
550 基板
600 積層型高出力レーザ素子
610 レーザチップ層
640 平板部材
70 High Power LED Element 71 Anisotropic Thermal Conductive Film 72 LED Chip 73 Substrate 90 Semiconductor Laser Element 91 Active Layer 92 Current Constriction Layer 93 Anisotropic Thermal Conductive Film 100, 200 Semiconductor Element 110, 210 Semiconductor Chip 120, 220, 320 Anisotropic heat conduction member 121 Thermal conduction layer 122 Thermal resonance layer 130, 230 Heat lead 140, 240, 340 Contact layer 150, 250 Protective film 260 Circuit board member 300, 400 Laser element 310, 410 Laser chip 330, 530 , 630 Heat sink 331 Heat spreader 332 Base 333, 434 Bottom plate 334, 435 Laser fixing member 335 External heat sink 431-433 Heat sink member 500 Multilayer semiconductor element 510 Semiconductor chip layer 520, 620 Anisotropic heat conduction member layer 540 Electrode 55 Substrate 600 stacked high power laser device 610 laser chip layer 640 flat member

Claims (18)

半導体チップと、前記半導体チップの少なくとも1つの面に形成され、熱伝導率の高い材料からなる熱伝導層と層厚(t)が動作温度での対象とするフォノンの平均自由工程より短く、且つ、層厚(t)がmを自然数とし、対象とするフォノンの波長をλで記載した場合に、以下の式(1)を満たす厚さになっている熱共振体層とが交互に積層された異方性熱伝導部材と、前記異方性熱伝導部材内の熱を外部に放熱するヒートリードと、前記異方性熱伝導部材と前記ヒートリードとを熱的に接触させる接触層と、前記異方性熱伝導部材、ヒートリード及び前記接触層を覆う保護膜と、を備えることを特徴とする半導体素子。
mλ/2.2<t<mλ/1.8 (mは自然数) (1)
A semiconductor chip, a heat conductive layer formed on at least one surface of the semiconductor chip and made of a material having high thermal conductivity, and a layer thickness (t) shorter than a mean free path of a target phonon at an operating temperature; When the layer thickness (t) is m as a natural number and the wavelength of the target phonon is described as λ, the thermal resonator layers having thicknesses satisfying the following expression (1) are alternately stacked. An anisotropic heat conducting member, a heat lead that radiates heat inside the anisotropic heat conducting member to the outside, and a contact layer that thermally contacts the anisotropic heat conducting member and the heat lead, And a protective film that covers the anisotropic heat conductive member, the heat lead, and the contact layer.
mλ / 2.2 <t <mλ / 1.8 (m is a natural number) (1)
端面出射型のレーザチップと、前記レーザチップの共振方向に沿った端面であって前記レーザチップを挟む2つの積層方向の端面の少なくとも一方に形成され、熱伝導率の高い材料からなる熱伝導層と層厚(t)が動作温度での対象とするフォノンの平均自由工程より短く、且つ、層厚(t)がmを自然数とし、対象とするフォノンの波長をλで記載した場合に、以下の式(1)を満たす厚さになっている熱共振体層とが交互に積層された異方性熱伝導部材と、前記異方性熱伝導部材が形成された積層方向端面に交差する端面であって前記共振方向に沿った端面上に、接触層を介して前記異方性熱伝導部材に接触するように形成されたヒートシンクと、を備えるレーザ素子として構成され、前記レーザチップが発生する熱を前記異方性熱伝導部材を介して前記ヒートシンクに伝達させて放熱することを特徴とする半導体素子。
mλ/2.2<t<mλ/1.8 (mは自然数)(1)
An end face emitting type laser chip and a heat conductive layer made of a material having a high thermal conductivity and formed on at least one of two end faces along the resonance direction of the laser chip and sandwiching the laser chip. And the layer thickness (t) is shorter than the mean free path of the target phonon at the operating temperature, the layer thickness (t) is m as a natural number, and the wavelength of the target phonon is described as λ, An anisotropic heat conducting member in which the thermal resonator layers having a thickness satisfying the formula (1) are alternately laminated, and an end face intersecting with the lamination direction end face on which the anisotropic heat conducting member is formed And a heat sink formed on the end surface along the resonance direction so as to come into contact with the anisotropic heat conducting member via a contact layer, and the laser chip is generated. Heat anisotropic heat conduction Semiconductor device characterized by the heat radiation by transmitted to the heat sink through the wood.
mλ / 2.2 <t <mλ / 1.8 (m is a natural number) (1)
端面出射型のレーザチップと、前記レーザチップの共振方向に沿った端面であって前記レーザチップを挟む2つの積層方向の端面の少なくとも一方に形成され、熱伝導率の高い材料からなる熱伝導層と層厚(t)が動作温度での対象とするフォノンの平均自由工程より短く、且つ、層厚(t)がmを自然数とし、対象とするフォノンの波長をλで記載した場合に、以下の式(1)を満たす厚さになっている熱共振体層とが交互に積層された異方性熱伝導部材と、前記レーザチップから所定距離離れた位置に形成されたヒートシンクと、を備えるレーザ素子として構成され、前記レーザチップが発生する熱を前記異方性熱伝導部材を介して前記ヒートシンクに伝達させて放熱することを特徴とする半導体素子。
mλ/2.2<t<mλ/1.8 (mは自然数) (1)
An end face emitting type laser chip and a heat conductive layer made of a material having a high thermal conductivity and formed on at least one of two end faces along the resonance direction of the laser chip and sandwiching the laser chip. And the layer thickness (t) is shorter than the mean free path of the target phonon at the operating temperature, the layer thickness (t) is m as a natural number, and the wavelength of the target phonon is described as λ, An anisotropic heat conducting member in which thermal resonator layers having thicknesses satisfying the formula (1) are alternately stacked, and a heat sink formed at a predetermined distance from the laser chip. A semiconductor device configured as a laser device, wherein the heat generated by the laser chip is transferred to the heat sink through the anisotropic heat conducting member to dissipate heat.
mλ / 2.2 <t <mλ / 1.8 (m is a natural number) (1)
半導体チップを有する層と、熱伝導率の高い材料からなる熱伝導層と層厚(t)が動作温度での対象とするフォノンの平均自由工程より短く、且つ、層厚(t)がmを自然数とし、対象とするフォノンの波長をλで記載した場合に、以下の式(1)を満たす厚さになっている熱共振体層とが交互に積層された異方性熱伝導部材からなる層とが交互に積層され3次元実装構造を有する3次元実装積層型半導体チップと、
前記3次元実装積層型半導体チップの各層に交差する側面上に形成されたヒートシンクと、
前記半導体チップの各層に接続する電極と、
を備える積層型半導体素子として構成され、前記半導体チップが発生する熱を前記異方性熱伝導部材からなる層を介して前記ヒートシンクに伝達させて放熱することを特徴とする半導体素子。
mλ/2.2<t<mλ/1.8 (mは自然数)(1)
A layer having a semiconductor chip, a heat conductive layer made of a material having a high thermal conductivity, and a layer thickness (t) shorter than the mean free process of the target phonon at the operating temperature, and a layer thickness (t) of m When a natural number is used and the wavelength of the target phonon is described as λ, it is composed of an anisotropic heat conducting member in which thermal resonator layers having a thickness satisfying the following formula (1) are alternately stacked. A three-dimensional mounting multilayer semiconductor chip having a three-dimensional mounting structure in which layers are alternately stacked;
A heat sink formed on a side surface intersecting with each layer of the three-dimensional mounting multilayer semiconductor chip;
An electrode connected to each layer of the semiconductor chip;
A semiconductor device comprising: a semiconductor device comprising: a semiconductor chip, wherein heat generated by the semiconductor chip is transmitted to the heat sink through a layer made of the anisotropic heat conducting member.
mλ / 2.2 <t <mλ / 1.8 (m is a natural number) (1)
出射方向を揃えて1列に配置されたレーザチップを有する層と、熱伝導率の高い材料からなる熱伝導層と層厚(t)が動作温度での対象とするフォノンの平均自由工程より短く、且つ、層厚(t)がmを自然数とし、対象とするフォノンの波長をλで記載した場合に、以下の式(1)を満たす厚さになっている熱共振体層とが交互に積層された異方性熱伝導部材からなる層とが交互に積層された積層型高出力レーザチップと、
前記レーザチップの各層に交差する側面上に前記異方性熱伝導部材に接触するように形成されたヒートシンクと、
前記レーザチップの各層に接続する電極と、
を備える積層型高出力レーザ素子として構成され、前記レーザチップの各層が発生する熱を前記異方性熱伝導部材からなる層を介してヒートシンクに伝達させて放熱することを特徴とする半導体素子。
mλ/2.2<t<mλ/1.8 (mは自然数)(1)
A layer having laser chips arranged in a line with the emission direction aligned, a heat conductive layer made of a material having high thermal conductivity, and a layer thickness (t) shorter than the mean free path of the target phonon at the operating temperature In addition, when the layer thickness (t) is m as a natural number and the wavelength of the target phonon is described as λ, the thermal resonator layers having thicknesses satisfying the following formula (1) are alternately A stacked high-power laser chip in which stacked layers of anisotropic heat conductive members are stacked alternately;
A heat sink formed on a side surface intersecting each layer of the laser chip so as to be in contact with the anisotropic heat conducting member;
An electrode connected to each layer of the laser chip;
A semiconductor device, wherein the semiconductor device is configured as a stacked high-power laser device, and the heat generated by each layer of the laser chip is transferred to the heat sink through the layer made of the anisotropic heat conducting member to dissipate heat.
mλ / 2.2 <t <mλ / 1.8 (m is a natural number) (1)
前記電極が前記半導体チップのいずれか1つ以上の層を貫通する貫通電極であることを特徴とする請求項4に記載の半導体素子。   The semiconductor element according to claim 4, wherein the electrode is a through electrode penetrating any one or more layers of the semiconductor chip. 請求項1、4に記載の前記半導体チップと、前記異方性熱伝導部材とを金属粒子、酸化物粒子、およびハンダ粒子のいずれかからなるナノ粒子を介して接触させることを特徴とする半導体素子。   5. The semiconductor according to claim 1, wherein the semiconductor chip and the anisotropic heat conducting member are brought into contact with each other through nanoparticles made of any one of metal particles, oxide particles, and solder particles. element. 請求項2、3、5のいずれか一つに記載の前記レーザチップと、前記異方性熱伝導部材とを金属粒子、酸化物粒子、およびハンダ粒子のいずれかからなるナノ粒子を介して接触させることを特徴とする半導体素子。   The laser chip according to any one of claims 2, 3, and 5 and the anisotropic heat conducting member are brought into contact with each other through nanoparticles made of any one of metal particles, oxide particles, and solder particles. The semiconductor element characterized by making it. 請求項1、4に記載の半導体チップを有する半導体素子から構成されたことを特徴とする半導体モジュール。   A semiconductor module comprising a semiconductor element having the semiconductor chip according to claim 1. 請求項2、3、5のいずれか一つに記載のレーザチップを有する半導体素子から構成されたことを特徴とするレーザモジュール。   A laser module comprising a semiconductor element having the laser chip according to claim 2. 請求項10に記載のレーザチップを有する半導体素子を複数個並列に並べた構造を有し、レーザモジュールとして構成されたことを特徴とするレーザモジュール。 11. A laser module having a structure in which a plurality of semiconductor elements each having the laser chip according to claim 10 are arranged in parallel and configured as a laser module. 請求項9に記載の半導体モジュールを基板に組み込んだことを特徴とする電子機器。   An electronic device comprising the semiconductor module according to claim 9 incorporated in a substrate. 請求項12に記載の電子機器が自動車用制御機器であることを特徴とする電子機器。   An electronic device according to claim 12, wherein the electronic device is an automotive control device. 熱伝導率の高い材料からなる熱伝導層と層厚(t)が動作温度での対象とするフォノンの平均自由工程より短く、且つ、層厚(t)がmを自然数とし、対象とするフォノンの波長をλで記載した場合に、以下の式(1)を満たす厚さになっている熱共振体層とが交互に積層された異方性熱伝導部材を備え、発熱源から前記異方性熱伝導部材を用い基板面に平行な方向に熱を移送し、発熱源から所定距離離間した位置のヒートシンクに熱を移送し放熱を行うことを特徴とする電子機器。
mλ/2.2<t<mλ/1.8 (mは自然数) (1)
Thermally conductive layer made of a material having high thermal conductivity and the layer thickness (t) is shorter than the mean free path of the target phonon at the operating temperature, the layer thickness (t) is m as a natural number, and the target phonon Is provided with an anisotropic heat conduction member in which thermal resonance layers having thicknesses satisfying the following formula (1) are alternately laminated, and the anisotropic An electronic apparatus characterized in that heat is transferred in a direction parallel to the substrate surface using a heat conductive member, and heat is transferred to a heat sink located at a predetermined distance from a heat source to dissipate heat.
mλ / 2.2 <t <mλ / 1.8 (m is a natural number) (1)
発光ダイオードチップと、熱伝導率の高い材料からなる熱伝導層と層厚(t)が動作温度での対象とするフォノンの平均自由工程より短く、且つ、層厚(t)がmを自然数とし、対象とするフォノンの波長をλで記載した場合に、以下の式(1)を満たす厚さになっている熱共振体層とが交互に積層された異方性熱伝導部材と、基板と、を備え、
前記基板上に前記異方性熱伝導部材が形成されており、前記異方性熱伝導部材の表面上に前記発光ダイオードチップが実装されていることを特徴とする半導体素子。
mλ/2.2<t<mλ/1.8 (mは自然数) (1)
The light-emitting diode chip, the heat conductive layer made of a material having high thermal conductivity, and the layer thickness (t) are shorter than the mean free process of the target phonon at the operating temperature, and the layer thickness (t) is m as a natural number. When the wavelength of the target phonon is described as λ, an anisotropic heat conductive member in which thermal resonator layers having thicknesses satisfying the following expression (1) are alternately stacked, a substrate, With
The semiconductor element, wherein the anisotropic heat conducting member is formed on the substrate, and the light emitting diode chip is mounted on a surface of the anisotropic heat conducting member.
mλ / 2.2 <t <mλ / 1.8 (m is a natural number) (1)
前記異方性熱伝導部材の側面と前記基板の側面のうち、少なくとも前記異方性熱伝導部材の側面に、前記発光ダイオードチップから前記異方性熱伝導部材を介して伝達した熱を吸熱して冷却または放熱する1つ以上の冷却放熱手段が設けられていることを特徴とする請求項15に記載の半導体素子。   Of the side surface of the anisotropic heat conductive member and the side surface of the substrate, absorbs heat transferred from the light emitting diode chip through the anisotropic heat conductive member to at least the side surface of the anisotropic heat conductive member. 16. The semiconductor device according to claim 15, further comprising at least one cooling / dissipating means for cooling or dissipating heat. 活性層および電流狭窄層を有する半導体レーザ素子と、熱伝導率の高い材料からなる熱伝導層と層厚(t)が対象とするフォノンの平均自由工程より短く、且つ、層厚(t)がmを自然数とし、対動作温度での象とするフォノンの波長をλで記載した場合に、以下の式(1)を満たす厚さになっている熱共振体層とが交互に積層された異方性熱伝導部材と、基板と、を備え、前記異方性熱伝導部材が前記電流狭窄層の内部、上部および下部のいずれかに形成されていることを特徴とする半導体素子。
mλ/2.2<t<mλ/1.8 (mは自然数)(1)
A semiconductor laser device having an active layer and a current confinement layer, a heat conductive layer made of a material having high thermal conductivity, and a layer thickness (t) shorter than the target free-phonon mean free process, and a layer thickness (t) When m is a natural number and the wavelength of the phonon as an elephant at the operating temperature is described by λ, the thermal resonator layers having thicknesses satisfying the following formula (1) are alternately stacked. A semiconductor device comprising a isotropic heat conducting member and a substrate, wherein the anisotropic heat conducting member is formed in any one of the inside, the top and the bottom of the current confinement layer.
mλ / 2.2 <t <mλ / 1.8 (m is a natural number) (1)
前記半導体レーザ素子の側面に冷却放熱手段が設けられていることを特徴とする請求項17に記載の半導体素子。   The semiconductor element according to claim 17, wherein cooling and heat dissipation means are provided on a side surface of the semiconductor laser element.
JP2007007657A 2006-01-17 2007-01-17 Semiconductor element, semiconductor module and electronic device Active JP4927571B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007007657A JP4927571B2 (en) 2006-01-17 2007-01-17 Semiconductor element, semiconductor module and electronic device
SG200805132-8A SG144915A1 (en) 2007-01-17 2008-07-08 Method for picking up device attached with adhesive tape

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006008179 2006-01-17
JP2006008179 2006-01-17
JP2007007657A JP4927571B2 (en) 2006-01-17 2007-01-17 Semiconductor element, semiconductor module and electronic device

Publications (2)

Publication Number Publication Date
JP2007221109A JP2007221109A (en) 2007-08-30
JP4927571B2 true JP4927571B2 (en) 2012-05-09

Family

ID=38498002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007007657A Active JP4927571B2 (en) 2006-01-17 2007-01-17 Semiconductor element, semiconductor module and electronic device

Country Status (1)

Country Link
JP (1) JP4927571B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9553083B2 (en) 2014-07-21 2017-01-24 Samsung Electronics Co., Ltd. Apparatus for controlling heat flow

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009088386A (en) * 2007-10-02 2009-04-23 Rohm Co Ltd Power module
JP5430406B2 (en) 2007-12-21 2014-02-26 三菱電機株式会社 Laser light source module
DE102011055891B9 (en) * 2011-11-30 2017-09-14 Osram Opto Semiconductors Gmbh Semiconductor laser diode
KR101470754B1 (en) * 2013-08-28 2014-12-09 영남대학교 산학협력단 Light Emitting Diode

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4888247A (en) * 1986-08-27 1989-12-19 General Electric Company Low-thermal-expansion, heat conducting laminates having layers of metal and reinforced polymer matrix composite
JPH01181550A (en) * 1988-01-12 1989-07-19 Toppan Printing Co Ltd Multi-layer electronic circuit
JP3345986B2 (en) * 1993-10-15 2002-11-18 松下電器産業株式会社 Graphite heat conductor and cold plate using the same
JP4550613B2 (en) * 2005-02-21 2010-09-22 古河電気工業株式会社 Anisotropic heat conduction material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9553083B2 (en) 2014-07-21 2017-01-24 Samsung Electronics Co., Ltd. Apparatus for controlling heat flow

Also Published As

Publication number Publication date
JP2007221109A (en) 2007-08-30

Similar Documents

Publication Publication Date Title
CN104040809B (en) Semiconductor laser apparatus and method for manufacturing same
JP5223677B2 (en) Semiconductor device
JP5067140B2 (en) Light source device
JP5523769B2 (en) Thermoelectric module
US7878232B2 (en) Light emitting chip apparatuses with a thermally superconducting heat transfer medium for thermal management
TWI446495B (en) Package carrier and manufacturing method thereof
JP4927571B2 (en) Semiconductor element, semiconductor module and electronic device
JP6522615B2 (en) Mounting assembly and light emitting device
JP4833827B2 (en) Anisotropic cooling element, Peltier module including the same, light emitting diode element, semiconductor laser element
JP2004152808A (en) Semiconductor light emitting device
JP2010283253A (en) Light-emitting device and substrate for light-emitting device
US20080061306A1 (en) Semiconductor light emitting device
JP2009200258A (en) Semiconductor module
JP6481575B2 (en) Light emitting device, projector, and method for manufacturing light emitting device
JP6210720B2 (en) LED package
JP2007305977A (en) Semiconductor laser device and manufacturing method thereof
JP2007227762A (en) Semiconductor device and semiconductor module equipped therewith
JP2015185611A (en) Light emission device
JP2012156484A (en) Light-emitting device
JP2009117489A (en) Semiconductor device package and mounting substrate
US9153521B2 (en) Method of manufacturing a package carrier
JP2019029413A (en) Semiconductor light emitting device
US10825974B2 (en) Light-emitting diode package and method of manufacture
JP2023089984A (en) Light-emitting device
WO2020044882A1 (en) Semiconductor laser device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111007

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111028

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4927571

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350