JP2002298842A - Method for manufacturing electrode composition for nonaqueous electrolyte secondary battery - Google Patents

Method for manufacturing electrode composition for nonaqueous electrolyte secondary battery

Info

Publication number
JP2002298842A
JP2002298842A JP2001094486A JP2001094486A JP2002298842A JP 2002298842 A JP2002298842 A JP 2002298842A JP 2001094486 A JP2001094486 A JP 2001094486A JP 2001094486 A JP2001094486 A JP 2001094486A JP 2002298842 A JP2002298842 A JP 2002298842A
Authority
JP
Japan
Prior art keywords
silicon
carbon
carbon precursor
carbon material
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001094486A
Other languages
Japanese (ja)
Other versions
JP4923332B2 (en
Inventor
Tatsuro Sasaki
龍朗 佐々木
Toru Kamata
徹 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2001094486A priority Critical patent/JP4923332B2/en
Publication of JP2002298842A publication Critical patent/JP2002298842A/en
Application granted granted Critical
Publication of JP4923332B2 publication Critical patent/JP4923332B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide an electrode material of high energy density and safety, for electrode composition for a lithium ion secondary battery, capable of showing high charging and discharging capacity. SOLUTION: In this method for manufacturing electrode composition for nonaqueous electrolyte secondary battery, carbon precursor containing silicon and carbon precursor which does not contain silicon are combined and carbonized, to provide a silicon-containing carbon material of 3 to 25 wt.% silicon content with respect to the carbon material as a whole.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高充放電容量を発
揮することが可能なリチウムイオン二次電池等の非水電
解質二次電池用電極材組成物の製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an electrode material composition for a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery capable of exhibiting a high charge / discharge capacity.

【0002】[0002]

【従来の技術】近年、電子技術の発達にはめざましいも
のがある。その中で、電子機器の小型化、軽量化が要求
項目として挙げられる。それに伴い移動用電源としての
電池に対しても益々小型、軽量かつ高エネルギー密度で
あることが求められるようになり、リチウムイオン二次
電池の使用が拡大されてきた。
2. Description of the Related Art In recent years, the development of electronic technology has been remarkable. Among them, downsizing and weight reduction of electronic devices are mentioned as required items. Along with this, there has been an increasing demand for batteries as mobile power supplies to be smaller, lighter and have a higher energy density, and the use of lithium ion secondary batteries has been expanded.

【0003】上記に示したリチウムイオン二次電池の負
極材用炭素材としては、特開平5−74457号公報記
載の黒鉛を使用しているものが挙げられる。黒鉛は、サ
イクル性が非常によいことが特長であるが、理論充放電
容量が372mAh/gであるため、これ以上の充放電
容量は望めないという欠点がある。また、黒鉛材料以外
では、特開平5−28996号公報、特開平7−738
68号公報に示されるピッチコークスを使用した負極材
が挙げられる。この材料は易黒鉛化炭素材であるが、焼
成温度が2000℃を超える領域では黒鉛化が進行す
る。黒鉛になってしまうと充放電容量が決定されてしま
う。また黒鉛化される前の温度域(1000〜1800
℃)においては充放電容量の高い炭素材が得られてい
る。しかしながら、サイクル性が乏しく、ピッチコーク
スは不純物を多く含んでおり、電池特性に悪影響を及ぼ
す。
As a carbon material for a negative electrode material of the lithium ion secondary battery described above, there is a carbon material using graphite described in Japanese Patent Application Laid-Open No. Hei 5-74457. Graphite is characterized by very good cyclability, but has a drawback that a theoretical charge / discharge capacity is 372 mAh / g, so that a further charge / discharge capacity cannot be expected. In addition, other than graphite materials, JP-A-5-28996, JP-A-7-738.
No. 68 discloses a negative electrode material using pitch coke. This material is a graphitizable carbon material, but in the region where the firing temperature exceeds 2000 ° C., graphitization proceeds. When it becomes graphite, the charge / discharge capacity is determined. The temperature range before graphitization (1000 to 1800)
C), a carbon material having a high charge / discharge capacity is obtained. However, the cycle property is poor, and the pitch coke contains many impurities, which adversely affects the battery characteristics.

【0004】また、熱処理温度が500℃〜700℃程
度の低温で処理された炭素負極は、次世代の高容量型炭
素負極の有力候補の一つである。可逆容量で850mA
h/gと、重量あたりの容量で黒鉛をこえる。また、低
温処理であるため、エネルギーメリットも高い。しかし
ながら、電位が高く、充放電での電位のヒステリシスが
大きいのが難点である。炭素以外のリチウムイオン負極
材として注目されているのが特開平5−166536号
公報に示される金属酸化物含有炭素材、及び特開平6−
290782号公報に示される窒素含有炭素材である。
しかしながら、これらの炭素材では充放電容量800m
Ah/gと非常に大容量ではあるが、瞬間放電量が非常
に高いことからその制御が困難であるとされている。
[0004] A carbon anode treated at a low heat treatment temperature of about 500 ° C to 700 ° C is one of the promising candidates for the next generation high-capacity carbon anode. 850mA reversible capacity
Exceeds graphite in terms of h / g and capacity per weight. Further, since the treatment is performed at a low temperature, the energy merit is also high. However, the drawback is that the potential is high and the hysteresis of the potential during charge and discharge is large. As a lithium ion negative electrode material other than carbon, attention has been paid to metal oxide-containing carbon materials disclosed in JP-A-5-166536 and JP-A-5-166536.
This is a nitrogen-containing carbon material disclosed in Japanese Patent No. 290782.
However, these carbon materials have a charge / discharge capacity of 800 m.
Although it has a very large capacity of Ah / g, it is said that its control is difficult because the instantaneous discharge amount is very high.

【0005】また、リチウムイオンのインターカレーシ
ョン能が非常に高い材料としてケイ素含有炭素材があ
り、その製法として、特開平7−315822に気相で
の化学蒸着による製法や、再表98/024135にケ
イ素粉末あるいはケイ素化合物と有機材料又は炭素材料
を配合し炭化処理する製法が開示されている。しかしな
がら、特開平7−315822では、気相での化学蒸着
法は製法及び原材料の安全性に問題があり、ケイ素含有
量にバラツキが生じ、含有するケイ素量も少なく、充放
電特性を向上することが難しい。また、再表98/02
4135では、不可逆容量が大きく、ケイ素の高容量が
活かされていない。この理由は、この製法では直接ケイ
素又はケイ素化合物を炭素前駆体に配合するためケイ素
が炭素材の表面に露出する量が多くなるためと考えられ
る。
Further, there is a silicon-containing carbon material as a material having a very high lithium ion intercalation ability. Japanese Patent Application Laid-Open No. Hei 7-315822 discloses a production method by chemical vapor deposition in the gas phase and a method described in Japanese Patent Laid-Open No. 98/024135. Discloses a method in which a silicon powder or a silicon compound is mixed with an organic material or a carbon material and carbonized. However, in JP-A-7-315822, the chemical vapor deposition method in the gas phase has problems in the manufacturing method and the safety of raw materials, the silicon content varies, the silicon content is small, and the charge / discharge characteristics are improved. Is difficult. In addition, table 98/02
In 4135, the irreversible capacity is large, and the high capacity of silicon is not utilized. This is considered to be because silicon or a silicon compound is directly added to the carbon precursor in this production method, so that the amount of silicon exposed on the surface of the carbon material increases.

【0006】[0006]

【発明が解決しようとする課題】本発明は、高充放電容
量を発揮することができるリチウムイオン二次電池用電
極材組成物に関し、高エネルギー密度で且つ安全性の高
い電極材を提供することを目的とする。上記目的を達成
するために、本発明者らは鋭意研究を行った結果、ケイ
素を含み炭素化できる炭素前駆体とケイ素を含まない炭
素前駆体を配合し炭化処理することで得られるケイ素含
有量が3〜25%のケイ素含有炭素材を負極材に用いる
ことにより、高エネルギー密度で、かつ安全性の高いリ
チウムイオン二次電池の負極材が得られることを見出し
た。
SUMMARY OF THE INVENTION The present invention relates to an electrode material composition for a lithium ion secondary battery capable of exhibiting a high charge / discharge capacity, and to provide an electrode material having high energy density and high safety. With the goal. In order to achieve the above object, the present inventors have conducted intensive studies, and as a result, the silicon content obtained by blending a carbon precursor containing silicon and capable of being carbonized and a carbon precursor containing no silicon and carbonizing. It has been found that by using a silicon-containing carbon material having a high energy density of 3 to 25% as a negative electrode material, a negative electrode material of a lithium ion secondary battery having high energy density and high safety can be obtained.

【0007】[0007]

【課題を解決するための手段】本発明は、(1) ケイ
素を含む炭素前駆体とケイ素を含まない炭素前駆体とを
配合して炭化処理し、炭素材全体に対するケイ素含有量
が3〜25重量%であるケイ素含有炭素材を得ることを
特徴とする非水電解質二次電池用電極材組成物の製造方
法、(2) ケイ素を含む炭素前駆体が、ケイ素又はケ
イ素化合物と炭素前駆体又は炭素前駆体及び炭素材とを
配合したものであることを特徴とする請求項1記載の非
水電解質二次電池用電極材組成物の製造方法、(3)
ケイ素を含む炭素前駆体が、炭化処理により炭化ケイ素
を生成することが出来る炭素前駆体であることを特徴と
する請求項1又は2記載の非水電解質二次電池用電極材
料組成物の製造方法、である。
According to the present invention, (1) a carbon precursor containing silicon and a carbon precursor containing no silicon are blended and carbonized, and the silicon content is 3 to 25 with respect to the entire carbon material. A method for producing an electrode material composition for a non-aqueous electrolyte secondary battery, characterized in that a silicon-containing carbon material is obtained by weighting silicon or a silicon compound and a carbon precursor or The method for producing an electrode material composition for a non-aqueous electrolyte secondary battery according to claim 1, wherein the method comprises blending a carbon precursor and a carbon material. (3)
3. The method for producing an electrode material composition for a non-aqueous electrolyte secondary battery according to claim 1, wherein the carbon precursor containing silicon is a carbon precursor capable of forming silicon carbide by carbonization. ,.

【0008】[0008]

【発明の実施の形態】本発明のケイ素含有炭素材の製造
方法は、ケイ素を含む炭素前駆体とケイ素を含まない炭
素前駆体を配合し炭化処理することを特徴とするもので
ある。本発明で使用するケイ素を含む炭素前駆体とは炭
化処理後ケイ素が確実に炭化物内に存在し、リチウムを
吸蔵することができる炭素前駆体のことを言う。ケイ素
を含む炭素前駆体の製法は種々あり限定はされない。例
えば、ケイ素粉末をフェノール樹脂、エポキシ樹脂、ウ
レタン樹脂、不飽和ポリエステル、メラミン樹脂、尿素
樹脂、アニリン樹脂、ビスマレイミド樹脂、ベンゾオキ
サジン樹脂、ピッチ樹脂、ポリアクリロニトリル樹脂等
から選ばれる単独あるいは2種以上を併用した樹脂と硬
化剤等を粉砕混合し得たり、又、400℃の硬化処理を
して得たケイ素を含む炭素前駆体や酸化ケイ素、ケイ酸
ナトリウム等のケイ素化合物と上記記載樹脂類を溶融混
合し得られるケイ素を含む炭素前駆体等である。また、
上記で得られたケイ素を含む炭素前駆体として、熱処理
等することにより炭化ケイ素を生成するものを用いるこ
ともできる。
BEST MODE FOR CARRYING OUT THE INVENTION The method for producing a silicon-containing carbon material of the present invention is characterized in that a carbon precursor containing silicon and a carbon precursor containing no silicon are blended and carbonized. The carbon precursor containing silicon used in the present invention refers to a carbon precursor capable of absorbing lithium by ensuring that silicon is present in the carbide after the carbonization treatment. There are various methods for producing the carbon precursor containing silicon, and the method is not limited. For example, silicon powder is used alone or two or more selected from phenolic resin, epoxy resin, urethane resin, unsaturated polyester, melamine resin, urea resin, aniline resin, bismaleimide resin, benzoxazine resin, pitch resin, polyacrylonitrile resin, etc. Or a resin and a hardening agent or the like can be crushed and mixed, or a silicon compound such as a silicon precursor such as a carbon precursor or silicon oxide containing sodium obtained by performing a curing treatment at 400 ° C., and sodium silicate and the above-described resin. A carbon precursor containing silicon obtained by melt mixing; Also,
As the silicon-containing carbon precursor obtained above, a carbon precursor that generates silicon carbide by heat treatment or the like can also be used.

【0009】本発明において、炭素前駆体とは、炭素含
有物質で、炭素化処理して炭素材が得られるものであ
り、特に限定されないが、ピッチ、コークス、塩化ビニ
ル樹脂、木材類、フェノール樹脂、フラン樹脂、イミド
樹脂、ベンゾオキサジン樹脂、砂糖等の残炭率の高いも
のが好ましい。また、ケイ素を含まない炭素前駆体と
は、前記炭素前駆体のうち、実質的にケイ素を含まない
ものをいう。炭素材とは、炭素、黒鉛等であり、通常の
意味で使用されるが、前記炭素前駆体を炭化処理して得
られたものも含まれる。これらの炭素前駆体及び炭素材
は単独あるは二種以上併用し使用しても良い。
[0009] In the present invention, the carbon precursor is a carbon-containing substance which can be obtained by carbonization to obtain a carbon material. Pitch, coke, vinyl chloride resin, woods, phenol resin are not particularly limited. , A furan resin, an imide resin, a benzoxazine resin, sugar and the like having a high residual carbon ratio are preferable. Further, the carbon precursor containing no silicon refers to a carbon precursor that does not substantially contain silicon among the carbon precursors. The carbon material is carbon, graphite, or the like, and is used in a normal meaning, and includes those obtained by carbonizing the carbon precursor. These carbon precursors and carbon materials may be used alone or in combination of two or more.

【0010】本発明のケイ素を含む炭素前駆体とケイ素
を含まない炭素前駆体との配合方法は種々あり、特に限
定されるものではない。例えば、V型ブレンダー等の混
合機にて均一混合する方法や、パルペライザー、ボール
ミル等の粉砕混合機にて粉砕しながら混合する方法、押
し出し機や混練機を用い混練又は溶融混合する方法、あ
るいは、表面改質機、複合化機を用いケイ素を含む炭素
前駆体をケイ素を含まない炭素前駆体表面の改質剤とし
て混合する方法等がある。
There are various methods for blending the silicon-containing carbon precursor and the silicon-free carbon precursor of the present invention, and there is no particular limitation. For example, a method of uniformly mixing with a mixer such as a V-type blender, a method of mixing while pulverizing with a pulverizer, a pulverizer such as a ball mill, a method of kneading or melt-mixing using an extruder or a kneader, or There is a method of mixing a carbon precursor containing silicon as a modifier for the surface of a carbon precursor containing no silicon using a surface reformer or a compounding machine.

【0011】本発明の特徴であるケイ素を含む炭素前駆
体とケイ素を含まない炭素前駆体とを配合すると、ケイ
素が炭素表面に露出する量が少なく、ケイ素の特徴を発
揮することができ充放電特性が向上する。つまり、電極
材としてケイ素とリチウムイオンとの相互作用を考えた
場合、Siは通常Liを4個吸蔵し高充電容量となる
が、実際、充放電効率は小さい。これは、SiはLiの
吸蔵力が大きく、Liの放出が起こりにくいためと考え
られる。従来のケイ素含有炭素材、即ち、気相でのケイ
素の化学蒸着、あるいはケイ素粉末やケイ素化合物と有
機材料又は炭素材料との配合による製造では、Siが炭
化材料に覆われることが少なく、炭化物表面にSiが露
出している量が多くなる。そのため、SiとLiが直接
吸蔵反応を行う結果となり、充放電効率の低下を改善す
ることは困難である。これに対し、本発明の製造方法で
は、予めSiと炭素前駆体との混合・反応等によりケイ
素を含む炭素前駆体を調製し、これにケイ素を含まない
炭素前駆体を配合し、混合・反応等の後、炭化処理する
ことでケイ素含有炭素材を得る。このようにして得られ
たケイ素含有炭素材は、Siの周りを炭素材で覆うこと
で、SiがLiと直接吸蔵反応をする量を押さえ、炭素
材がSiとLiとの緩衝域となる。このため、 Liの
吸蔵・脱離が可逆的に行われることから、高い充電容量
を保ったまま、充放電効率も向上するものと考えられ
る。
When the carbon precursor containing silicon and the carbon precursor not containing silicon, which are the characteristics of the present invention, are blended, the amount of silicon exposed on the carbon surface is small, and the characteristics of silicon can be exhibited. The characteristics are improved. That is, when the interaction between silicon and lithium ions is considered as the electrode material, Si normally absorbs four Li and has a high charge capacity, but the charge / discharge efficiency is actually small. This is considered to be because Si has a large Li occlusion power and Li is hardly released. In the conventional silicon-containing carbon material, that is, by chemical vapor deposition of silicon in the gas phase or by mixing silicon powder or a silicon compound with an organic material or a carbon material, Si is less likely to be covered with a carbonized material, and the carbide surface is The amount of exposed Si increases. For this reason, Si and Li directly result in an occlusion reaction, and it is difficult to improve the reduction in charge / discharge efficiency. On the other hand, in the production method of the present invention, a silicon-containing carbon precursor is prepared in advance by mixing and reacting Si and a carbon precursor, and a silicon-free carbon precursor is added thereto, and the mixing and reaction are performed. After that, a silicon-containing carbon material is obtained by carbonization. The silicon-containing carbon material obtained in this way covers the periphery of Si with the carbon material, thereby suppressing the amount of the Si directly reacting with Li, and the carbon material becomes a buffer region between Si and Li. For this reason, since the insertion and extraction of Li are performed reversibly, it is considered that the charge and discharge efficiency is also improved while maintaining a high charge capacity.

【0012】本発明のケイ素含有炭素材のケイ素含有量
は、充電容量が高く、不可逆容量が小さいために、炭素
材全体に対して3〜25重量%であり、好ましくは8〜
21重量%である。ケイ素含有量が3重量%より小さい
とケイ素が炭素に覆われ、ケイ素本来の高充電容量特性
が発揮されず、充放電容量特性が用いた炭素前駆体の炭
素化後の性能と同程度で向上効果が小さい。25重量%
より大きいとケイ素本来の高充電容量が得られるが、不
可逆容量が増大する傾向がある。更に負極炭素材の膨張
収縮が大きくなり、制御するのが難しくなるため、充放
電容量のバラツキの大きい材料となる。
The silicon content of the silicon-containing carbon material of the present invention is from 3 to 25% by weight, preferably from 8 to 5% by weight, based on the entire carbon material because of its high charge capacity and small irreversible capacity.
21% by weight. If the silicon content is less than 3% by weight, the silicon is covered with carbon, the original high charge capacity characteristics of silicon are not exhibited, and the charge / discharge capacity characteristics are improved to the same extent as the post-carbonization performance of the carbon precursor used. The effect is small. 25% by weight
If it is larger, a high charge capacity inherent to silicon can be obtained, but the irreversible capacity tends to increase. Furthermore, since the expansion and contraction of the negative electrode carbon material becomes large and it is difficult to control the material, the material has a large variation in charge and discharge capacity.

【0013】本発明のケイ素を含む炭素前駆体作製時、
あるいはケイ素含有炭素材作製時の炭素化処理前に、必
要に応じて硬化工程を加えることができる。この硬化方
法は炭素前駆体の種類により種々の方法があるが、例え
ば、ピッチ類の場合は空気中の熱酸化による架橋又はラ
ジカル開始剤添加による架橋、フェノール系樹脂の場合
は、熱硬化や酸硬化、エポキシ硬化、等が用いられ、硬
化時、硬化剤として窒素含有物のイソシアネート、ヘキ
サメチレンテトラミン、エポキシ硬化時のアミン系硬化
促進剤を用いても差し支えない。エポキシ系樹脂の場
合、イミダゾール、酸無水物、フェノール樹脂等の硬化
剤にて熱硬化させる。この時、硬化促進剤等を併用して
もよい。ウレタン系樹脂の場合は、硬化剤として三級ア
ミンや水、フェノール樹脂等を用いて熱又は常温にて硬
化させる。
In preparing the carbon precursor containing silicon of the present invention,
Alternatively, a curing step can be added as necessary before the carbonization treatment at the time of producing the silicon-containing carbon material. There are various curing methods depending on the type of the carbon precursor.For example, in the case of pitches, crosslinking by thermal oxidation in air or crosslinking by addition of a radical initiator, and in the case of phenolic resin, thermal curing or acid curing Curing, epoxy curing, and the like are used. When curing, a nitrogen-containing isocyanate, hexamethylenetetramine, or an amine-based curing accelerator for epoxy curing may be used as a curing agent. In the case of an epoxy resin, it is thermally cured with a curing agent such as imidazole, acid anhydride, and phenol resin. At this time, a curing accelerator or the like may be used in combination. In the case of a urethane-based resin, the resin is cured at heat or normal temperature using a tertiary amine, water, a phenol resin or the like as a curing agent.

【0014】本発明でのケイ素含有炭素材を得る場合の
炭化処理方法は特に限定されるものではない。例えば、
ケイ素を含む炭素前駆体とケイ素を含まない炭素前駆体
とを混合後、昇温速度10〜100℃/分あるいはこれ
以上で1000℃程度まで昇温し、10時間以上ホール
ド処理し炭素材を得る。また、炭化処理時の雰囲気は窒
素、ヘリウム、アルゴン等の不活性ガス雰囲気下、又は
一酸化炭素雰囲気下等であるが、特に限定されるもので
はない。このように、本発明のケイ素含有炭素材の製造
方法は、原材料、製法ともに安全性が高く、更に、ケイ
素含有量も任意に制御することができる。
The carbonization method for obtaining the silicon-containing carbon material in the present invention is not particularly limited. For example,
After mixing the silicon-containing carbon precursor and the silicon-free carbon precursor, the temperature is raised to about 1000 ° C. at a heating rate of 10 to 100 ° C./min or higher, and a holding process is performed for 10 hours or more to obtain a carbon material. . The atmosphere during the carbonization treatment is an atmosphere of an inert gas such as nitrogen, helium, or argon, or an atmosphere of carbon monoxide, but is not particularly limited. As described above, the method for producing a silicon-containing carbon material of the present invention has high safety in both the raw materials and the production method, and the silicon content can be arbitrarily controlled.

【0015】ケイ素含有炭素材の製造時、本発明の目的
に反しない範囲内において、硬化や炭化時に窒素含有熱
可塑性樹脂や金属、あるいは炭素材料となり得る材料等
で変性したり、顔料、滑剤、帯電防止剤、酸化防止剤
等、他の重合体を添加しても差し支え無い。
During the production of the silicon-containing carbon material, it may be modified with a nitrogen-containing thermoplastic resin or a metal or a material that can become a carbon material during curing or carbonization, or a pigment, lubricant, or the like, within a range not contrary to the object of the present invention. Other polymers such as antistatic agents and antioxidants may be added.

【0016】[0016]

【実施例】以下、本発明を実施例により説明する。しか
し、本発明は実施例により限定されるものではない。ま
た、実施例、比較例で示される「部」及び「%」は全て
「重量部」及び「重量%」とする。
The present invention will be described below with reference to examples. However, the present invention is not limited by the examples. Further, “parts” and “%” shown in Examples and Comparative Examples are all “parts by weight” and “% by weight”.

【0017】実施例1 ケイ素粉末5部、ノボラック型フェノール樹脂(数平均
分子量Mn=624)100部、ヘキサメチレンテトラ
ミン10部を粉砕混合し、200℃にて3時間硬化処理
を行いケイ素を含む炭素前駆体65部を得た。次に得ら
れたケイ素を含む炭素前駆体100部にレゾール型フェ
ノール樹脂(Mn=358)100部をメタノール中で
溶液混合し、200℃にて5時間硬化処理を行った後、
窒素雰囲気下にて100℃/時間で昇温し,1000℃
にて3時間炭化処理を行いケイ素含有炭素材を得た。上
記の方法で得られたケイ素含有炭素材のケイ素含有量は
炭素材灰分が全てSiO2 となったと仮定し3.8%で
あった。次に、得られたケイ素含有炭素材88重量部、
結合剤としてテトラフルオロエチレン9重量部、及び導
電剤としてアセチレンブラック3重量部からなる合剤
を、20mmφに圧縮成形して負極ペレットを得た。正
極材料は、Li0.5Co0.5V0.5O2.5を84重
量部、導電剤としてアセチレンブラック10重量部、結
合剤としてテトラフルオロエチレン6重量部の混合比で
用いた。これらを混合した合剤を乾燥後、圧縮成形して
正極ペレット(20mmφ)を得た。電解液として1M
のLiBF4 を用い、セパレーターとして微孔性のポ
リプロピレンを用い、前記電解液を含浸させリチウムイ
オン二次電池を作製した。このリチウムイオン二次電池
について、充放電を行い、1回目の放電容量測定を行っ
た。充電条件は、電流25mA/gの低電流で1mVに
なるまで保持し、その後、1.25mAh/g以下に電
流が減衰するまでとした。また、放電条件のカットオフ
電位は1.5Vとした。
Example 1 5 parts of silicon powder, 100 parts of a novolak type phenol resin (number average molecular weight Mn = 624) and 10 parts of hexamethylenetetramine were pulverized and mixed, and cured at 200 ° C. for 3 hours to obtain carbon containing silicon. 65 parts of the precursor were obtained. Next, 100 parts of the obtained carbon precursor containing silicon was mixed with 100 parts of a resol-type phenol resin (Mn = 358) in methanol and subjected to a curing treatment at 200 ° C. for 5 hours.
Temperature rise at 100 ° C / hour in nitrogen atmosphere, 1000 ° C
For 3 hours to obtain a silicon-containing carbon material. The silicon content of the silicon-containing carbon material obtained by the above method was 3.8%, assuming that all of the carbon material ash became SiO 2 . Next, 88 parts by weight of the obtained silicon-containing carbon material,
A mixture comprising 9 parts by weight of tetrafluoroethylene as a binder and 3 parts by weight of acetylene black as a conductive agent was compression-molded to 20 mmφ to obtain negative electrode pellets. The positive electrode material used was a mixture of 84 parts by weight of Li0.5Co0.5V0.5O2.5, 10 parts by weight of acetylene black as a conductive agent, and 6 parts by weight of tetrafluoroethylene as a binder. The mixture obtained by mixing these was dried and then compression molded to obtain a positive electrode pellet (20 mmφ). 1M as electrolyte
Of LiBF4, and microporous polypropylene as a separator, and the above electrolyte was impregnated to produce a lithium ion secondary battery. This lithium ion secondary battery was charged and discharged, and the first discharge capacity measurement was performed. The charging conditions were such that the current was maintained at a low current of 25 mA / g until the current reached 1 mV, and then the current was reduced to 1.25 mAh / g or less. The cut-off potential under the discharge condition was 1.5 V.

【0018】実施例2 ケイ素を含む炭素前駆体A100部と軟化点120℃の
ピッチ20部を粉砕混合し、らいかい機にて混練した
後、実施例1と同法で炭化処理した。得られたケイ素含
有炭素材のケイ素含有量は13.2%であった。以下,
実施例1と同様な方法で評価を行った。
Example 2 100 parts of a silicon-containing carbon precursor A and 20 parts of a pitch having a softening point of 120 ° C. were pulverized and mixed, kneaded with a grinder, and carbonized in the same manner as in Example 1. The silicon content of the obtained silicon-containing carbon material was 13.2%. Less than,
Evaluation was performed in the same manner as in Example 1.

【0019】実施例3 ケイ素粉末40部と軟化点120℃のピッチ100部を
ニーダーにて混練してケイ素を含む炭素前駆体130部
を得た。得られたケイ素を含む炭素前駆体100部と軟
化点240℃のピッチ90部をニーダーにて溶融混練し
粉砕した後、実施例1と同法で炭化処理しケイ素含有量
24.4%のケイ素含有炭素材を得た。以下、実施例1
と同様な方法で評価を行った。
Example 3 40 parts of silicon powder and 100 parts of a pitch having a softening point of 120 ° C. were kneaded with a kneader to obtain 130 parts of a carbon precursor containing silicon. 100 parts of the obtained silicon-containing carbon precursor and 90 parts of a pitch having a softening point of 240 ° C. are melt-kneaded in a kneader and pulverized, and then carbonized in the same manner as in Example 1 to obtain silicon having a silicon content of 24.4%. A carbon material was obtained. Hereinafter, Example 1
The evaluation was performed in the same manner as described above.

【0020】比較例1 ケイ素粉末30部と軟化点120℃のピッチ100部を
粉砕混合した後、実施例1と同法にて炭化処理を行いケ
イ素含有量32.8%のケイ素含有炭素材を得た。以
下、実施例1と同様な方法で評価を行った。
Comparative Example 1 After 30 parts of silicon powder and 100 parts of a pitch having a softening point of 120 ° C. were pulverized and mixed, carbonization was performed in the same manner as in Example 1 to obtain a silicon-containing carbon material having a silicon content of 32.8%. Obtained. Hereinafter, evaluation was performed in the same manner as in Example 1.

【0021】比較例2 ケイ素粉末9部とノボラック型フェノール樹脂(Mn=
624)100部とヘキサメチレンテトラミン10部を
粉砕混合し200℃にて3時間硬化処理した後は実施例
1と同法で炭化処理を行い炭素材を得た。以下、実施例
1と同様な方法で評価を行った。
Comparative Example 2 9 parts of silicon powder and a novolak type phenol resin (Mn =
624) After 100 parts and 10 parts of hexamethylenetetramine were pulverized and mixed, and cured at 200 ° C. for 3 hours, carbonization was performed in the same manner as in Example 1 to obtain a carbon material. Hereinafter, evaluation was performed in the same manner as in Example 1.

【0022】比較例3 ノボラック型フェノール樹脂(Mn=624)100部
とヘキサメチレンテトラミン10部を粉砕混合し200
℃にて3時間硬化処理した後は実施例1と同法で炭化処
理を行い炭素材を得た。以下、実施例1と同様な方法で
評価を行った。
COMPARATIVE EXAMPLE 3 100 parts of a novolak type phenol resin (Mn = 624) and 10 parts of hexamethylenetetramine were pulverized and mixed.
After hardening at 3 ° C. for 3 hours, carbonization was performed in the same manner as in Example 1 to obtain a carbon material. Hereinafter, evaluation was performed in the same manner as in Example 1.

【0023】各実施例及び比較例で得られた炭素材につ
いて、電極材としての評価結果を表1に示す。
Table 1 shows the results of evaluation of the carbon materials obtained in the examples and comparative examples as electrode materials.

【表1】 [Table 1]

【0024】表1から明らかなように、ケイ素含有炭素
材を主成分とする電極材は、ケイ素含有によりLiを吸
蔵できることから高放電容量となっている。この中で、
実施例で得られたケイ素含有炭素材は、放電容量が比較
的大きく、充放電効率も優れている。これはケイ素を含
む炭素前駆体とケイ素を含まない炭素前駆体とを配合し
ケイ素含有炭素材を得ているので、ケイ素の炭素材表面
への露出が少ないためである。一方、比較例1及び2
は、炭素前駆体としてケイ素を含む炭素前駆体のみを使
用したものである。比較例1はケイ素含有量が多いため
放電容量は大きいが、炭素材料に覆われる部分が少なく
ケイ素の露出した部分が多くなるため充放電効率が大き
く低下している。比較例2は、ケイ素含有量が実施例2
と同程度であり、放電容量は実施例と同程度であるが、
充放電効率は比較例1と同様に低下している。比較例3
はケイ素を含有していないため、放電容量が大きく低下
している。このように、実施例で得られた炭素材を使用
することにより、優れた特性を有するリチウムイオン二
次電池用電極材が得られた。
As is clear from Table 1, the electrode material containing a silicon-containing carbon material as a main component has a high discharge capacity because it can occlude Li by containing silicon. In this,
The silicon-containing carbon material obtained in the examples has a relatively large discharge capacity and excellent charge / discharge efficiency. This is because the silicon-containing carbon material is obtained by blending the silicon-containing carbon precursor and the silicon-containing carbon precursor, so that the silicon is less exposed to the carbon material surface. On the other hand, Comparative Examples 1 and 2
Uses only a carbon precursor containing silicon as a carbon precursor. In Comparative Example 1, the discharge capacity was large due to the large silicon content, but the charge / discharge efficiency was greatly reduced because the portion covered with the carbon material was small and the silicon exposed portion was large. Comparative Example 2 has a silicon content of Example 2
And the discharge capacity is about the same as the example,
The charge / discharge efficiency is reduced as in Comparative Example 1. Comparative Example 3
Does not contain silicon, the discharge capacity is greatly reduced. Thus, by using the carbon material obtained in the example, an electrode material for a lithium ion secondary battery having excellent characteristics was obtained.

【0025】[0025]

【発明の効果】以上の説明により明らかなように、本発
明によるケイ素含有炭素材を用いた電極材は、ケイ素が
充放電容量を向上させ、ケイ素を含む炭素前駆体とケイ
素を含まない炭素前駆体とを配合して得られるケイ素含
有炭素材であるためケイ素が炭素材から露出した部分が
小さく炭素材が緩衝域となるため、充放電効率が向上す
る。従って、高エネルギー密度で、且つ充放電効率の高
い電極材を得ることができることから、 リチウムイオ
ン二次電池の負極炭素材に好適である。
As is apparent from the above description, in the electrode material using the silicon-containing carbon material according to the present invention, the silicon improves the charge / discharge capacity, and the carbon precursor containing silicon and the carbon precursor containing no silicon are used. Since the silicon-containing carbon material is obtained by blending the carbon material with the carbon material, a portion where silicon is exposed from the carbon material is small and the carbon material serves as a buffer region, so that the charge / discharge efficiency is improved. Therefore, since an electrode material having high energy density and high charge / discharge efficiency can be obtained, it is suitable for a negative electrode carbon material of a lithium ion secondary battery.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ケイ素を含む炭素前駆体とケイ素を含ま
ない炭素前駆体とを配合して炭化処理し、炭素材全体に
対するケイ素含有量が3〜25重量%であるケイ素含有
炭素材を得ることを特徴とする非水電解質二次電池用電
極材組成物の製造方法。
1. A silicon-containing carbon material in which a silicon-containing carbon precursor and a silicon-free carbon precursor are compounded and carbonized to obtain a silicon-containing carbon material having a silicon content of 3 to 25% by weight based on the entire carbon material. A method for producing an electrode material composition for a non-aqueous electrolyte secondary battery, comprising:
【請求項2】 ケイ素を含む炭素前駆体が、ケイ素又は
ケイ素化合物と炭素前駆体又は炭素前駆体及び炭素材と
を配合したものであることを特徴とする請求項1記載の
非水電解質二次電池用電極材組成物の製造方法。
2. The non-aqueous electrolyte secondary according to claim 1, wherein the silicon-containing carbon precursor is a mixture of silicon or a silicon compound and a carbon precursor or a carbon precursor and a carbon material. A method for producing an electrode material composition for a battery.
【請求項3】 ケイ素を含む炭素前駆体が、炭化処理に
より炭化ケイ素を生成することが出来る炭素前駆体であ
ることを特徴とする請求項1又は2記載の非水電解質二
次電池用電極材料組成物の製造方法。
3. The electrode material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the carbon precursor containing silicon is a carbon precursor capable of producing silicon carbide by carbonization. A method for producing the composition.
JP2001094486A 2001-03-29 2001-03-29 Method for producing electrode material composition for non-aqueous electrolyte secondary battery Expired - Fee Related JP4923332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001094486A JP4923332B2 (en) 2001-03-29 2001-03-29 Method for producing electrode material composition for non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001094486A JP4923332B2 (en) 2001-03-29 2001-03-29 Method for producing electrode material composition for non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2002298842A true JP2002298842A (en) 2002-10-11
JP4923332B2 JP4923332B2 (en) 2012-04-25

Family

ID=18948670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001094486A Expired - Fee Related JP4923332B2 (en) 2001-03-29 2001-03-29 Method for producing electrode material composition for non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4923332B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220411A (en) * 2006-02-15 2007-08-30 Kuraray Co Ltd Complex and its manufacturing method, as well as electrode material for power storage device
WO2008081883A1 (en) * 2006-12-28 2008-07-10 Dow Corning Toray Co., Ltd. Porous silicon-containing carbon-based composite material, electrode composed of the same and battery
JP2012227047A (en) * 2011-04-21 2012-11-15 Sumitomo Bakelite Co Ltd Carbon material for secondary cell and manufacturing method therefor
JP2014530462A (en) * 2011-09-26 2014-11-17 ヴァルタ マイクロ イノヴェーション ゲゼルシャフト ミット ベシュレンクテル ハフツング Structurally stable active materials for battery electrodes
JP2015122316A (en) * 2015-01-07 2015-07-02 住友ベークライト株式会社 Carbonaceous material for secondary battery and production method therefor
JP2016021393A (en) * 2014-07-11 2016-02-04 オーシーアイ カンパニー リミテッドOCI Company Ltd. Negative electrode active material for secondary batteries, and method for manufacturing the same
JP2018500742A (en) * 2014-12-23 2018-01-11 ユミコア Composite powder for use in an anode of a lithium ion battery, method for preparing such composite powder, and method for analyzing such composite powder
US9979007B2 (en) 2013-12-30 2018-05-22 Samsung Electronics Co., Ltd. Negative electrode material for lithium secondary battery, production method for same, and lithium secondary battery comprising same as negative electrode
JP2020053399A (en) * 2014-12-23 2020-04-02 ユミコア Powder, and electrode and battery including such powder

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08213012A (en) * 1995-02-03 1996-08-20 Mitsui Toatsu Chem Inc Electrode material and manufacture thereof
JPH10255791A (en) * 1997-03-11 1998-09-25 Mitsubishi Chem Corp Nonaqueous secondary battery
JPH11322323A (en) * 1998-05-12 1999-11-24 Matsushita Electric Ind Co Ltd Carbon compound and its production, and electrode for secondary battery
JP2000260428A (en) * 1999-03-11 2000-09-22 Mitsubishi Chemicals Corp Lithium secondary battery using nonaqueous cabon- coated negative electrode
JP2001345100A (en) * 2000-05-31 2001-12-14 Hitachi Chem Co Ltd Carbonaceous particles for negative electrode of lithium secondary cell, preparation process thereof, negative electrode for lithium secondary cell and lithium secondary cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08213012A (en) * 1995-02-03 1996-08-20 Mitsui Toatsu Chem Inc Electrode material and manufacture thereof
JPH10255791A (en) * 1997-03-11 1998-09-25 Mitsubishi Chem Corp Nonaqueous secondary battery
JPH11322323A (en) * 1998-05-12 1999-11-24 Matsushita Electric Ind Co Ltd Carbon compound and its production, and electrode for secondary battery
JP2000260428A (en) * 1999-03-11 2000-09-22 Mitsubishi Chemicals Corp Lithium secondary battery using nonaqueous cabon- coated negative electrode
JP2001345100A (en) * 2000-05-31 2001-12-14 Hitachi Chem Co Ltd Carbonaceous particles for negative electrode of lithium secondary cell, preparation process thereof, negative electrode for lithium secondary cell and lithium secondary cell

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220411A (en) * 2006-02-15 2007-08-30 Kuraray Co Ltd Complex and its manufacturing method, as well as electrode material for power storage device
WO2008081883A1 (en) * 2006-12-28 2008-07-10 Dow Corning Toray Co., Ltd. Porous silicon-containing carbon-based composite material, electrode composed of the same and battery
JPWO2008081883A1 (en) * 2006-12-28 2010-04-30 東レ・ダウコーニング株式会社 Porous silicon-containing carbon-based composite material and electrode and battery comprising the same
JP2012227047A (en) * 2011-04-21 2012-11-15 Sumitomo Bakelite Co Ltd Carbon material for secondary cell and manufacturing method therefor
JP2014530462A (en) * 2011-09-26 2014-11-17 ヴァルタ マイクロ イノヴェーション ゲゼルシャフト ミット ベシュレンクテル ハフツング Structurally stable active materials for battery electrodes
US9979007B2 (en) 2013-12-30 2018-05-22 Samsung Electronics Co., Ltd. Negative electrode material for lithium secondary battery, production method for same, and lithium secondary battery comprising same as negative electrode
JP2016021393A (en) * 2014-07-11 2016-02-04 オーシーアイ カンパニー リミテッドOCI Company Ltd. Negative electrode active material for secondary batteries, and method for manufacturing the same
JP2018500742A (en) * 2014-12-23 2018-01-11 ユミコア Composite powder for use in an anode of a lithium ion battery, method for preparing such composite powder, and method for analyzing such composite powder
US10483529B2 (en) 2014-12-23 2019-11-19 Umicore Composite powder for use in an anode of a lithium ion battery, method of preparing such a composite powder and method for analysing such a composite powder
JP2020053399A (en) * 2014-12-23 2020-04-02 ユミコア Powder, and electrode and battery including such powder
JP7118944B2 (en) 2014-12-23 2022-08-16 ユミコア Powders, electrodes and batteries containing such powders
US11588148B2 (en) 2014-12-23 2023-02-21 Umicore Powder, electrode and battery comprising such a powder
JP7451615B2 (en) 2014-12-23 2024-03-18 ユミコア powders, electrodes and batteries containing such powders
JP2015122316A (en) * 2015-01-07 2015-07-02 住友ベークライト株式会社 Carbonaceous material for secondary battery and production method therefor

Also Published As

Publication number Publication date
JP4923332B2 (en) 2012-04-25

Similar Documents

Publication Publication Date Title
JP5291179B2 (en) Method for preparing lithium iron phosphate cathode material for lithium secondary battery
KR101424544B1 (en) Negative-electrode active material for non-aqueous-system secondary battery and production process for the same, and non-aqueous-system secondary battery
JP4642959B2 (en) Method for producing lithium titanate
CN1349264A (en) Method for prepn. of cathode active material, and method for prepn. of non-aqueous electrolyte
CN1346162A (en) Method for preparing cathode active material and non-aqueous electrolyte
KR102627149B1 (en) Negative active material and method of manufacturing the same
KR20150118540A (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and process for producing negative electrode material for lithium ion secondary battery
JP2004185984A (en) Negative electrode material for lithium secondary battery, and lithium secondary battery using it
JPWO2016136226A1 (en) Method for producing non-aqueous electrolyte secondary battery
EP2432052B1 (en) Anode active material for lithium secondary batteries, anode electrode for lithium secondary batteries, in-vehicle lithium secondary battery using said anode active material and anode electrode, and method for manufacturing an anode active material for lithium secondary batteries
JP2004103405A (en) Raw material for carbonaceous material, silicon-containing carbonaceous material, negative electrode material of secondary battery, and lithium secondary battery
JP4923332B2 (en) Method for producing electrode material composition for non-aqueous electrolyte secondary battery
KR100785491B1 (en) Preparation method of active material for positive electrode of lithium secondary battery and lithium secondary battery thereby
JP2003187798A (en) Lithium secondary battery
JPH11354120A (en) Electrode material composition for lithium-ion secondary battery
JP4069066B2 (en) Method for producing lithium-manganese composite oxide
JP4087138B2 (en) Carbon material and silicon-containing carbon material using the same
JPH11191408A (en) Negative active material for lithium ion secondary battery, and negative electrode plate and lithium ion secondary battery using the same
JP2005200276A (en) Method for producing graphite-amorphous carbon composite material, graphite-amorphous carbon composite material, negative electrode for battery, and battery
JP2004296269A (en) Negative electrode material for lithium ion secondary battery, its manufacturing method, and battery using the same
JPH11312522A (en) Positive electrode material for lithium secondary battery and the lithium secondary battery
JP4945862B2 (en) Carbon material and carbon material using the same
JP2010257982A (en) Anode active material for lithium secondary battery, and lithium secondary battery including the same
JP3835713B2 (en) Carbon material
KR100817009B1 (en) Anode active material for lithium secondary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20010706

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees