JP4911810B2 - ワークの研削装置および研削方法 - Google Patents

ワークの研削装置および研削方法 Download PDF

Info

Publication number
JP4911810B2
JP4911810B2 JP2000189111A JP2000189111A JP4911810B2 JP 4911810 B2 JP4911810 B2 JP 4911810B2 JP 2000189111 A JP2000189111 A JP 2000189111A JP 2000189111 A JP2000189111 A JP 2000189111A JP 4911810 B2 JP4911810 B2 JP 4911810B2
Authority
JP
Japan
Prior art keywords
workpiece
grindstone
diameter
rotating
grinding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000189111A
Other languages
English (en)
Other versions
JP2002001655A (ja
Inventor
宗明 加賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu NTC Ltd
Original Assignee
Komatsu NTC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu NTC Ltd filed Critical Komatsu NTC Ltd
Priority to JP2000189111A priority Critical patent/JP4911810B2/ja
Publication of JP2002001655A publication Critical patent/JP2002001655A/ja
Application granted granted Critical
Publication of JP4911810B2 publication Critical patent/JP4911810B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Machine Tool Sensing Apparatuses (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、たとえば半導体ウェーハなどの円形薄板からなるワークの外周エッジ部を研削するワークの研削装置および研削方法に関する。
【0002】
【従来の技術】
従来、この種の円形薄板のワークを研削する場合には、たとえば図12に示すような研削装置70が用いられていた。この研削装置70では、ワークWをその中心軸線L1周りに回転させるとともに、総形砥石71をワークWの中心軸線L1に平行な軸線L2を中心に回転させながらワークWのエッジ部WEに向かって送り移動させることによりワークWのエッジ部WEを研削していた。
【0003】
ところが、この研削装置70では、総形砥石71が形崩れしやすいなどの理由から、加工精度が低くなるものであった。そこで、本出願人は、先の特願平11−220019号において、ワークを保持するとともに、ワークをその中心軸線周りに回転させるワーク保持手段と、円盤砥石を有し、この回転砥石をワークの平面とほぼ平行な軸線を中心に回転させながら、ワークのエッジ部に沿って表裏両面間を相対送りさせることにより、ワークのエッジ部を研削する研削手段を備えるワークの研削装置を開示した。
【0004】
【発明が解決しようとする課題】
この種の研削装置においては、砥石とワークとの相対的な位置関係が正確でなければ、ワークを所定の形状に研削することができない。特に、砥石は研削を続けるにしたがって摩耗していくので、砥石の摩耗に合わせて、ワークに対する砥石の位置関係を補正しなければ正確な形状にワークを研削することができない。
【0005】
従来は、砥石とワークの位置関係を正確に保つため、たとえば作業員が研削後の砥石の径を手作業で測定して砥石の位置を補正していた。あるいは、砥石の摩耗量を目視などによって砥石の径を見て、その摩耗量を推定していたが、これらの方法では砥石の正確な摩耗量を知ることができず、ワークを所定の形状に研削する際の精度が低くなることがあった。
【0006】
そこで、本発明の課題は、ワークの研削にしたがって進行する砥石の摩耗量を把握して、ワークを正確な形状に研削できるようにすることにある。
【0009】
【課題を解決するための手段】
前記課題を解決した本発明のうちの請求項1に係る発明は、円形薄板よりなるワークを保持するとともに、前記ワークをその中心軸線周りに回転させるワーク保持手段と、円盤状の回転砥石を有し、この回転砥石を前記ワークの平面と平行な軸線周りに回転させながら前記ワークのエッジ部に沿って表裏両面間を相対送り移動させる研削手段と、前記回転砥石の径を測定する砥石径センサと、前記砥石径センサによって測定された前記回転砥石の径に基づいて、前記ワークに対する前記回転砥石の位置および移動量を補正する制御装置と、前記回転砥石によってエッジ部を仕上研削された仕上ワークの径を測定する仕上ワーク径センサと、を有し、前記制御装置は、前記砥石径センサによって測定された前記回転砥石の径に基づいて前記ワークの研削を行った後、前記回転砥石で当該ワークを研削したときに前記回転砥石が摩耗した量を予め記憶しておき、前記磨耗量を記憶したワークの研削に続いて、前記回転砥石によって連続して複数の他のワークの加工を行うにあたり、前記回転砥石の使用回数が閾値を超えない場合で、前記仕上ワークの径が所定の公差内であるときには、前記他のワークの研削を行う際に、前記回転砥石の径を、前記予め記憶された前記ワークを研削したときに前記回転砥石が摩耗した量、および当該他のワークの加工までの前記回転砥石の使用回数に基づいて求める制御を行い、前記回転砥石の使用回数が閾値を超えた場合において、前記砥石径センサによって前記回転砥石の径を測定し当該回転砥石の磨耗が激しくないと当該制御装置が判断したとき、もしくは、前記仕上ワークの径が所定の公差を超えた場合において、前記他のワークの研削を行う際に、前記砥石径センサによって前記回転砥石の径を測定し当該回転砥石の磨耗が激しくないと当該制御装置が判断したときには、前記回転砥石の使用回数をゼロにして、前記砥石径センサによって前記回転砥石の径を求める制御を行い、前記閾値は、前記回転砥石の使用回数に基づいて求めた前記回転砥石の推定の径と実際の径との差が大きくなり誤差が許容できなくなる回数であること、を特徴とするワークの研削装置である。
【0010】
請求項1に係る発明では、回転砥石の使用回数が閾値を超えていないかどうかを判定するとともに、仕上研削が終了した後のワークの径を測定し、回転砥石の使用回数が閾値を超えない場合で、仕上ワークの径が所定の公差内であるときには、砥石径センサによる回転砥石の径の測定を行わないものである。回転砥石の使用回数が閾値を超えず、仕上ワークの径が所定の公差内にある場合には、仕上ワークは製品として問題ない。したがって、ワークの径が公差内となるようにワークのエッジ部を研削できているうちは、回転砥石の径の測定を省略することによって、砥石の交換時期を適切に管理して研削精度を確保しながら、しかもサイクルタイムを短縮することができる。
【0011】
請求項2に係る発明は、前記砥石径センサは、前記回転砥石の回転支持部に設けた基準面の位置を測定することによって、砥石測定のため砥石径センサと回転砥石間の相対位置を調整するゼロ調整を行うことを特徴とする請求項1に記載のワークの研削装置である。
【0012】
請求項2に係る発明によれば、砥石測定のため砥石径センサと回転砥石間の相対位置を調整するゼロ調整を行う。このため、たとえば回転支持部や他の機構が熱膨張した場合であっても、高い精度をもって砥石径センサにより計測を行うことができる。
【0013】
請求項3に係る発明は、前記砥石径センサが前記回転砥石とともに移動するように配設されていることを特徴とする請求項1または請求項2に記載のワークの研削装置である。
【0014】
請求項3に係る発明によれば、砥石径センサが回転砥石に取り付けられ、回転砥石とともに移動するように構成されている。このため、回転砥石の移動に伴う機械誤差が砥石径センサの測定値に影響を与えることがない。したがって、より高い精度で回転砥石の径を測定することができる。
【0015】
請求項4に係る発明は、前記ワークの中心軸線に平行な軸線周りに回転して前記ワークのエッジ部を荒取りする円筒研削用砥石を有し、前記ワーク保持手段に保持されたワークの径を測定するワーク径センサが設けられており、前記制御装置は、前記ワーク径センサによって測定された前記ワークの径に基づいて、前記ワークに対する前記回転砥石の位置および移動量を補正する制御を行うことを特徴とする請求項1から請求項3のうちのいずれか1項に記載のワークの研削装置である。
【0016】
請求項4に係る発明によれば、回転砥石によって研削される前にワークの径を測定し、測定されたワークの径に基づいてワークに対する回転砥石の位置および移動量を求めている。このため、ワークの荒取りを行った際にワークの形状が多少予定の形状からはずれていたとしても、高い精度でワークのエッジ部の研削を行うことができる。
【0017】
請求項5に係る発明は、前記ワーク径センサは、ワーク保持手段の縁部の位置を測定することによって、ワーク径測定のためのワーク径センサとワーク間の相対位置を調整するゼロ調整を行うことを特徴とする請求項4に記載のワーク研削装置である。
【0018】
請求項5に係る発明によれば、ワーク径測定のためのワーク径センサとワーク間の相対位置を調整するゼロ調整を行う。したがって、ワーク保持手段などに熱膨張などがあった場合であっても、高い精度でワーク径を測定することができる。
【0019】
請求項6に係る発明は、前記回転砥石の回転支持部側に前記ワーク保持手段の軸線方向の変位を測定する変位測定センサが設けられており、前記制御装置は前記変位測定センサの測定結果に基づいて、前記軸線方向におけるワークと回転砥石間の相対位置を制御することを特徴とする請求項1から請求項5のうちのいずれか1項に記載のワーク研削装置である。
【0020】
請求項6に係る発明では、ワークを保持するワーク保持手段の軸線方向に変位を変位測定センサで測定し、ワークと回転砥石の相対位置を制御している。このため、ワークの厚さに多少のバラツキがあっても、高い精度でワークの研削を行うことができる。
【0021】
請求項7に係る発明は、ワークの厚さを測定するワーク厚さ測定手段が設けられており、前記制御装置は、前記ワーク厚さ測定手段によって測定された前記ワークの厚さに基づいて、前記ワークの厚さ方向に対する前記回転砥石の位置および移動量を補正する制御を行うことを特徴とする請求項1から請求項6のうちのいずれか1項に記載のワークの研削装置である。
【0022】
請求項7に係る発明では、ワークの厚さを測定し、このワークの厚さに基づいてワークの厚さ方向に対する回転砥石の位置および移動量を補正している。ここで、回転砥石をZ軸方向に移動させる際、ワークの高さ方向中央部を中心として回転砥石をZ軸方向に揺動させるが、ワークの厚さを測定していることにより、高い精度でワークのZ軸方向中間位置を定めることができる。
【0025】
請求項8に係る発明は、円形薄板よりなるワークをワーク保持手段で保持し、前記ワークをその中心軸線周りに回転させるとともに、円盤状の回転砥石を前記ワークの平面と平行な軸線周りに回転させながら、前記回転砥石を前記ワークのエッジ部に沿って表裏両面間を相対送り移動させて前記ワークのエッジ部を研削するにあたり、砥石径センサによって前記回転砥石の径を測定し、前記砥石径センサによって測定された前記回転砥石の径に基づいて、前記ワークに対する前記回転砥石の位置および移動量を補正するワークの研削方法であって、前記砥石径センサによって測定された前記回転砥石の径に基づいて前記ワークの研削を行った後、前記回転砥石で当該ワークを研削したときに前記回転砥石が摩耗した量を予め記憶しておき、前記磨耗量を記憶したワークの研削に続いて、前記回転砥石によって連続して複数の他のワークの加工を行うにあたり、仕上ワーク径センサによって前記回転砥石によってエッジ部を仕上研削された仕上ワークの径を測定し、前記回転砥石の使用回数が閾値を超えない場合で、前記仕上ワークの径が所定の公差内であるときには、前記他のワークの研削を行う際に、前記回転砥石の径を、前記予め記憶された前記ワークを研削したときに前記回転砥石が摩耗した量、および当該他のワークの加工までの前記回転砥石の使用回数に基づいて求め、前記回転砥石の使用回数が閾値を超えた場合において、前記砥石径センサによって前記回転砥石の径を測定し当該回転砥石の磨耗が激しくないと当該制御装置が判断したとき、もしくは、前記仕上ワークの径が所定の公差を超えた場合において、前記他のワークの研削を行う際に、前記砥石径センサによって前記回転砥石の径を測定し当該回転砥石の磨耗が激しくないと当該制御装置が判断したときには、前記回転砥石の使用回数をゼロにして、前記砥石径センサによって前記回転砥石の径を求め、前記閾値は、前記回転砥石の使用回数に基づいて求めた前記回転砥石の推定の径と実際の径との差が大きくなり誤差が許容できなくなる回数であること、を特徴とするワークの研削方法である。
【0026】
請求項8に係る発明によれば、仕上研削が終了した後のワークの径を測定し、仕上ワークの径が所定の公差内である場合には、砥石径センサによる回転砥石の径の測定を行わないものである。仕上ワークの径が所定の公差内にある場合には、仕上ワークは製品として問題ない。したがって、ワークの径が公差内となるようにワークのエッジ部を研削できているうちは、回転砥石の径の測定を省略することによって、サイクルタイムを短縮することができる。
【0027】
請求項9に係る発明は、前記回転砥石の回転支持部に設けた基準面の位置を前記砥石径センサで測定することによって、砥石径を測定するため砥石径センサと回転砥石間の相対位置を調整するゼロ調整を行うことを特徴とする請求項8に記載のワークの研削方法である。
【0028】
請求項11に係る発明では、砥石測定のため砥石径センサと回転砥石間の相対位置を調整するゼロ調整を行う。このため、たとえば回転支持部や他の機構が熱膨張した場合であっても、高い精度をもって砥石径センサにより計測を行うことができる。
【0029】
請求項10に係る発明は、前記ワークの中心軸線に平行な軸線周りに回転する円筒研削用砥石で前記ワークのエッジ部を荒取りした後、荒取りされた前記ワークの径をワーク径センサで測定し、前記ワーク径センサによって測定された前記ワークの径に基づいて、前記ワークに対する前記回転砥石の位置および移動量を補正することを特徴とする請求項8または請求項9に記載のワークの研削方法である。
【0030】
請求項10に係る発明によれば、回転砥石によって研削される前にワークの径を測定し、測定されたワークの径に基づいてワークに対する回転砥石の位置および移動量を求めている。このため、ワークの荒取りを行った際にワークの形状が多少予定の形状からはずれていたとしても、高い精度でワークのエッジ部の研削を行うことができる。
【0031】
請求項11に係る発明は、前記ワーク保持手段の縁部の位置を前記ワーク径センサで測定することによって、ワーク径測定のためのワーク径センサとワーク間の相対位置を調整するゼロ調整を行うことを特徴とする請求項10に記載のワークの研削方法である。
【0032】
請求項11に係る発明によれば、ワーク径測定のためのワーク径センサとワーク間の相対位置を調整するゼロ調整を行う。したがって、ワーク保持手段などに熱膨張などがあった場合であっても、高い精度でワーク径を測定することができる。
【0033】
請求項12に係る発明は、前記回転砥石の回転支持部側に設けられた変位測定センサによって前記ワーク保持手段の軸線方向の変位を測定し、前記変位測定センサの測定結果に基づいて前記軸線方向におけるワークと回転砥石間の相対位置を制御することを特徴とする請求項8から請求項11のうちのいずれか1項に記載のワークの研削方法である。
【0034】
請求項12に係る発明によれば、ワークを保持するワーク保持手段の軸線方向に変位を変位測定センサで測定し、ワークと回転砥石の相対位置を制御している。このため、ワークの厚さに多少のバラツキがあっても、高い精度でワークの研削を行うことができる。
【0035】
請求項13に係る発明は、ワークの厚さをワーク厚さ測定手段によって測定し、前記ワーク厚さ測定手段によって測定されたワークの厚さに基づいて、前記ワークの厚さ方向に対する前記回転砥石の位置および移動量を補正することを特徴とする請求項8から請求項12のうちのいずれか1項に記載のワークの研削方法である。
【0036】
請求項13に係る発明では、回転砥石をZ軸方向に移動させる際、ワークの高さ方向中央部を中心として回転砥石をZ軸方向に揺動させるが、ワークの厚さを測定していることにより、高い精度でワークのZ軸方向中間位置を定めることができる。
【0041】
【発明の実施の形態】
以下、本発明の実施の形態を、図面を参照しながら、具体的に説明する。
図1は、本発明に係る研削装置の部分破断平面図である。
図1に示すように、本実施形態に係る研削装置1は、ベッド2を有しており、このベッド2上における左側に搬入ステーション3が設けられている。また、ベッド2上における中央部には研削部4が設けられており、さらに、右側には搬出ステーション5が設けられている。また、研削装置1を全体的に制御する制御装置6が設けられている。
【0042】
搬入ステーション3には、カセット11が設けられている。このカセット11には、半導体ウェーハなどの円形薄板よりなるワークWであって加工前のものが複数枚収納されている。カセット11の後方には、搬入ロボット12が設けられており、この搬入ロボット12によって、加工前のワークWがカセット11から取り出される。さらに、カセット11の左側には、研削前のワークWの高さを測定するワーク厚さ測定手段である4つの接触式の厚さセンサ13が設けられている。搬送ロボット12によってカセット11から取り出されたワークWは、厚さセンサ13によってその厚さが測定され、同時に不良ワークを検出する。厚さセンサ13は、制御装置6に電気的に接続されており、厚さセンサ13によって測定されたワークWの厚さは、制御装置6に出力される。制御装置6は、測定されたワークWの厚さに基づいてワークWの厚さ方向における中心を算出し、Z軸方向におけるワークWの送り基準位置を決定する。厚さセンサ13によって厚さが測定されたワークWは、搬送ロボット12によって研削部4へと搬送される。
【0043】
また、ベッド2の右側に設けられた搬出ステーション5には、研削部4によって研削されたワークWを搬出するための搬出ロボット14が設けられているとともに、この搬出ロボット14の前方には、仕上ワーク径測定手段である幅センサ15が設けられている。幅センサ15は、ワークWの直径に位置する2点に設けられた付き当て用の板15aとセンサが取り付けられた押し当て板15bとをワークWに接触させワークWの外径を測定する。また、搬出ロボット14の斜め前方には、洗浄装置16が設けられている。さらには、破線で示すように、複数のワークWを収納するためのカセット17が設けられている。搬出ロボット14は、研削部4で研削された本発明の仕上ワークとなるワークWを受け取り、洗浄装置16に搬送して、ワークWを洗浄装置16で洗浄する。洗浄後、搬出ロボット14は、ワークWを幅センサ15に搬送してワークWの外径を測定する。幅センサ15は、制御装置6に電気的に接続されており、測定されたワークWの幅は制御装置6に出力される。制御装置6は、測定された外径に基づいて、ワークWの仕上がりを確認する。ワークWの外径の測定が済んだら、ワークWをカセット17に収納する。
【0044】
さらに、ベッド2の中央部に位置する研削部4には、図2に示すように、コラム21が立設されている。コラム21の側面には、上下方向に延在するガイドレール22が取り付けられており、ガイドレール22に沿って摺動可能なZ軸サドル23が設けられている。Z軸サドル23には、Z軸方向に延びる軸線L1周りに回転可能な回転軸24がブラケットを介して回転自在に取り付けられている。回転軸24の下端には、ワークWを吸着保持するワーク保持手段となる吸盤25が設けられている。
【0045】
さらに、Z軸サドル23上には回転軸24と連結したワーク回転用モータ26が配設されている。このワーク回転用モータ26により回転軸24を回転させることによって、吸盤25に吸着保持されたワークWがその中心軸線となる軸線L1周りに回転するようになっている。また、コラム21上にはZ軸移動用モータ27が配設され、Z軸移動用モータ27の下方にはZ軸方向に延在するボールネジ28が設けられている。さらに、Z軸サドル23には、ボールネジ28がねじ込まれるナット29が固定されている。そして、Z軸移動用モータ27でボールネジ28を回転させることにより、ナット29を介してZ軸サドル23をZ軸方向に移動させることができるようになっている。
【0046】
また、ベッド2上には、図3にも示すように、研削手段30が設けられている。
研削手段30は、ベッド2上に敷設されたX軸方向(左右方向)に延在するガイドレール31,31を有している。このガイドレール31,31に沿ってX軸方向に摺動可能な支持テーブル32が設けられている。支持テーブル32上には、サドル33が一対のガイドロッド34,34を介してY軸方向(前後方向)に移動可能となるように支持されている。
【0047】
さらに、ベッド2には、X軸移動用モータ35が配設され、X軸移動用モータ35の右方にはX軸方向に延在するボールネジ36が設けられている。支持テーブル32には、ボールネジ36がねじ込まれるナット37が固定されており、X軸移動用モータ35によってボールネジ36を回転させることにより、ナット37を介して支持テーブル32をX軸方向に移動できるようになっている。また、支持テーブル32の後部には、Y軸移動用モータ38が配設され、Y軸移動用モータ38の前方にはY軸方向に延在するボールネジ39が配設されている。サドル33には、ボールネジ39がねじ込まれるナット40が固定されており、Y軸移動用モータ38によってボールネジ39を回転させることにより、ナット40を介してサドル33をY軸方向に移動できるようになっている。
【0048】
また、サドル33上には、回転砥石の回転支持部を構成する回転砥石用モータ41およびそのハウジングに固定されたヘッド部41Aが設けられており、このヘッド部41Aからは、回転軸42が突設されている。この回転軸42には、円盤状の回転砥石となる荒砥石43および仕上砥石44が所定の間隔をおいて取り付けられている。そして、回転砥石用モータ41で回転軸42を回転させることにより、荒砥石43および仕上砥石44をワークWの平面と平行な軸線L2周りに回転させることができるようになっている。
【0049】
かくして、回転砥石用モータ41によって荒砥石43および仕上砥石44をワークWの平面と平行な軸線L2周りに回転させながら、X軸移動用モータ35およびY軸移動用モータ38を回転させることにより、荒砥石43および仕上砥石44をワークWのエッジ部に沿って表裏両面を相対送り移動させるようになっている。
【0050】
さらに、支持テーブル32の左側後部には、図2に示すように、円筒研削用モータ45が設けられており、この円筒研削用モータ45の上面には、回転軸46が突設されている。この回転軸46には、円筒研削用回転砥石(円筒研削用砥石)である平形荒砥石47が取り付けられている。そして、円筒研削用モータ45で回転軸46を回転させることにより、平形荒砥石47をワークWの回転軸となる軸線L1と平行な軸線L3周りに回転させることができるようになっている。
【0051】
また、回転砥石用モータ41のハウジング外面には、図4にも示すように、ブラケット51を介してワーク保持手段のZ軸変位を測定する変位測定センサ52が設けられている。この変位測定センサ52は、光学式の非接触型センサであり、測定時には、ワークWが吸盤40に取り付けられていない状態で吸盤40の下面側に対向配置され、測定用基準位置での吸盤40の下面をZ軸方向位置を測定する。この変位測定センサ52は、図1に示すように、制御装置6に電気的に接続されており、測定したZ軸方向位置を制御装置6に出力する。このZ軸方向位置に基づいて、制御装置6は、熱膨張による回転軸42、吸盤40などのワーク保持機構のZ軸方向の伸びを検知し、研削時、ワークWのZ軸方向の送り基準位置を調整する。
【0052】
さらに、荒砥石43および仕上砥石44の半径方向外方に配置されて、荒砥石43および仕上砥石44の外径を測定する砥石径センサ53が設けられている。この砥石径センサ53は、図5にも示すように、ロータリドレッサ53Bを設けたブラケット54に取り付けられており、接触子53Aを有している。この接触子53Aは、シリンダ機構53Cによって進退可能となっている。荒砥石43または仕上砥石44の径の測定を行う際には、測定対象となる砥石を測定位置に移動させて接触子53Aに対向させた状態で、シリンダ機構53Cによって接触子53Aを測定対象の砥石と接触するまで前進させる。このとき、接触子53Aが前進した距離によって測定対象の砥石の外径が測定される。また、砥石径センサ53は、図1に示すように、制御装置6に電気的に接続されており、測定した荒砥石43または仕上砥石44の外径を制御装置6に出力している。
【0053】
制御装置6は、測定された砥石43,44の外径から砥石43,44の摩耗量を検出し、砥石43,44のY軸方向の送り量、およびワークWのZ軸方向の送り量を調整する。また、砥石43,44の摩耗量が大きいと判断したときは、制御装置6は、砥石43,44を交換するように作業者に警告する。また、砥石径センサ53においても、砥石径センサ53を取り付けるブラケット54や砥石43,44が取り付けられる回転支持部の熱変形あるいはY軸送り機構の熱変位など、構造的な位置変位を補正するため、砥石径センサ53と砥石43,44との相対位置を調整するゼロ合わせを行なう。このゼロ合わせは、ヘッド部41Aに設けられてた基準ブロック53Dの基準面53Eに砥石径センサ53の接触子53Aを突き当てることにより行われる。
【0054】
さらに、平形荒砥石47の左後方には、吸盤25に吸着保持されたワークWの外径を測定するワーク径センサ55が設けられている。このワーク径センサ55は、図6に示すように、載置台56上に載置されたケース55Aを有しており、このケース55Aの中に接触子55Bが設けられている。この接触子55Bは、シリンダ機構55Cによって進退可能とされている。そして、ワークWの外径を測定する際には、シリンダ機構55Cによって接触子55BをワークWに接触するまで前進させる。接触子55BがワークWに接触したら、接触子55Bの前進を停止する。このときの接触子55Bの突出量からワークWの外径が求められる。また、このワーク径センサ55は、制御装置6に電気的に接続されており、荒取り後のワークWの外径を制御装置6に出力する。
【0055】
制御装置6は、測定されたワークWの外径に基づいて平型荒砥石47の摩耗量を検知する。そして、荒取り工程におけるワークWの切込み量が一定となるように、平型荒砥石47のX軸方向の送り量を調整する。また、ワークWが所定量研削されていないとき、制御装置6は平型荒砥石47の摩耗量が大きいと判断し、平型荒砥石47を交換するように作業者に警告する。また、ワーク径センサ55を取り付ける取付け台や、回転軸28、吸盤25などのワーク保持機構が研削加工中の熱によって膨張し、測定に悪影響を及ぼすことを考慮して、熱膨張によるこれらの変位を補正するようにワーク径センサ55と吸盤25との相対位置を調整するゼロ合わせを行う。このゼロ合わせは、吸盤25の外周エッジ部にワーク径センサ55の接触子55Bを突き当てることによって行われる。
【0056】
次に、本発明に研削装置1を用いてワークWのエッジ部を研削する場合の研削方法について説明する。
図1に示す研削装置1においては、搬入ロボット12が搬入ステーション3におけるカセット11からワークWを取り出し、厚さセンサ13上に載置する。厚さセンサ13によって、研削前のワークWの厚さを測定する。測定したワークWの厚さは制御装置6に送信される。ワークWの厚さを測定したら、搬入ロボット12でワークWを保持して研削部4まで搬送し、図2に示す研削部4における吸盤25にワークWの片面(表面)を保持させる。このとき、吸盤25が設けられている回転軸24の中心軸線となる軸線L1にワークWの中心が位置するようにしてワークWを吸盤25に保持させる。
【0057】
吸盤25でワークWを吸着保持したら、Z軸移動用モータ27によってZ軸サドル23を下降させ、ワークWが平形荒砥石47に対応する高さ移動位置に移動配置される。この状態で、図7(a)に示すように、図2に示すワーク回転用モータ26でワークWを軸線L1周りに回転させるとともに、円筒研削用モータ45で平形荒砥石47を軸線L2周りに回転させてワークWのエッジ部WEの荒取りを行う。この荒取りを行うと同時に、X軸移動用モータ35で支持テーブル32を介して平形荒砥石47をX軸方向に徐々に移動させる。こうして、図7(b)に仮想線で示すように、ワークWのエッジ部WEが円筒研削によって荒取りされる。
【0058】
ワークWのエッジ部WEの荒取りが終了したら、ワークWを吸盤25で保持したままの状態でX軸移動用モータ35で支持テーブル32を左方に移動させ、荒砥石43をワークWの軸線L1と対応する位置に移動配置させる。続いて、ワーク回転用モータ26でワークWを回転させるとともに、砥石回転用モータ41により、ワークWの平面と平行でかつワークWの半径方向と直交する方向に延びる軸線L3周りに荒砥石43を回転させる。
【0059】
これと同時に、制御装置6に予め設定されたNCプログラムに基づいて図8に示すように、ワークWを図2に示すZ軸移動用モータ27でZ軸方向に移動させるとともに、荒砥石43をY軸移動用モータ38でY軸方向に移動させる。かかる同時2軸制御によって、荒砥石43をワークWの平面と平行な軸線L3を中心に回転させながらワークWのエッジ部WEに沿って表裏両面間を相対送り移動させ、ワークWのエッジ部WEがたとえば先端円弧状の先細り形状となるように荒研削される。
【0060】
ワークWのエッジ部WEの荒研削が済んだら、砥石径センサ53によって研削後の荒砥石43の径を測定する。このとき、砥石径センサ53は、基準ブロック53Dの基準面53Eを測定してゼロ調整した状態で荒砥石43の径を測定する。測定された荒砥石43の径は、砥石径センサ53から制御装置6に出力される。
【0061】
荒砥石43の径の測定が済んだら、X軸移動用モータ35によって支持テーブル32を左方に移動させ、仕上砥石44がワークWの軸線L1と対応する位置に移動配置される。続いて、ワーク回転用モータ26でワークWを回転させるとともに、砥石回転用モータ41により、ワークWの平面と平行でかつワークWの半径方向と直交する方向に延びる軸線L3周りに仕上砥石44を回転させる。このとき、荒砥石43による荒研削を行った場合と同様に、ワークWがZ軸移動用モータ27でZ軸方向に移動させられるとともに、仕上砥石44がY軸移動用モータ38でY軸方向に移動させられる。かかる同時2軸制御によって、仕上砥石44をワークWの平面と平行な軸線L3を中心に回転させながらワークWのエッジ部WEに沿って表裏両面間を相対送り移動させる。こうして、先端円弧状の先細り形状となるように荒研削されたワークWの形状に沿って仕上砥石44が送り移動させられて、ワークWのエッジ部WEの仕上研削が行われる。ワークWのエッジ部WEの仕上研削が済んだら、砥石径センサ53によって仕上研削後の仕上砥石44の径を測定する。この場合、仕上研削後の仕上砥石44の径を測定する際には、砥石径センサ53の接触子53Aを基準ブロック53Dの基準面53Eに突き当てることによって、ゼロ合わせが行われる。測定された仕上砥石44の径は、砥石径センサ53から制御装置6に出力される。
【0062】
こうして、エッジ部WEの仕上研削が行われたワークWは、仕上ワークとして搬出ステーション5における搬出ロボット14によって搬出ステーション5に搬出され、洗浄装置16に搬送される。洗浄装置16においてワークWが洗浄されると、次にワークWは搬出ロボット14によって幅センサ15上に載置される。幅センサ15においては、載置されたワークWの径を測定し、ワークWの径を制御装置6に出力する。ワークWの径を測定したら、搬出ロボット14によってワークWを保持し、カセット17に収納する。
【0063】
以上の手順に沿って、本実施形態に係るワークの研削方法が行われるが、本実施形態においては、厚さセンサ13、幅センサ15、変位測定センサ52、砥石径センサ53、およびワーク径センサ55によって測定される。これらの測定値に基づいて、ワークWに対する荒砥石43や仕上砥石44の位置および移動量の補正がなされる。その補正を行いながらワークを研削する手順を第1の研削方法として、図9に示すフローチャートを参照して説明する。
【0064】
まず、搬入ロボット12によってワークWを厚さセンサ13に搬入し、厚さセンサ13でワークWの厚さを測定する(S1)。制御装置6では、厚さセンサ13で測定されたワークWの厚さを確認する。次に、搬入ロボット12によってワークWを研削部4の吸盤25に保持させる。
【0065】
続いて、吸盤25でワークWを吸着保持したこの状態で、ワークWおよび平型荒砥石47を回転させて、ワークWのエッジ部を荒取りする(S2)。このときのワークWと平形荒砥石47の相対的な位置関係は、所定のNCプログラムに基づいて決定される。続いて、ワーク径センサ55によって、荒取りした後のワークWの径を測定する(S3)。このワークWの径を測定する際には、ワーク径センサ55の接触子55Bを吸盤25の外周エッジ部に突き当てることによって、ゼロ合わせが行われる。一方、荒砥石43では複数回の荒研削が行われており、前回のワークWの研削が終了した後には、砥石径センサ53によって荒砥石43の径を測定している(S4)。このとき、荒砥石43の摩耗が激しく、交換時期となったか否かを判断し(S5)、交換時期であると判断したら砥石を交換しておく(S6)。
【0066】
こうして、ワークWの厚さおよび径および荒砥石43の径を測定したら、制御装置6において、ワークWに対する荒砥石43の相対的な位置決めを行う(S7)。荒砥石43の位置決めは、まず予め設定されたNCプログラムに対して、測定されたワークWの厚さに基づく補正をすることによって行われ、ワークWのZ軸方向の高さ中心と荒砥石43の回転中心となる軸線L2が同じ高さとなるように調整される。次に、ワークWの径および荒砥石43の径に基づいて、荒砥石43の位置決めが行われる。この荒砥石43の位置決めも同様に、予め設定されたNCプログラムに対して、測定されたワークWの径および荒砥石43の径に基づく補正をすることによって行われる。
【0067】
荒砥石43の位置決めが行われたら、ワークWのエッジ部の荒研削を行う(S8)。この荒研削を行う際のワークWのZ軸方向への揺動幅および荒砥石43のY軸方向への揺動幅は、予めNCプログラムにより設定されているが、ワークWのZ軸方向への揺動幅は、測定されたワークWの厚さに基づいて補正され、荒砥石43のY軸方向への揺動幅は、ワークWの径および荒砥石43の径に基づいて補正される。荒砥石43による荒研削が終了したら、同様の手順によって仕上砥石44による仕上研削が行われる。こうして、ワークWのエッジ部WEの研削が終了する。
【0068】
ワークWのエッジ部WEの研削が終了したら、ワークWは、図1に示す搬出ロボット14によって、搬出ステーション5に搬出され、洗浄装置16で洗浄される。
【0069】
以後、ワークの研削を終了するか否かを判断し(S9)、終了しない場合にはステップS1に戻って、搬入ロボット12によって次のワークWを厚さセンサ13に搬入し、厚さセンサ13でワークWの厚さを測定する。一方、ワークの研削を終了する場合には、そのまま終了する。
【0070】
続いて、第2の研削方法について図10に示すフローチャートを参照して説明する。
前記第1の研削方法では、ワークW、荒砥石43、および仕上砥石44の径などの測定を随時行っていたので、サイクルタイムが長くなってしまうものであるが、第2の研削方法では、この点を改善することに着目している。
【0071】
まず、搬入ロボット12によってワークWを厚さセンサ13に搬入し、厚さセンサ13でワークWの厚さを測定する(S11)。次に、搬入ロボット12によってワークを研削部4の吸盤25に保持させる。この状態で、ワークWおよび平型荒砥石47を回転させて、ワークWのエッジ部を荒取りする(S12)。このときのワークWと平形荒砥石47の相対的な位置関係は、所定のNCプログラムに基づいて決定される。ここまでの工程は前記第1の研削方法と同じである。
【0072】
続いて、第2の研削方法では、荒砥石43でワークWを研削したときの荒砥石43が摩耗する量を予め測定しておき、その摩耗量が制御装置6に記憶されている。そして、研削が行われた履歴から荒砥石43の使用回数を求め、荒砥石43の最初の径、荒砥石43の使用回数、および荒砥石43の摩耗量に基づいて、荒砥石43の径を推定する(S13)。
【0073】
こうして荒砥石43の径を推定したら、制御装置6において、ワークWに対する荒砥石43の相対的な位置決めを行う(S14)。この位置決めは、まず予め設定されたNCプログラムに対して、測定されたワークWの厚さに基づく補正をすることによって行われ、ワークWのZ軸方向の高さ中心と荒砥石43の回転中心となる軸線L2が同じ高さとなるように調整される。次に、ワークWの径および荒砥石43の径に基づいて、荒砥石43の位置決めが行われる。この荒砥石43の位置決めも同様に、予め設定されたNCプログラムに対して、推定されたワークWの径および荒砥石43の径に基づく補正をすることによって行われる。
【0074】
荒砥石43の位置決めが行われたら、ワークWのエッジ部の荒研削を行う(S15)。この荒研削を行う際のワークWのZ軸方向への揺動幅および荒砥石43のY軸方向への揺動幅は、予めNCプログラムにより設定されているが、ワークWのZ軸方向への揺動幅は、測定されたワークの厚さに基づいて補正され、荒砥石43のY軸方向への揺動幅は、推定されたワークWの径および荒砥石43の径に基づいて補正される。荒砥石43による荒研削が終了したら、同様の手順によって仕上砥石44による仕上研削が行われる。こうして、ワークWのエッジ部WEの研削が終了する。
【0075】
ワークWのエッジ部WEの研削が終了したら、ワークWは、図1に示す搬出ロボット14によって、搬出ステーション5に搬出され、洗浄装置16でワークWを洗浄した後、カセット17に収納される。
【0076】
以後、ワークの研削を終了するか否かを判断し(S16)、終了しない場合にはステップS1に戻って、搬入ロボット12によって次のワークWを厚さセンサ13に搬入し、厚さセンサ13でワークWの厚さを測定する。一方、ワークの研削を終了する場合には、そのまま終了する。
【0077】
このように、第2の研削方法では、荒砥石43および仕上砥石44の径を測定する必要がないので、全体工程のサイクルタイムを大幅に短縮することができる。しかしその反面、荒砥石43および仕上砥石44の砥石径をまったく測定しないのでは、研削精度が低くなっても、そのことに気づかないという事態が考えられる。さらには、荒砥石43および仕上砥石44に交換時期がきたとしても、その交換時期に気づかない事態も想定される。かかる事態を回避するとともに、全体工程のサイクルタイムの短縮に寄与する方法について、第3の研削方法として図11に示すフローチャートを参照して説明する。
【0078】
第3の実施形態では、搬入ロボット12によってワークWを厚さセンサ13に搬入し、厚さセンサ13でワークWの厚さを測定する(S21)。次に、搬入ロボット12によってワークWを研削部4の吸盤25に保持させる。続いて、吸盤25でワークWを吸着保持したこの状態で、ワークWおよび平型荒砥石47を回転させて、ワークWのエッジ部を荒取りする(S22)。このときのワークWと平形荒砥石47の相対的な位置関係は、所定のNCプログラムに基づいて決定される。その後、ワーク径センサ55によって、荒取りした後のワークWの径を測定する(S23)。
【0079】
続いて、制御装置6においては、荒砥石43の砥石径を測定した後、荒砥石43によって荒研削を行った回数Nより、N≧20であるか否かを判断する(S24)。その結果、N≧20であれば、荒砥石43の径を推定すると、その誤差が大きくなる可能性が低くないと判断して、砥石径センサ53によって荒砥石43の砥石径を測定する(S25)。なお、このときの閾値となるNは、本実施形態では20に設定しているが10や30など、適宜の数に設定することができる。測定された荒砥石43の径は制御装置6に出力される。制御装置6において、砥石径センサ53による荒砥石43の径の測定結果によって荒砥石43の摩耗が激しく、交換時期となったか否かを判断し(S26)、交換時期であると判断された場合には、荒砥石43を交換する(S27)。一方、荒砥石43の摩耗が激しいということはない場合には、荒砥石43の砥石径を測定した後、荒砥石43によって荒研削を行った回数Nを0にする(S28)。
【0080】
また、荒砥石43の砥石径を測定した後、荒砥石43によって荒研削を行った回数N<20の場合には、荒砥石43の径を推定しても、その誤差は小さいと考えられるので、荒砥石43の径の測定を行うことなく、その径を推定する(S29)。ここで、前記第2の研削方法と同様に、荒砥石43でワークWを研削したときの荒砥石43が摩耗する量を予め測定しておき、その摩耗量が制御装置6に記憶されている。そして、研削が行われた履歴から、荒砥石43の使用回数を求め、荒砥石43の最初の径、荒砥石43の使用回数、および荒砥石43の摩耗量に基づいて、荒砥石43の径を推定する。
【0081】
こうして、荒砥石43の径を測定または推定したら、制御装置6において、ワークWに対する荒砥石43の相対的な位置決めを行う(S30)。この位置決めは、まず予め設定されたNCプログラムに対して、測定されたワークWの厚さに基づく補正をすることによって行われ、ワークWのZ軸方向の高さ中心と荒砥石43の回転中心となる軸線L2が同じ高さとなるように調整される。次に、ワークWの径および荒砥石43の径に基づいて、荒砥石43の位置決めが行われる。この荒砥石43の位置決めも同様に、予め設定されたNCプログラムに対して、測定または推定されたワークWの径および荒砥石43の径に基づく補正をすることによって行われる。
【0082】
荒砥石43の位置決めが行われたら、ワークWのエッジ部の荒研削を行う(S31)。この荒研削を行う際のワークWのZ軸方向への揺動幅および荒砥石43のY軸方向への揺動幅は、予めNCプログラムにより設定されているが、ワークWのZ軸方向への揺動幅は、測定されたワークの厚さに基づいて補正され、荒砥石43のY軸方向への揺動幅は、測定または推定されたワークWの径および荒砥石43の径に基づいて補正される。荒砥石43による荒研削が終了したら、荒砥石43の砥石径を測定した後、荒砥石43によって荒研削を行った回数Nに1を加算する(S32)。荒砥石43による荒研削が終了したら、同様の手順によって仕上砥石44による仕上研削が行われる。こうして、ワークWのエッジ部WEの研削が終了する。
【0083】
ワークWのエッジ部WEの研削が終了したら、ワークWは、図1に示す搬出ロボット14によって、搬出ステーション5に搬出され、カセット17に収納される。その後、洗浄装置16でワークWを洗浄する。
【0084】
以後、ワークの研削を終了するか否かを判断する(S33)。次のワークの研削は行わず、研削作業を終了する場合には、そのまま終了する。その一方、研削作業を継続する場合には、エッジ部WEの研削が終了した本発明の仕上ワークとなるワークWの径を幅センサ15によって測定し、制御装置6において、ワークWのワーク径が公差内にあるか否かを判断する(S34)。このときの公差は、ワークの種類などに応じて適宜設定することができる。また、本発明にいう公差は、実際の公差に所定のマージンを加えたものも含むものである。
【0085】
そして、ワークWの径が公差内にある場合には、ワークWの径や荒砥石43および仕上砥石44の砥石径およびワーク径の測定には問題ないとして、ワークWの径の測定は省略して、サイクルタイムの短縮を図る。また、ステップS24に戻って、所定の条件を満たすことによって、荒砥石43などの砥石径の測定も省略しても研削精度が著しく劣ることはない。こうして、サイクルタイムをさらに短縮することができる。
【0086】
一方ワークWの径が公差を超える場合には、次に研削するワークのワーク径を測定する(S35)。そして、荒砥石43および仕上砥石44の径も測定するようにする。こうして、研削されたワークWの径が公差を超えるような場合には、次のワークWの研削を行う際に必ずワークWの径、荒砥石43、および仕上砥石44の径を測定することによって、次のワークWの研削を行った際に、ワークWの径が公差内に入るようにすることができる。
【0087】
以上、本発明の好適な実施形態について説明したが、本発明は、前記各実施形態に限定されるものではない。たとえば、荒砥石43および仕上砥石44の砥石径を測定する砥石径センサ53を回転砥石用モータ41に取り付けて荒砥石43および仕上砥石44とともに動くようにすることができる。こうすることにより、支持テーブル32などの移動によって荒砥石43や仕上砥石44が移動する場合に、荒砥石43や仕上砥石44の移動に伴って砥石径センサ53も移動する。したがって、荒砥石43や仕上砥石44の移動に伴う機械誤差を除去することができるので、高い精度で砥石径を測定することができる。
【0088】
また、前記実施形態では、回転砥石として荒砥石および仕上砥石を用いているが、荒砥石のみ、あるいは仕上砥石のみとする態様とすることもできる。反対に、回転砥石として番手の異なる3種以上の荒砥石でワークのエッジ部の研削を行うこともできる。
【0089】
【発明の効果】
以上のとおり、請求項1および請求項8に係る発明によれば、仕上ワークの径が所定の公差内にある場合には、仕上ワークは製品として問題ないので、ワークの径が公差内となるようにワークのエッジ部を研削できているうちは、回転砥石の径の測定を省略することができ、その分サイクルタイムを短縮することができる。
【0090】
請求項2および請求項9に係る発明によれば、たとえば回転支持部や他の機構が熱膨張した場合であっても、高い精度をもって砥石径センサにより計測を行うことができる。
【0091】
請求項3に係る発明によれば、回転砥石の移動に伴う機械誤差が砥石径センサの測定値に影響を与えることがない。したがって、より高い精度で回転砥石の径を測定することができる。
【0094】
請求項4および請求項10に係る発明によれば、ワークの荒取りを行った際にワークの形状が多少予定の形状からはずれていたとしても、高い精度でワークのエッジ部の研削を行うことができる。
【0095】
請求項5および請求項11に係る発明によれば、ワーク保持手段などに熱膨張などがあった場合であっても、高い精度でワーク径を測定することができる。
【0096】
請求項6および請求項12に係る発明によれば、このため、ワークの厚さに多少のバラツキがあっても、高い精度でワークの研削を行うことができる。
【0097】
請求項7および請求項13に係る発明によれば、回転砥石をZ軸方向に移動させる際、ワークの高さ方向中央部を中心として回転砥石をZ軸方向に揺動させるが、ワークの厚さを測定していることにより、高い精度でワークのZ軸方向中間位置を定めることができる。
【図面の簡単な説明】
【図1】本発明に係る研削装置の部分破断平面図である。
【図2】本発明に係る研削装置における研削部の側面図である。
【図3】本発明に係る研削装置における研削部の平面図である。
【図4】(a)は、本発明に係る研削装置における研削手段の平面図、(b)は、その側面図である。
【図5】(a)は、本発明に係る研削装置における砥石径センサの平面図、(b)は、その側面図である。
【図6】(a)は、本発明に係る研削装置におけるワーク径センサの平面図、(b)は、その側面図である。
【図7】(a)は、本発明に係る研削装置によってワークを荒取りしている状態を示す側面図、(b)は、その平面図である。
【図8】本発明に係る研削装置によってワークを荒研削している状態を示す側面図である。
【図9】本発明に係る第1の研削方法の工程を示すフローチャートである。
【図10】本発明に係る第2の研削方法の工程を示すフローチャートである。
【図11】本発明に係る第3の研削方法の工程を示すフローチャートである。
【図12】従来の研削装置を示す側面図である。
【符号の説明】
1 研削装置
2 ベッド
3 搬入ステーション
4 研削部
5 搬出ステーション
6 制御装置
13 厚さセンサ
15 幅センサ
24 回転軸
25 吸盤(ワーク保持手段)
26 ワーク回転用モータ
27 Z軸移動用モータ
30 研削手段
32 支持テーブル
33 サドル
41 回転砥石用モータ
42 回転軸
43 荒砥石(回転砥石)
44 仕上砥石(回転砥石)
45 円筒研削用モータ
46 回転軸
47 平型荒砥石
52 変位測定センサ
53 砥石径センサ
55 ワーク径センサ
W ワーク
WE (ワークの)エッジ部
L1 軸線(ワークの中心軸線)
L2 (ワークの中心軸線に平行な)軸線
L3 (ワークの平面と平行な)軸線

Claims (13)

  1. 円形薄板よりなるワークを保持するとともに、前記ワークをその中心軸線周りに回転させるワーク保持手段と、
    円盤状の回転砥石を有し、この回転砥石を前記ワークの平面と平行な軸線周りに回転させながら前記ワークのエッジ部に沿って表裏両面間を相対送り移動させる研削手段と、
    前記回転砥石の径を測定する砥石径センサと、
    前記砥石径センサによって測定された前記回転砥石の径に基づいて、前記ワークに対する前記回転砥石の位置および移動量を補正する制御装置と、
    前記回転砥石によってエッジ部を仕上研削された仕上ワークの径を測定する仕上ワーク径センサと、を有し、
    前記制御装置は、前記砥石径センサによって測定された前記回転砥石の径に基づいて前記ワークの研削を行った後、前記回転砥石で当該ワークを研削したときに前記回転砥石が摩耗した量を予め記憶しておき、
    前記磨耗量を記憶したワークの研削に続いて、前記回転砥石によって連続して複数の他のワークの加工を行うにあたり、
    前記回転砥石の使用回数が閾値を超えない場合で、前記仕上ワークの径が所定の公差内であるときには、前記他のワークの研削を行う際に、前記回転砥石の径を、前記予め記憶された前記ワークを研削したときに前記回転砥石が摩耗した量、および当該他のワークの加工までの前記回転砥石の使用回数に基づいて求める制御を行い、
    前記回転砥石の使用回数が閾値を超えた場合において、前記砥石径センサによって前記回転砥石の径を測定し当該回転砥石の磨耗が激しくないと当該制御装置が判断したとき、もしくは、前記仕上ワークの径が所定の公差を超えた場合において、前記他のワークの研削を行う際に、前記砥石径センサによって前記回転砥石の径を測定し当該回転砥石の磨耗が激しくないと当該制御装置が判断したときには、前記回転砥石の使用回数をゼロにして、前記砥石径センサによって前記回転砥石の径を求める制御を行い、
    前記閾値は、前記回転砥石の使用回数に基づいて求めた前記回転砥石の推定の径と実際の径との差が大きくなり誤差が許容できなくなる回数であること、
    を特徴とするワークの研削装置。
  2. 前記砥石径センサは、前記回転砥石の回転支持部に設けた基準面の位置を測定することによって、砥石測定のため砥石径センサと回転砥石間の相対位置を調整するゼロ調整を行うことを特徴とする請求項1に記載のワークの研削装置。
  3. 前記砥石径センサが前記回転砥石とともに移動するように配設されていることを特徴とする請求項1または請求項2に記載のワークの研削装置。
  4. 前記ワークの中心軸線に平行な軸線周りに回転して前記ワークのエッジ部を荒取りする円筒研削用砥石を有し、
    前記ワーク保持手段に保持されたワークの径を測定するワーク径センサが設けられており、前記制御装置は、前記ワーク径センサによって測定された前記ワークの径に基づいて、前記ワークに対する前記回転砥石の位置および移動量を補正する制御を行うことを特徴とする請求項1から請求項3のうちのいずれか1項に記載のワークの研削装置。
  5. 前記ワーク径センサは、ワーク保持手段の縁部の位置を測定することによって、ワーク径測定のためのワーク径センサとワーク間の相対位置を調整するゼロ調整を行うことを特徴とする請求項4に記載のワーク研削装置。
  6. 前記回転砥石の回転支持部側に前記ワーク保持手段の軸線方向の変位を測定する変位測定センサが設けられており、前記制御装置は前記変位測定センサの測定結果に基づいて、前記軸線方向におけるワークと回転砥石間の相対位置を制御することを特徴とする請求項1から請求項5のうちのいずれか1項に記載のワーク研削装置。
  7. ワークの厚さを測定するワーク厚さ測定手段が設けられており、前記制御装置は、前記ワーク厚さ測定手段によって測定された前記ワークの厚さに基づいて、前記ワークの厚さ方向に対する前記回転砥石の位置および移動量を補正する制御を行うことを特徴とする請求項1から請求項6のうちのいずれか1項に記載のワークの研削装置。
  8. 円形薄板よりなるワークをワーク保持手段で保持し、前記ワークをその中心軸線周りに回転させるとともに、
    円盤状の回転砥石を前記ワークの平面と平行な軸線周りに回転させながら、前記回転砥石を前記ワークのエッジ部に沿って表裏両面間を相対送り移動させて前記ワークのエッジ部を研削するにあたり、
    砥石径センサによって前記回転砥石の径を測定し、前記砥石径センサによって測定された前記回転砥石の径に基づいて、前記ワークに対する前記回転砥石の位置および移動量を補正するワークの研削方法であって、
    前記砥石径センサによって測定された前記回転砥石の径に基づいて前記ワークの研削を行った後、前記回転砥石で当該ワークを研削したときに前記回転砥石が摩耗した量を予め記憶しておき、
    前記磨耗量を記憶したワークの研削に続いて、前記回転砥石によって連続して複数の他のワークの加工を行うにあたり、
    仕上ワーク径センサによって前記回転砥石によってエッジ部を仕上研削された仕上ワークの径を測定し、
    前記回転砥石の使用回数が閾値を超えない場合で、前記仕上ワークの径が所定の公差内であるときには、前記他のワークの研削を行う際に、前記回転砥石の径を、前記予め記憶された前記ワークを研削したときに前記回転砥石が摩耗した量、および当該他のワークの加工までの前記回転砥石の使用回数に基づいて求め、
    前記回転砥石の使用回数が閾値を超えた場合において、前記砥石径センサによって前記回転砥石の径を測定し当該回転砥石の磨耗が激しくないと当該制御装置が判断したとき、もしくは、前記仕上ワークの径が所定の公差を超えた場合において、前記他のワークの研削を行う際に、前記砥石径センサによって前記回転砥石の径を測定し当該回転砥石の磨耗が激しくないと当該制御装置が判断したときには、前記回転砥石の使用回数をゼロにして、前記砥石径センサによって前記回転砥石の径を求め、
    前記閾値は、前記回転砥石の使用回数に基づいて求めた前記回転砥石の推定の径と実際の径との差が大きくなり誤差が許容できなくなる回数であること、
    を特徴とするワークの研削方法。
  9. 前記回転砥石の回転支持部に設けた基準面の位置を前記砥石径センサで測定することによって、砥石径を測定するため砥石径センサと回転砥石間の相対位置を調整するゼロ調整を行うことを特徴とする請求項8に記載のワークの研削方法。
  10. 前記ワークの中心軸線に平行な軸線周りに回転する円筒研削用砥石で前記ワークのエッジ部を荒取りした後、
    荒取りされた前記ワークの径をワーク径センサで測定し、
    前記ワーク径センサによって測定された前記ワークの径に基づいて、前記ワークに対する前記回転砥石の位置および移動量を補正することを特徴とする請求項8または請求項9に記載のワークの研削方法。
  11. 前記ワーク保持手段の縁部の位置を前記ワーク径センサで測定することによって、ワーク径測定のためのワーク径センサとワーク間の相対位置を調整するゼロ調整を行うことを特徴とする請求項10に記載のワークの研削方法。
  12. 前記回転砥石の回転支持部側に設けられた変位測定センサによって前記ワーク保持手段の軸線方向の変位を測定し、
    前記変位測定センサの測定結果に基づいて前記軸線方向におけるワークと回転砥石間の相対位置を制御することを特徴とする請求項8から請求項11のうちのいずれか1項に記載のワークの研削方法。
  13. ワークの厚さをワーク厚さ測定手段によって測定し、前記ワーク厚さ測定手段によって測定されたワークの厚さに基づいて、前記ワークの厚さ方向に対する前記回転砥石の位置および移動量を補正することを特徴とする請求項8から請求項12のうちのいずれか1項に記載のワークの研削方法。
JP2000189111A 2000-06-23 2000-06-23 ワークの研削装置および研削方法 Expired - Fee Related JP4911810B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000189111A JP4911810B2 (ja) 2000-06-23 2000-06-23 ワークの研削装置および研削方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000189111A JP4911810B2 (ja) 2000-06-23 2000-06-23 ワークの研削装置および研削方法

Publications (2)

Publication Number Publication Date
JP2002001655A JP2002001655A (ja) 2002-01-08
JP4911810B2 true JP4911810B2 (ja) 2012-04-04

Family

ID=18688780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000189111A Expired - Fee Related JP4911810B2 (ja) 2000-06-23 2000-06-23 ワークの研削装置および研削方法

Country Status (1)

Country Link
JP (1) JP4911810B2 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003260655A (ja) * 2002-03-06 2003-09-16 Speedfam Co Ltd 円板状ワークのための研磨装置
JP2004025358A (ja) * 2002-06-25 2004-01-29 Nakamura Tome Precision Ind Co Ltd ガラス基板の研削装置
US20080318152A1 (en) * 2004-09-17 2008-12-25 Takeyuki Mizutani Substrate for Exposure, Exposure Method and Device Manufacturing Method
DE602008002445D1 (de) * 2007-01-30 2010-10-28 Ebara Corp Poliervorrichtung
JP4915319B2 (ja) * 2007-09-19 2012-04-11 株式会社ジェイテクト 工作機械制御装置
KR101318885B1 (ko) * 2012-01-26 2013-10-16 주식회사 케이엔제이 휠 마모량 보정이 가능한 기판 연마장치
CN106938414A (zh) * 2016-10-19 2017-07-11 广州宁基智能***有限公司 一种做旧门板打磨机构
JP6854726B2 (ja) * 2017-07-20 2021-04-07 株式会社ディスコ バイト切削装置
CN108747691A (zh) * 2018-06-14 2018-11-06 德清阳瑞光学科技有限公司 镜片倒棱研磨机
JP6934091B2 (ja) * 2019-07-19 2021-09-08 株式会社スギノマシン 洗浄機
CN115256083B (zh) * 2022-08-19 2024-02-02 山东和富工程检测有限公司 一种木材导热系数试样厚度两面同时砂光加工装置及方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57170946A (en) * 1981-04-15 1982-10-21 Mitsui Toatsu Chem Inc Modified polypropylene composition
JPH04171175A (ja) * 1990-11-01 1992-06-18 Mitsubishi Heavy Ind Ltd 砥石径自動計測法
JP3035690B2 (ja) * 1994-01-27 2000-04-24 株式会社東京精密 ウェーハ直径・断面形状測定装置及びそれを組み込んだウェーハ面取り機
JP2820632B2 (ja) * 1994-12-21 1998-11-05 株式会社ノリタケカンパニーリミテド 自動疵取り装置
JPH09183050A (ja) * 1995-12-28 1997-07-15 Kao Corp 基板の面取加工装置
JP3666121B2 (ja) * 1996-06-06 2005-06-29 豊田工機株式会社 研削方法
JP3685418B2 (ja) * 1996-07-05 2005-08-17 オリンパス株式会社 研削加工方法
JP3625376B2 (ja) * 1998-05-25 2005-03-02 株式会社東芝 ウェハの研削方法及び装置
JP4008586B2 (ja) * 1998-08-09 2007-11-14 エムテック株式会社 ワークのエッジの研摩装置
JP3975309B2 (ja) * 1998-10-07 2007-09-12 株式会社東京精密 ウェーハ面取り方法及び装置
JP2000135662A (ja) * 1998-10-30 2000-05-16 Canon Inc 球面形状部品の加工方法および装置

Also Published As

Publication number Publication date
JP2002001655A (ja) 2002-01-08

Similar Documents

Publication Publication Date Title
KR100954534B1 (ko) 얇은 원판형상 공작물의 양면 연삭방법 및 양면 연삭장치
US9156130B2 (en) Method of adjusting profile of a polishing member used in a polishing apparatus, and polishing apparatus
JP4911810B2 (ja) ワークの研削装置および研削方法
KR20180104575A (ko) 평면 연삭 방법 및 평면 연삭 장치
JP5891010B2 (ja) 薄板状ワークの研削方法及び両頭平面研削盤
JP2013119123A (ja) 研削装置
JPH0241872A (ja) 数値制御研削盤
JP7305945B2 (ja) 工作機械
EP1043120A1 (en) Method and apparatus for grinding a workpiece
KR101503186B1 (ko) 연삭 가공반 및 연삭 가공 방법
KR101891345B1 (ko) 박판형 워크의 연삭 방법 및 양두 평면 연삭반
JP3199627B2 (ja) 両頭研削盤における自動定寸装置及び方法
JPH10156692A (ja) カム研削盤
EP0950214B1 (en) Method of controlling a machine tool
JP2602965B2 (ja) 自動円筒研削装置
JP5603303B2 (ja) アンギュラ研削方法およびアンギュラ研削装置
JP3777825B2 (ja) 精密研削盤および砥石半径測定方法
JP2009113161A (ja) 研削方法および研削装置
JP2546062B2 (ja) 長尺軸の外面研削装置
JP2014226767A (ja) ウェーハ面取り装置及びウェーハ面取り方法
JP2001277084A (ja) 両頭研削盤
JP2012240176A (ja) 研削加工装置及び研削加工方法
JP4581647B2 (ja) ツルーイング方法および研削盤
JPH05162005A (ja) バイト成形機能付き旋盤
JP3162701B2 (ja) 両頭研削盤の砥石修正方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees