JP4901693B2 - Manufacturing method of cold-rolled steel sheet with excellent deep drawability with extremely small material variation - Google Patents

Manufacturing method of cold-rolled steel sheet with excellent deep drawability with extremely small material variation Download PDF

Info

Publication number
JP4901693B2
JP4901693B2 JP2007285539A JP2007285539A JP4901693B2 JP 4901693 B2 JP4901693 B2 JP 4901693B2 JP 2007285539 A JP2007285539 A JP 2007285539A JP 2007285539 A JP2007285539 A JP 2007285539A JP 4901693 B2 JP4901693 B2 JP 4901693B2
Authority
JP
Japan
Prior art keywords
rolling
cooling
hot
cold
stand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007285539A
Other languages
Japanese (ja)
Other versions
JP2009114473A (en
Inventor
薫 川崎
隆久 大野
隆公 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007285539A priority Critical patent/JP4901693B2/en
Publication of JP2009114473A publication Critical patent/JP2009114473A/en
Application granted granted Critical
Publication of JP4901693B2 publication Critical patent/JP4901693B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、極低炭素冷延鋼板及び溶融亜鉛メッキ鋼板の深絞り性において、幅方向及び長手方向の材質変動を抑制するため、熱間圧延工程における圧延条件と冷却条件を規定することにより、コイル内全域において優れた深絞り性を有する冷延鋼板及び溶融亜鉛メッキ鋼板の製造方法に関わるものである。 In the deep drawability of the ultra-low carbon cold-rolled steel sheet and hot-dip galvanized steel sheet, the present invention controls the rolling conditions and cooling conditions in the hot rolling process in order to suppress material variations in the width direction and the longitudinal direction, The present invention relates to a method for manufacturing a cold-rolled steel sheet and a hot-dip galvanized steel sheet having excellent deep drawability throughout the entire coil.

とくに優れた深絞り性を有する冷延鋼板の製造方法として、特開平5−112831号公報に記載された製造方法が知られている。すなわち、熱間圧延工程における仕上圧延最終圧下率を30%以上とし、熱間圧延直後からの冷却開始による急速冷却で、IF鋼の熱延板組織を細粒とし、冷延板のr値を向上させる技術が開示されている。しかし、最終仕上スタンドで30%以上の圧下を加えることは、板厚精度を悪化させる。また、最終仕上スタンド後面には、温度計や板厚測定器等の計器類が設置されているため、冷却装置が最終スタンドからある程度の距離をおいて設置する必要があることから、とくに通板速度が遅い圧延トップ部分においては、十分に微細な組織が得られない。また、材質バラツキを低減する配慮はなされていない。   As a method for producing a cold-rolled steel sheet having particularly excellent deep drawability, a production method described in JP-A-5-112831 is known. That is, the final rolling reduction ratio in the hot rolling process is set to 30% or more, the rapid rolling by the start of cooling immediately after hot rolling, the hot rolled sheet structure of IF steel is made fine, and the r value of the cold rolled sheet is Techniques for improving are disclosed. However, applying a reduction of 30% or more at the final finishing stand deteriorates the thickness accuracy. In addition, because the back of the final finishing stand is equipped with instruments such as a thermometer and a plate thickness measuring instrument, the cooling device must be installed at a certain distance from the final stand. In the rolling top portion where the speed is low, a sufficiently fine structure cannot be obtained. In addition, no consideration is given to reducing material variations.

また、プレス成形性に優れ且つコイル内でのプレス成形性の変動の少ない深絞り用冷延鋼板の製造方法として、特開2001−115213号公報に記載されているように、仕上圧延機最終スタンドでの圧延終了後、ランナウトでの冷却を0.1秒超1.0秒未満のうちに開始する技術として開示されている。仕上圧延最終スタンドでの圧延後に冷却を開始することにより、熱延板の組織微細化を図るものであるが、最終スタンド直後には、種々の計器類が配備されていることを考慮し、仕上圧延後の冷却は0.1秒超となっているため、熱延板段階での結晶粒微細化が不十分になる。そのため、実施例に記載されている材質を得るためには、焼鈍温度を850℃と高くせざるを得なかったものと考えられ、連続焼鈍工程での生産性を高めるためにより低温での焼鈍を実施する場合には、十分な材質が得られない。 Further, as described in JP-A No. 2001-115213, as a method for producing a cold-rolled steel sheet for deep drawing having excellent press formability and little fluctuation in press formability in a coil, a final stand of a finishing mill is disclosed. After the end of rolling at the end, cooling in the run-out is disclosed as a technique for starting within 0.1 seconds and less than 1.0 seconds. The structure of the hot-rolled sheet is refined by starting cooling after rolling at the final finishing roll stand. In consideration of the fact that various instruments are installed immediately after the final stand, Since cooling after rolling is over 0.1 seconds, crystal grain refinement at the hot rolling stage is insufficient. Therefore, in order to obtain the materials described in the examples, it is considered that the annealing temperature had to be increased to 850 ° C., and annealing at a lower temperature was performed in order to increase the productivity in the continuous annealing process. When implemented, a sufficient material cannot be obtained.

さらに、極低炭素熱延鋼帯の製造方法とその製造装置として、特許第3911952号には、TiやNbを添加していないC:10〜15ppmを含む極低炭素鋼について、最終仕上圧延の圧下率を30%未満とし、その圧延後の冷却開始時間と温度降下量を規定することにより、熱延板における結晶粒度番号で8番以下となる製造方法が開示されている。しかし、TiやNbが添加されていないことから、当該方法によって得られた熱延鋼板を使用しても、熱延板段階で鋼中に存在する固溶C及びTiを完全に固定することは不可能であると言わざるを得ない。すなわち、鋼中に含まれるC及びNの変動に伴い深絞り性も変動することから、高い深絞り性を付与するための技術とは言えず、とくに幅方向の材質バラツキを低減する配慮はなされていない。 Furthermore, as a manufacturing method and an apparatus for manufacturing an ultra-low carbon hot-rolled steel strip, Patent No. 3911952 describes the final finish rolling of ultra-low carbon steel containing C: 10 to 15 ppm without adding Ti or Nb. A production method is disclosed in which the rolling reduction is less than 30%, and the cooling start time and the temperature drop after the rolling are defined, whereby the crystal grain size number in the hot-rolled sheet is 8 or less. However, since Ti and Nb are not added, even if the hot-rolled steel sheet obtained by the method is used, it is impossible to completely fix the solid solution C and Ti present in the steel at the hot-rolled sheet stage. I must say it is impossible. In other words, since the deep drawability also fluctuates with changes in C and N contained in the steel, it cannot be said that it is a technique for imparting high deep drawability, and in particular, consideration is given to reducing the material variation in the width direction. Not.

一方、熱間圧延工程での組織微細化を図る手段として、特許第3705233号に仕上スタンド間での冷却による方法が開示されている。実施例として最終スタンドと1段前のスタンド間で冷却を実施することが示されている。しかし、材質に対する作用効果の記載がない。 On the other hand, as a means for refining the structure in the hot rolling process, Japanese Patent No. 3705233 discloses a method by cooling between finishing stands. As an example, it is shown that cooling is performed between the last stand and the stand one stage before. However, there is no description of the effect on the material.

特開2001−326727号公報及び特開2001−318728号公報には、最終パス前の2パスの合計圧下率と最終パス圧下率を規定し、形状性及び加工性に優れ、異方性の小さい冷延鋼板の製造方法が開示されている。しかし、本発明で開示したコイル内の材質変動として、とくに幅方向のバラツキに対する配慮がなく、冷却開始時間についても、仕上圧延終了後の冷却開始時間が0.1秒以上と規定されているため、熱延板結晶粒の微細化が不十分となることから、Δrが大きくなっている。 Japanese Patent Laid-Open Nos. 2001-326727 and 2001-318728 define the total and final pass reduction ratios of two passes before the final pass, and are excellent in shape and workability, and have little anisotropy. A method for manufacturing a cold-rolled steel sheet is disclosed. However, as the material variation in the coil disclosed in the present invention, there is no particular consideration for variation in the width direction, and the cooling start time is defined as 0.1 second or more after the finish rolling is finished. Since the refinement of the rolled crystal grains is insufficient, Δr is increased.

深絞り用冷延鋼板及び加工性や形状に優れた冷延鋼板の製造方法として、特許第3046145号公報及び特許3046146号公報に開示された製造方法が知られている。しかし、いずれも最終圧下率を30%以上として圧延することを特徴としており、板厚精度を悪化させる。また、材質バラツキを低減する配慮がなされていない。 As a method for producing a cold-drawn steel sheet for deep drawing and a cold-rolled steel sheet having excellent workability and shape, the production methods disclosed in Japanese Patent Nos. 3046145 and 3046146 are known. However, all are characterized by rolling with a final reduction ratio of 30% or more, which deteriorates the thickness accuracy. In addition, no consideration is given to reducing material variations.

特開平5−112831号公報Japanese Patent Laid-Open No. 5-112831 特開2001−115213号公報JP 2001-115213 A 特許第3911952号公報Japanese Patent No. 3911952 特許第3705233号公報Japanese Patent No. 3705233 特開2001−316727号公報JP 2001-316727 A 特開2001−316728号公報JP 2001-316728 A 特許3046145号公報Japanese Patent No. 3046145 特許3046146号公報Japanese Patent No. 3046146

これまで深絞り性の優れた冷延鋼板及び溶融亜鉛メッキ冷延鋼板の製造方法として、熱延仕上温度や仕上圧延後の冷却条件が検討されてきた。しかし、コイル内での材質変動という視点において、仕上熱延温度と、仕上熱延スタンド列におけるスタンド間での冷却条件を規定した技術が確立されているとは言い難い。また、生産性を向上させるためには、冷延・焼鈍(メッキ)工程における負荷(例えば冷延圧下率の低減や焼鈍温度の低温化等)を低減させることが強く求められている。 So far, as a method for producing a cold-rolled steel sheet and a hot-dip galvanized cold-rolled steel sheet having excellent deep drawability, hot rolling finishing temperature and cooling conditions after finish rolling have been studied. However, from the viewpoint of material fluctuation in the coil, it is difficult to say that a technology that defines the finishing hot rolling temperature and the cooling conditions between the stands in the finishing hot rolling stand row has been established. Further, in order to improve productivity, it is strongly demanded to reduce a load in the cold rolling / annealing (plating) process (for example, reduction of the cold rolling reduction rate or lowering of the annealing temperature).

そこで、本発明者らはこうした実情に鑑み、仕上熱延スタンド列における熱延条件と、仕上熱延終了後の冷却熱間圧延工程における圧延条件と冷却条件に着目し、仕上温度の高温化と仕上圧延終了後に施される冷却条件を適切に実施することにより、冷延鋼板及び溶融亜鉛メッキ冷延鋼板において、材質バラツキの極めて小さい深絞り性を付与する技術として、本発明を完成させた。
その要旨は以下の通りである。すなわち、
(1)質量%で、C:0.0010〜0.0025%、Si:0.01〜0.1%、Mn:0.05〜0.15%、P:0.001〜0.015%、S:0.001〜0.01%、Al:0.005〜0.05%、N:0.001〜0.003%を含みかつ、Ti及びNbのうち1種以上をそれぞれTi:0.01〜0.05%、Nb:0.005〜0.02%の範囲で含み、残部Fe及び不可避的不純物からなるスラブを加熱、熱間圧延、冷間圧延、連続焼鈍を行って冷延鋼板を製造するに際し、前記熱間圧延が連続して実施される熱延スタンド列における最終スタンドより2段あるいは1段前のスタンドにおいて、(Ar3変態点+20℃)以上の温度域で30%未満の圧下率で仕上圧延を終了した後、0.1s未満で冷却を開始し、冷却速度を平均で150℃/s以上として最終スタンドまでを連続的に冷却する際に、最終スタンドにおける出側温度を(Ar3変態点−30℃)以下とし、650〜750℃で巻取ることを特徴とする材質バラツキの極めて小さい深絞り性に優れた冷延鋼板の製造方法。
(2)質量%で、C:0.0010〜0.0025%、Si:0.01〜0.1%、Mn:0.05〜0.15%、P:0.001〜0.015%、S:0.001〜0.01%、Al:0.005〜0.05%、N:0.001〜0.003%を含みかつ、Ti及びNbのうち1種以上をそれぞれTi:0.01〜0.05%、Nb:0.005〜0.02%の範囲で含み、残部Fe及び不可避的不純物からなるスラブを加熱、熱間圧延、冷間圧延、連続焼鈍を行って冷延鋼板を製造するに際し、前記熱間圧延が連続して実施される熱延スタンド列における最終スタンドより2段あるいは1段前のスタンドにおいて、(Ar3変態点+20℃)以上の温度域で30%未満の圧下率で仕上圧延を終了した後、0.1s未満で冷却を開始し、冷却速度を平均で150℃/s以上として最終スタンドまでを連続的に冷却する際に、最終スタンドにおける出側温度を(Ar3変態点−30℃)以下とし、最終スタンドにおいて10%以下の圧下を付与しかつ、出側温度を(Ar3変態点−30℃)以下とし、650〜750℃で巻取ることを特徴とする材質バラツキの極めて小さい深絞り性に優れた冷延鋼板の製造方法。
(3)前記スラブは、さらにB:0.0002〜0.001%を含む(1)又は(2)に記載の材質バラツキの極めて小さい深絞り性に優れた冷延鋼板の製造方法。
Therefore, in view of such circumstances, the present inventors pay attention to the hot rolling conditions in the finishing hot rolling stand row and the rolling conditions and cooling conditions in the cooling hot rolling process after finishing hot rolling. The present invention was completed as a technique for imparting deep drawability with extremely small material variation in cold-rolled steel sheets and hot-dip galvanized cold-rolled steel sheets by appropriately carrying out the cooling conditions applied after finishing rolling.
The summary is as follows. That is,
(1) By mass%, C: 0.0010 to 0.0025%, Si: 0.01 to 0.1%, Mn: 0.05 to 0.15%, P: 0.001 to 0.015%, S: 0.001 to 0.01%, Al: 0.005 to 0.05%, N : Contains 0.001 to 0.003%, and contains one or more of Ti and Nb in the range of Ti: 0.01 to 0.05% and Nb: 0.005 to 0.02%, respectively, and heats and heats the slab composed of the remaining Fe and inevitable impurities When producing a cold-rolled steel sheet by performing cold rolling, cold rolling, and continuous annealing, in the stand two or one stage before the final stand in the hot rolling stand row in which the hot rolling is continuously performed, After finishing rolling at a reduction rate of less than 30% in the temperature range above (Ar3 transformation point + 20 ° C), start cooling in less than 0.1 s and set the average cooling rate to 150 ° C / s or more until the final stand. When continuously cooling, the outlet side temperature at the final stand is (Ar3 transformation point -30 ° C) or lower and the material is wound at 650 to 750 ° C. Method for producing a superior cold-rolled steel sheet in very small deep drawability.
(2) By mass%, C: 0.0010 to 0.0025%, Si: 0.01 to 0.1%, Mn: 0.05 to 0.15%, P: 0.001 to 0.015%, S: 0.001 to 0.01%, Al: 0.005 to 0.05%, N : Contains 0.001 to 0.003%, and contains one or more of Ti and Nb in the range of Ti: 0.01 to 0.05% and Nb: 0.005 to 0.02%, respectively, and heats and heats the slab composed of the remaining Fe and inevitable impurities When producing a cold-rolled steel sheet by performing cold rolling, cold rolling, and continuous annealing, in the stand two or one stage before the final stand in the hot rolling stand row in which the hot rolling is continuously performed, After finishing rolling at a reduction rate of less than 30% in the temperature range above (Ar3 transformation point + 20 ° C), start cooling in less than 0.1 s and set the average cooling rate to 150 ° C / s or more until the final stand. When cooling continuously, the outlet temperature at the final stand should be (Ar3 transformation point -30 ° C) or less, and a reduction of 10% or less should be applied at the final stand. , Exit side a temperature of (Ar @ 3 transformation point -30 ° C.) or less, the production method of excellent cold-rolled steel sheet in very small deep drawability of the material dispersion, characterized in that winding at 650 to 750 ° C..
(3) The method for producing a cold-rolled steel sheet excellent in deep drawability with extremely small material variation according to (1) or (2), wherein the slab further contains B: 0.0002 to 0.001%.

本発明により、材質バラツキの極めて小さいとくに自動車用鋼板と使用される深絞り性に優れた冷延鋼板及び溶融亜鉛メッキ冷延鋼板を提供するものである。 According to the present invention, there are provided a cold-rolled steel sheet and a hot-dip galvanized cold-rolled steel sheet, which are excellent in deep drawability, particularly used for automobile steel sheets with extremely small material variations.

まず、本発明を完成させるに至った実験について説明する。
本発明者らは、質量%で、0.0016C−0.05Si−0.08Mn−0.037Tiの成分を有する板厚:35mmの実機粗圧延材を使用し、図1に示す実験室規模の熱延機を使用した圧延実験を行った。1100℃に再加熱後、圧延スケジュール:35→21→13→7→5→4mmとして圧延を行った。仕上温度:920〜970℃として熱間圧延を実施した。冷却条件によっては最終圧延後の温度測定が困難となることから、最終圧延前の入り側温度により仕上出側の温度(仕上温度)を調整した。冷却実験は、ロール近接領域から配置したスプレーノズルを使用し、開くノズルの位置により冷却開始時間を変化させるとともに、水量密度の調整により冷却速度を変化させた。続いて700℃まで冷却を実施した後、700℃に加熱した保温炉に装入し、その温度で1時間の保定を行った後、炉冷にて100℃以下の温度域まで冷却した。その熱延板のL断面について、1/4厚部分の結晶粒径について、ASTMによる粒度番号を測定した。仕上温度:965℃における冷却開始時間の影響を図2に示す。なお、冷却速度は200℃/sとした。冷却開始時間が圧延後0.1s未満では、ASTM−No.で8番以上となるが、0.1s以上になると冷却開始時間が遅くなるに伴い、ASTM−No.が8番より小さくなる。また、図3には仕上温度の影響を示すが、現行条件(冷却開始:1.5s、冷却速度:40℃/s)では、いずれの仕上温度においてもASTM−No.で7番より小さく、仕上温度が高くなると著しくASTM−No.が小さくなる。一方、冷却開始時間を0.04sとした場合(冷却速度:200℃/s)には、仕上温度の影響が小さくなり、いずれの仕上温度においてもASTM−No.で8番以上の粒度番号が得られる。なお、Ar3点は加工フォーマスターによる変態点の測定より、910℃と見積もられた。さらに、冷却速度の影響については、図4に、仕上温度:965℃、冷却開始時間を0.01及び0.04秒とした場合について、冷却速度の影響を示す。冷却速度が150℃/s以上となると安定してASTM−No.で8番より大きな粒度番号は得られることが知見された。
First, the experiment that led to the completion of the present invention will be described.
The present inventors used an actual rough rolling material having a thickness of 35 mm and having a component of 0.0016C-0.05Si-0.08Mn-0.037Ti in mass%, and the laboratory-scale hot rolling machine shown in FIG. The used rolling experiment was conducted. After reheating to 1100 ° C., rolling was performed with a rolling schedule of 35 → 21 → 13 → 7 → 5 → 4 mm. Hot rolling was performed at a finishing temperature of 920 to 970 ° C. Depending on the cooling conditions, it is difficult to measure the temperature after the final rolling, so the finishing side temperature (finishing temperature) was adjusted by the entry side temperature before the final rolling. In the cooling experiment, spray nozzles arranged from the vicinity of the roll were used, the cooling start time was changed depending on the position of the opened nozzle, and the cooling rate was changed by adjusting the water density. Subsequently, after cooling to 700 ° C., it was charged into a heat-retaining furnace heated to 700 ° C., maintained at that temperature for 1 hour, and then cooled to a temperature range of 100 ° C. or lower by furnace cooling. With respect to the L cross section of the hot-rolled sheet, the grain size number by ASTM was measured for the crystal grain size of the 1/4 thickness portion. Figure 2 shows the effect of the cooling start time at a finishing temperature of 965 ° C. The cooling rate was 200 ° C./s. If the cooling start time is less than 0.1 s after rolling, the ASTM-No. Is 8 or more, but if it is 0.1 s or more, the ASTM-No. Becomes smaller than 8 as the cooling start time is delayed. Figure 3 shows the effect of finishing temperature. Under the current conditions (cooling start: 1.5 s, cooling rate: 40 ° C / s), ASTM-No. As the temperature increases, the ASTM-No. On the other hand, when the cooling start time is 0.04 s (cooling rate: 200 ° C / s), the effect of the finishing temperature is reduced, and an ASTM-No. 8 or higher particle size number is obtained at any finishing temperature. It is done. Note that the Ar3 point was estimated to be 910 ° C. from the measurement of the transformation point by a machining for master. Further, regarding the influence of the cooling rate, FIG. 4 shows the influence of the cooling rate when the finishing temperature is 965 ° C. and the cooling start time is 0.01 and 0.04 seconds. It was found that when the cooling rate was 150 ° C./s or more, a particle size number larger than No. 8 was obtained with ASTM-No.

こうした実験事実をもとに本発明を完成させるに至った。
以下に本発明の限定理由について説明する。
Cは、本発明において重要な役割を果たす元素であり、とくに深絞り性に与える影響が大きい。したがって、少ない方が好ましいが、0.001%より下げる場合には製鋼段階での負荷が高くなるばかりか、仕上圧延後の急冷時に、温度勾配による異常粒成長が生じやすくなり、本発明における冷却機能が発揮できず、熱延板での組織微細化が不十分となり、かえってr値が低下し、深絞り性が劣化する。一方、0.0025%を超えると、後述するTiあるいはNb添加量が多くなり、再結晶温度の上昇を招き、r値を低下させる原因となるため、これを上限とする。
The present invention has been completed based on these experimental facts.
The reason for limitation of the present invention will be described below.
C is an element that plays an important role in the present invention, and has a particularly large influence on deep drawability. Accordingly, a smaller amount is preferable, but if it is lower than 0.001%, not only the load in the steelmaking stage is increased, but also abnormal grain growth due to a temperature gradient is likely to occur during rapid cooling after finish rolling, and the cooling function in the present invention. It cannot be exhibited, and the structure refinement in the hot-rolled sheet becomes insufficient, and instead the r value is lowered and the deep drawability is deteriorated. On the other hand, if it exceeds 0.0025%, the amount of Ti or Nb added later increases, leading to an increase in recrystallization temperature and a decrease in r value, so this is the upper limit.

Siは、より優れた深絞り性を付与するためには添加されない方が好ましく、0.1%を上限とする。一方、過度に低下させることは製鋼工程での負荷が高くなるため、0.01%を下限とする。
Mnもより優れた深絞り性を付与するためには添加されない方が好ましいことから、0.15%を上限とする。しかし、0.05%未満になると、Sの固定が不十分となり、熱間圧延での割れ発生の原因となるため、これを下限とする。
Si is preferably not added to give better deep drawability, and the upper limit is 0.1%. On the other hand, excessively lowering increases the load in the steel making process, so 0.01% is made the lower limit.
Mn is preferably not added in order to give better deep drawability, so 0.15% is made the upper limit. However, if it is less than 0.05%, S is insufficiently fixed and causes cracking in hot rolling, so this is the lower limit.

Pもより優れた深絞り性を付与するためには添加されない方が好ましいため、0.015%を上限とする。一方、0.001%よりも低くすることは脱Pコストを極端に高めるため好ましくないことから、これを下限とする。 P is preferably not added in order to give better deep drawability, so 0.015% is made the upper limit. On the other hand, a lower limit than 0.001% is not preferable because it significantly increases the de-P cost, so this is the lower limit.

Sは鋼の熱間脆性に影響を与える元素であるとともに、とくに熱間での加工性を劣化させる元素でもあるばかりでなく、加工性を劣化させるため、少ない方が好ましい。そのため、0.01%を上限とする。しかし、0.001%未満とする場合には、脱硫コストの極端な上昇を招くため、これを下限とする。 S is an element that affects the hot brittleness of the steel, and is not only an element that deteriorates hot workability, but also the workability. Therefore, the upper limit is 0.01%. However, when the content is less than 0.001%, the desulfurization cost is extremely increased, so this is the lower limit.

Alは、脱酸のために添加されるものである。0.005%未満では脱酸が不十分となり、鋼中に酸化物が多量に残存し、とくに局部変形能が劣化するとともに、特性バラツキも大きくなる。一方、0.05%を超えて含有されると、鋼中にアルミナを主体とする酸化物が多く残存し、やはり局部変形能の劣化を招くため、好ましくない。 Al is added for deoxidation. If it is less than 0.005%, deoxidation becomes insufficient, and a large amount of oxide remains in the steel. In particular, the local deformability deteriorates and the characteristic variation also increases. On the other hand, if the content exceeds 0.05%, a large amount of oxide mainly composed of alumina remains in the steel, which also causes deterioration of local deformability, which is not preferable.

Nも、深絞り性を付与する鋼においては少ない方が良いが、極端に下げることはコストアップとなり好ましくないため、0.001%を下限とする。一方、0.003%を超えて含有されると、Cと同様にr値の低下を招き、深絞り性が劣化するため、これを上限とする。 N is also better for steels that give deep drawability, but it is not preferable to reduce it to an extreme, because it is not preferable because it increases costs, so 0.001% is made the lower limit. On the other hand, if the content exceeds 0.003%, the r value decreases as in the case of C, and the deep drawability deteriorates, so this is the upper limit.

Tiは、深絞り性を確保するために重要な元素の1つである。すなわち、固溶N及びCを固定するために添加されるものである。そのため、0.01%を下限とする。一方、0.05%を超えて添加されると析出する炭窒化物が多くなるとともに固溶Ti量も増えるため、再結晶温度が高くなるため、好ましくない。 Ti is one of the important elements for ensuring deep drawability. That is, it is added to fix the solute N and C. Therefore, 0.01% is made the lower limit. On the other hand, if added over 0.05%, the amount of precipitated carbonitride increases and the amount of solid solution Ti increases, so the recrystallization temperature increases, which is not preferable.

NbもTiと同様に、深絞り性を確保ずるために熱延板段階での固溶Cを固定するために添加されるものである。さらに、熱延板での結晶粒径を微細化する効果もあることからも添加されるものである。そのため、0.005%未満では、Cの固定が不十分となるとともに、熱延板段階での結晶粒微細化効果も得られない。一方、過度に添加されると再結晶温度が高くなるため、0.02%を上限とする。 Nb, like Ti, is added to fix solute C in the hot-rolled sheet stage in order to ensure deep drawability. Furthermore, it is also added because of the effect of reducing the crystal grain size in the hot-rolled sheet. Therefore, if it is less than 0.005%, the fixation of C becomes insufficient and the effect of crystal grain refinement at the hot-rolled sheet stage cannot be obtained. On the other hand, if added excessively, the recrystallization temperature increases, so 0.02% is made the upper limit.

Bは、とくに二次加工性が問題となる場合に添加されるものである。その際、0.0002%未満では十分な効果が得られない。一方、0.001%を超えるとその効果が飽和するばかりか、再結晶温度が高くなることからこれを上限とする。 B is added particularly when secondary workability becomes a problem. At that time, if it is less than 0.0002%, a sufficient effect cannot be obtained. On the other hand, if it exceeds 0.001%, not only the effect is saturated but also the recrystallization temperature becomes high, so this is made the upper limit.

なお、上記に示す鋼成分は、製鋼段階においてスクラップを利用することによるCu,Cr,Sn,Ni,Mo等の元素が含まれる場合や、脱酸元素としてCe等を含むREMを使用した場合についても、本発明における効果は何ら変わるものではない。また、連続鋳造方法もとくに規定されるものではなく、通常の連続鋳造方法やスラブ厚みが100mm以下の薄スラブ法によるものによっても、本発明における効果は何ら変わるものではない。 Note that the steel components shown above include cases where elements such as Cu, Cr, Sn, Ni, and Mo are used by using scrap in the steel making stage, and cases where REM containing Ce and the like as a deoxidizing element is used. However, the effect in the present invention is not changed at all. Further, the continuous casting method is not particularly specified, and the effect in the present invention is not changed by the normal continuous casting method or the thin slab method having a slab thickness of 100 mm or less.

本発明においては、熱間圧延条件が最も重要である。すなわち、最終スタンドより2段ないしは1段前で仕上圧延を終了させる際に、仕上温度の下限をAr3変態点+20℃とするが、これより低くなると圧延時に板幅方向のエッジ部においてAr3変態点を下回る温度での圧延となりやすくなる。その結果、とくに巾方向の組織が不均一となるために幅方向のr値が変動し、均一な深絞り性が得られない。一方、上限はとくに規定されるものではないが、冷却後に(Ar3変態点−30℃)以下とすることから、仕上温度があまり高くなりすぎると、必要な冷却終点温度まで冷却するための水量が多くなり、冷却設備及び冷却水回収設備の規模が大きくなり過ぎるため、上限を(Ar3変態点+60℃)とするのが好ましい。 In the present invention, hot rolling conditions are the most important. That is, when finishing rolling is finished two stages or one stage before the final stand, the lower limit of the finishing temperature is set to Ar3 transformation point + 20 ° C, but if lower than this, Ar3 transformation is performed at the edge in the sheet width direction during rolling. It becomes easy to roll at a temperature below the point. As a result, the structure in the width direction is not uniform, and the r value in the width direction fluctuates, and uniform deep drawability cannot be obtained. On the other hand, the upper limit is not particularly defined, but after cooling (Ar3 transformation point −30 ° C.) or less, if the finishing temperature becomes too high, the amount of water for cooling to the required cooling end point temperature is small. Since the size of the cooling facility and the cooling water recovery facility becomes too large, the upper limit is preferably set to (Ar3 transformation point + 60 ° C.).

とくに本発明において規定される仕上温度については、通常指向される温度域としては高いため、熱延板組織としてはその粗大化が懸念される。そのため、仕上圧延の終了後直ちに冷却を開始することが必須である。すなわち、図2で得られた知見から、仕上圧延の終了後、0.1秒未満での冷却開始とするが、より好ましくは0.04秒以下が良い。 In particular, the finishing temperature defined in the present invention is high as a normally directed temperature range, so there is a concern that the hot rolled sheet structure is coarse. Therefore, it is essential to start cooling immediately after finishing rolling. That is, from the knowledge obtained in FIG. 2, after finishing rolling, cooling is started in less than 0.1 seconds, and more preferably 0.04 seconds or less.

仕上圧延を終了する際の圧下率が30%以上の実施されると、加工発熱の影響を受けやすくなり、前述する条件にて圧延後直ちに冷却を実施する効果が低減し、熱延板結晶粒径がASTM−No.で8番以上とならないことから、これを上限とする。 When the rolling reduction at the end of finish rolling is 30% or more, it becomes easy to be affected by processing heat generation, and the effect of cooling immediately after rolling under the above-mentioned conditions is reduced. This is the upper limit since the diameter is ASTM-No.

最終スタンドにおける圧下は必ずしも必要ではないが、スタンド間での冷却に使用する水が最終スタンド出側に流れてくると、温度や板厚の測定に影響を与える可能性もあるため、ロール表面に通板材表面を接触させることによりこれを防止すること、また、板形状制御のために10%以下の軽圧下を加えることは、本発明において何ら影響を与えるものではない。 Although it is not always necessary to reduce the pressure at the final stand, if water used for cooling between the stands flows to the exit side of the final stand, it may affect the measurement of temperature and thickness. Preventing this by bringing the plate material surface into contact with each other, and applying a light reduction of 10% or less for controlling the plate shape has no effect on the present invention.

また、冷却条件として冷却速度及び冷却終点温度についは、本発明においてはとくに重要な因子である。すなわち、図3及び4で得られた知見から、150℃/s未満の冷却速度で冷却される場合や、最終スタンドにおける出側温度が十分に低下できず、冷却終点温度が(Ar3変態点−30℃)よりも高くなった場合には、ASTM−No.で8番以上の熱延板組織が得られないことから、冷却速度及び冷却終点温度を規定した。また、その際に実施する冷却は、最終スタンド出側に設置されている温度計や板厚測定計への影響を与えることを回避するため、最終スタンドとその前段スタンドの間、あるいは、もう一つ前のスタンドとの間とあわせて実施される。なお、巻取温度については、650℃未満では固溶Cが残存するため深絞り性の低下を招く。一方、750℃を超える温度で巻取る場合には、逆に組織が粗大化しやすくなり細粒化効果が失われるため、これを上限とした。 Further, the cooling rate and the end point temperature of cooling as cooling conditions are particularly important factors in the present invention. That is, from the knowledge obtained in FIGS. 3 and 4, when cooling at a cooling rate of less than 150 ° C./s, the outlet temperature in the final stand cannot be sufficiently reduced, and the cooling end point temperature is (Ar3 transformation point − When the temperature was higher than 30 ° C., a hot rolled sheet structure of No. 8 or higher was not obtained with ASTM-No. In addition, the cooling performed at that time is performed between the final stand and the preceding stage stand or another one to avoid affecting the thermometer and the thickness gauge installed on the final stand exit side. It is carried out together with the previous stand. In addition, about coiling temperature, if it is less than 650 degreeC, since solid solution C remains, it will cause the fall of deep drawability. On the other hand, when winding at a temperature exceeding 750 ° C., the structure tends to become coarser and the effect of finening is lost.

熱間圧延に続く冷間圧延条件、焼鈍条件及びメッキ条件については、とくに本発明においては規定されるものではなく、通常の範囲で実施すれば良い。すなわち、冷間圧延は、通常実施されている冷延圧下率の範囲で実施するものとし、具体的には、70〜90%で実施するものとする。また、冷間圧延後の焼鈍条件及び溶融亜鉛メッキ条件も、再結晶が十分に完了するものであれば、加熱条件や冷却条件はとくに規定されるものではない。さらに、溶融亜鉛メッキ方法についても、いわゆるゼンジミア法に加え、焼鈍板にNiをプレメッキして実施する方法で行ってもかまわない。また、合金化処理の有無によっても何ら本発明における効果が損なわれるものではない。 The cold rolling conditions following the hot rolling, the annealing conditions and the plating conditions are not particularly defined in the present invention, and may be carried out in a normal range. That is, the cold rolling is performed in the range of the cold rolling reduction that is normally performed, and specifically, 70% to 90%. Also, the annealing condition and the hot dip galvanizing condition after cold rolling are not particularly defined as long as the recrystallization is sufficiently completed. Further, the hot dip galvanizing method may be carried out by a method in which Ni is pre-plated on the annealed plate in addition to the so-called Sendzimir method. Moreover, the effect in this invention is not impaired by the presence or absence of an alloying process.

また、焼鈍後あるいは溶融亜鉛メッキ後の調質圧延についても、とくに規定するものではなく、形状を適切に調整するために実施するものである。その場合、過度に実施するとYPが増加するため、1%を上限とする。 Further, the temper rolling after annealing or hot dip galvanizing is not particularly specified, and is performed in order to appropriately adjust the shape. In that case, YP increases if implemented excessively, so the upper limit is 1%.

表1に示す成分の鋼を転炉にて出鋼し、スラブとした後、本発明の範囲となる熱延条件で熱間圧延を実施した。すなわち、1200℃で加熱し、それに続く粗圧延を終了した後、6段の圧延スタンドを配する連続熱間圧延設備において、仕上圧延を4段で終了した。この時、4段目で実施した圧延の圧下率を25%、その際の仕上温度を940℃とした。この仕上圧延に引き続き、4〜5段間及び5〜6段間で冷却を行うが、その際の冷却条件として、本発明の範囲である冷却開始時間:0.02秒、平均冷却速度:200℃/s、F6スタンド出側温度:870℃とした。引き続きランアウトテーブルで通常の冷却を行い、700℃で巻き取った。各熱延板について、本発明の範囲で、83%の冷間圧延を実施した後、連続焼鈍にて750℃×40秒の再結晶焼鈍を実施し、0.5%のスキンパス圧延を行った。得られた焼鈍材について、材質評価として引張特性、r値及びΔr値を測定した。とくに、深絞り性の指標であるr値については、とくに板幅方向における変動について調査するため、最エッジ〜1/8W、1/8W〜1/4W、1/4W〜1/2W、1/2W〜3/4W、3/4W〜7/8W、7/8W〜エッジの部分から試験片を作製した。ここで、平均r値(r-m)は、各方位(L方向(r-L):圧延と同方向、C方向(r-C):圧延方向と直角方向、X方向(r-x):圧延方向と45°方向)におけるr値から、(1)式により求める値であり、Δrは各方位のr値から(2)式により求められる値である。得られた結果を表2に示す。本発明の範囲にしたがった成分を有する鋼(A,B,C,D,E,F,G,H鋼)では、熱延板における結晶粒径がASTM−No.で8番以上となっている。その結果、1.8を超えるr-xが得られるとともに、2.0を超えるr-mが得られている。なお、いずれの鋼についても、本発明の範囲で熱間圧延及びそれに続く冷却を実施しているため、とくに幅方向におけるr-mのバラツキ(σ(r-m))が小さくなっている。一方、本発明の範囲の鋼成分から、Cが低く外れたI鋼は、熱延板結晶粒径がG.S.-No.が小さいため、r-m及びr-xが低いばかりでなく、Δrも大きい。また、C及びNが本発明の範囲より高く外れたJ鋼では、熱延板段階で固溶Cが残存するため、r-m及びr-xが低い。さらに、Si及びMnが本発明の範囲から高く外れたK鋼では、やはりr-m及びr-xが低い。
r-m={(r-L)+(r-C)+2×(r-x)}/4 (1)
Δr={(r-L)+(r-C)−2×(r-x)}/2 (2)
Steels having the components shown in Table 1 were produced in a converter and made into slabs, and then hot rolled under hot rolling conditions within the scope of the present invention. That is, after heating at 1200 ° C. and subsequent rough rolling, finishing rolling was finished in four stages in a continuous hot rolling facility with a six-stage rolling stand. At this time, the rolling reduction in the fourth stage was 25%, and the finishing temperature at that time was 940 ° C. Subsequent to this finish rolling, cooling is performed between 4 to 5 stages and between 5 to 6 stages. As the cooling conditions at that time, the cooling start time within the scope of the present invention: 0.02 seconds, the average cooling rate: 200 ° C. / s, F6 stand outlet temperature: 870 ° C. Subsequently, normal cooling was performed on the runout table, and the film was wound at 700 ° C. Each hot-rolled sheet was subjected to cold rolling at 83% within the scope of the present invention, followed by recrystallization annealing at 750 ° C. for 40 seconds by continuous annealing, and 0.5% skin pass rolling was performed. About the obtained annealing material, the tensile characteristic, r value, and (DELTA) r value were measured as material evaluation. In particular, with respect to the r value, which is an index of deep drawability, in order to investigate fluctuations in the plate width direction in particular, the most edge to 1/8 W, 1/8 W to 1/4 W, 1/4 W to 1/2 W, 1 / Test pieces were prepared from 2W to 3 / 4W, 3 / 4W to 7 / 8W, 7 / 8W to edge portions. Here, the average r value (rm) is each direction (L direction (rL): same direction as rolling, C direction (rC): perpendicular direction to rolling direction, X direction (rx): 45 ° direction with rolling direction) Is a value obtained from equation (1) from the r value in, and Δr is a value obtained from equation (2) from the r value in each direction. The obtained results are shown in Table 2. In steel (A, B, C, D, E, F, G, H steel) having components according to the scope of the present invention, the crystal grain size in the hot-rolled sheet becomes ASTM No. 8 or more. Yes. As a result, rx exceeding 1.8 is obtained and rm exceeding 2.0 is obtained. In any steel, since hot rolling and subsequent cooling are performed within the scope of the present invention, the rm variation (σ (rm)) in the width direction is particularly small. On the other hand, the steel I within the range of the present invention, in which the C is deviated low, has a small hot rolled sheet crystal grain size GS-No., So that not only rm and rx are low, but also Δr is large. Further, in steel J where C and N deviate higher than the range of the present invention, since solute C remains in the hot rolled sheet stage, rm and rx are low. Furthermore, K steel with Si and Mn deviating from the scope of the present invention is still low in rm and rx.
rm = {(rL) + (rC) + 2 × (rx)} / 4 (1)
Δr = {(rL) + (rC) −2 × (rx)} / 2 (2)

Figure 0004901693
Figure 0004901693
Figure 0004901693
Figure 0004901693

実施例1におけるA鋼(Ar3点:910℃)を使用し、表3に示す熱延条件で熱間圧延を実施し、3.5mmの熱延板とした。各熱延板を表4に示す条件で冷間圧延及び連続焼鈍を実施し、1.0%のスキンパス圧延を行った。得られた焼鈍材については、実施例1と同様に、材質評価として引張特性、r値及びΔr値を測定するとともに、板幅方向における変動についても調査した。本発明の範囲(No.1,2,3,4,5,6)では、熱延板における結晶粒径がASTM−No.で8番以上となっている。その結果、r-xが高くなるとともに、高いr-mが得られている。また、とくに幅方向におけるr-mのバラツキ(σ(r-m))も小さな値を示す。一方、冷却開始時間が十分に短くできなかったNo.7、冷却速度が150℃/s未満となったNo.8及び冷却によりF6スタンド出側温度を(Ar3変態点−30℃)以下の温度域まで下げることのできなかったNo.9では、熱延板結晶粒径としてASTM−No.で8番より小さい。また、仕上圧延での圧下率が35%を超えたNo.10では、加工発熱により十分な冷却効果が得られず、やはり熱延板結晶粒径としてASTM−No.で8番より小さい。さらに、主として形状矯正を目的として実施した最終スタンドであるF6での圧下率が10%を超えたNo.11では、変態後のフェライト粒の粒成長が助長されるため、やはりASTM−No.で8番より小さい。No.12は、仕上温度が本発明の好ましい範囲の範囲外であり、No.13は、仕上温度が本発明の範囲外である。とくにNo.12では、仕上温度が高いため、最終スタンドにおける出側温度を十分に低くすることができず、本発明の範囲外となり、ASTM−No.で8番より小さい熱延板結晶粒径しか得られていない。したがって、No.7,8,9,10,11及び12では、幅方向のバラツキは小さいものの、r-m及びr-xが低い。一方、No.13では、仕上圧延の段階でエッジ部近傍の温度が確保できず、板幅中央部の結晶粒径はASTM−No.で8番より大きいが、幅方向のr-mのバラツキ(σ(r-m))が大きい。なお、No.1,7,12,13では、F4で仕上圧延を終了させ、そのまま冷却を実施、No.3,4,6,8,9,10,11では、F4で仕上圧延を終了させ、冷却した後、F6で形状矯正を実施、No.5はF5で仕上圧延を終了させ、そのまま冷却を実施、No.2はF5で仕上圧延を終了させ、冷却を実施し、F6で形状矯正を行ったものである。 Using steel A (Ar3 point: 910 ° C.) in Example 1, hot rolling was performed under the hot rolling conditions shown in Table 3 to obtain a 3.5 mm hot rolled sheet. Each hot-rolled sheet was subjected to cold rolling and continuous annealing under the conditions shown in Table 4, and 1.0% skin pass rolling was performed. As for the obtained annealed material, as in Example 1, the tensile properties, r value and Δr value were measured as material evaluation, and the fluctuation in the plate width direction was also investigated. In the scope of the present invention (No. 1, 2, 3, 4, 5, 6), the crystal grain size in the hot rolled sheet is ASTM No. 8 or more. As a result, r-x becomes high and high r-m is obtained. In particular, the r-m variation (σ (r-m)) in the width direction also shows a small value. On the other hand, No. 7 that cooling start time could not be shortened sufficiently, No. 8 whose cooling rate was less than 150 ° C / s, and F6 stand exit side temperature by cooling (Ar3 transformation point -30 ° C) or less In No. 9, which could not be lowered to the range, ASTM-No. In No. 10 where the rolling reduction in finish rolling exceeds 35%, a sufficient cooling effect cannot be obtained due to processing heat generation, and the hot rolled sheet crystal grain size is also smaller than No. 8 in ASTM-No. Furthermore, in No. 11 where the rolling reduction at F6, which is the final stand mainly performed for the purpose of shape correction, exceeded 10%, the grain growth of ferrite grains after transformation is promoted, so ASTM-No. Less than number 8. No. 12 has a finishing temperature outside the preferable range of the present invention, and No. 13 has a finishing temperature outside the range of the present invention. In particular, in No. 12, since the finishing temperature is high, the exit side temperature in the final stand cannot be sufficiently lowered, which is outside the scope of the present invention, and the hot rolled sheet crystal grain size smaller than No. 8 in ASTM-No. It has only been obtained. Therefore, in Nos. 7, 8, 9, 10, 11, and 12, although the variation in the width direction is small, r-m and r-x are low. On the other hand, in No. 13, the temperature in the vicinity of the edge portion could not be secured at the stage of finish rolling, and the crystal grain size in the central portion of the plate width was larger than No. 8 in ASTM-No., But the rm variation in the width direction (σ (rm)) is large. In No.1, 7, 12, and 13, finish rolling is finished at F4 and cooled as it is, and in Nos. 3, 4, 6, 8, 9, 10, and 11, finish rolling is finished at F4. After cooling, shape correction was performed at F6, No.5 finished finish rolling at F5 and cooled as it was, No.2 finished finish rolling at F5, cooled, and shape correction at F6 It is what went.

Figure 0004901693
Figure 0004901693
Figure 0004901693
Figure 0004901693

実施例1においていずれも本発明に従ったB、E及びF鋼を、連続鋳造にて得られたスラブを1200℃で加熱後、粗圧延を実施し、7段のスタンドを配する仕上熱延設備列を使用して、いずれも本発明の範囲で熱間圧延を行った。すなわち、仕上圧延を5段で終了して4.5mmの熱延コイルとする際に、5段目で実施した圧延の圧下率を25%、その際の仕上温度を950℃とした。この仕上圧延に引き続き、5〜6段間及び6〜7段間で冷却を行うが、その際の冷却条件として、本発明の範囲である冷却開始時間:0.01秒、平均冷却速度:180℃/s、F7スタンド出側温度:860℃とした。引き続きランアウトテーブルで通常の冷却を行い、750℃で巻き取った。各熱延板について、本発明の範囲で、82%の冷間圧延を実施して0.8mmの冷延コイルとした後、いわゆるゼンジミア法による合金化溶融亜鉛メッキ工程(溶融メッキ:460℃、合金化:550℃)と、連続焼鈍を実施した後、室温まで冷却後、Niプレメッキを実施してから50℃/sで460℃まで加熱して溶融亜鉛メッキを施し、引き続き550℃で合金化処理を行った。得られたメッキ材について、実施例1と同様に、材質評価として引張特性、r値及びΔr値を測定するとともに、板幅方向における変動についても調査した。得られた結果を表5に示す。いずれのメッキ条件においても、r-xが高くなるとともに、高いr-mが得られている。また、とくに幅方向におけるr-mのバラツキ(σ(r-m))も小さな値を示す。 In Example 1, all of B, E and F steels according to the present invention were subjected to hot rolling at 1200 ° C after slabs obtained by continuous casting, and then subjected to rough rolling, and finishing hot rolling with a seven-stage stand. Using equipment rows, all were hot rolled within the scope of the present invention. That is, when finishing rolling was finished in five stages to obtain a 4.5 mm hot rolled coil, the rolling reduction of the rolling performed in the fifth stage was 25%, and the finishing temperature at that time was 950 ° C. Subsequent to this finish rolling, cooling is performed between 5 and 6 stages and between 6 and 7 stages. As the cooling conditions at that time, the cooling start time, which is the scope of the present invention: 0.01 seconds, the average cooling rate: 180 ° C. / s, F7 stand outlet temperature: 860 ° C. Subsequently, normal cooling was performed on the run-out table, and the film was wound at 750 ° C. Each hot-rolled sheet is subjected to cold rolling of 82% within the scope of the present invention to obtain a cold-rolled coil of 0.8 mm, and then an alloying hot-dip galvanizing process by the so-called Sendzimir method (hot-plating: 460 ° C., alloy) 550 ° C) and after continuous annealing, after cooling to room temperature, Ni pre-plating, then heating to 460 ° C at 50 ° C / s and hot-dip galvanizing, followed by alloying at 550 ° C Went. For the obtained plated material, as in Example 1, tensile properties, r value and Δr value were measured as material evaluation, and fluctuations in the plate width direction were also investigated. The results obtained are shown in Table 5. In any plating conditions, r-x is high and high r-m is obtained. In particular, the r-m variation (σ (r-m)) in the width direction also shows a small value.

Figure 0004901693
Figure 0004901693

本発明により、エッジ部を含むコイル内におけるバラツキが極めて小さい深絞り性に優れた冷延鋼板及び溶融亜鉛メッキ鋼板の製造が可能となる。 According to the present invention, it is possible to manufacture a cold-rolled steel sheet and a hot-dip galvanized steel sheet excellent in deep drawability with extremely small variations in the coil including the edge portion.

実験室で実施した熱延設備列Hot rolling equipment line in the laboratory 熱延板ASTM−No.に及ぼす冷却開始時間の影響Effect of cooling start time on hot-rolled sheet ASTM-No. 熱延板ASTM−No.に及ぼす仕上温度の影響Effect of finishing temperature on hot-rolled sheet ASTM-No. 熱延板ASTM−No.に及ぼす冷却速度の影響Effect of cooling rate on hot-rolled sheet ASTM-No.

Claims (3)

質量%で、C:0.0010〜0.0025%、Si:0.01〜0.1%、Mn:0.05〜0.15%、P:0.001〜0.015%、S:0.001〜0.01%、Al:0.005〜0.05%、N:0.001〜0.003%を含みかつ、Ti及びNbのうち1種以上をそれぞれTi:0.01〜0.05%、Nb:0.005〜0.02%の範囲で含み、残部Fe及び不可避的不純物からなるスラブを加熱、熱間圧延、冷間圧延、連続焼鈍を行って冷延鋼板を製造するに際し、前記熱間圧延が連続して実施される熱延スタンド列における最終スタンドより2段あるいは1段前のスタンドにおいて、(Ar3変態点+20℃)以上の温度域で30%未満の圧下率で仕上圧延を終了した後、0.1s未満で冷却を開始し、冷却速度を平均で150℃/s以上として最終スタンドまでを連続的に冷却する際に、最終スタンドにおける出側温度を(Ar3変態点−30℃)以下とし、650〜750℃で巻取ることを特徴とする材質バラツキの極めて小さい深絞り性に優れた冷延鋼板の製造方法。   In mass%, C: 0.0010 to 0.0025%, Si: 0.01 to 0.1%, Mn: 0.05 to 0.15%, P: 0.001 to 0.015%, S: 0.001 to 0.01%, Al: 0.005 to 0.05%, N: 0.001 to Including 0.003% and containing at least one of Ti and Nb in the range of Ti: 0.01 to 0.05% and Nb: 0.005 to 0.02%, heating the slab composed of the remaining Fe and inevitable impurities, hot rolling, When producing a cold-rolled steel sheet by performing cold rolling and continuous annealing, in the stand two or one stage before the final stand in the hot-rolling stand row in which the hot rolling is continuously performed, the (Ar3 transformation point) After finishing rolling at a reduction rate of less than 30% in a temperature range of + 20 ° C or higher, cooling is started in less than 0.1 s, and the average cooling rate is 150 ° C / s or higher until the final stand. When cooling, the exit side temperature at the final stand is (Ar3 transformation point -30 ° C) or less, and winding is performed at 650 to 750 ° C. Method for producing a superior cold-rolled steel sheet in less deep drawability. 質量%で、C:0.0010〜0.0025%、Si:0.01〜0.1%、Mn:0.05〜0.15%、P:0.001〜0.015%、S:0.001〜0.01%、Al:0.005〜0.05%、N:0.001〜0.003%を含みかつ、Ti及びNbのうち1種以上をそれぞれTi:0.01〜0.05%、Nb:0.005〜0.02%の範囲で含み、残部Fe及び不可避的不純物からなるスラブを加熱、熱間圧延、冷間圧延、連続焼鈍を行って冷延鋼板を製造するに際し、前記熱間圧延が連続して実施される熱延スタンド列における最終スタンドより2段あるいは1段前のスタンドにおいて、(Ar3変態点+20℃)以上の温度域で30%未満の圧下率で仕上圧延を終了した後、0.1s未満で冷却を開始し、冷却速度を平均で150℃/s以上として最終スタンドまでを連続的に冷却する際に、最終スタンドにおける出側温度を(Ar3変態点−30℃)以下とし、最終スタンドにおいて10%以下の圧下を付与しかつ、出側温度を(Ar3変態点−30℃)以下とし、650〜750℃で巻取ることを特徴とする材質バラツキの極めて小さい深絞り性に優れた冷延鋼板の製造方法。   In mass%, C: 0.0010 to 0.0025%, Si: 0.01 to 0.1%, Mn: 0.05 to 0.15%, P: 0.001 to 0.015%, S: 0.001 to 0.01%, Al: 0.005 to 0.05%, N: 0.001 to Including 0.003% and containing at least one of Ti and Nb in the range of Ti: 0.01 to 0.05% and Nb: 0.005 to 0.02%, heating the slab composed of the remaining Fe and inevitable impurities, hot rolling, When producing a cold-rolled steel sheet by performing cold rolling and continuous annealing, in the stand two or one stage before the final stand in the hot-rolling stand row in which the hot rolling is continuously performed, the (Ar3 transformation point) After finishing rolling at a reduction rate of less than 30% in a temperature range of + 20 ° C or higher, cooling is started in less than 0.1 s, and the average cooling rate is 150 ° C / s or higher until the final stand. When cooling, the outlet temperature at the final stand is set to (Ar3 transformation point -30 ° C) or lower, a reduction of 10% or lower is applied to the final stand, and the The temperature was (Ar @ 3 transformation point -30 ° C.) or less, the production method of excellent cold-rolled steel sheet in very small deep drawability of the material dispersion, characterized in that winding at 650 to 750 ° C.. 前記スラブは、さらにB:0.0002〜0.001%を含む請求項1又は2に記載の材質バラツキの極めて小さい深絞り性に優れた冷延鋼板の製造方法。 The said slab is B: 0.0002 to 0.001% further, The manufacturing method of the cold-rolled steel plate excellent in the deep drawability of the extremely small material variation of Claim 1 or 2.
JP2007285539A 2007-11-01 2007-11-01 Manufacturing method of cold-rolled steel sheet with excellent deep drawability with extremely small material variation Active JP4901693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007285539A JP4901693B2 (en) 2007-11-01 2007-11-01 Manufacturing method of cold-rolled steel sheet with excellent deep drawability with extremely small material variation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007285539A JP4901693B2 (en) 2007-11-01 2007-11-01 Manufacturing method of cold-rolled steel sheet with excellent deep drawability with extremely small material variation

Publications (2)

Publication Number Publication Date
JP2009114473A JP2009114473A (en) 2009-05-28
JP4901693B2 true JP4901693B2 (en) 2012-03-21

Family

ID=40781936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007285539A Active JP4901693B2 (en) 2007-11-01 2007-11-01 Manufacturing method of cold-rolled steel sheet with excellent deep drawability with extremely small material variation

Country Status (1)

Country Link
JP (1) JP4901693B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110117758A (en) * 2019-05-31 2019-08-13 张家港扬子江冷轧板有限公司 Meter case part of low-temperature impact-resistant and preparation method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5142158B2 (en) * 2010-03-31 2013-02-13 新日鐵住金株式会社 Cold rolled steel sheet manufacturing method
JP5299346B2 (en) * 2010-04-15 2013-09-25 新日鐵住金株式会社 Cold-rolled steel sheet excellent in deep drawability and method for producing alloyed hot-dip galvanized steel sheet
JP6354299B2 (en) * 2014-05-01 2018-07-11 新日鐵住金株式会社 440 MPa class high strength alloyed hot dip galvanized steel sheet excellent in secondary work brittleness resistance and method for producing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59170238A (en) * 1983-03-16 1984-09-26 Nippon Steel Corp Ferrite steel having finely grained surface and its production
JP3046146B2 (en) * 1992-07-03 2000-05-29 新日本製鐵株式会社 Manufacturing method of cold rolled steel sheet with excellent workability and shape
JPH09300004A (en) * 1996-05-15 1997-11-25 Nkk Corp Method for rolling hot rolled steel strip
JP4158737B2 (en) * 2004-04-16 2008-10-01 住友金属工業株式会社 Manufacturing method of fine grain hot rolled steel sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110117758A (en) * 2019-05-31 2019-08-13 张家港扬子江冷轧板有限公司 Meter case part of low-temperature impact-resistant and preparation method thereof
CN110117758B (en) * 2019-05-31 2021-05-04 张家港扬子江冷轧板有限公司 Low-temperature impact resistant instrument shell part and preparation method thereof

Also Published As

Publication number Publication date
JP2009114473A (en) 2009-05-28

Similar Documents

Publication Publication Date Title
TWI484050B (en) A cold-rolled steel, process for production thereof, and hot-stamp-molded article
JP5884714B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP5971434B2 (en) High-strength hot-dip galvanized steel sheet excellent in stretch flangeability, in-plane stability and bendability of stretch flangeability, and manufacturing method thereof
JP5967318B1 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
WO2001012864A1 (en) Method of producing cold rolled steel sheet
JP6079726B2 (en) Manufacturing method of high-strength steel sheet
JP2014031538A (en) Hot-rolled steel sheet and method for producing the same
EP3705592A1 (en) High-strength cold-rolled steel sheet, high-strength plated steel sheet, and production methods therefor
JP4767652B2 (en) Hot-rolled steel strip for cold-rolled high-tensile steel sheet with small thickness variation after cold rolling and method for producing the same
WO1995009931A1 (en) Continuously annealed and cold rolled steel sheet
KR102378653B1 (en) Cold rolled steel sheet and its manufacturing method
JP4901693B2 (en) Manufacturing method of cold-rolled steel sheet with excellent deep drawability with extremely small material variation
JP4069591B2 (en) Manufacturing method of cold-rolled steel sheet with excellent workability and low anisotropy
KR20180068089A (en) Ferritic stainless steel having excellent ridging property and excellent in surface quality and method of manufacturing the same
JP7235113B2 (en) hot rolled steel plate
JP5299346B2 (en) Cold-rolled steel sheet excellent in deep drawability and method for producing alloyed hot-dip galvanized steel sheet
JP2013209728A (en) Cold rolled steel sheet excellent in aging resistance and manufacturing method thereof
JP4273646B2 (en) High-strength thin steel sheet with excellent workability and manufacturing method thereof
JP2001207244A (en) Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method
RU2379361C1 (en) Method of cold-rolled sheet products manufacturing for enameling
WO2015111378A1 (en) Hot rolled steel sheet and manufacturing method therefor
CN111971409A (en) Hot rolled steel plate
US20230039571A1 (en) Steel sheet for can and manufacturing method thereof
JP4681476B2 (en) Method for producing alloyed hot-dip galvanized steel sheet with excellent surface properties
JP2718369B2 (en) Steel sheet for galvanizing and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111227

R151 Written notification of patent or utility model registration

Ref document number: 4901693

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350