JP2013209728A - Cold rolled steel sheet excellent in aging resistance and manufacturing method thereof - Google Patents

Cold rolled steel sheet excellent in aging resistance and manufacturing method thereof Download PDF

Info

Publication number
JP2013209728A
JP2013209728A JP2012082059A JP2012082059A JP2013209728A JP 2013209728 A JP2013209728 A JP 2013209728A JP 2012082059 A JP2012082059 A JP 2012082059A JP 2012082059 A JP2012082059 A JP 2012082059A JP 2013209728 A JP2013209728 A JP 2013209728A
Authority
JP
Japan
Prior art keywords
less
steel sheet
cold
rolled steel
aging resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012082059A
Other languages
Japanese (ja)
Inventor
Yoshimasa Funakawa
義正 船川
Taro Kizu
太郎 木津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012082059A priority Critical patent/JP2013209728A/en
Priority to RU2014102565/02A priority patent/RU2571667C2/en
Priority to RU2012134768/02A priority patent/RU2012134768A/en
Priority to MYPI2012003690A priority patent/MY180025A/en
Priority to BR102012020437A priority patent/BR102012020437B1/en
Priority to ZA2012/06176A priority patent/ZA201206176B/en
Publication of JP2013209728A publication Critical patent/JP2013209728A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a cold rolled steel sheet that can demonstrate an excellent aging resistance in a stable manner.SOLUTION: A cold rolled steel sheet has a composition containing, by mass or mass ppm, 0.01-0.05% C, 0.2% or less Si, 0.5% or less Mn, 0.03% or less P, 0.02% or less S, 0.01% or less N, and 0.01-0.1% Al, and satisfying 10 ppm or less of solid solution C amount and 50 ppm or more of solid solution Al amount, with the remainder comprising Fe and unavoidable impurities, wherein 40% or more of the precipitating cementite precipitates in the ferrite grain boundary.

Description

本発明は、自動車用部品等の構造部材や住居、家具、机などの構造体の素材として好適な、耐時効性に優れた冷延鋼板およびその製造方法に関するものである。   The present invention relates to a cold-rolled steel sheet excellent in aging resistance and suitable for a structural member such as an automobile part or a structural body such as a house, furniture, or desk, and a method for producing the same.

冷延鋼板は、その成形性の良さから、多種多様な構造体の素材として用いられている。通常は、プレス成形で2次元の板形状のものを3次元構造体とし、これらを接合してさらに複雑な3次元の構造体に成形する。   Cold-rolled steel sheets are used as materials for a wide variety of structures because of their good formability. Usually, a two-dimensional plate shape is formed into a three-dimensional structure by press molding, and these are joined to form a more complicated three-dimensional structure.

従来、このような冷延鋼板には、Cを0.03質量%程度含有する低炭素鋼板が用いられてきた。低炭素鋼板では、Cを粗大なセメンタイトとして析出させることによって加工性を向上させていた。しかしながら、微量の固溶炭素を原因とする降伏点伸びの発生、いわゆる時効によって加工時に表面にストレッチャーストレインと呼ばれる模様が生じ、これが表面外観の品質劣化を招き、甚だしい場合にはプレス破断の原因となっていた。   Conventionally, low-carbon steel sheets containing about 0.03% by mass of C have been used for such cold-rolled steel sheets. In a low carbon steel plate, workability was improved by precipitating C as coarse cementite. However, the occurrence of yield point elongation due to a small amount of solute carbon, so-called aging, causes a pattern called stretcher strain on the surface during processing, which causes deterioration in the quality of the surface appearance and, in severe cases, causes press breakage. It was.

また、特許文献1には、Cを0.003質量%以下に低減し、TiとNbを添加し、さらにS量を規定すると共に、熱間圧延での仕上温度をMn,S,NbおよびC含有量に応じて規定することで、成形性と化成処理性を向上させる技術が開示されている。
しかしながら、この技術では、優れた伸びとr値を得ることはできるものの、耐時効性の低さによって実際の成形においては、プレス成形性は十分とは言い難かった。
In Patent Document 1, C is reduced to 0.003 mass% or less, Ti and Nb are added, and the S amount is specified, and the finishing temperature in hot rolling is set to Mn, S, Nb and C content. The technique which improves a moldability and chemical conversion treatment property by prescribing | regulating according to is disclosed.
However, with this technique, although excellent elongation and r value can be obtained, it is difficult to say that press formability is sufficient in actual molding due to low aging resistance.

特許文献2には、BをNより多く添加した鋼において、製造時の過時効開始温度を規定して耐時効性を良好とする技術が開示されている。しかしながら、この技術では、BNよりも安定なAlNが微細に析出して、鋼の硬質化を招くだけでなく、細粒化で時効が促進され、十分な耐時効性を得ることはできなかった。   Patent Document 2 discloses a technique for improving the aging resistance by defining the overaging start temperature at the time of production in a steel added with more B than N. However, with this technique, AlN, which is more stable than BN, precipitates finely and not only hardens the steel, but also aging is promoted by fine graining, and sufficient aging resistance cannot be obtained. .

特許文献3には、焼鈍後、200〜310℃の温度域まで冷却し、その後、40℃以上の再加熱を行って過時効することで耐時効性の優れた冷延鋼板を得る方法が開示されている。しかしながら、この方法は、急速な冷却と加熱を繰り返すことから、温度の変動が大きく、結果として、耐時効性にばらつきが生じてしまい、安定した耐時効性の改善は望めなかった。   Patent Document 3 discloses a method of obtaining a cold-rolled steel sheet having excellent aging resistance by cooling to a temperature range of 200 to 310 ° C. after annealing and then performing overheating by reheating at 40 ° C. or higher. Has been. However, since this method repeats rapid cooling and heating, the temperature fluctuates greatly, resulting in variations in aging resistance, and stable improvement in aging resistance cannot be expected.

特許文献4には、焼鈍後、300〜200℃の温度域まで急冷し、その後に加熱により炭素のセメンタイト化を促進することによって固溶炭素量を低減し、併せてMnSの析出密度を制御することによって耐時効性を改善する技術が開示されている。しかしながら、この技術においても、安定した耐時効性の改善効果は得られていない。   In Patent Document 4, after annealing, the steel is rapidly cooled to a temperature range of 300 to 200 ° C., and thereafter the amount of solid solution carbon is reduced by promoting the cementitization of carbon by heating, and the precipitation density of MnS is also controlled. Thus, a technique for improving the aging resistance is disclosed. However, even with this technique, a stable aging resistance improvement effect has not been obtained.

特許第2712986号公報Japanese Patent No. 2712986 特許第3818024号公報Japanese Patent No. 3818024 特公平05―55573号公報Japanese Patent Publication No. 05-55573 特公平07―109009号公報Japanese Patent Publication No. 07-109090

上述したとおり、従来の技術では、十分に満足いくほど耐時効性が良好な冷延鋼板を提供することは困難であった。
本発明は、上記した従来技術が抱える問題を有利に解決するもので、安定して良好な耐時効性を発揮することができる、耐時効性に優れた冷延鋼板を、その有利な製造方法と共に提供することを目的とする。
As described above, it has been difficult to provide a cold-rolled steel sheet with sufficiently high aging resistance with the conventional technology.
The present invention advantageously solves the problems of the prior art described above, can stably exhibit good aging resistance, a cold-rolled steel sheet having excellent aging resistance, an advantageous manufacturing method thereof It is intended to be provided with.

従来、冷延鋼板の耐時効性は、常温で長時間保管されたときに生じる降伏点伸びの量が指標とされてきた。また、簡易試験として、8%の引張予歪み付与後、100℃で1時間保持することで、時効を加速し加熱により上昇した降伏点と加熱前の加工ままの加工硬化状態との応力の差で表されてきた。
時効の原因は、鋼中に固溶するCが転位とコットレル雰囲気を形成して転位を固着し、降伏しにくくするためと考えられている。そこで、これを解消すべく、過時効処理を施して、固溶C量の低減を図るわけであるが、コイルを巻きほぐして焼鈍と過時効を行う連続焼鈍では、過時効時間は長くとも10分程度に限られることから、固溶Cのセメンタイト化が進行せず、十分な耐時効性が得られない。
Conventionally, the aging resistance of a cold-rolled steel sheet has been taken as an indicator of the amount of yield point elongation that occurs when stored for a long time at room temperature. In addition, as a simple test, after applying 8% tensile pre-strain, hold at 100 ° C for 1 hour to accelerate the aging and increase the difference in stress between the yield point that has been raised by heating and the work-hardened state before heating. Has been represented.
The cause of aging is thought to be because C dissolved in the steel forms dislocations and a Cottrell atmosphere to fix the dislocations and make it difficult to yield. Therefore, in order to solve this problem, an overaging treatment is performed to reduce the amount of dissolved C. In continuous annealing in which annealing and overaging are performed by unwinding a coil, the overaging time is 10 at the longest. Since it is limited to about a minute, cementation of solid solution C does not proceed and sufficient aging resistance cannot be obtained.

そこで、発明者らは、固溶Cや鋼の組織に関し、耐時効性に影響を及ぼす因子について鋭意研究を行った。その結果、時効の起こりやすさは固溶C量だけでは整理できず、セメンタイトがフェライト組織のどこに生成するかで耐時効性が変化することを突き止めた。また、固溶Alが、フェライト粒の内部から炭素をはき出して耐時効性を高めることも、併せて見出した。   Therefore, the inventors have conducted intensive research on factors affecting aging resistance with respect to the structure of solute C and steel. As a result, it was found that the aging easily cannot be arranged only by the amount of solute C, and the aging resistance changes depending on where the cementite is formed in the ferrite structure. It was also found that solute Al extrudes carbon from the inside of ferrite grains to improve aging resistance.

本発明は、上記の知見に基づき完成されたもので、その要旨構成は次のとおりである。
1.質量%または質量ppmで、
C:0.01〜0.05%、 Si:0.2%以下、
Mn:0.5%以下、 P:0.03%以下、
S:0.02%以下、 N:0.01%以下および
Al:0.01〜0.1%
を含有し、かつ固溶C量:10ppm以下、固溶Al量:50ppm以上を満足し、残部はFeおよび不可避不純物の組成からなる鋼において、析出セメンタイトの40%以上がフェライト粒界に析出していることを特徴とする耐時効性に優れた冷延鋼板。
The present invention has been completed based on the above findings, and the gist of the present invention is as follows.
1. In mass% or mass ppm,
C: 0.01 to 0.05%, Si: 0.2% or less,
Mn: 0.5% or less, P: 0.03% or less,
S: 0.02% or less, N: 0.01% or less and
Al: 0.01 to 0.1%
In steel with a composition of Fe and unavoidable impurities, 40% or more of the precipitated cementite precipitates at the ferrite grain boundaries. A cold-rolled steel sheet with excellent aging resistance, characterized by

2.さらに質量%で、B:0.0040%以下を含有することを特徴とする前記1に記載の耐時効性に優れた冷延鋼板。 2. The cold-rolled steel sheet having excellent aging resistance as described in 1 above, further comprising, in mass%, B: 0.0040% or less.

3.さらに質量%で、Cu,Sn,Ni,Ca,Mg,Co,As,Nb,Ti,Cr,Sb,W,Mo,Pb,Ta,REM,V,Cs,ZrおよびHfのうちから選んだ一種または二種以上を合計で1%以下含有することを特徴とする前記1または2に記載の耐時効性に優れた冷延鋼板。 3. Furthermore, it is a kind selected from Cu, Sn, Ni, Ca, Mg, Co, As, Nb, Ti, Cr, Sb, W, Mo, Pb, Ta, REM, V, Cs, Zr and Hf by mass%. Alternatively, the cold-rolled steel sheet having excellent aging resistance as described in 1 or 2 above, wherein 2 or more types are contained in total of 1% or less.

4.鋼板表面にめっき皮膜をそなえることを特徴とする前記1〜3のいずれかに記載の耐時効性に優れた冷延鋼板。 4). The cold-rolled steel sheet having excellent aging resistance according to any one of the above 1 to 3, wherein the steel sheet surface is provided with a plating film.

5.前記1〜3のいずれかに記載の成分組成からなる鋼素材に、熱間圧延を施し、仕上げ圧延終了後、コイルに巻き取り、ついで酸洗後、冷間圧延を施したのち、焼鈍し、さらに過時効処理を施して冷延鋼板を製造するに際し、
オーステナイト単相域に加熱後、仕上げ圧延温度:930℃未満で熱間圧延を終了したのち、700℃未満の温度で巻き取り、ついで鋼板表面のスケール除去後、50%以上の圧延率で冷間圧延したのち、680℃以上で焼鈍し、さらに680℃から過時効温度まで冷却速度:20℃/s以上で冷却後、300〜500℃の温度域で過時効処理を施すことを特徴とする耐時効性に優れた冷延鋼板の製造方法。
5. To the steel material comprising the component composition according to any one of 1 to 3, after hot rolling, after finishing rolling, wound on a coil, then pickled, cold-rolled, and then annealed, When manufacturing cold-rolled steel sheet by further overaging treatment,
After heating to the austenite single phase region, finish rolling temperature: after finishing hot rolling at less than 930 ° C, winding at a temperature less than 700 ° C, then removing the scale on the steel sheet surface, then cold rolling at a rolling rate of 50% or more After rolling, anneal at 680 ° C or higher, further cool from 680 ° C to overaging temperature at a cooling rate of 20 ° C / s or higher, and then apply overaging treatment in the temperature range of 300-500 ° C A method for producing a cold-rolled steel sheet excellent in aging.

6.前記過時効処理後、めっき処理を施すことを特徴とする前記5に記載の耐時効性に優れた冷延鋼板の製造方法。 6). 6. The method for producing a cold-rolled steel sheet having excellent aging resistance according to 5, wherein a plating treatment is performed after the overaging treatment.

本発明によれば、従来に比べて耐時効性が大幅に向上した冷延鋼板を提供することが可能となり、産業上、極めて有用である。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the cold-rolled steel plate which improved aging resistance significantly compared with the past, and it is very useful industrially.

以下、本発明を具体的に説明する。
まず、本発明において、冷延鋼板の成分組成を上記の範囲に限定した理由について説明する。なお、以下の成分組成を表す%、ppmは、特に断らない限り質量%、質量ppmを意味するものとする。
C:0.01〜0.05%
Cは、鋼中でセメンタイトを形成するか、固溶状態で存在する。C量が0.01%未満では固溶Cの析出駆動力が低下し、過時効処理を施してもセメンタイトとして析出し難くなることから、C量は0.01%以上とする。好ましくは0.015%以上である。一方、C量が0.05%を超えると固溶C量の低減が難しくなって耐時効性が劣化する。このため、C量は0.05%以下とする。好ましくは0.03%以下であり、さらに好ましくは0.025%以下である。
Hereinafter, the present invention will be specifically described.
First, the reason why the component composition of the cold rolled steel sheet is limited to the above range in the present invention will be described. In addition, unless otherwise indicated,% and ppm which represent the following component composition shall mean the mass% and the mass ppm.
C: 0.01-0.05%
C forms cementite in steel or exists in a solid solution state. If the amount of C is less than 0.01%, the driving force for precipitation of solute C will decrease, and even if it is over-aged, it will be difficult to precipitate as cementite, so the amount of C is made 0.01% or more. Preferably it is 0.015% or more. On the other hand, if the amount of C exceeds 0.05%, it is difficult to reduce the amount of dissolved C, and the aging resistance deteriorates. Therefore, the C content is 0.05% or less. Preferably it is 0.03% or less, More preferably, it is 0.025% or less.

Si:0.2%以下
Siは、セメンタイトの生成を抑制する元素であり、固溶C量を増大させて耐時効性を劣化させる。特にSi含有量が0.2%を超えると、セメンタイトの析出が著しく抑制されることから、Si量は0.2%以下とする。好ましくは0.05%以下である。
Si: 0.2% or less
Si is an element that suppresses the formation of cementite, and increases the amount of dissolved C to deteriorate the aging resistance. In particular, if the Si content exceeds 0.2%, precipitation of cementite is remarkably suppressed, so the Si content is 0.2% or less. Preferably it is 0.05% or less.

Mn:0.5%以下
Mnは、Cと化合物は形成しないものの、鋼中で互いに引き合ってCの拡散を抑制する。このため、セメンタイトの生成が抑制されて、耐時効性が劣化する。従って、本発明では、Siと同様に、Mn量は低減することが望ましい。それ故、Mn含有量は0.5%以下とする。好ましくは0.35%以下である。
Mn: 0.5% or less
Although Mn does not form a compound with C, it attracts each other in the steel and suppresses the diffusion of C. For this reason, the production | generation of cementite is suppressed and aging resistance deteriorates. Therefore, in the present invention, it is desirable to reduce the amount of Mn as in the case of Si. Therefore, the Mn content is 0.5% or less. Preferably it is 0.35% or less.

P:0.03%以下
Pは、フェライト粒界に偏析してフェライト粒界へのセメンタイトの析出を抑制する結果、耐時効性を劣化させる。このため、P量は0.03%以下とする。好ましくは0.025%以下である。
P: 0.03% or less P results in segregation at the ferrite grain boundaries and suppresses precipitation of cementite at the ferrite grain boundaries, thereby deteriorating aging resistance. Therefore, the P content is 0.03% or less. Preferably it is 0.025% or less.

S:0.02%以下
Sは、本発明において、Mnと結合してMnSを形成する元素である。このSが多いとフェライト粒界にMnSが位置しやすくなり、これによりフェライト粒界でのセメンタイトの析出が抑制されて耐時効性が劣化する。それ故、本発明では、S量は0.02%以下とする。好ましくは0.015%以下である。
S: 0.02% or less S is an element that forms MnS by combining with Mn in the present invention. When the amount of S is large, MnS is likely to be located at the ferrite grain boundary, thereby suppressing the precipitation of cementite at the ferrite grain boundary and deteriorating the aging resistance. Therefore, in the present invention, the S amount is 0.02% or less. Preferably it is 0.015% or less.

N:0.01%以下
Nは、Alと結合してAlNを形成したり、Bが添加された場合にはBと結合してBNを形成する。N含有量が多いと、本発明で重要な固溶Alを確保できず、耐時効性が低下する。このため、N含有量は0.01%以下とする。好ましくは0.006%以下である。
N: 0.01% or less N combines with Al to form AlN, or when B is added, combines with B to form BN. When there is much N content, the solid solution Al important in this invention cannot be ensured, but aging resistance falls. For this reason, N content shall be 0.01% or less. Preferably it is 0.006% or less.

Al:0.01〜0.1%
Alは、本発明で重要な元素である。Alは、それ自体では炭化物を形成しないけれども、固溶Alがフェライト粒内からCを排出して、フェライト粒界でセメンタイトが生成するのを促進する。この効果を得るためには、少なくとも0.01%のAlを含有させる必要がある。これにより耐時効性は向上する。しかしながら、0.1%を超えて含有されると、粒界におけるAl濃度が上昇して、粒界でのセメンタイトの析出も抑制されてしまう。そのためAl量は0.01〜0.1%の範囲とする。
Al: 0.01 to 0.1%
Al is an important element in the present invention. Al does not form a carbide by itself, but solute Al expels C from the ferrite grains and promotes the formation of cementite at the ferrite grain boundaries. In order to obtain this effect, it is necessary to contain at least 0.01% Al. Thereby, the aging resistance is improved. However, if the content exceeds 0.1%, the Al concentration at the grain boundary increases, and precipitation of cementite at the grain boundary is also suppressed. Therefore, the Al content is set to a range of 0.01 to 0.1%.

以上、基本成分について説明したが、本発明では、その他にも、以下に述べる元素を必要に応じて適宜含有させることができる。
B:0.0040%以下
Bは、Nと優先的に結合してBNを形成することから、固溶Alを効率的に生成させることができる。しかしながら、B含有量が0.0040%を超えると過剰のBがフェライト粒界に偏析するようになり、セメンタイトの粒界への析出を阻害して耐時効性を劣化させるだけでなく、Fe23(CB)6が生成して降伏強度が上昇するため加工性の劣化も招く。このため、B添加量は0.0040%以下とする。
Although the basic components have been described above, in the present invention, other elements described below can be appropriately contained as necessary.
B: 0.0040% or less B is bonded preferentially to N to form BN, so that solid solution Al can be efficiently generated. However, when the B content exceeds 0.0040%, excess B segregates at the ferrite grain boundaries, which not only inhibits precipitation of cementite at the grain boundaries but degrades aging resistance, but also Fe 23 (CB ) 6 is formed and the yield strength is increased, resulting in deterioration of workability. For this reason, B addition amount shall be 0.0040% or less.

Cu,Sn,Ni,Ca,Mg,Co,As,Nb,Ti,Cr,Sb,W,Mo,Pb,Ta,REM,V,Cs,ZrおよびHfのうちから選んだ一種または二種以上を合計で1%以下
Cu,Sn,Ni,Ca,Mg,Co,As,Nb,Ti,Cr,Sb,W,Mo,Pb,Ta,REM,V,Cs,ZrおよびHfはいずれも、耐食性向上に有用な元素であるが、合計量が1%を超えると粒界に偏析してセメンタイトの粒界への析出を阻害する。このため、単独添加または複合添加いずれの場合も1%以下で含有させるものとした。好ましくは0.5%以下である。
なお、上記した以外の成分は、Feおよび不可避的不純物である。
One or more selected from Cu, Sn, Ni, Ca, Mg, Co, As, Nb, Ti, Cr, Sb, W, Mo, Pb, Ta, REM, V, Cs, Zr and Hf 1% or less in total
Cu, Sn, Ni, Ca, Mg, Co, As, Nb, Ti, Cr, Sb, W, Mo, Pb, Ta, REM, V, Cs, Zr and Hf are all useful elements for improving corrosion resistance. However, if the total amount exceeds 1%, it segregates at the grain boundary and inhibits precipitation of cementite at the grain boundary. For this reason, in either case of single addition or composite addition, the content is 1% or less. Preferably it is 0.5% or less.
Components other than those described above are Fe and inevitable impurities.

以上、鋼板の成分組成について説明したが、本発明で所期した効果を得るには、成分組成を上記の範囲に調整するだけでは不十分で、鋼中の固溶C量、固溶Al量およびセメンタイトの析出状態を適正に制御することが重要である。
すなわち、本発明では、固溶C量を10ppm以下、固溶Al量を50ppm以上とすると共に、セメンタイトの40%以上をフェライト粒界に析出させる必要がある。
As described above, the component composition of the steel sheet has been described. However, in order to obtain the expected effect of the present invention, it is not sufficient to adjust the component composition to the above range, and the amount of solute C and amount of solute Al in the steel. It is important to properly control the precipitation state of cementite.
That is, in the present invention, it is necessary to set the solid solution C amount to 10 ppm or less, the solid solution Al amount to 50 ppm or more, and to precipitate 40% or more of cementite to the ferrite grain boundaries.

固溶C量:10ppm以下
固溶Cは、時効の原因となるため、可能な限り低減するのが望ましい。しかしながら、本発明では、セメンタイトをフェライト粒界に析出させることから、引張加工時にこの粒界のセメンタイトから転位が放出されることにより可動転位が生じるため、ある程度の固溶Cは許容できる。そこで、本発明では、固溶C量は10ppm以下とする。なお、固溶C量は、内部摩擦法によって測定することができる。
Solid solution C amount: 10 ppm or less Since solid solution C causes aging, it is desirable to reduce it as much as possible. However, in the present invention, cementite is precipitated at the ferrite grain boundaries, so that dislocations are released from the cementite at the grain boundaries during tensile processing, so that mobile dislocations are generated. Therefore, in the present invention, the amount of solute C is set to 10 ppm or less. In addition, the amount of solid solution C can be measured by the internal friction method.

固溶Al:50ppm以上
固溶Alは、フェライト粒内からCを吐き出し、フェライト粒界でのセメンタイトの生成を促進する。また、このCの吐き出しにより、フェライト粒内のC量が低減して耐時効性が向上する。しかしながら、固溶Al量が50ppm未満では、この効果は期待できない。このため、固溶Al量は50ppm以上とした。一方、固溶Al量が0.09%を超えるとフェライト粒界でのセメンタイトの形成までもがAlにより抑制されやすくなってしまうため、固溶Al量の上限は0.09%とすることが好ましい。
なお、固溶Al量は、全Al量からAlNとアルミナになっているAl量を減じることで求めることができる。また、AlNとアルミナとなっているAl量は、Brメタノール液でAlNおよびアルミナのみを鋼板内部より抽出することで、定量的に測定することができる。
Solid-solution Al: 50 ppm or more Solid-solution Al expels C from the ferrite grains and promotes the formation of cementite at the ferrite grain boundaries. Moreover, the discharge of C reduces the amount of C in the ferrite grains and improves aging resistance. However, this effect cannot be expected if the solid solution Al content is less than 50 ppm. For this reason, the amount of solid solution Al was 50 ppm or more. On the other hand, if the amount of solid solution Al exceeds 0.09%, even the formation of cementite at the ferrite grain boundary is likely to be suppressed by Al, so the upper limit of the amount of solid solution Al is preferably 0.09%.
In addition, the amount of solid solution Al can be calculated | required by subtracting the amount of Al which is AlN and alumina from the total amount of Al. Moreover, the amount of Al that is AlN and alumina can be quantitatively measured by extracting only AlN and alumina from the inside of the steel sheet with a Br methanol solution.

粒界のセメンタイト量:全析出セメンタイト量の40%以上
本発明において、フェライト粒界におけるセメンタイト量は重要である。マトリックスよりも硬質な粒界のセメンタイトは、変形時にフェライト粒内への転位導入の役割を果たす。このため、可能な限り粒界にセメンタイトを析出させることが望ましい。この点、発明者らの研究によれば、析出するセメンタイトの少なくとも40%がフェライト粒界にあれば調質圧延や変形開始時に可動転位がフェライト粒内に導入されやすく十分な耐時効性が得られることが判明した。このため、粒界に析出するセメンタイト量を40%以上とした。なお、粒界におけるセメンタイト量は、断面組織から、次のようにして求めることができる。圧延方向に平行な板厚断面で組織を観察する。鏡面研磨後にピクラール腐食液でセメンタイトを現出した後に、顕微鏡(500倍)でセメンタイトを観察する。このとき、全セメンタイト面積に対するフェライト粒界に存在するセメンタイトの面積の比を粒界に存在するセメンタイトの割合とする。
Grain boundary cementite amount: 40% or more of the total precipitated cementite amount In the present invention, the cementite amount at the ferrite grain boundary is important. The cementite with a grain boundary harder than the matrix plays a role of introducing dislocations into the ferrite grains during deformation. For this reason, it is desirable to precipitate cementite at the grain boundaries as much as possible. According to the inventors' research, if at least 40% of the precipitated cementite is at the ferrite grain boundary, movable dislocations are easily introduced into the ferrite grain at the start of temper rolling or deformation, and sufficient aging resistance is obtained. Turned out to be. For this reason, the amount of cementite precipitated at the grain boundaries is set to 40% or more. The amount of cementite at the grain boundary can be determined from the cross-sectional structure as follows. The structure is observed in a plate thickness section parallel to the rolling direction. After the mirror polishing, the cementite appears in the Picral corrosive solution, and then the cementite is observed with a microscope (500x). At this time, the ratio of the area of cementite existing at the ferrite grain boundary to the total cementite area is defined as the ratio of cementite existing at the grain boundary.

また、本発明の鋼板は、表面にめっき皮膜を有するものとしてもよい。鋼板表面にめっき皮膜を形成することにより、冷延鋼板の耐食性が向上する。なお、めっき皮膜としては、例えば溶融亜鉛めっき皮膜や合金化溶融亜鉛めっき皮膜の他、電気亜鉛めっき、例えばZn−Ni電気合金めっき等が挙げられる。   The steel sheet of the present invention may have a plating film on the surface. By forming a plating film on the steel sheet surface, the corrosion resistance of the cold-rolled steel sheet is improved. In addition, as a plating film, electrogalvanization, for example, Zn-Ni electroalloy plating, etc. other than a hot dip galvanization film and an alloying hot dip galvanization film, etc. are mentioned, for example.

次に、本発明の冷延鋼板の製造方法について説明する。
本発明では、好適には連続鋳造で得られたスラブを鋼素材とし、熱間圧延後、冷却してコイルに巻き取り、ついで酸洗後、冷間圧延したのち、連続焼鈍を施し、さらに過時効処理を施すことによって冷延鋼板とする。
本発明において、鋼素材の溶製方法は特に限定されず、転炉や電気炉、誘導炉等の公知の溶製方法いずれもが適合する。鋳造方法も特に限定はされないが、連続鋳造法が好適である。また、スラブを熱間圧延するに際しては、加熱炉でスラブを再加熱した後に熱間圧延しても良いし、温度補償を目的として加熱炉で短時間加熱した後に熱間圧延に供しても良い。
上記のようにして得られた鋼素材に、熱間圧延を施すが、粗圧延と仕上げ圧延による熱間圧延でも、粗圧延を省略して仕上げ圧延のみの圧延としてもよいが、いずれにてしも、スラブ加熱温度および仕上げ圧延温度が重要である。
Next, the manufacturing method of the cold rolled steel sheet of this invention is demonstrated.
In the present invention, the slab obtained by continuous casting is preferably made of a steel material, hot-rolled, cooled and wound on a coil, then pickled, cold-rolled, then subjected to continuous annealing, A cold-rolled steel sheet is obtained by applying an aging treatment.
In the present invention, the melting method of the steel material is not particularly limited, and any known melting method such as a converter, an electric furnace, an induction furnace or the like is suitable. The casting method is not particularly limited, but the continuous casting method is suitable. In addition, when hot-rolling the slab, it may be hot-rolled after reheating the slab in a heating furnace, or may be subjected to hot-rolling after being heated in the heating furnace for a short time for the purpose of temperature compensation. .
The steel material obtained as described above is hot-rolled. However, hot rolling by rough rolling and finish rolling may be used, and rough rolling may be omitted and only finishing rolling may be performed. However, the slab heating temperature and the finish rolling temperature are important.

スラブ加熱温度:オーステナイト単相となる温度域
スラブ加熱温度が、オーステナイト単相域に満たないフェライト−オーステナイト二相域であると、熱間圧延の際にバンド状の圧延方向に伸びたフェライトが生じて粒界でのセメンタイト生成は抑制されるため、スラブを加熱する場合にはオーステナイト単相域(Ac3点以上)まで加熱する必要がある。
Slab heating temperature: Temperature range in which the austenite single phase is reached If the slab heating temperature is in the ferrite-austenite two-phase region, which is less than the austenite single phase region, ferrite stretched in the band-shaped rolling direction occurs during hot rolling. Since cementite formation at the grain boundaries is suppressed, it is necessary to heat the austenite single-phase region (Ac 3 points or more) when heating the slab.

仕上げ圧延温度:930℃未満
仕上げ圧延温度が930℃以上になると、一部が粗大粒化し、耐時効性がばらつき不安定になる。そのため、仕上げ圧延温度は930℃未満とする。なお、仕上げ圧延温度の下限については特に制限はないが、820℃以上とするのが好適である。
Finishing rolling temperature: less than 930 ° C When the finishing rolling temperature is 930 ° C or higher, some of the grains become coarse and the aging resistance varies and becomes unstable. Therefore, the finish rolling temperature is less than 930 ° C. The lower limit of the finish rolling temperature is not particularly limited, but is preferably 820 ° C. or higher.

上記の熱間圧延後、冷却してコイルに巻き取るが、この巻取り温度も重要である。
巻取り温度:700℃未満
巻取り温度が700℃以上では、フェライト粒が粗大化し、フェライト粒界へのCの拡散が不十分となるため、耐時効性が劣化する。このため、巻取り温度は700℃未満とする。好ましくは680℃以下である。なお、巻取り温度の下限については特に制限はないが、580℃程度とするのが好適である。
After the above hot rolling, the coil is cooled and wound around a coil, and this winding temperature is also important.
Winding temperature: less than 700 ° C. When the winding temperature is 700 ° C. or more, the ferrite grains become coarse, and the diffusion of C to the ferrite grain boundary becomes insufficient, so that the aging resistance deteriorates. For this reason, the coiling temperature is less than 700 ° C. Preferably it is 680 degrees C or less. In addition, although there is no restriction | limiting in particular about the minimum of coiling temperature, It is suitable to set it as about 580 degreeC.

冷間圧延における圧延率:50%以上
冷間圧延における圧延率が50%に満たないと、フェライト粒が混粒となって、耐時効性が劣化する。このため、冷間圧延率の下限は50%以上とした。また、この圧延率が95%を超えると、フェライト粒が微細となり、調質圧延時や変形開始時に粒界のセメンタイトから可動転位が生じ難くなることから、圧延率の上限は95%程度とすることが好ましい。
Rolling ratio in cold rolling: 50% or more If the rolling ratio in cold rolling is less than 50%, ferrite grains are mixed and aging resistance deteriorates. For this reason, the lower limit of the cold rolling rate is set to 50% or more. Further, if the rolling rate exceeds 95%, the ferrite grains become fine, and movable dislocations are less likely to occur from cementite at the grain boundaries at the time of temper rolling or at the start of deformation, so the upper limit of the rolling rate is about 95%. It is preferable.

焼鈍温度:680℃以上
焼鈍温度が680℃未満では、再結晶が完了しないため、焼鈍温度は680℃以上とした。なお、焼鈍温度が900℃を超えるとオーステナイトが発生して混粒となり、耐時効性が劣化することから、焼鈍温度は900℃以下とするのが好ましい。より好ましくは850℃以下である。
Annealing temperature: 680 ° C. or higher Since the recrystallization is not completed when the annealing temperature is lower than 680 ° C., the annealing temperature is set to 680 ° C. or higher. When the annealing temperature exceeds 900 ° C., austenite is generated to form mixed grains, and the aging resistance deteriorates. Therefore, the annealing temperature is preferably 900 ° C. or lower. More preferably, it is 850 ° C. or lower.

680℃から過時効温度までの冷却速度:20℃/s以上
上記の焼鈍後の冷却に際し、少なくとも680℃から過時効温度までの冷却速度は20℃/s以上とする必要がある。というのは、冷却速度が20℃/sを下回ると、セメンタイトが粒界に塊状に析出するだけでなく、固溶Cの低減が図れないからである。従って、この温度域における冷却速度は20℃/s以上とした。好ましくは30℃/s以上である。なお、この冷却速度の上限については特に制限されることはないが、100℃/s程度で十分である。
Cooling rate from 680 ° C. to overaging temperature: 20 ° C./s or more When cooling after the above annealing, at least the cooling rate from 680 ° C. to overaging temperature needs to be 20 ° C./s or more. This is because when the cooling rate is lower than 20 ° C./s, cementite is not only precipitated in a lump at the grain boundary, but also the solid solution C cannot be reduced. Therefore, the cooling rate in this temperature range is set to 20 ° C./s or more. Preferably it is 30 ° C./s or more. The upper limit of the cooling rate is not particularly limited, but about 100 ° C./s is sufficient.

過時効温度:300〜500℃
過時効温度は、セメンタイトの析出に極めて重要である。過時効温度が500℃を上回るとセメンタイトが析出し難くなって、固溶Cを低減することができない。一方、300℃を下回るとフェライト粒内にセメンタイトが生成して、粒界にセメンタイトを生じさせることができない。そのため、過時効温度は300〜500℃の範囲とした。また、過時効時間があまりに短いと固溶Cのセメンタイト化が十分に進まず、一方長すぎるとフェライト粒界でセメンタイトが凝集粗大化して、本願の効果が失われるため、過時効時間は1〜10分程度とするのが好適である。
Overaging temperature: 300 ~ 500 ℃
The overaging temperature is extremely important for the precipitation of cementite. When the overaging temperature exceeds 500 ° C., cementite hardly precipitates, and solid solution C cannot be reduced. On the other hand, when the temperature is lower than 300 ° C., cementite is generated in the ferrite grains, and cementite cannot be generated at the grain boundaries. Therefore, the overaging temperature was set in the range of 300 to 500 ° C. In addition, when the overaging time is too short, cementite of solid solution C does not advance sufficiently, while when too long, cementite coarsens and coarsens at the ferrite grain boundaries, and the effect of the present application is lost. A time of about 10 minutes is preferable.

なお、本発明では、以上のようにして製造された冷延鋼板に対し、めっき処理を施すことにより、鋼板表面にめっき皮膜を形成してもよい。例えば、めっき処理として、溶融亜鉛めっき処理を施して鋼板表面に溶融亜鉛めっき皮膜を形成しても良いし、溶融亜鉛めっき処理後、合金化処理を施すことにより、合金化溶融亜鉛めっき皮膜を形成してもよい。このとき、溶融亜鉛めっきと焼鈍を一つのライン内で行ってもよい。その他、Zn−Ni電気合金めっき等の電気めっきにより、めっき皮膜を形成してもよい。
調質圧延については、過時効処理後、めっき鋼板についてはめっきの前もしくはめっき処理後に行えばよい。調質圧延率は0.5〜1.5%が好適である。
In addition, in this invention, you may form a plating film on the steel plate surface by performing the plating process with respect to the cold rolled steel plate manufactured as mentioned above. For example, as a plating process, a hot dip galvanizing process may be performed to form a hot dip galvanized film on the steel sheet surface, or an alloyed hot dip galvanized film may be formed by applying an alloying process after the hot dip galvanizing process. May be. At this time, hot dip galvanizing and annealing may be performed in one line. In addition, the plating film may be formed by electroplating such as Zn-Ni electroalloy plating.
The temper rolling may be performed after the overaging treatment, and the plated steel sheet before or after the plating treatment. The temper rolling ratio is preferably 0.5 to 1.5%.

表1に示す成分組成になる溶鋼を、連続鋳造して、厚み:300mmのスラブ(鋼素材)とした。ついで、得られたスラブを、表2に示すオーステナイト単相域のスラブ加熱温度まで加熱後、表2に示す温度で仕上げ圧延を終了したのち、同じく表2に示す温度で巻取って、種々の板厚の熱延鋼板とした。ついで、酸洗にて鋼板表面のスケールを除去したのち、表2に示す圧延率で板厚:1mmまで冷間圧延した。その後、表2に示す条件で、連続焼鈍、冷却処理および過時効処理を施した。過時効処理後、圧延率:0.8%の調質圧延を行った。また、表2のNo.8〜11の薄鋼板については、乾燥後付着量:30g/m2(両面)の電気亜鉛めっき皮膜を形成した。また、表2のNo.22と23については、冷間圧延後、溶融亜鉛めっきラインにおいて焼鈍とめっきを行った。めっきについては乾燥後付着量:60g/m2(両面)の溶融亜鉛めっき皮膜を形成した。なお、これらについては、溶融亜鉛めっき後に調質圧延を行った。 The molten steel having the composition shown in Table 1 was continuously cast into a slab (steel material) having a thickness of 300 mm. Then, after the obtained slab was heated to the slab heating temperature in the austenite single phase region shown in Table 2, after finishing rolling at the temperature shown in Table 2, it was wound up at the temperature shown in Table 2 and variously wound. A hot-rolled steel sheet having a thickness was used. Next, after removing the scale on the surface of the steel sheet by pickling, the steel sheet was cold-rolled to a thickness of 1 mm at a rolling rate shown in Table 2. Thereafter, continuous annealing, cooling treatment and overaging treatment were performed under the conditions shown in Table 2. After the overaging treatment, temper rolling was performed at a rolling rate of 0.8%. As for the thin steel sheet No.8~11 in Table 2, after dry coverage: the formation of the electro-galvanized coating of 30 g / m 2 (two-sided). Moreover, No. 22 and No. 23 of Table 2 were annealed and plated in a hot dip galvanizing line after cold rolling. As for plating, a hot dip galvanized film having an adhesion amount after drying of 60 g / m 2 (both sides) was formed. In addition, about these, temper rolling was performed after hot dip galvanization.

上記のようにして得られた各冷延鋼板について、固溶C量、固溶Al量および粒界に析出したセメンタイトの割合を求めた。
また、得られた冷延鋼板から試験片を採取して、引張試験を行った。
さらに、得られた冷延鋼板の耐時効性について調査した。
For each cold-rolled steel sheet obtained as described above, the amount of solute C, the amount of solute Al, and the proportion of cementite precipitated at the grain boundaries were determined.
Moreover, the test piece was extract | collected from the obtained cold-rolled steel plate, and the tension test was done.
Furthermore, the aging resistance of the obtained cold-rolled steel sheet was investigated.

試験方法および測定方法は次のとおりである。
(i)固溶C量
固溶C量は、内部摩擦法を用いて測定した。長さ:150mm、幅:15mmの試験片を冷延鋼板より切り出し、内部摩擦試験器でQ−1を求めた。このときの試験温度を10℃とし、周波数を変えて測定した。
The test method and measurement method are as follows.
(I) Solid solution C amount The solid solution C amount was measured using an internal friction method. A test piece having a length of 150 mm and a width of 15 mm was cut out from the cold-rolled steel sheet, and Q- 1 was determined with an internal friction tester. The test temperature at this time was 10 ° C., and the frequency was changed for measurement.

(ii)固溶Al量
化学抽出(Brメタノール)によりAlNおよびアルミナを鋼より抽出して、定量分析を行い、これを全Al含有量から減じることで固溶Al量を測定した。
(Ii) Solid solution Al content AlN and alumina were extracted from steel by chemical extraction (Br methanol), quantitative analysis was performed, and the solid solution Al content was measured by subtracting this from the total Al content.

(iii)セメンタイト析出位置
得られた冷延鋼板の圧延方向に平行な板厚断面を鏡面に研磨したのち、ピクラール組織現出液でセメンタイトを現出させ、光学顕微鏡写真を500倍で撮影し、10視野についてセメンタイトの析出位置を観察した。全セメンタイトの面積で、フェライト粒界に析出しているセメンタイトの面積を除することで、フェライト粒界に析出したセメンタイトの割合を求めた。
(Iii) cementite precipitation position After polishing the plate thickness cross section parallel to the rolling direction of the obtained cold-rolled steel sheet to a mirror surface, the cementite appears in the picral structure revealing solution, and an optical micrograph is taken at 500 times, Cementite deposition positions were observed for 10 fields of view. By dividing the area of cementite precipitated at the ferrite grain boundaries by the total cementite area, the ratio of cementite precipitated at the ferrite grain boundaries was determined.

(iv)引張試験
得られた冷延鋼板から、圧延方向に対して平行方向を引張方向とするJIS 5号引張試験片(JIS Z 2201)を採取し、JIS Z 2241の規定に準拠した引張試験を行って、引張強さを測定した。
(Iv) Tensile test From the obtained cold-rolled steel sheet, a JIS No. 5 tensile test piece (JIS Z 2201) with the direction parallel to the rolling direction is taken and a tensile test in accordance with the provisions of JIS Z 2241 The tensile strength was measured.

(v)耐時効性
得られた冷延鋼板を100℃で1時間保持し、常温に冷却した後に、引張試験を行うことで、降伏点伸びを測定した。この降伏点伸びが1%以下であれば、優れた耐時効性を有していると言える。
得られた結果を、表2に併記する。
(V) Aging resistance After the obtained cold-rolled steel sheet was held at 100 ° C. for 1 hour and cooled to room temperature, a tensile test was performed to measure the yield point elongation. If this yield point elongation is 1% or less, it can be said that it has excellent aging resistance.
The obtained results are also shown in Table 2.

表2に示したとおり、本発明に従い得られた冷延鋼板はいずれも、降伏点伸びが1%以下であり、優れた耐時効性を有していることが分かる。   As shown in Table 2, it can be seen that all the cold-rolled steel sheets obtained according to the present invention have an elongation at yield of 1% or less and have excellent aging resistance.

Claims (6)

質量%または質量ppmで、
C:0.01〜0.05%、 Si:0.2%以下、
Mn:0.5%以下、 P:0.03%以下、
S:0.02%以下、 N:0.01%以下および
Al:0.01〜0.1%
を含有し、かつ固溶C量:10ppm以下、固溶Al量:50ppm以上を満足し、残部はFeおよび不可避不純物の組成からなる鋼において、析出セメンタイトの40%以上がフェライト粒界に析出していることを特徴とする耐時効性に優れた冷延鋼板。
In mass% or mass ppm,
C: 0.01 to 0.05%, Si: 0.2% or less,
Mn: 0.5% or less, P: 0.03% or less,
S: 0.02% or less, N: 0.01% or less and
Al: 0.01 to 0.1%
In steel with a composition of Fe and unavoidable impurities, 40% or more of the precipitated cementite precipitates at the ferrite grain boundaries. A cold-rolled steel sheet with excellent aging resistance, characterized by
さらに質量%で、B:0.0040%以下を含有することを特徴とする請求項1に記載の耐時効性に優れた冷延鋼板。   The cold-rolled steel sheet having excellent aging resistance according to claim 1, further comprising, by mass%, B: 0.0040% or less. さらに質量%で、Cu,Sn,Ni,Ca,Mg,Co,As,Nb,Ti,Cr,Sb,W,Mo,Pb,Ta,REM,V,Cs,ZrおよびHfのうちから選んだ一種または二種以上を合計で1%以下含有することを特徴とする請求項1または2に記載の耐時効性に優れた冷延鋼板。   Furthermore, it is a kind selected from Cu, Sn, Ni, Ca, Mg, Co, As, Nb, Ti, Cr, Sb, W, Mo, Pb, Ta, REM, V, Cs, Zr and Hf by mass%. Alternatively, the cold-rolled steel sheet having excellent aging resistance according to claim 1 or 2, wherein two or more kinds are contained in total of 1% or less. 鋼板表面にめっき皮膜をそなえることを特徴とする請求項1〜3のいずれかに記載の耐時効性に優れた冷延鋼板。   The cold-rolled steel sheet having excellent aging resistance according to any one of claims 1 to 3, wherein the steel sheet surface is provided with a plating film. 請求項1〜3のいずれかに記載の成分組成からなる鋼素材に、熱間圧延を施し、仕上げ圧延終了後、コイルに巻き取り、ついで酸洗後、冷間圧延を施したのち、焼鈍し、さらに過時効処理を施して冷延鋼板を製造するに際し、
オーステナイト単相域に加熱後、仕上げ圧延温度:930℃未満で熱間圧延を終了したのち、700℃未満の温度で巻き取り、ついで鋼板表面のスケール除去後、50%以上の圧延率で冷間圧延したのち、680℃以上で焼鈍し、さらに680℃から過時効温度まで冷却速度:20℃/s以上で冷却後、300〜500℃の温度域で過時効処理を施すことを特徴とする耐時効性に優れた冷延鋼板の製造方法。
A steel material comprising the component composition according to any one of claims 1 to 3 is hot-rolled, and after completion of finish rolling, wound on a coil, then pickled, cold-rolled, and then annealed. Furthermore, when producing cold-rolled steel sheets by further overaging treatment,
After heating to the austenite single phase region, finish rolling temperature: after finishing hot rolling at less than 930 ° C, winding at a temperature less than 700 ° C, then removing the scale on the steel sheet surface, then cold rolling at a rolling rate of 50% or more After rolling, anneal at 680 ° C or higher, further cool from 680 ° C to overaging temperature at a cooling rate of 20 ° C / s or higher, and then apply overaging treatment in the temperature range of 300-500 ° C A method for producing a cold-rolled steel sheet excellent in aging.
前記過時効処理後、めっき処理を施すことを特徴とする請求項5に記載の耐時効性に優れた冷延鋼板の製造方法。   6. The method for producing a cold-rolled steel sheet having excellent aging resistance according to claim 5, wherein a plating treatment is performed after the overaging treatment.
JP2012082059A 2012-03-30 2012-03-30 Cold rolled steel sheet excellent in aging resistance and manufacturing method thereof Pending JP2013209728A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2012082059A JP2013209728A (en) 2012-03-30 2012-03-30 Cold rolled steel sheet excellent in aging resistance and manufacturing method thereof
RU2014102565/02A RU2571667C2 (en) 2012-03-30 2012-08-14 Cold-rolled steel plate with excellent resistance to ageing, and its manufacturing method
RU2012134768/02A RU2012134768A (en) 2012-03-30 2012-08-14 COLD-STEELED STEEL SHEET WITH EXCELLENT RESISTANCE TO AGING AND METHOD FOR ITS MANUFACTURE
MYPI2012003690A MY180025A (en) 2012-03-30 2012-08-15 Cold rolled steel sheet having excellent aging resistance and method for manufacturing the same
BR102012020437A BR102012020437B1 (en) 2012-03-30 2012-08-15 cold rolled steel sheet and method for producing it
ZA2012/06176A ZA201206176B (en) 2012-03-30 2012-08-16 Cold rolled steel sheet having excellent aging resistance and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012082059A JP2013209728A (en) 2012-03-30 2012-03-30 Cold rolled steel sheet excellent in aging resistance and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2013209728A true JP2013209728A (en) 2013-10-10

Family

ID=49527818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012082059A Pending JP2013209728A (en) 2012-03-30 2012-03-30 Cold rolled steel sheet excellent in aging resistance and manufacturing method thereof

Country Status (5)

Country Link
JP (1) JP2013209728A (en)
BR (1) BR102012020437B1 (en)
MY (1) MY180025A (en)
RU (2) RU2012134768A (en)
ZA (1) ZA201206176B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112575248A (en) * 2020-10-29 2021-03-30 江苏新核合金科技有限公司 Alloy material for nuclear reactor internals guide structure and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2615939C1 (en) * 2016-06-16 2017-04-11 Юлия Алексеевна Щепочкина Corrosion-resistant steel
RU2656323C1 (en) * 2017-08-30 2018-06-04 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Low-magnetic steel and article made of it

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1193322B1 (en) * 2000-02-29 2006-07-05 JFE Steel Corporation High tensile cold-rolled steel sheet having excellent strain aging hardening properties
CA2379698C (en) * 2000-05-26 2009-02-17 Kawasaki Steel Corporation Cold rolled steel sheet and galvanized steel sheet having strain age hardenability
RU2389803C2 (en) * 2005-10-05 2010-05-20 Ниппон Стил Корпорейшн Cold rolled steel with excellent ability to steel thermal strengthening at solidification of paint and with property of non-ageing at normal temperature and procedure for its production
US10071416B2 (en) * 2005-10-20 2018-09-11 Nucor Corporation High strength thin cast strip product and method for making the same
EP1990431A1 (en) * 2007-05-11 2008-11-12 ArcelorMittal France Method of manufacturing annealed, very high-resistance, cold-laminated steel sheets, and sheets produced thereby

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112575248A (en) * 2020-10-29 2021-03-30 江苏新核合金科技有限公司 Alloy material for nuclear reactor internals guide structure and preparation method thereof

Also Published As

Publication number Publication date
BR102012020437A2 (en) 2015-06-09
RU2014102565A (en) 2015-08-10
RU2012134768A (en) 2014-02-20
ZA201206176B (en) 2013-05-29
MY180025A (en) 2020-11-19
RU2571667C2 (en) 2015-12-20
BR102012020437B1 (en) 2019-10-22

Similar Documents

Publication Publication Date Title
KR101660607B1 (en) Cold-rolled steel sheet and method for producing cold-rolled steel sheet
JP5983895B2 (en) High strength steel plate and method for producing the same, and method for producing high strength galvanized steel plate
TWI465583B (en) Galvanized steel sheet and method for manufacturing the same
KR101660143B1 (en) Hot stamp molded article, and method for producing hot stamp molded article
JP5971434B2 (en) High-strength hot-dip galvanized steel sheet excellent in stretch flangeability, in-plane stability and bendability of stretch flangeability, and manufacturing method thereof
JP6458833B2 (en) Manufacturing method of hot-rolled steel sheet, manufacturing method of cold-rolled full hard steel sheet, and manufacturing method of heat-treated plate
JP6458834B2 (en) Manufacturing method of hot-rolled steel sheet, manufacturing method of cold-rolled full hard steel sheet, and manufacturing method of heat-treated plate
MX2014000956A (en) High-strength steel sheet having excellent shape-retaining properties, high-strength zinc-plated steel sheet, and method for manufacturing same.
JP5967318B1 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
WO2016021193A1 (en) High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
WO2010119971A1 (en) Cold-rolled steel sheet having excellent slow-aging property and high curability in baking, and method for producing same
JP6311843B2 (en) Thin steel plate and plated steel plate, method for producing hot rolled steel plate, method for producing cold rolled full hard steel plate, method for producing thin steel plate, and method for producing plated steel plate
JP5712771B2 (en) Steel sheet with excellent Young's modulus in the direction perpendicular to rolling and method for producing the same
JP2009167513A (en) High tensile cold-rolled steel sheet and process for production therefor
JP5835624B2 (en) Steel sheet for hot pressing, surface-treated steel sheet, and production method thereof
CN108603265B (en) High-strength steel sheet for warm working and method for producing same
JP2013185240A (en) High-tension cold-rolled steel sheet, high-tension plated steel sheet, and method for producing them
JP2006283070A (en) Method for producing galvannealed steel sheet having good workability
JP5686028B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP2013209728A (en) Cold rolled steel sheet excellent in aging resistance and manufacturing method thereof
JP6210179B2 (en) High strength steel plate and manufacturing method thereof
JP6947327B2 (en) High-strength steel sheets, high-strength members and their manufacturing methods
JP2013209727A (en) Cold rolled steel sheet excellent in workability and manufacturing method thereof
JP4351465B2 (en) Hot-dip galvanized high-strength steel sheet excellent in hole expansibility and method for producing the same
JP5299346B2 (en) Cold-rolled steel sheet excellent in deep drawability and method for producing alloyed hot-dip galvanized steel sheet