JP4273646B2 - High-strength thin steel sheet with excellent workability and manufacturing method thereof - Google Patents

High-strength thin steel sheet with excellent workability and manufacturing method thereof Download PDF

Info

Publication number
JP4273646B2
JP4273646B2 JP2000259595A JP2000259595A JP4273646B2 JP 4273646 B2 JP4273646 B2 JP 4273646B2 JP 2000259595 A JP2000259595 A JP 2000259595A JP 2000259595 A JP2000259595 A JP 2000259595A JP 4273646 B2 JP4273646 B2 JP 4273646B2
Authority
JP
Japan
Prior art keywords
less
workability
thin steel
strength
strength thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000259595A
Other languages
Japanese (ja)
Other versions
JP2002080935A (en
Inventor
正 井上
貞則 今田
隆之 大嶽
啓泰 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2000259595A priority Critical patent/JP4273646B2/en
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to EP10150015A priority patent/EP2166121A1/en
Priority to EP10150016A priority patent/EP2166122A1/en
Priority to KR10-2001-7003487A priority patent/KR100415718B1/en
Priority to AT00960974T priority patent/ATE464402T1/en
Priority to DE60044180T priority patent/DE60044180D1/en
Priority to EP00960974A priority patent/EP1143022B1/en
Priority to PCT/JP2000/006252 priority patent/WO2001020051A1/en
Priority to US09/827,597 priority patent/US6663725B2/en
Publication of JP2002080935A publication Critical patent/JP2002080935A/en
Priority to US10/625,796 priority patent/US20040112482A1/en
Priority to US11/271,428 priority patent/US20060065329A1/en
Application granted granted Critical
Publication of JP4273646B2 publication Critical patent/JP4273646B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高強度薄鋼板およびその製造方法に関し、特に強度ー伸びフランジ性バランス、強度ー延性バランス、及び耐衝撃性に優れたもの及びその製造方法に関する。
【0002】
【従来の技術】
熱延鋼板および冷延鋼板は、自動車、家電製品、産業機械の分野で、主にプレス加工により成形される部材として使用されるため、その部材形状に応じて多様な加工性が要求されている。
【0003】
特に、近年の自動車メーカ等では、軽量化のニーズが強く、ハイテン材の使用比率が高くなっているが、ハイテン材は、270MPa級の軟質材に比べて加工性が劣るため、プレス加工時の割れ、品質のばらつきが問題になることが多く、基本的品質として加工性の向上が求められている。
【0004】
例えば、加工性として、340MPa級以上のハイテン材においてはバーリング加工時の伸びフランジ性が高いことが要求され、自動車用途で近年、特に重要とされるようになってきた衝突安全性では衝突吸収エネルギーが高く、耐衝撃特性に優れていることが要求されるようになってきた。
【0005】
ハイテン材の加工性向上に関する従来技術として特許第2555436号、特公平7−56053号公報、特開平4−88125号公報等がある。特許第2555436号は、Ti系の析出強化鋼を、仕上圧延後の冷却速度を30〜150℃/s,巻取温度を250〜540℃によりフェライト+ベイナイトの組織とし、50〜60K級ハイテン材の伸びフランジ性の向上を目的とするものである。
【0006】
特公平7−56053号公報は、フェライト+パーライト鋼(45〜50K級ハイテン材)を熱延仕上後の冷却速度を10℃/s以上(実施例では、95℃/sが最高)とすることにより、熱延下地の溶融亜鉛めっき鋼板の伸びフランジ性の向上を狙っている。
【0007】
特開平4−88125号公報は、フェライト+パーライト鋼にCaを0.0005〜0.0050%添加し、熱間圧延をAr3+60〜950℃と高温で仕上た後、3秒以内で冷却速度50℃/s以上、但し、好ましくは150℃/s以下で冷却し、鋼組成に応じて410〜620℃で停止ー空冷後、350〜500℃で巻き取るもので、50〜70K級ハイテン材の伸びフランジ性の向上を目的としている。
【0008】
【発明が解決しようとする課題】
しかしながら、特許第2555436号の発明鋼で得られる伸びフランジ性は従来鋼の水準を大幅に超えるものではなく、また、巻取温度が250〜540℃と低温のため、破断伸びが低く、コイルの形状にも問題があった。
【0009】
特公平7−56053号公報の場合、熱延仕上後の冷却速度は高々95℃/sであり、伸びフランジ性の本質的改善は得られていない。特開平4−88125号公報の場合、Caを微量添加するため、製鋼段階でRH脱ガス工程が必須であり、製鋼コストが上昇する。
【0010】
また、特徴とする熱間圧延後の冷却によっても、伸びフランジ性が飛躍的に向上しているわけではなく、更に巻取温度が350〜500℃と低温のため、破断伸びが低く、コイルの形状にも問題があった。
【0011】
そして、これらの従来技術では、いずれも耐衝撃特性は考慮されていない。
【0012】
本発明は、以上の点に鑑みなされたもので、その目的は、伸びフランジ性、破断伸びの加工性および耐衝撃特性に優れた高強度薄鋼板およびその製造方法を提供することを目的とする。
【0013】
本発明の高強度薄鋼板には亜鉛めっき鋼板(溶融亜鉛めっき、合金化溶融亜鉛めっき、電気めっきの各鋼板及びそれに更に表面処理を施した鋼板)も含むものとする。
【0014】
【課題を解決するための手段】
本発明者等は、鋼組織と伸びフランジ性、破断伸びの関係について詳細に検討を行い、これらの特性を抜本的に向上させるためには、C,Mn等が濃化し、板厚方向全体に存在するバンド組織の解消が必要であることおよび耐衝撃特性の改善には、材料の降伏強度を加工性を損なわない範囲で高めることが有効であることを見出した。
【0015】
本発明はこれらの知見を基に更に検討を加えてなされたもので、すなわち、本発明は、
1.下記の組織を有することを特徴とする、質量%でC:0.04〜0.1%、Si:0.5%以下、Mn:0.5〜2%、P:0.05%以下、O:0.005%以下、S:0.005%以下を含有し、残部がFe及び不可避的不純物からなる組成を有する加工性に優れた高強度薄鋼板。
【0016】
(1)平均フェライト粒径:10μm以下
(2)生成頻度(A)が20mm/mm以下(0mm/mm を除く)のバンド状の第2相組織
但し、生成頻度(A):薄鋼板の圧延方向一板厚断面での1mm当たりで観察されるバンド状の第2相組織の総長さ
2.鋼成分として、更に、Ti,Nb,V,Mo,Crの一種又は二種以上を合計で0.01〜0.3%含有することを特徴とする1記載の加工性に優れた高強度薄鋼板。
【0017】
3.下記の工程を有することを特徴とする加工性に優れた高強度薄鋼板の製造方法。
【0018】
(1)1または2記載の組成を有する鋼を連続鋳造によりスラブとなし、直接又は再加熱工程を経て、圧延終了温度Ar3以上とする熱間圧延を行う工程。
【0019】
(2)熱間圧延後、直ちに、205〜2000℃/sの冷却速度により2秒以内で600〜750℃に冷却する工程。
【0020】
(3)その後、450〜650℃に冷却し、該温度域で巻き取る工程。
【0021】
4.更に、下記(1)または(2)の工程を有することを特徴とする3記載の加工性に優れた高強度薄鋼板の製造方法。
【0022】
(1)酸洗後、焼鈍する工程。
【0023】
(2)酸洗、冷延後、焼鈍する工程。
【0024】
5. 連続鋳造時に、偏析低減処理を行うことを特徴とする3または4記載の加工性に優れた高強度薄鋼板の製造方法。
【0025】
6.熱間圧延後、205〜2000℃/secでの冷却後の温度変動を熱延鋼帯の幅方向および長手方向で60℃以内とすることを特徴とする3乃至5の何れかに記載の加工性に優れた高強度薄鋼板の製造方法。
【0026】
7. 熱延鋼帯の冷却方法として伝熱係数2000Kcal/m2hr℃以上で冷却を行うことを特徴とする6記載の高強度薄鋼板の製造方法。
【0027】
8. 鋼帯の幅方向および長手方向における引張強さの変動が、コイル内の引張強さの平均値の±8%以内であることを特徴とする1又は2に記載の高強度薄鋼板。
【0028】
9. 6に記載の製造方法により製造され、幅方向および長手方向における引張り強さの変動が、コイル内の引張強さの平均値の±8%以内であることを特徴とする高強度薄鋼板。
【0029】
【発明の実施の形態】
本発明においては、鋼の成分組成、鋼組織、及び製造条件について規定する。
【0030】
1.成分組成

Cは、鋼板の強度を確保するため添加する。0.04%未満では、340MPa以上の強度が得られず、0.1%を超えると加工性が劣化するため、0.04〜0.1%(0.04%以上、0.1%以下)添加する。
【0031】
Si
Siは、固溶強化元素で、強度を確保するため添加する。0.5%を超えると表面性状が劣化するため、0.5%以下とする。
【0032】
Mn
Mnは、鋼板の靭性を改善し、固溶強化するため添加する。0.5%未満ではそれらの効果が得られず、2%を超えると加工性の劣化が顕著となるため、0.5〜2%を添加する。
【0033】

Pは、鋼板を固溶強化するが、0.05%を超えると偏析により加工性が劣化するため、0.05%以下とする。
【0034】

Oは、連続鋳造時のスラブ表面またはスラブ表層化での割れ発生を抑制するため、その含有量を規定する。0.005%超えではスラブの割れが著しく、加工性が劣化するため、0.005%以下とする。
【0035】

Sは、0.005%を超えると硫化物が多くなり、加工性が劣化するため、0.005%以下とする。強度ー伸びフランジ性バランスを特に良好とする場合は、0.003%以下とするのが好ましい。
【0036】
本発明鋼は、基本成分組成として以上の元素を含有し、更に強度調整が必要な場合、Ti,Nb,V,Mo,Zr,Crの一種または二種以上を選択元素として含有する。
【0037】
Ti,Nb,V,Mo,Zr,Crの一種または二種以上を合計で0.01〜0.3%
これらの元素は炭窒化物を形成し、強度を向上させる。一種または二種以上の合計で0.01%未満ではその効果が得られず、0.3%を超えると伸びフランジ性を劣化させるため、0.01〜0.3%とする。
【0038】
尚、本発明においては、その他の元素は特に規定せず、例えば、Cu:2%以下、Sn:0.01%以下などを含有することが出来る。
【0039】
2.鋼組織
平均フェライト粒径:10μm以下
フェライト粒は、熱延材、熱延ー合金化溶融亜鉛めっき材、熱延ー冷延ー合金化溶融亜鉛めっき材において、良好な強度ー延性バランスを確保するため、細粒な程良く、第2相組織(カーバイト、パーライト、ベイナイト、マルテンサイト、オーステナイトなど)を微細に分散させるため、平均粒径を10μm以下とする。
【0040】
生成頻度(A)が20mm/mm以下(0mm/mm を除く)のバンド状の第2相組織
上記第2組織はバンド状に生成した場合、強度−伸びフランジ性に大きな影響を与える。生成頻度(A)が20mm/mmを超えると、強度−伸びフランジ性バランスは大きく劣化するため、20mm/mm以下とする。
【0041】
図1は強度ー伸びフランジ性バランス(TS×λ)、強度ー延性バランス(TS×El)に及ぼすフェライト粒径と第2相組織の影響を示すもので、平均フェライト粒径が10μm以下、且つバンド状の第2相組織の生成頻度が20mm/mm2以下の場合、優れた強度ー伸びフランジ性バランス(TS×λ)、強度ー延性バランス(TS×El)が得られている。
【0042】
尚、本発明では、バンド状組織は少ないほど良く、生成頻度が0、すなわち、平均フェライト粒径が10μm以下で、バンド状組織の観察されない組織を有する鋼も本発明範囲内とする。
【0043】
3.製造条件
本発明における好適製造条件は以下の工程を有する。
連続鋳造によりスラブとなし、直接又は再加熱工程を経て、圧延終了温度Ar3以上とする熱間圧延を行う工程
本発明では成分均一化のため、スラブは連続鋳造により製造し、スラブの温度均一性を確保し、コイルの幅方向の機械的性質を均一化させるため、直接または再加熱工程を経て熱間圧延を行う。スラブを再加熱する場合は、室温まで冷却することなく1250℃以下に加熱することが好ましい。
【0044】
また、バンド状組織の形成を更に効果的に抑制する場合、連続鋳造時、偏析低減処理を行ない、Mn,C等の元素の鋳造時の偏析を抑制する。偏析低減処理としては、電磁攪拌、軽圧下鋳造、スラブ等の鋳片の冷却速度の増加などを単独または組み合わせて行うことが好ましい。
【0045】
熱間圧延は変態後のフェライト結晶粒径の微細化及びパーライトを微細化するため、仕上圧延終了温度をAr3以上とする。
【0046】
熱間圧延後、直ちに、205〜2000℃/sの冷却速度により2秒以内で600〜750℃に冷却する工程
熱間圧延後、600〜750℃まで一次冷却は、変態後のフェライト結晶粒径の微細化、第2相組織の微細化、板厚中央部に存在するバンド組織の抑制により、伸びフランジ性を向上させるため、冷却速度205〜2000℃/sとする。
【0047】
バンド状組織が急冷により抑制される理由として、凝固段階のC,Mn濃化部と対応するバンド状の第2相組織が、205℃/s以上の冷却速度では、フェライト変態が促進し、元素が均質化されるためと考えられる。
【0048】
冷却速度が205℃/s未満の場合、バンド部は低温においてオーステナイト−フェライト変態を生じ、パーライトを多く生成する。冷却速度は、早ければ早いほど良く、現時点での工業的実現可能な上限である2000℃/sとする。
【0049】
尚、冷却速度は、フェライト結晶粒径及びパーライトの微細化の観点から、205℃/s以上が好ましく、更に加工性を向上させる場合は、400℃/s以上とするのが好ましい。
【0050】
冷却停止温度は750℃超えではフェライトが微細化されず第2相の分散が不均一となり、TS−λバランス(TS×λ)が低下する。一方、600℃未満では、第2相が硬質な低温変態相となりTS−Elバランス(TS×El)が低下する。
【0051】
図2に強度ー伸びフランジ性バランス(TS×λ)、強度ー延性バランス(TS×El)に及ぼす一次冷却停止温度の影響を示す。冷却停止温度が600〜750℃の場合、良好な加工性が得られている。
【0052】
また、一次冷却は仕上圧延終了後、変態後のフェライト結晶粒径の微細化及び第2相組織を微細化するため、2秒以内に開始しする。ただし、バンド状の第2相組織の抑制の観点からは、変態前のオーステナイトの組織の均一化による材質変動低減のために0.5秒超えが好ましい。
【0053】
本発明において、一次冷却終了温度を更に均一とする場合、連続熱間仕上げ圧延機の入り側または、連続熱間仕上げ圧延機のスタンド間に誘導加熱装置を設け、粗バーの幅方向エッジ部を加熱し、温度調整を行うことは差し支えない。
【0054】
また、コイルボックスを用いる連続熱延プロセスにおいては、粗圧延バーの加熱を、上記以外に、コイルボックスの前後、粗圧延の間、又は後、更にはコイルボックスの後ろで溶接機の前後において行うことができる。
【0055】
450〜650℃に冷却後、該温度域で巻き取る工程
二次冷却は、オーステナイト組織を適切に第2相組織に変態させ、良好な加工性を得るため、冷却速度を50℃/s未満とすることが好ましい。巻き取り温度が650℃超えでは延性に有害な粗大なパーライトが生成し、延性が著しく低下する。
【0056】
一方、450℃未満では、低温変態相を主体とする組織が生成し、熱延材では加工性が劣化するため、巻取温度は450℃以上、650℃以下とする。
【0057】
機械的性質をより均一とする場合、コイル内の巻取温度差を50℃以内とすることが好ましい。
【0058】
このようにして、本発明では、コイル内での温度の変動を低減することにより、熱延鋼帯の幅方向及び長手方向における引張強さの変動(最大値と最小値)が、コイル内の引張強さの平均値の±8%以内であることを特徴とする薄鋼板を得ることができる。
【0059】
このような材質変動(材質のばらつき)が狭小な鋼板は、曲げ加工時のスプリングバック等のプレス加工性のコイル内での変動が小さいため、需要家においても、プレス加工後の製品歩留まりや形状精度を向上でき、材料としての性能が優れている。
【0060】
また、熱延鋼帯の材質変動をより好ましいレベルまで低減するためには、上記の急冷の停止温度を発明の範囲内とするとともに、急冷後のコイル幅方向や長手方向の温度の変動幅(最大値ー最小値)を60℃以内にすることが望ましい。
【0061】
さらに好ましくは、引張強さの変動を±4%以内とすることにより、上記の需要家での性能を格段に向上し得る。この場合、上記の急冷後のコイルの温度変動幅を40℃以内とすることにより、材質の変動をこのように狭小化できる。さらに、引張強さの変動を±2%以内とするには、上記の急冷後のコイルの温度変動幅を20℃以内とする。
【0062】
急冷能力として、伝熱係数を2000Kcal/m2hr℃とする冷却を行うことにより、上記急冷後の温度の変動を小さくすることができる。温度変動の低減のために、好ましい伝熱係数は5000Kcal/m2hr℃以上、さらに好ましくは8000Kcal/m2hr℃以上である。
【0063】
尚、本発明におけるコイル幅方向の温度は、センサーの測定方法も考慮して、コイル幅両エッジから30mm分を除いた範囲の温度とする。温度の変動幅は最大値ー最小値で求める。
【0064】
また、引張特性はコイル幅方向の両エッジから30mm及びコイル長手方向の両端から各5mを除いた位置より採取したサンプルを用いて調査し、全ての値の平均値をコイル内平均値とした。
【0065】
本発明鋼は、熱間圧延後、酸洗ー焼鈍、又は酸洗ー冷間圧延ー焼鈍の工程を経て、酸洗材、熱延下地の溶融亜鉛めっき材、冷延材、冷延下地の溶融亜鉛めっき材等とすることができる。加工性を更に優れたものとする場合、焼鈍温度は650〜850℃とすることが好ましい。
【0066】
【実施例】
[実施例1]
表1に示す化学成分の鋼を溶製後、表2に示す条件により熱延板(板厚2.3mm)No.1〜6とした。材料No.3の熱延板は、酸洗、冷延後、溶融亜鉛めっきを施し、材料No.4の熱延板は、酸洗後、溶融亜鉛めっきを施した後、機械的特性を調査した。伸びフランジ性の評価は、穴拡げ率(λ)によった。本発明例における一次冷却での伝熱係数は3500〜4000Kcal/m2hr℃である。
【0067】
表2に評価試験結果を示す。本発明例となる材料No.1〜4は、加工性(強度−伸びフランジ性バランス、強度−延性バランス)に優れ、降伏強度も比較材より高く、耐衝撃性に優れている。特に、No.1〜4は偏析低減処理を行なった場合であり、行わなかったNo.6に比べて穴拡げ率に優れている。
【0068】
一方、材料No.5は、一次冷却速度が30℃/sで請求項3乃至5の何れかに記載の発明の範囲外であり、加工性、耐衝撃特性の何れも劣っている。図3に材料No.1,2,5のミクロ組織を示す。本発明例材料No.1,2ではバンド状組織が観察されない。
【0069】
【表1】

Figure 0004273646
【0070】
【表2】
Figure 0004273646
【0071】
【表2】
Figure 0004273646
【0072】
[実施例2]
表3に示す化学成分の鋼を溶製後、表4に示す条件で熱延板(板厚2.8mm)を製造し、800℃にて焼鈍後、合金化溶融亜鉛めっきを施し、機械的性質を調べた。結果を製造条件とともに表4に示す。
【0073】
材料No.7、8は、本発明範囲内の化学成分、製造条件を満足する本発明例であり、材料No.9は、一次冷却速度が本発明範囲外で比較例となっている。材料No.7,8が、比較材No.9に比べて加工性(強度ー伸びフランジ性バランス、強度ー延性バランス)に優れ、降伏強度も比較材より高く、耐衝撃特性に優れていることは明らかである。
【0074】
【表3】
Figure 0004273646
【0075】
【表4】
Figure 0004273646
【0076】
[実施例3]
表3に示す化学成分の鋼を溶製後、表5に示す条件で熱延板(板厚2.8mm)を製造し、800℃にて焼鈍後、合金化溶融亜鉛めっきを施し、それらのコイルの幅方向及び長手方向の機械的性質の変動を調べた。
【0077】
結果を製造条件と共に表5に示す。本発明例における一次冷却での伝熱係数は12000Kcal/m2hr℃である。比較例での伝熱係数は1000Kcal/m2hr℃である。
【0078】
本発明例では、一次冷却停止温度のコイル内での変動が比較例の従来のラミナー冷却によるものに比べて小さく、機械的性質の変動がより好ましいレベルまで低減されている。
【0079】
尚、表中での記載は省略したが、本発明例鋼番10のTS平均値は604MPa,El平均値は34%で、比較例鋼番11のTS平均値は625MPa,El平均値は30%であった。
【0080】
【表5】
Figure 0004273646
【0081】
【発明の効果】
本発明によれば、フェライト平均結晶粒径が10μm以下と微細で、且つC,Mn等が濃化したバンド状組織の解消された組織で、伸びフランジ性、破断伸びの加工性および耐衝撃特性に優れた高強度薄鋼板およびその製造方法が得られ、更には、急速冷却により、冷却停止温度のばらつきを低減することにより、コイル内の材質をより均一とすることができ、産業上極めて有用である。
【図面の簡単な説明】
【図1】強度ー伸びフランジ性バランス(TS×λ)、強度ー延性バランス(TS×El)に及ぼすフェライト平均粒径と第2相組織の影響を示す図。
【図2】強度ー伸びフランジ性バランス(TS×λ)、強度ー延性バランス(TS×El)に及ぼす一次冷却停止温度の影響を示す図。
【図3】バンド状組織の有無を示す板厚方向のミクロ組織写真。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-strength thin steel sheet and a method for producing the same, and particularly relates to a material excellent in strength-stretch flangeability balance, strength-ductility balance, and impact resistance, and a method for producing the same.
[0002]
[Prior art]
Since hot-rolled steel sheets and cold-rolled steel sheets are used as members that are mainly formed by press working in the fields of automobiles, home appliances, and industrial machines, various workability is required depending on the shape of the members. .
[0003]
In particular, in recent automobile manufacturers and the like, there is a strong need for weight reduction, and the use ratio of high-tensile materials is high. However, high-tensile materials are inferior in workability compared to soft materials of 270 MPa class, so at the time of press working Cracks and quality variations often become problems, and improvement in workability is required as a basic quality.
[0004]
For example, as a workability, high tensile materials of 340 MPa class or higher are required to have high stretch flangeability at the time of burring. Therefore, it has been required to have high impact resistance.
[0005]
Japanese Patent No. 2555536, Japanese Patent Publication No. 7-56053, Japanese Patent Application Laid-Open No. 4-88125, etc. are known as conventional techniques for improving the workability of high-tensile materials. Japanese Patent No. 2555436 discloses a Ti-based precipitation-strengthened steel with a cooling rate after finishing rolling of 30 to 150 ° C./s and a coiling temperature of 250 to 540 ° C. to give a ferrite + bainite structure, and a 50-60K class high strength steel. The purpose is to improve the stretch flangeability.
[0006]
Japanese Examined Patent Publication No. 7-56053 discloses that the cooling rate after hot rolling finish of ferrite + pearlite steel (45-50K class high-tensile material) is 10 ° C / s or more (in the examples, 95 ° C / s is the highest). Therefore, it aims at improving the stretch flangeability of the hot dip galvanized steel sheet.
[0007]
Japanese Patent Laid-Open No. 4-88125 discloses that after adding 0.0005 to 0.0050% of Ca to ferrite + pearlite steel and hot rolling at a high temperature of Ar3 +60 to 950 ° C, the cooling rate is 50 ° C within 3 seconds. / S or more, however, preferably cooled at 150 ° C./s or less, stopped at 410 to 620 ° C. depending on the steel composition, air-cooled and then wound up at 350 to 500 ° C. The purpose is to improve flangeability.
[0008]
[Problems to be solved by the invention]
However, the stretch flangeability obtained with the invention steel of Japanese Patent No. 2555436 does not significantly exceed the level of conventional steel, and the coiling temperature is as low as 250 to 540 ° C. There was also a problem with the shape.
[0009]
In the case of Japanese Examined Patent Publication No. 7-56053, the cooling rate after hot rolling is 95 ° C./s at the most, and the essential improvement in stretch flangeability is not obtained. In the case of Japanese Patent Laid-Open No. 4-88125, since a small amount of Ca is added, an RH degassing step is essential at the steelmaking stage, and the steelmaking cost increases.
[0010]
Also, the cooling after hot rolling, which is a feature, does not improve the stretch flangeability dramatically. Further, since the coiling temperature is as low as 350 to 500 ° C., the elongation at break is low, and the coil There was also a problem with the shape.
[0011]
None of these conventional techniques considers the impact resistance.
[0012]
The present invention has been made in view of the above points, and an object thereof is to provide a high-strength thin steel sheet excellent in stretch flangeability, workability of elongation at break, and impact resistance, and a method for producing the same. .
[0013]
The high-strength thin steel sheet of the present invention includes galvanized steel sheets (hot dip galvanized, alloyed hot dip galvanized, electroplated steel sheets and steel sheets subjected to further surface treatment).
[0014]
[Means for Solving the Problems]
The present inventors have studied in detail the relationship between the steel structure, stretch flangeability, and elongation at break, and in order to drastically improve these characteristics, C, Mn, etc. are concentrated and the entire thickness direction is increased. It has been found that it is effective to increase the yield strength of a material within a range that does not impair the workability in order to eliminate the existing band structure and to improve the impact resistance.
[0015]
The present invention was made by further study based on these findings, that is, the present invention,
1. It is characterized by having the following structure C: 0.04 to 0.1% by mass, Si: 0.5% or less, Mn: 0.5-2%, P: 0.05% or less, A high-strength thin steel sheet excellent in workability having a composition containing O: 0.005% or less, S: 0.005% or less, with the balance being Fe and inevitable impurities .
[0016]
(1) Average ferrite particle size: 10 μm or less (2) Band-shaped second phase structure with a generation frequency (A) of 20 mm / mm 2 or less ( excluding 0 mm / mm 2 ) However, generation frequency (A): sheet steel 1. The total length of the band-like second phase structure observed per 1 mm 2 in a sheet thickness cross section in the rolling direction. The steel component further contains one or more of Ti, Nb, V, Mo, and Cr in a total amount of 0.01 to 0.3%. steel sheet.
[0017]
3. The manufacturing method of the high strength thin steel plate excellent in workability characterized by having the following process.
[0018]
(1) A process in which a steel having the composition described in 1 or 2 is formed into a slab by continuous casting and subjected to hot rolling at a rolling finish temperature Ar3 or higher directly or through a reheating process.
[0019]
(2) Immediately after hot rolling, a step of cooling to 600 to 750 ° C. within 2 seconds at a cooling rate of 205 to 2000 ° C./s.
[0020]
(3) Then, the process which cools to 450-650 degreeC and winds up in this temperature range.
[0021]
4). Furthermore, the method for producing a high-strength thin steel sheet having excellent workability according to 3, which further comprises the following step (1) or (2).
[0022]
(1) A step of annealing after pickling.
[0023]
(2) A step of annealing after pickling and cold rolling.
[0024]
5. 3. The method for producing a high strength thin steel sheet having excellent workability according to 3 or 4, wherein a segregation reduction treatment is performed during continuous casting.
[0025]
6). After hot rolling, working according to any one of 3 to 5, characterized in that within 60 ° C. The temperature variation after cooling at 205 to 2000 ° C. / sec in the width direction and the longitudinal direction of the hot rolled strip For producing high-strength thin steel sheets with excellent properties .
[0026]
7). The method for producing a high-strength thin steel sheet according to 6, wherein the hot-rolled steel strip is cooled at a heat transfer coefficient of 2000 Kcal / m 2 hr ° C or higher.
[0027]
8). 3. The high-strength thin steel sheet according to 1 or 2, wherein the fluctuation of the tensile strength in the width direction and the longitudinal direction of the steel strip is within ± 8% of the average value of the tensile strength in the coil.
[0028]
9. A high-strength thin steel sheet produced by the production method according to claim 6, wherein the variation in tensile strength in the width direction and longitudinal direction is within ± 8% of the average value of tensile strength in the coil.
[0029]
DETAILED DESCRIPTION OF THE INVENTION
In this invention, it prescribes | regulates about the component composition of steel, steel structure, and manufacturing conditions.
[0030]
1. Ingredient composition C
C is added to ensure the strength of the steel sheet. If it is less than 0.04%, a strength of 340 MPa or more cannot be obtained, and if it exceeds 0.1%, workability deteriorates, so 0.04 to 0.1% (0.04% or more, 0.1% or less )Added.
[0031]
Si
Si is a solid solution strengthening element and is added to ensure strength. If it exceeds 0.5%, the surface properties deteriorate, so 0.5% or less.
[0032]
Mn
Mn is added to improve the toughness of the steel sheet and strengthen the solid solution. If it is less than 0.5%, those effects cannot be obtained, and if it exceeds 2%, the workability deteriorates significantly, so 0.5 to 2% is added.
[0033]
P
P strengthens the steel sheet by solid solution, but if it exceeds 0.05%, workability deteriorates due to segregation, so 0.05% or less.
[0034]
O
In order to suppress the crack generation | occurrence | production by the slab surface at the time of continuous casting or slab surface layering, O defines the content. If it exceeds 0.005%, cracking of the slab will be remarkable and workability will deteriorate, so it is made 0.005% or less.
[0035]
S
If S exceeds 0.005%, the amount of sulfide increases and the workability deteriorates, so the S content is made 0.005% or less. If the strength-stretch flangeability balance is particularly good, it is preferably 0.003% or less.
[0036]
The steel of the present invention contains the above elements as a basic component composition, and further contains one or more of Ti, Nb, V, Mo, Zr, and Cr as selective elements when strength adjustment is required.
[0037]
0.01 to 0.3% in total of one or more of Ti, Nb, V, Mo, Zr, and Cr
These elements form carbonitrides and improve strength. If the total of one or more types is less than 0.01%, the effect cannot be obtained, and if it exceeds 0.3%, the stretch flangeability is deteriorated, so 0.01 to 0.3%.
[0038]
In the present invention, other elements are not particularly defined, and can contain, for example, Cu: 2% or less, Sn: 0.01% or less, and the like.
[0039]
2. Steel structure average ferrite grain size: 10 μm or less Ferrite grains ensure a good balance between strength and ductility in hot-rolled materials, hot-rolled-alloyed hot-dip galvanized materials, and hot-rolled-cold-rolled-alloyed hot-dip galvanized materials. Therefore, in order to finely disperse the second phase structure (carbite, pearlite, bainite, martensite, austenite, etc.) finely, the average particle diameter is set to 10 μm or less.
[0040]
Band-shaped second phase structure having a generation frequency (A) of 20 mm / mm 2 or less ( excluding 0 mm / mm 2 ) When the second structure is formed in a band shape, the strength-stretch flangeability is greatly affected. When the generation frequency (A) is more than 20 mm / mm 2, the strength - stretch flangeability balance to deteriorate greatly, and 20 mm / mm 2 or less.
[0041]
FIG. 1 shows the influence of the ferrite grain size and the second phase structure on the strength-stretch flangeability balance (TS × λ) and the strength-ductility balance (TS × El). The average ferrite grain size is 10 μm or less, and When the generation frequency of the band-like second phase structure is 20 mm / mm 2 or less, excellent strength-stretch flangeability balance (TS × λ) and strength-ductility balance (TS × El) are obtained.
[0042]
In the present invention, the smaller the band-like structure is, the better. The steel having a generation frequency of 0, that is, an average ferrite grain size of 10 μm or less and no band-like structure observed is also within the scope of the present invention.
[0043]
3. Manufacturing conditions The preferable manufacturing conditions in the present invention include the following steps.
A slab is formed by continuous casting, a process of performing hot rolling directly or through a reheating process, and a rolling end temperature Ar3 or higher. In the present invention, the slab is manufactured by continuous casting in order to make the components uniform, and the temperature uniformity of the slab. In order to ensure uniform and uniform mechanical properties in the width direction of the coil, hot rolling is performed directly or through a reheating process. When reheating a slab, it is preferable to heat to 1250 degrees C or less, without cooling to room temperature.
[0044]
Moreover, when suppressing formation of a band-shaped structure | tissue more effectively, a segregation reduction process is performed at the time of continuous casting, and segregation at the time of casting of elements, such as Mn and C, is suppressed. As the segregation reduction treatment, it is preferable to perform electromagnetic stirring, light pressure casting, an increase in the cooling rate of slabs or the like alone or in combination.
[0045]
In hot rolling, in order to refine the ferrite crystal grain size after transformation and refine pearlite, the finish rolling finish temperature is set to Ar3 or higher.
[0046]
Immediately after hot rolling, a step of cooling to 600 to 750 ° C. within 2 seconds at a cooling rate of 205 to 2000 ° C./s. After hot rolling, primary cooling to 600 to 750 ° C. The cooling rate is set to 205 to 2000 ° C./s in order to improve stretch flangeability by refining the structure, refining the second phase structure, and suppressing the band structure existing in the central portion of the plate thickness.
[0047]
The reason why the band-like structure is suppressed by rapid cooling is that when the band-like second phase structure corresponding to the C and Mn enriched part in the solidification stage is at a cooling rate of 205 ° C./s or more, the ferrite transformation is promoted and the element This is thought to be due to homogenization.
[0048]
When the cooling rate is less than 205 ° C./s, the band part undergoes austenite-ferrite transformation at a low temperature and produces a large amount of pearlite. The faster the cooling rate, the better, and the upper limit that can be industrially realized at the present time is 2000 ° C./s.
[0049]
The cooling rate is preferably 205 ° C./s or higher from the viewpoint of ferrite crystal grain size and pearlite refinement, and 400 ° C./s or higher is preferable for further improving workability.
[0050]
When the cooling stop temperature exceeds 750 ° C., the ferrite is not refined and the dispersion of the second phase becomes non-uniform, and the TS-λ balance (TS × λ) is lowered. On the other hand, if it is less than 600 ° C., the second phase becomes a hard low-temperature transformation phase, and the TS-El balance (TS × El) is lowered.
[0051]
FIG. 2 shows the influence of the primary cooling stop temperature on the strength-stretch flangeability balance (TS × λ) and the strength-ductility balance (TS × El). When the cooling stop temperature is 600 to 750 ° C., good workability is obtained.
[0052]
Moreover, the primary cooling starts within 2 seconds after finishing rolling in order to refine the ferrite grain size after transformation and refine the second phase structure. However, from the viewpoint of suppressing the band-like second phase structure, it is preferable to exceed 0.5 seconds in order to reduce material fluctuations by homogenizing the austenite structure before transformation.
[0053]
In the present invention, when the primary cooling end temperature is made more uniform, an induction heating device is provided between the entrance side of the continuous hot finish rolling mill or the stand of the continuous hot finish rolling mill, and the widthwise edge portion of the rough bar is provided. It is possible to heat and adjust the temperature.
[0054]
In addition, in the continuous hot rolling process using the coil box, the heating of the rough rolling bar is performed before and after the coil box, before or after the coil box, during the rough rolling, or after the coil box and before and after the welding machine. be able to.
[0055]
After cooling to 450 to 650 ° C., the secondary cooling step of winding in the temperature range appropriately transforms the austenite structure into the second phase structure and obtains good workability, so that the cooling rate is less than 50 ° C./s. It is preferable to do. When the coiling temperature exceeds 650 ° C., coarse pearlite harmful to ductility is generated, and ductility is significantly reduced.
[0056]
On the other hand, when the temperature is lower than 450 ° C., a structure mainly composed of a low-temperature transformation phase is generated, and the workability deteriorates in the hot-rolled material. Therefore, the winding temperature is set to 450 ° C. or higher and 650 ° C. or lower.
[0057]
In order to make the mechanical properties more uniform, it is preferable that the winding temperature difference in the coil is within 50 ° C.
[0058]
In this way, in the present invention, by reducing temperature fluctuations in the coil, fluctuations in the tensile strength (maximum value and minimum value) in the width direction and the longitudinal direction of the hot-rolled steel strip are reduced. A thin steel sheet characterized by being within ± 8% of the average value of tensile strength can be obtained.
[0059]
Steel sheets with such small material fluctuations (material fluctuations) have small fluctuations in the press formability coil such as springback during bending, so even the customer can obtain the product yield and shape after the press work. The accuracy can be improved and the performance as a material is excellent.
[0060]
In order to reduce the material fluctuation of the hot-rolled steel strip to a more preferable level, the quenching stop temperature is within the range of the invention, and the fluctuation width of the coil width direction and the longitudinal direction temperature after the quenching ( It is desirable that the maximum value-minimum value be within 60 ° C.
[0061]
More preferably, by making the fluctuation of the tensile strength within ± 4%, the above-mentioned performance at the consumer can be remarkably improved. In this case, the variation of the material can be narrowed in this way by setting the temperature variation width of the coil after the rapid cooling to 40 ° C. or less. Further, in order to keep the fluctuation of the tensile strength within ± 2%, the temperature fluctuation width of the coil after the rapid cooling is set within 20 ° C.
[0062]
By performing cooling with a heat transfer coefficient of 2000 Kcal / m 2 hr ° C. as the rapid cooling capability, the temperature fluctuation after the rapid cooling can be reduced. In order to reduce temperature fluctuation, a preferable heat transfer coefficient is 5000 Kcal / m 2 hr ° C. or more, and more preferably 8000 Kcal / m 2 hr ° C. or more.
[0063]
The temperature in the coil width direction in the present invention is a temperature in a range excluding 30 mm from both edges of the coil width in consideration of the sensor measurement method. The fluctuation range of the temperature is obtained from the maximum value to the minimum value.
[0064]
Further, the tensile characteristics were investigated using samples taken from positions excluding 30 mm from both edges in the coil width direction and 5 m from both ends in the coil longitudinal direction, and the average value of all values was defined as the average value in the coil.
[0065]
The steel of the present invention is subjected to pickling-annealing or pickling-cold rolling-annealing steps after hot rolling, pickling material, hot-rolled galvanized material, cold-rolled material, cold-rolled base material. It can be a hot dip galvanized material. In order to further improve the workability, the annealing temperature is preferably 650 to 850 ° C.
[0066]
【Example】
[Example 1]
After melting the steels having the chemical components shown in Table 1, hot-rolled sheets (thickness 2.3 mm) No. 1 were prepared according to the conditions shown in Table 2. 1-6. Material No. No. 3 hot-rolled sheet was pickled, cold-rolled, and then hot-dip galvanized. The hot-rolled sheet No. 4 was pickled, hot-dip galvanized, and then examined for mechanical properties. The evaluation of stretch flangeability was based on the hole expansion rate (λ). The heat transfer coefficient in the primary cooling in the example of the present invention is 3500 to 4000 Kcal / m 2 hr ° C.
[0067]
Table 2 shows the evaluation test results. Material No. used as an example of the present invention . 1-4 are excellent in workability (strength-stretch flangeability balance, strength-ductility balance), higher in yield strength than the comparative material, and excellent in impact resistance. In particular, no. Nos. 1 to 4 are cases where segregation reduction processing was performed. Compared to 6, the hole expansion rate is excellent.
[0068]
On the other hand, the material No. No. 5 is outside the scope of the invention according to any one of claims 3 to 5 at a primary cooling rate of 30 ° C./s, and is inferior in both workability and impact resistance. In FIG. 1, 2 and 5 microstructures are shown. Invention Example Material No. In 1 and 2, no band-like structure is observed.
[0069]
[Table 1]
Figure 0004273646
[0070]
[Table 2]
Figure 0004273646
[0071]
[Table 2]
Figure 0004273646
[0072]
[Example 2]
After melting the steel of chemical composition shown in Table 3, a hot-rolled sheet (plate thickness of 2.8 mm) is manufactured under the conditions shown in Table 4, and after annealing at 800 ° C., alloyed hot dip galvanizing is applied, and mechanical The property was investigated. The results are shown in Table 4 together with the production conditions.
[0073]
Material No. Nos. 7 and 8 are examples of the present invention satisfying chemical components and production conditions within the scope of the present invention. No. 9 is a comparative example in which the primary cooling rate is outside the scope of the present invention. Material No. 7 and 8 are comparative material Nos. It is clear that it is excellent in workability (strength-stretch flangeability balance, strength-ductility balance) compared to 9, yield strength is higher than that of the comparative material, and is excellent in impact resistance.
[0074]
[Table 3]
Figure 0004273646
[0075]
[Table 4]
Figure 0004273646
[0076]
[Example 3]
After melting the steels having the chemical components shown in Table 3, hot-rolled sheets (plate thickness 2.8 mm) were produced under the conditions shown in Table 5, and after annealing at 800 ° C., alloying hot dip galvanizing was applied. The variation of the mechanical properties in the width direction and longitudinal direction of the coil was investigated.
[0077]
The results are shown in Table 5 together with the production conditions. The heat transfer coefficient in the primary cooling in the example of the present invention is 12000 Kcal / m 2 hr ° C. The heat transfer coefficient in the comparative example is 1000 Kcal / m 2 hr ° C.
[0078]
In the example of the present invention, the fluctuation of the primary cooling stop temperature in the coil is smaller than that of the conventional laminar cooling of the comparative example, and the fluctuation of the mechanical properties is reduced to a more preferable level.
[0079]
In addition, although description in a table | surface was abbreviate | omitted, TS average value of this invention example steel number 10 is 604MPa, El average value is 34%, TS average value of comparative example steel number 11 is 625MPa, El average value is 30%. %Met.
[0080]
[Table 5]
Figure 0004273646
[0081]
【The invention's effect】
According to the present invention, the ferrite average crystal grain size is as fine as 10 μm or less, and the band-like structure in which C, Mn and the like are concentrated is eliminated, stretch flangeability, workability of elongation at break, and impact resistance High-strength thin steel sheet and a method for producing the same can be obtained. Furthermore, by reducing the variation in cooling stop temperature by rapid cooling, the material in the coil can be made more uniform, which is extremely useful industrially. It is.
[Brief description of the drawings]
FIG. 1 is a graph showing the influence of ferrite average grain size and second phase structure on strength-stretch flangeability balance (TS × λ) and strength-ductility balance (TS × El).
FIG. 2 is a graph showing the influence of the primary cooling stop temperature on the strength-stretch flangeability balance (TS × λ) and the strength-ductility balance (TS × El).
FIG. 3 is a microstructural photograph in the thickness direction showing the presence or absence of a band-like structure.

Claims (9)

下記の組織を有することを特徴とする、質量%でC:0.04〜0.1%、Si:0.5%以下、Mn:0.5〜2%、P:0.05%以下、O:0.005%以下、S:0.005%以下を含有し、残部がFe及び不可避的不純物からなる組成を有する加工性に優れた高強度薄鋼板。
(1)平均フェライト粒径:10μm以下
(2)生成頻度(A)が20mm/mm以下(0mm/mm を除く)のバンド状の第2相組織
但し、生成頻度(A):薄鋼板の圧延方向一板厚断面での1mm当たりで観察されるバンド状の第2相組織の総長さ
It is characterized by having the following structure C: 0.04 to 0.1% by mass, Si: 0.5% or less, Mn: 0.5-2%, P: 0.05% or less, A high-strength thin steel sheet excellent in workability having a composition containing O: 0.005% or less, S: 0.005% or less, with the balance being Fe and inevitable impurities.
(1) Average ferrite particle size: 10 μm or less (2) Band-shaped second phase structure with a generation frequency (A) of 20 mm / mm 2 or less ( excluding 0 mm / mm 2 ) However, generation frequency (A): sheet steel The total length of the band-like second phase structure observed per 1 mm 2 in a sheet thickness section in the rolling direction
鋼成分として、更に、Ti,Nb,V,Mo,Crの一種又は二種以上を合計で0.01〜0.3%含有することを特徴とする請求項1記載の加工性に優れた高強度薄鋼板。  The steel component further contains one or more of Ti, Nb, V, Mo, and Cr in a total amount of 0.01 to 0.3%, and is excellent in workability according to claim 1 Strength thin steel plate. 下記の工程を有することを特徴とする加工性に優れた高強度薄鋼板の製造方法。
(1)請求項1または2記載の組成を有する鋼を連続鋳造によりスラブとなし、直接又は再加熱工程を経て、圧延終了温度Ar3以上とする熱間圧延を行う工程。
(2)熱間圧延後、直ちに、205〜2000℃/sの冷却速度により2秒以内で600〜750℃に冷却する工程。
(3)その後、450〜650℃に冷却し、該温度域で巻き取る工程。
The manufacturing method of the high strength thin steel plate excellent in workability characterized by having the following process.
(1) A step of forming a steel having the composition according to claim 1 or 2 into a slab by continuous casting, and performing hot rolling at a rolling end temperature Ar3 or higher directly or through a reheating step.
(2) A step of immediately cooling to 600 to 750 ° C. within 2 seconds at a cooling rate of 205 to 2000 ° C./s after hot rolling.
(3) Then, the process which cools to 450-650 degreeC and winds up in this temperature range.
更に、下記(1)または(2)の工程を有することを特徴とする請求項3記載の加工性に優れた高強度薄鋼板の製造方法。
(1)酸洗後、焼鈍する工程。
(2)酸洗、冷延後、焼鈍する工程。
Furthermore, it has the process of following (1) or (2), The manufacturing method of the high strength thin steel plate excellent in workability of Claim 3 characterized by the above-mentioned.
(1) A step of annealing after pickling.
(2) A step of annealing after pickling and cold rolling.
連続鋳造時に、偏析低減処理を行うことを特徴とする請求項3または4記載の加工性に優れた高強度薄鋼板の製造方法。  The method for producing a high-strength thin steel sheet having excellent workability according to claim 3 or 4, wherein segregation reduction treatment is performed during continuous casting. 熱間圧延後、205〜2000℃/secでの冷却後の温度変動を熱延鋼帯の幅方向および長手方向で60℃以内とすることを特徴とする請求項3乃至5の何れかに記載の加工性に優れた高強度薄鋼板の製造方法。  6. The temperature fluctuation after cooling at 205 to 2000 ° C./sec after hot rolling is set to 60 ° C. or less in the width direction and the longitudinal direction of the hot-rolled steel strip. 6. A method for producing a high-strength thin steel sheet with excellent workability. 熱延鋼帯の冷却方法として伝熱係数2000Kcal/mhr℃以上で冷却を行うことを特徴とする請求項6記載の加工性に優れた高強度薄鋼板の製造方法。The method for producing a high-strength thin steel sheet with excellent workability according to claim 6, wherein the hot-rolled steel strip is cooled at a heat transfer coefficient of 2000 Kcal / m 2 hr ° C or higher. 鋼帯の幅方向および長手方向における引張強さの変動が、コイル内の引張強さの平均値の±8%以内であることを特徴とする請求項1又は2に記載の加工性に優れた高強度薄鋼板。  The workability according to claim 1 or 2, wherein the fluctuation of the tensile strength in the width direction and the longitudinal direction of the steel strip is within ± 8% of the average value of the tensile strength in the coil. High strength thin steel sheet. 請求項6に記載の製造方法により製造され、幅方向および長手方向における引張り強さの変動が、コイル内の引張り強さの平均値の±8%以内であることを特徴とする加工性に優れた高強度薄鋼板。  It is manufactured by the manufacturing method according to claim 6 and has excellent workability characterized in that the fluctuation of the tensile strength in the width direction and the longitudinal direction is within ± 8% of the average value of the tensile strength in the coil. High strength thin steel sheet.
JP2000259595A 1999-09-16 2000-08-29 High-strength thin steel sheet with excellent workability and manufacturing method thereof Expired - Fee Related JP4273646B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2000259595A JP4273646B2 (en) 2000-06-26 2000-08-29 High-strength thin steel sheet with excellent workability and manufacturing method thereof
PCT/JP2000/006252 WO2001020051A1 (en) 1999-09-16 2000-09-13 Steel thin plate having high strength and method for production thereof
KR10-2001-7003487A KR100415718B1 (en) 1999-09-16 2000-09-13 High strength steel sheet and method for manufacturing the same
AT00960974T ATE464402T1 (en) 1999-09-16 2000-09-13 METHOD FOR PRODUCING A THIN STEEL PLATE WITH HIGH STRENGTH
DE60044180T DE60044180D1 (en) 1999-09-16 2000-09-13 METHOD FOR PRODUCING A THIN STAINLESS STEEL PLATE WITH HIGH STRENGTH
EP00960974A EP1143022B1 (en) 1999-09-16 2000-09-13 Method for producing a thin steel plate having high strength
EP10150015A EP2166121A1 (en) 1999-09-16 2000-09-13 High strength steel sheet and method for manufacturing the same
EP10150016A EP2166122A1 (en) 1999-09-16 2000-09-13 Method of manufacturing high strength steel
US09/827,597 US6663725B2 (en) 1999-09-16 2001-04-05 High strength steel sheet and method for manufacturing the same
US10/625,796 US20040112482A1 (en) 1999-09-16 2003-07-23 High strength steel sheet and method for manufacturing the same
US11/271,428 US20060065329A1 (en) 1999-09-16 2005-11-10 High strength steel sheet and method for manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000191410 2000-06-26
JP2000-191410 2000-06-26
JP2000259595A JP4273646B2 (en) 2000-06-26 2000-08-29 High-strength thin steel sheet with excellent workability and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002080935A JP2002080935A (en) 2002-03-22
JP4273646B2 true JP4273646B2 (en) 2009-06-03

Family

ID=26594684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000259595A Expired - Fee Related JP4273646B2 (en) 1999-09-16 2000-08-29 High-strength thin steel sheet with excellent workability and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4273646B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4661306B2 (en) * 2005-03-29 2011-03-30 Jfeスチール株式会社 Manufacturing method of ultra-high strength hot-rolled steel sheet
JP4803210B2 (en) * 2008-05-23 2011-10-26 住友金属工業株式会社 Manufacturing method of fine grain hot rolled steel sheet
JP2008266792A (en) * 2008-05-28 2008-11-06 Sumitomo Metal Ind Ltd Hot-rolled steel sheet
ES2750361T3 (en) * 2010-10-18 2020-03-25 Nippon Steel Corp Hot-rolled, cold-rolled and plated steel sheet having improved local and uniform ductility at a high stress rate
CN113462960A (en) * 2021-06-01 2021-10-01 包头钢铁(集团)有限责任公司 Preparation method of 340 MPa-grade niobium-containing hot-galvanized high-strength IF steel

Also Published As

Publication number Publication date
JP2002080935A (en) 2002-03-22

Similar Documents

Publication Publication Date Title
EP2415894B1 (en) Steel sheet excellent in workability and method for producing the same
EP2258886B1 (en) High-strength hot-dip galvanized steel sheet with excellent processability and process for producing the same
KR100664433B1 (en) Hot rolled steel plate, cold rolled steel plate and hot dip galvanized steel plate being excellent in strain aging hardening characteristics, and method for their production
JP3858146B2 (en) Manufacturing method of high-strength cold-rolled steel sheet and high-strength hot-dip galvanized steel sheet
WO2013114850A1 (en) Hot-dip galvanized steel sheet and production method therefor
JP2005528519A5 (en)
WO2016031165A1 (en) High-strength hot-dip galvanized steel sheet having superb stretch-flangeability, in-plane stability of stretch-flangeability, and bendability, and method for producing same
KR100401272B1 (en) Steel sheet and method therefor
WO2001023625A1 (en) Sheet steel and method for producing sheet steel
JP3610883B2 (en) Method for producing high-tensile steel sheet with excellent bendability
JP6079726B2 (en) Manufacturing method of high-strength steel sheet
JP5817671B2 (en) Hot-rolled steel sheet and manufacturing method thereof
JP4752522B2 (en) Manufacturing method of high strength cold-rolled steel sheet for deep drawing
JP2004068051A (en) High strength hot-dip galvanized steel sheet and its manufacturing method
JP3915460B2 (en) High strength hot rolled steel sheet and method for producing the same
JP3864663B2 (en) Manufacturing method of high strength steel sheet
JP4300793B2 (en) Manufacturing method of hot-rolled steel sheet and hot-dip steel sheet with excellent material uniformity
JP3473480B2 (en) Hot-dip galvanized steel sheet excellent in strength and ductility and method for producing the same
JPH11279693A (en) Good workability/high strength hot rolled steel sheet excellent in baking hardenability and its production
JP4273646B2 (en) High-strength thin steel sheet with excellent workability and manufacturing method thereof
JP4367205B2 (en) Strain aging treatment method for steel sheet and method for producing high-strength structural member
JP5071125B2 (en) High-strength cold-rolled steel sheet excellent in square tube drawing formability and shape freezing property, manufacturing method thereof, and automotive parts excellent in product shape
JP6947327B2 (en) High-strength steel sheets, high-strength members and their manufacturing methods
JP2001207244A (en) Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method
JP4953514B2 (en) High-tensile hot-rolled steel sheet and manufacturing method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081212

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090223

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees