JP4890773B2 - 半導体装置及びその製造方法 - Google Patents

半導体装置及びその製造方法 Download PDF

Info

Publication number
JP4890773B2
JP4890773B2 JP2005063096A JP2005063096A JP4890773B2 JP 4890773 B2 JP4890773 B2 JP 4890773B2 JP 2005063096 A JP2005063096 A JP 2005063096A JP 2005063096 A JP2005063096 A JP 2005063096A JP 4890773 B2 JP4890773 B2 JP 4890773B2
Authority
JP
Japan
Prior art keywords
region
layer
type
gate electrode
body layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005063096A
Other languages
English (en)
Other versions
JP2006245517A (ja
Inventor
宏幸 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lapis Semiconductor Co Ltd
Original Assignee
Lapis Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lapis Semiconductor Co Ltd filed Critical Lapis Semiconductor Co Ltd
Priority to JP2005063096A priority Critical patent/JP4890773B2/ja
Priority to US11/276,546 priority patent/US7514332B2/en
Publication of JP2006245517A publication Critical patent/JP2006245517A/ja
Application granted granted Critical
Publication of JP4890773B2 publication Critical patent/JP4890773B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/42376Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66681Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/66583Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with initial gate mask or masking layer complementary to the prospective gate location, e.g. with dummy source and drain contacts

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

本発明は、半導体装置及びその製造方法に関し、特に、横型パワーMOSFETの横型二重拡散構造及びその製造方法に関する。
携帯機器の急速な普及や通信技術の高度化などに伴い、パワーMOSFETを内蔵したパワーICの重要が高まっている。パワーMOSFETの製造方法に関する従来技術が、例えば、特許文献1乃至3に記載されている。
特許文献1は、縦型二重拡散構造を有するパワーMOSFETの製造方法を開示するものである。P型ボディ層をゲート直下の所望の領域に形成するため、ゲート形成後にイオン注入したボロン(B)を、1175℃、30〜60分の熱処理により熱拡散させている。
特許文献2は、縦型二重拡散構造を有するパワーMOSFETの製造方法を開示するものである。P型ボディ層をゲート直下の所望の領域に形成するため、ゲート形成後にイオン注入したボロン(B)を1050℃、7時間の熱処理により熱拡散させている。
特許文献3は、横型二重拡散構造を有するパワーMOSFETの製造方法を開示するものである。P型ボディ層をゲート直下の所望の領域に形成するため、ゲート形成後にイオン注入したボロン(B)を、約1100℃、約500〜700分間の熱処理により熱拡散させている。
特開2000−349093号公報(第5頁、第5図) 特開2001−127294号公報(第6頁、第8(b)図) 特開平5−343675号公報(段落番号0011、第3図)
熱拡散によりP型ボディ層を形成する前述の従来方法によれば、P型不純物のイオン注入後、ゲート電極の下方領域まで不純物を熱拡散させるには、熱処理を1100℃程度の高温で、数十分から数時間程度の長時間行う必要がある。また、パワーMOSFETのゲート電極には、そのシート抵抗を下げるための不純物イオン、例えば、リン(P)などを添加することが一般的である。このため、以下の問題が生じる。
第1の問題として、高温且つ長時間の熱拡散処理は、ゲート電極を構成するポリシリコン中に含まれるリンなどの不純物の拡散を引起こし、当該不純物がゲート絶縁膜を突き抜け、シリコン基板中に拡散して、素子特性を変動させてしまう。
第2の問題として、高温且つ長時間の熱拡散処理を介してのP型ボディ層の形成は、所望の領域にP型ボディ層を形成するための制御が難しく、素子の微細化が困難となる。より具体的には、横型二重拡散構造のパワーMOSFETの製造の場合、P型ボディ層とN型オフセット層との界面の急峻性及びその界面の位置の制御、並びにP型ボディ層とN型オフセット層とに亘る不純物濃度のプロファイルの制御が困難となる。このため、素子の微細化が困難となる。素子の微細化が困難な場合、素子のON抵抗の低減が困難となり、その結果、素子の消費電力の低減を図ることが困難となる。
第3の問題として、横型二重拡散構造を有するパワーMOSFETの製造の場合、素子の駆動能力を上げるには、P型ボディ層中のチャネル領域のチャネル抵抗やゲート閾値電圧を低減する必要がある。このチャネル抵抗やゲート閾値電圧を低減するには、P型ボディ層の不純物濃度を低く設計することが好ましい。一方、素子の微細化を図るためには、Nソース領域とN型オフセット層との間のパンチスルー耐性を上げることが必要となる。このパンチスルー耐性を上げるには、P型ボディ層の不純物濃度を高く設計することが好ましい。よって、素子の駆動能力の向上と、パンチスルー耐性の向上との相反する両方の要求を満たすことは困難であった。この結果、素子の更なる微細化は困難であった。前述したように、素子の微細化が困難な場合、素子のON抵抗の低減が困難となり、その結果、素子の消費電力の低減を図ることが困難となる。
そこで、本発明の目的は、高温且つ長時間の熱拡散処理を伴わない、ボディ層を有する半導体装置の製造方法を提供することである。
更に、本発明の目的は、素子特性を変動させることのない、ボディ層を有する半導体装置の製造方法を提供することである。
更に、本発明の目的は、素子の更なる微細化を可能にする、ボディ層を有する半導体装置の製造方法を提供することである。
更に、本発明の目的は、ボディ層とオフセット層との界面の急峻性及びその界面の位置の制御、並びにボディ層とオフセット層とに亘る不純物濃度のプロファイルの制御を容易にする、ボディ層を有する半導体装置の製造方法を提供することである。
更に、本発明の目的は、素子の消費電力の更なる低減を可能にする、ボディ層を有する半導体装置の製造方法を提供することである。
更に、本発明の目的は、素子の駆動能力の向上と、パンチスルー耐性の向上との相反する両方の要求を満たすことを可能にする、ボディ層を有する半導体装置の製造方法を提供することである。
また、本発明の目的は、高温且つ長時間の熱拡散処理を伴わない、ボディ層を有する半導体装置を提供することである。
更に、本発明の目的は、素子特性を変動させることのない、ボディ層を有する半導体装置を提供することである。
更に、本発明の目的は、素子の更なる微細化を可能にする、ボディ層を有する半導体装置を提供することである。
更に、本発明の目的は、ボディ層とオフセット層との界面の急峻性及びその界面の位置の制御、並びにボディ層とオフセット層とに亘る不純物濃度のプロファイルの制御を容易にする、ボディ層を有する半導体装置を提供することである。
更に、本発明の目的は、素子の消費電力の更なる低減を可能にする、ボディ層を有する半導体装置を提供することである。
更に、本発明の目的は、素子の駆動能力の向上と、パンチスルー耐性の向上との相反する両方の要求を満たすことを可能にする、ボディ層を有する半導体装置を提供することである。
本発明は、第1導電型の半導体層中に、第1の開口端部を有する第1のマスクを使用して第2導電型の不純物を選択的にイオン注入することで、不純物の熱拡散を伴わずに、第1の領域を形成する行程と、前記第1の領域と水平方向位置が整合する端部近傍領域を含むゲート電極を前記第1の開口端部によって前記ゲート電極の一端部を画定することにより形成する行程と、前記第1導電型の半導体層中に、少なくとも前記ゲート電極の前記一端部をマスクとして利用して第2導電型の不純物を選択的にイオン注入することで、不純物の熱拡散を伴わずに、前記第1の領域と第2の領域との境界を、前記ゲート電極の一前記端部に自己整合させると共に、前記第1の領域に隣接する前記第2の領域を形成することで、前記第1及び第2の領域を含むボディ層を形成する行程と、前記第1の領域を形成する行程の後、前記第1のマスクを選択的に除去して、前記第1の開口端部はそのまま残しつつ開口部を広げる行程と、ゲート絶縁膜を形成する行程の後、前記ゲート電極を構成するゲート電極物質で前記広げた開口部を完全に埋め込む行程と、前記ゲート電極物質を平坦化する行程と、を含むことで、平坦化した上面を有する前記ゲート電極を前記広げた開口部に形成することを特徴とする横型パワーMOSFETの製造方法を提供する。
また、本発明は、第1導電型の半導体層中に、第2導電型の不純物を加速エネルギー及び注入ドーズ量を変えて行うことで選択的にイオン注入することで、不純物の熱拡散を伴わずに、チャネル領域を含む浅い領域の不純物濃度が、前記浅い領域の下方に位置する深い領域の不純物濃度より低い、深さ方向の不純物プロファイルを有する第1の領域を形成する行程と、前記第1の領域と水平方向位置が整合する端部近傍領域を含むゲート電極を形成する行程と、前記第1導電型の半導体層中に、第2導電型の不純物を選択的にイオン注入することで、不純物の熱拡散を伴わずに、前記ゲート電極の一端部と前記第1の領域とに自己整合すると共に、前記第1の領域に隣接する第2の領域を形成することで、前記第1及び第2の領域を含むボディ層を形成する行程と、を含むことを特徴とする横型パワーMOSFETの製造方法を提供する。
尚、本明細書及び特許請求の範囲において、用語「水平方向位置」とは、基板面に平行な平面に含まれる1つの方向であって、チャネル長さに平行な方向のことを意味し、用語「垂直」とは、基板面に対し垂直であることを意味する。
本発明によれば、半導体装置のボディ層は、第1の領域と第2の領域から構成し、第1の領域の形成行程と、第2の領域の形成行程とを分けて行う。更に、ボディ層の第1の領域及び第2の領域の形成は、それぞれ独立した不純物のイオン注入行程で行うが、イオン注入行程後の熱拡散処理を行わない。ここで、ゲート電極形成領域の端部近傍領域の直下に位置すると共にオフセット層に隣接するボディ層の領域を第1の領域とし、残りの領域をボディ層の第2の領域とする。第1導電型の不純物を第2導電型のオフセット層に選択的に導入する第1のイオン注入行程の後、不純物の熱拡散処理を行うことなく、ゲート電極形成領域における端部近傍領域の直下に、ボディ層の第1の領域を形成する。その後、ゲート電極形成領域にゲート電極を形成する。その後、このゲート電極をマスクとして第1導電型の不純物を第2導電型のオフセット層に選択的に導入する第2のイオン注入行程を行うが、不純物の熱拡散処理を行うことなく、ゲート電極の端部と第1の領域とに自己整合したボディ層の第2の領域を形成する。結果、ボディ層の第1の領域と第2の領域との境界が、ゲート電極の端部に自己整合する。これにより、第1の領域と第2の領域とからなるボディ層が形成される。即ち、ボディ層の形成は、前述の第1又は第2のイオン注入行程でオフセット層に選択的に導入された不純物をゲート電極の端部近傍領域に熱拡散する必要がない。従って、高温かつ長時間の熱拡散処理を行うことなくボディ層を形成するため、以下の効果を奏する。
第1の効果として、高温かつ長時間の熱拡散処理を行うことなくボディ層を形成するため、ゲート電極を構成するポリシリコン中に含まれるリンなどの不純物の拡散が起きない。よって、ゲート電極中の不純物がゲート絶縁膜を突き抜け、ボディ層の第1の領域の上部領域からなるチャネル領域中に熱拡散することがない。この結果、デバイス特性を変動させてしまうことがない。
第2の効果として、高温かつ長時間の熱拡散処理を行うことなくボディ層を形成するため、所望の領域にボディ層を形成するための制御が容易となり、素子の更なる微細化を可能にする。より具体的には、横型二重拡散構造のパワーMOSFETの製造の場合、ボディ層とオフセット層との界面の高い急峻性の確保と、この急峻な界面の位置の制御、及びボディ層とオフセット層とに亘る横方向における不純物濃度プロファイルの制御が容易となる。素子の微細化が可能になることで、素子のON抵抗の低減が可能となり、その結果、素子の消費電力の低減を図ることが可能となる。
第3の効果として、熱拡散処理を行う必要がないため、ボディ層の第1の領域を形成する第1のイオン注入行程を、加速エネルギー及び注入ドーズ量が異なる複数のイオン注入行程に分けて行うことで、ボディ層の第1の領域は、第1の不純物濃度を有すると共にチャネル領域として働く浅い領域と、第1の不純物濃度より高い第2の不純物濃度を有すると共に前述の浅い領域の下に位置する深い領域とから構成され得る。即ち、高温かつ長時間の熱拡散処理を行うことなくボディ層を形成するため、ボディ層の第1の領域を形成する第1のイオン注入行程を、加速エネルギー及び注入ドーズ量が異なる複数のイオン注入行程に分けて行い、ボディ層の第1の領域のうちチャネルとして働く浅い領域では不純物濃度を低くし、一方、チャネル以外の深い領域では不純物濃度を高くすることが可能となる。このように、構成する理由は以下の通りである。
素子の駆動能力を上げるには、ボディ層中のチャネル領域のチャネル抵抗やゲート閾値電圧を低減する必要がある。このチャネル抵抗やゲート閾値電圧を低減するには、ボディ層の不純物濃度を低く設計することが好ましい。一方、素子の微細化を図るためには、ソース領域とオフセット層との間のパンチスルー耐性を上げることが必要となる。このパンチスルー耐性を上げるには、ボディ層の不純物濃度を高く設計することが好ましい。そこで、ボディ層の第1の領域のうちチャネルとして働く浅い領域では不純物濃度を低くし、一方、チャネル以外の深い領域では不純物濃度を高くすることで、素子の駆動能力の増加と、パンチスルー耐性の上昇との相反する両方の要求を満たすことが可能となる。この結果、素子の更なる微細化が可能となる。素子の微細化が可能になることで、素子のON抵抗の低減が可能となり、その結果、素子の消費電力の低減を図ることが可能となる。
第4の効果として、高温かつ長時間の熱拡散処理を行うことなくボディ層を形成するため、製造時間及び製造コストを抑制することが可能となる。
第5の効果として、高温かつ長時間の熱拡散処理を行うことなくボディ層を形成するため、同一基板上に横型パワーMOSFETと他の素子を形成する場合、当該他の素子へ高温かつ長時間の熱拡散処理の影響を与えることがない。
(1)第1実施形態
本実施形態によれば、横型パワーMOSFETのボディ層の形成において、ゲート電極形成領域の端部近傍領域の直下に位置すると共にオフセット層に隣接するボディ層の第1の領域を、ゲート電極形成前に形成し、残りのボディ層の第2の領域をゲート電極形成後に形成することで、高温かつ長時間の熱拡散処理を行うことなくボディ層を形成することできる。
(横型パワーMOSFETの構造)
図1は、本発明の第1実施形態に係る横型パワーMOSFETの構造を示す部分縦断面図である。
本実施形態に係る横型パワーMOSFETは、以下の構造を有する。P型半導体基板1上には、N型エピタキシャル層2が設けられている。N型エピタキシャル層2上には、N型オフセット層3とP型ボディ層100とが選択的に設けられている。P型ボディ層100は、更に、第1の領域5と第2の領域8とを含む。第1の領域5は、N型オフセット層3に隣接し、第2の領域8は、第1の領域5を介してN型オフセット層3から離間している。即ち、P型ボディ層100の第1の領域5は、急峻な界面120を介してN型オフセット層3に隣接している。上記イオン注入は、基板面に垂直方向にイオンを打ち込む行程であるので、急峻な界面120は、P型半導体基板1の面に対し概ね垂直である。P型ボディ層100の第1の領域5は、境界110を介しP型ボディ層100の第2の領域8に隣接している。P型ボディ層100の第1の領域5の底部の深さは、N型オフセット層3とN型エピタキシャル層2との界面より僅かに深い。P型ボディ層100の第2の領域8の上部領域の一部には、P層10が設けられている。P型ボディ層100の第2の領域8の上部領域の別の部分と、P型ボディ層100の第1の領域5の上部領域の一部とに亘り、Nソース層9−1が設けられている。Nソース層9−1は、P型ボディ層100の第1の領域5の上部領域を介して、N型オフセット層3から離間している。この上部領域は、チャネル領域として働く。Nソース層9−1とN型オフセット層3との間の水平方向距離、即ち、上部領域の水平方向寸法が、チャネル長Lchに相当する。
N型オフセット層3上には、フィールド酸化膜4が選択的に設けられている。N型オフセット層3上には、Nドレイン層9−2が設けられている。P型ボディ層100の第1の領域5上と、N型オフセット層3であって第1の領域5に対する近傍領域上とには、ゲート絶縁膜6が設けられている。ゲート絶縁膜6上と、フィールド酸化膜4の一部の上には、ゲート電極7が設けられている。ゲート電極7は、端部近傍領域7−1と、端部7−2と、平坦化された上面7−3を有する。ゲート電極7の端部近傍領域7−1は、P型ボディ層100の第1の領域5の直上に位置する。即ち、水平方向位置でみて、端部近傍領域7−1は第1の領域5と整合している。また、ゲート電極7の端部7−2は、水平方向位置でみて、P型ボディ層100の第1の領域5と第2の領域8との境界110に整合している。ゲート電極7の端部近傍領域7−1は、ゲート絶縁膜6の一部を介し、P型ボディ層100の第1の領域5から離間され、電気的に絶縁されている。ゲート電極7は、ゲート絶縁膜6とフィールド酸化膜4を介し、N型オフセット層3から離間され、電気的に絶縁されている。
フィールド酸化膜4上、ゲート電極7上、Nソース層9−1上、P層10上、及びNドレイン層9−2上に亘り、層間絶縁膜11が設けられる。層間絶縁膜11は、ソースコンタクトホールとドレインコンタクトホールとを有する。ソースコンタクトホールには、ソースコンタクト12が設けられる。ドレインコンタクトホールにはドレインコンタクト13が設けられる。ソースコンタクト12の底部は、Nソース層9−1の一部とP層10の一部とに接する。Nソース層9−1とP層10との各々は、ソースコンタクト12とオーミックコンタクトを取るよう高い不純物濃度を有する。ドレインコンタクト13の底部はNドレイン層9−2の一部と接する。Nドレイン層9−2は、ドレインコンタクト13とオーミックコンタクトを取るよう高い不純物濃度を有する。層間絶縁膜11上にはソース配線層14−1とドレイン配線層14−2とが設けられる。ソース配線層14−1は、ソースコンタクト12を介してNソース層9−1とP層10とに電気的に接続される。ドレイン配線層14−2は、ドレインコンタクト13を介してNドレイン層9−2に電気的に接続される。尚、前述した各層の厚さや濃度は、特に限定されるものではなく、既存の設計手法を用いて適宜設計することができる。
既知の横型MOSFETと、本実施形態に係る横型MOSFETとの構造上の相違点の主な点は、以下の通りである。
P型ボディ層100は、第1の領域5と第2の領域8とを含む。ここで、第1の領域5は、N型オフセット層3に隣接し、第2の領域8は、第1の領域5を介してN型オフセット層3から離間している。更に、第1の領域5と第2の領域8との境界がP型半導体基板1の面に対し概ね垂直である。そして、第1の領域5とN型オフセット層3との界面120の高い急峻性が得られると共に、この急峻な界面120もP型半導体基板1の面に対し概ね垂直である。更に、ゲート電極7の端部7−2は、水平方向位置でみて、P型ボディ層100の第1の領域5と第2の領域8との境界110に整合している。また、ゲート電極7は、平坦化された上面7−3を有する。
既知の横型MOSFETと、本実施形態に係る横型MOSFETとの上記構造上の相違点は、本実施形態に係る横型MOSFETの製造工程に起因するものである。従って、以下、本実施形態に係る横型MOSFETの製造方法につき、添付図面を参照して説明する。
(横型パワーMOSFETの製造方法)
図2乃至図7は、本発明の第1実施形態に係る横型パワーMOSFETの製造行程を示す部分縦断面図である。
図2(a)に示すように、P型シリコン基板1上に、膜厚5μmのN型エピタキシャル層2を成長させる。その後、加速エネルギー150keV及びドーズ量1×1013cm−2の条件で、N型不純物であるリン(P)をN型エピタキシャル層2の上部領域に注入する。その後、温度950℃程度及び時間30分程度の熱処理を行い、N型エピタキシャル層2の上部領域にN型オフセット層3を形成する。その後、LOCOS(Local Oxidation Of Silicon)法により、N型オフセット層3上に膜厚500nmのフィールド酸化膜4を形成する。
図2(b)に示すように、熱酸化法により、N型オフセット層3上に膜厚20nmのシリコン酸化膜21を形成する。続いて、CVD(Chemical Vapor Deposition)法により、シリコン酸化膜21上に膜厚300nmのシリコン窒化膜22を形成する。
図2(c)に示すように、シリコン窒化膜22上にレジスト膜を塗布し、レジスト膜を露光及び現像し、第1の選択領域に幅300nmの開口部24を有するレジストパターン23を形成する。
図3(a)に示すように、幅300nmの開口部24を有するレジストパターン23をマスクとして使用した異方性エッチングを行って、開口部24直下のシリコン窒化膜22及びシリコン酸化膜21を選択的に除去することで、シリコン窒化膜22及びシリコン酸化膜21を貫通する幅300nmの開口部25を形成する。この開口部25は開口端部22−1を有する。
図3(b)に示すように、レジストパターン23を除去する。幅300nmの開口部25を有するシリコン窒化膜22及びシリコン酸化膜21をマスクとして使用し、加速エネルギー150keV及びドーズ量5×1013cm−2の条件で、P型不純物であるボロン(B)をN型オフセット層3及びN型エピタキシャル層2の上面近傍領域にイオン注入する。以下イオン注入は、基板面に垂直方向にイオンを打ち込む行程を意味する。その後、温度950℃程度及び時間30分程度の熱処理を行い、注入された不純物の活性化を行って、P型ボディ層の第1の領域5を選択的に形成する。P型ボディ層の第1の領域5の底部の深さは、N型オフセット層3とN型エピタキシャル層2との界面より僅かに深い。P型ボディ層の第1の領域5の端部は、開口部25の開口端部22−1に水平方向位置でみて自己整合する。重要なことは、温度950℃程度及び時間30分程度の熱処理では、不純物の熱拡散、特に横方向への熱拡散は生じないことである。即ち、P型ボディ層の第1の領域5を形成するため、不純物の活性化のための熱処理を行うことは好ましいが、不純物の横方向への熱拡散が生じない程度に、熱処理の温度及び時間を抑制することが重要である。P型ボディ層の第1の領域5の形成のため、喩え不純物活性化のための熱処理を行ったとしても、この熱処理は、高温且つ長時間でないため、不純物の熱拡散、特に横方向の熱拡散を伴わない。よって、P型ボディ層の第1の領域5とN型オフセット層3との界面120の高い急峻性が得られると共に、この急峻な界面120は、P型半導体基板1の面に対し概ね垂直である。不純物の横方向への熱拡散を回避する観点から、不純物の活性化のための熱処理を行わなくてもよい。いずれにしても、P型ボディ層の第1の領域5の形成は、不純物の横方向への熱拡散を伴わない。このため、P型ボディ層の第1の領域5の幅Wは、開口部25の幅により画定される。よって、P型ボディ層の第1の領域5の幅は、300nmとなる。
図3(c)に示すように、開口部25直下のP型ボディ層の第1の領域5の露出表面を、熱酸化法により酸化して、膜厚20nmのシリコン酸化膜50を形成した後、シリコン窒化膜22及び開口部25中にレジスト膜を塗布し、レジスト膜を露光及び現像し、第2の選択領域に開口部27を有するレジストパターン26を形成する。レジストパターン26の開口部27の端部28は、水平方向位置でみて、P型ボディ層の第1の領域5の範囲内に位置する必要がある。このため、レジストパターン26の開口部27の端部28の位置合わせ精度に対する許容範囲を最大にするには、レジストパターン26の開口部27の端部28を、水平方向位置でみて、P型ボディ層の第1の領域5の中心位置に整合させるよう、レジスト膜のパターニングを行うことが好ましい。この場合、前述の位置合わせ精度に対する許容範囲は、P型ボディ層の第1の領域5の幅であるところの300nmの半分とすることができる。結果、シリコン酸化膜50は、部分的にレジストパターン26で覆われる。
図4(a)に示すように、レジストパターン26をマスクとして使用して、レジストパターン26の開口部27直下のシリコン窒化膜22及びシリコン酸化膜21並びにシリコン酸化膜50のうちレジストパターン26で覆われていない部分を異方性エッチングにより選択的に除去し、P型ボディ層の第1の領域5の上面と、N型オフセット層3の上面の一部を露出させる。
図4(b)に示すように、レジストパターン26を除去する。更に、シリコン酸化膜50のうちレジストパターン26で覆われていた残部を除去する。熱酸化法により、P型ボディ層の第1の領域5の上面と、N型オフセット層3の露出面に、膜厚20nmのゲート酸化膜6を形成する。
図4(c)に示すように、CVD(Chemical Vapor Deposition)法により、ゲート酸化膜6上、フィールド酸化膜4上及びシリコン窒化膜22上に、N型不純物を含むN型ポリシリコン膜29を堆積し、N型ポリシリコン膜29でシリコン窒化膜22の開口部を完全に埋め込む。
図5(a)に示すように、N型ポリシリコン膜29の上面がシリコン窒化膜22の上面に揃うまで、N型ポリシリコン膜29をCMP(Chemical Mechanical Polishing)法により除去し、N型ポリシリコンからなる膜厚300nmのゲート電極7を形成する。よって、ゲート電極7は、CMP行程により平坦化された上面7−3を有する。ここで、ゲート電極7の端部7−2は、シリコン窒化膜22の開口部の開口端部22−1により画定される。一方、図3(b)を参照して前述したように、P型ボディ層の第1の領域5の端部も、シリコン窒化膜22の開口部25の開口端部22−1により画定される。よって、ゲート電極7の端部7−2は、P型ボディ層の第1の領域5の端部と水平方向位置でみて整合する。従って、ゲート電極7は、P型ボディ層の第1の領域5と水平方向位置でみて整合する端部近傍領域7−1を有する。このことは、P型ボディ層100の第1の領域5は、横方向への熱拡散処理を行うことなく、ゲート電極7の端部近傍領域7−1直下に形成されることを意味する。
図5(b)に示すように、熱酸化法により、N型ポリシリコンからなるゲート電極7上に、膜厚20nmのシリコン酸化膜40を形成する。
図5(c)に示すように、シリコン窒化膜22及びシリコン酸化膜21を順にウエットエッチング法により除去し、N型オフセット層3の上面を露出させる。このウエットエッチング行程において、ゲート電極7上のシリコン酸化膜40は、このウエットエッチング行程により削られ除去される一方で、ゲート電極7が削られるのを防止する。この結果、ゲート電極7の平坦化された上面7−3が露出する。
図6(a)に示すように、フィールド酸化膜4上、ゲート電極7上、N型オフセット層3上にレジスト膜を塗布し、レジスト膜を露光及び現像し、ゲート電極7の平坦化された上面7−3、フィールド酸化膜4、及びN型オフセット層3のドレイン側の露出上面を覆うレジストパターン41を形成する。その後、このレジストパターン41及びゲート電極7の端部7−2をマスクとして使用し、加速エネルギー150keV及びドーズ量5×1013cm−2の条件で、P型不純物であるボロン(B)をN型オフセット層3及び型エピタキシャル層2の上面近傍領域に注入する。その後、温度950℃程度及び時間30分程度の熱処理を行い、注入された不純物の活性化を行って、P型ボディ層の第2の領域8を選択的に形成する。この結果、第1の領域5と第2の領域8とからなるP型ボディ層100が形成される。P型ボディ層100の第2の領域8を形成するためのイオン注入行程及びその後の熱処理行程は、前述したP型ボディ層100の第1の領域5を形成するためのイオン注入行程及びその後の熱処理行程と同一条件で行う。
即ち、P型ボディ層100の第2の領域8の底部の深さは、N型オフセット層3とN型エピタキシャル層2との界面より僅かに深い。重要なことは、温度950℃程度及び時間30分程度の熱処理では、不純物の熱拡散、特に横方向への熱拡散は生じないことである。即ち、P型ボディ層100の第2の領域8を形成するため、第2の領域8の不純物の活性化のための熱処理を行うことが好ましいが、既に形成したP型ボディ層100の第1の領域5の不純物の横方向への熱拡散が生じない程度に、第2の領域8の不純物の活性化のための熱処理の温度及び時間を抑制することが重要である。P型ボディ層100の第2の領域8の形成のため、喩え不純物活性化のための熱処理を行ったとしても、この熱処理は、高温且つ長時間でないため、既に形成したP型ボディ層100の第1の領域5の不純物の熱拡散、特に横方向の熱拡散を伴わない。よって、P型ボディ層の第1の領域5とN型オフセット層3との界面120の高い急峻性が得られると共に、この急峻な界面120は、P型半導体基板1の面に対し概ね垂直に保たれる。不純物の横方向への熱拡散を回避する観点から、不純物の活性化のための熱処理を行わなくてもよい。また、レジストパターン41及びゲート電極7の端部7−2をマスクとして使用し、イオン注入行程を行うため、P型ボディ層100の第1の領域5と第2の領域8との境界110は、ゲート電極7の端部7−2に自己整合される。
前述したように、P型ボディ層100の第2の領域8の不純物活性化のための前述の熱処理は、不純物の熱拡散を引き起こすような高温且つ長時間の熱拡散処理ではない。従って、ゲート電極7を構成するポリシリコンはN型不純物を含むものの、このN型不純物が熱拡散によりゲート酸化膜6を突き抜け、ゲート酸化膜6直下のP型ボディ層の第1の領域5の上部領域からなるチャネル領域やN型オフセット層3中に熱拡散することがない。この結果、デバイス特性を変動させてしまうことがない。
図6(b)に示すように、レジストパターン41を除去する。P型ボディ層100の第2の領域8上、フィールド酸化膜4上、ゲート電極7上、及びN型オフセット層3上にレジスト膜を塗布し、レジスト膜を露光及び現像し、P型ボディ層100の第1の領域5に対する近傍領域を除いて、第2の領域8上を覆うレジストパターン42を形成する。その後、このレジストパターン42をマスクとして使用し、加速エネルギー50keV及びドーズ量5×1015cm−2の条件で、N型不純物である砒素(As)を、P型ボディ層100の第2の領域8の上面近傍領域と、N型オフセット層3の上面近傍領域とに注入する。その後、温度950℃程度及び時間30分程度の熱処理を行い、注入された不純物の活性化を行って、Nソース層9−1及びNドレイン層9−2を形成する。
図6(c)に示すように、レジストパターン42を除去する。P型ボディ層100の第2の領域8の露出面上、Nソース層9−1上、Nドレイン層9−2上、フィールド酸化膜4上、及びゲート電極7上にレジスト膜を塗布し、レジスト膜を露光及び現像し、Nソース層9−1上、Nドレイン層9−2上、フィールド酸化膜4上、及びゲート電極7上を覆うレジストパターン43を形成する。その後、このレジストパターン43をマスクとして使用し、加速エネルギー50keV及びドーズ量5×1015cm−2の条件で、N型不純物である二弗化ボロン(BF )を、P型ボディ層100の第2の領域8の上面近傍領域に注入する。その後、温度950℃程度及び時間30分程度の熱処理を行い、注入された不純物の活性化を行って、P層10を形成する。
図7に示すように、レジストパターン43を除去する。その後、P層10上、Nソース層9−1上、Nドレイン層9−2上、フィールド酸化膜4上、及びゲート電極7上に、層間絶縁膜11を既知の方法により形成する。層間絶縁膜11にソースコンタクトホール及びドレインコンタクトホールを既知の方法により形成し、ソースコンタクト12及びドレインコンタクト13をソースコンタクトホール内及びドレインコンタクトホール内にそれぞれ形成する。ソースコンタクト12の底部は、Nソース層9−1の一部及びP層10の一部に接する。ドレインコンタクト13の底部は、Nドレイン層9−2の一部に接する。その後、ソースコンタクト12の上部に接するソース配線層14−1及びドレインコンタクト13の上部に接するドレイン配線層14−2を、層間絶縁膜11上に形成することで、横型パワーMOSFETの製造行程が完了する。
尚、本実施形態では、図6(b)に示す行程でNソース層9−1を先に形成し、その後、図6(c)に示す行程でP層10を形成したが、形成の順序を逆にしてもよい。即ち、図6(c)に示す行程でP層10を先に形成し、その後、図6(b)に示す行程でNソース層9−1を形成してもよい。
(効果)
本実施形態によれば、横型パワーMOSFETのボディ層100は、第1の領域5と第2の領域8から構成し、第1の領域5の形成行程と、第2の領域8の形成行程とを分けて行う。更に、ボディ層100の第1の領域5及び第2の領域8は、それぞれ、不純物のイオン注入行程で行うが、イオン注入行程後の熱拡散処理を行わない。即ち、P型不純物であるボロン(B)をN型オフセット層3に選択的に導入する第1のイオン注入行程の後、不純物の熱拡散処理を行うことなく、ボディ層100の第1の領域5を形成する。その後、ゲート電極形成領域にゲート電極7を形成する。その後、このゲート電極7をマスクとしてP型不純物であるボロン(B)をN型オフセット層3に選択的に導入する第2のイオン注入行程を行うが、不純物の熱拡散処理を行うことなく、ゲート電極7の端部7−2に自己整合したボディ層100の第2の領域8を形成する。これにより、第1の領域5と第2の領域8とからなるボディ層100が形成される。
P型ボディ層100の第1の領域5は、ゲート電極7を形成する前に形成するので、イオン注入行程により注入された不純物の横方向への熱拡散行程を行う必要がない。P型ボディ層の第1の領域5を形成するため、イオン注入行程の後、不純物の活性化のための熱処理を行うことが好ましいが、不純物の横方向への熱拡散が生じない程度に、熱処理の温度及び時間を抑制することが重要である。即ち、P型ボディ層の第1の領域5の形成のため、喩え不純物活性化のための熱処理を行ったとしても、この熱処理は、高温且つ長時間でないため、不純物の熱拡散、特に横方向の熱拡散を伴わない。よって、P型ボディ層の第1の領域5とN型オフセット層3との界面120の高い急峻性が得られると共に、この急峻な界面120は、P型半導体基板1の面に対し概ね垂直である。不純物の横方向への熱拡散を回避する観点から、不純物の活性化のための熱処理を行わなくてもよい。いずれにしても、P型ボディ層の第1の領域5の形成は、不純物の横方向への熱拡散を伴わない。
その後、ゲート電極7が形成される。ゲート電極7の端部7−2は、シリコン窒化膜22の開口部の開口端部22−1により画定される。一方、P型ボディ層100の第1の領域5の端部も、シリコン窒化膜22の開口部25の開口端部22−1により画定される。よって、ゲート電極7の端部7−2は、P型ボディ層の第1の領域5の端部と水平方向位置でみて整合する。従って、ゲート電極7は、P型ボディ層100の第1の領域5と水平方向位置でみて整合する端部近傍領域7−1を有する。このことは、P型ボディ層100の第1の領域5は、横方向への熱拡散処理を行うことなく、ゲート電極7の端部近傍領域7−1直下に形成されることを意味する。
一方、P型ボディ層100の第2の領域8は、ゲート電極7を形成した後に形成する。しかし、ゲート電極7の端部近傍領域7−1直下には、P型ボディ層100の第1の領域5が既に形成されている。このため、イオン注入行程により注入された不純物の横方向への熱拡散行程を行う必要がない。P型ボディ層100の第2の領域8の形成も、第1の領域5の形成と同様に、P型ボディ層100の第2の領域8を形成するため、イオン注入行程の後、不純物の活性化のための熱処理を行うことが好ましいが、不純物の横方向への熱拡散が生じない程度に、熱処理の温度及び時間を抑制することが重要である。即ち、P型ボディ層100の第2の領域8の形成のため、喩え不純物活性化のための熱処理を行ったとしても、この熱処理は、高温且つ長時間でないため、不純物の熱拡散、特に横方向の熱拡散を伴わない。よって、既に形成されたP型ボディ層100の第1の領域5とN型オフセット層3との界面120の高い急峻性が得られると共に、この急峻な界面120は、P型半導体基板1の面に対し概ね垂直を保つ。不純物の横方向への熱拡散を回避する観点から、不純物の活性化のための熱処理を行わなくてもよい。いずれにしても、P型ボディ層の第2の領域8の形成は、不純物の横方向への熱拡散を伴わない。また、ゲート電極7の端部7−2をマスクとして使用し、P型ボディ層の第2の領域8の形成のためのイオン注入行程を行うため、P型ボディ層100の第1の領域5と第2の領域8との境界110は、ゲート電極7の端部7−2に自己整合される。
前述したように、P型ボディ層100の第1の領域5の形成および第2の領域8の形成は、不純物の熱拡散を引き起こすような高温且つ長時間の熱拡散処理を伴わない。従って、ゲート電極7を構成するポリシリコンはN型不純物を含むものの、このN型不純物が熱拡散によりゲート酸化膜6を突き抜け、ゲート酸化膜6直下のP型ボディ層100の第1の領域5の上部領域からなるチャネル領域やN型オフセット層3中に熱拡散することがない。この結果、デバイス特性を変動させてしまうことがない。
更に、高温かつ長時間の熱拡散処理を行うことなくボディ層を形成するため、所望の領域にボディ層を形成するための制御が容易となり、素子の更なる微細化を可能にする。より具体的には、横型二重拡散構造のパワーMOSFETの製造の場合、ボディ層とオフセット層との界面の高い急峻性の確保と、この急峻な界面の位置の制御、及びボディ層とオフセット層とに亘る横方向における不純物濃度プロファイルの制御が容易となる。素子の微細化が可能になることで、素子のON抵抗の低減が可能となり、その結果、素子の消費電力の低減を図ることが可能となる。
更に、高温かつ長時間の熱拡散処理を行うことなくボディ層を形成するため、製造時間及び製造コストを抑制することが可能となる。
更に、高温かつ長時間の熱拡散処理を行うことなくボディ層を形成するため、同一基板上に横型パワーMOSFETと他の素子を形成する場合、当該他の素子への高温かつ長時間の熱拡散処理の影響を低減することができる。
(2)第2実施形態
本実施形態によれば、横型パワーMOSFETのボディ層の形成において、ゲート電極形成領域の端部近傍領域の直下に位置すると共にオフセット層に隣接するボディ層の第1の領域を、ゲート電極形成前に形成し、残りのボディ層の第2の領域をゲート電極形成後に形成することで、高温かつ長時間の熱拡散処理を行うことなくボディ層を形成することできる。
更に、前述の第1実施形態においては、ボディ層の第1の領域は、均一の不純物濃度プロファイルを有した。即ち、ボディ層の第1の領域のうち、チャネル領域として働く上部領域とその下に位置する下部領域とは同一の不純物濃度を有していた。しかしながら、本第2実施形態においては、ボディ層の第1の領域は、深さ方向で不純物濃度が異なる不純物濃度プロファイルを有する。具体的には、ボディ層の第1の領域のうち、チャネル領域として働く浅い領域で不純物濃度が低く、その下に位置する深い領域で不純物濃度が高い。このように構成することで、チャネル抵抗の低減とゲート閾値電圧の低減を図る一方で、パンチスルー耐性を高めることが可能となる。
(横型パワーMOSFETの構造)
前述の第1実施形態に係る横型パワーMOSFETと、本第2実施形態に係る横型パワーMOSFETとの構造上の相違は、P型ボディ層の第1の領域が、浅い領域と、該浅い領域より高い不純物濃度を有する深い領域とで構成される点である。素子の駆動能力を上げるには、ボディ層中のチャネル領域のチャネル抵抗やゲート閾値電圧を低減する必要がある。このチャネル抵抗やゲート閾値電圧を低減するには、ボディ層の不純物濃度を低く設計することが好ましい。一方、素子の微細化を図るためには、ソース領域とオフセット層との間のパンチスルー耐性を上げることが必要となる。このパンチスルー耐性を上げるには、ボディ層の不純物濃度を高く設計することが好ましい。そこで、ボディ層の第1の領域のうちチャネルとして働く浅い領域では不純物濃度を低くし、一方、チャネル以外の深い領域では不純物濃度を高くすることで、素子の駆動能力の増加と、パンチスルー耐性の上昇との相反する両方の要求を満たすことが可能となる。この結果、素子の更なる微細化が可能となる。素子の微細化が可能になることで、素子のON抵抗の低減が可能となり、その結果、素子の消費電力の低減を図ることが可能となる。即ち、本実施形態に係る横型パワーMOSFETは、以下の構造を有する。
図8は、本発明の第2実施形態に係る横型パワーMOSFETの構造を示す部分縦断面図である。P型半導体基板1上には、N型エピタキシャル層2が設けられている。N型エピタキシャル層2上には、N型オフセット層3とP型ボディ層100とが選択的に設けられている。P型ボディ層100は、更に、第1の領域5と第2の領域8とを含む。第1の領域5は、N型オフセット層3に隣接し、第2の領域8は、第1の領域5を介してN型オフセット層3から離間している。即ち、P型ボディ層100の第1の領域5は、急峻な界面120を介してN型オフセット層3に隣接している。急峻な界面120は、P型半導体基板1の面に対し概ね垂直である。P型ボディ層100の第1の領域5は、境界110を介しP型ボディ層100の第2の領域8に隣接している。P型ボディ層100の第1の領域5の底部の深さは、N型オフセット層3とN型エピタキシャル層2との界面より僅かに深い。
更に、P型ボディ層100の第1の領域5は、チャネル領域を含む浅い領域32と、該浅い領域の下に位置する深い領域31とからなる。深い領域31は、チャネル領域を含む浅い領域32より高い不純物濃度を有する。深い領域31が高い不純物濃度を有することで、Nソース層9−1とN型オフセット層3との間のパンチスルー耐性を高く維持できる。更に、チャネル領域を含む浅い領域32は、深い領域31より不純物濃度が低く、チャネル抵抗とゲート閾値電圧とを低減することで、素子の駆動能力を高めることが可能となる。チャネル領域の不純物濃度が低いことが、チャネル抵抗とゲート閾値電圧との低減には重要となるため、浅い領域32は、チャネル領域を含む程度の深さがあればよく、チャネル領域として働かない領域は、不純物濃度が高い深い領域31で構成し、Nソース層9−1とN型オフセット層3との間のパンチスルーの確実な防止を図る。
P型ボディ層100の第2の領域8の上部領域の一部には、P層10が設けられている。P型ボディ層100の第2の領域8の上部領域の別の部分と、P型ボディ層100の第1の領域5の浅い領域32の一部とに亘り、Nソース層9−1が設けられている。Nソース層9−1は、P型ボディ層100の第1の領域5の浅い領域32を介して、N型オフセット層3から離間している。この浅い領域32は、チャネル領域として働く。Nソース層9−1とN型オフセット層3との間の水平方向距離、即ち、浅い領域32の水平方向寸法が、チャネル長Lchに相当する。
N型オフセット層3上には、フィールド酸化膜4が選択的に設けられている。N型オフセット層3上には、Nドレイン層9−2が設けられている。P型ボディ層100の第1の領域5の浅い領域32上と、N型オフセット層3であって第1の領域5の浅い領域32に対する近傍領域上とには、ゲート絶縁膜6が設けられている。ゲート絶縁膜6上と、フィールド酸化膜4の一部の上には、ゲート電極7が設けられている。ゲート電極7は、端部近傍領域7−1と、端部7−2と、平坦化された上面7−3を有する。ゲート電極7の端部近傍領域7−1は、P型ボディ層100の第1の領域5の浅い領域32の直上に位置する。即ち、水平方向位置でみて、端部近傍領域7−1は第1の領域5と整合している。また、ゲート電極7の端部7−2は、水平方向位置でみて、P型ボディ層100の第1の領域5と第2の領域8との境界110に整合している。ゲート電極7の端部近傍領域7−1は、ゲート絶縁膜6の一部を介し、P型ボディ層100の第1の領域5から離間され、電気的に絶縁されている。ゲート電極7は、ゲート絶縁膜6とフィールド酸化膜4を介し、N型オフセット層3から離間され、電気的に絶縁されている。
フィールド酸化膜4上、ゲート電極7上、Nソース層9−1上、P層10上、及びNドレイン層9−2上に亘り、層間絶縁膜11が設けられる。層間絶縁膜11は、ソースコンタクトホールとドレインコンタクトホールとを有する。ソースコンタクトホールには、ソースコンタクト12が設けられる。ドレインコンタクトホールにはドレインコンタクト13が設けられる。ソースコンタクト12の底部は、Nソース層9−1の一部とP層10の一部とに接する。Nソース層9−1とP層10との各々は、ソースコンタクト12とオーミックコンタクトを取るよう高い不純物濃度を有する。ドレインコンタクト13の底部はNドレイン層9−2の一部と接する。Nドレイン層9−2は、ドレインコンタクト13とオーミックコンタクトを取るよう高い不純物濃度を有する。層間絶縁膜11上にはソース配線層14−1とドレイン配線層14−2とが設けられる。ソース配線層14−1は、ソースコンタクト12を介してNソース層9−1とP層10とに電気的に接続される。ドレイン配線層14−2は、ドレインコンタクト13を介してNドレイン層9−2に電気的に接続される。尚、前述した各層の厚さや濃度は、特に限定されるものではなく、既存の設計手法を用いて適宜設計することができる。
既知の横型MOSFETと、本実施形態に係る横型MOSFETとの構造上の相違点の主な点は、以下の通りである。
P型ボディ層100は、第1の領域5と第2の領域8とを含む。ここで、第1の領域5は、N型オフセット層3に隣接し、第2の領域8は、第1の領域5を介してN型オフセット層3から離間している。更に、第1の領域5と第2の領域8との境界がP型半導体基板1の面に対し概ね垂直である。そして、第1の領域5とN型オフセット層3との界面120の高い急峻性が得られると共に、この急峻な界面120もP型半導体基板1の面に対し概ね垂直である。更に、ゲート電極7の端部7−2は、水平方向位置でみて、P型ボディ層100の第1の領域5と第2の領域8との境界110に整合している。また、ゲート電極7は、平坦化された上面7−3を有する。
更に、前述したように、P型ボディ層100の第1の領域5は、チャネル領域を含む浅い領域32と、該浅い領域32の下に位置すると共に、該浅い領域32より高い不純物濃度を有する深い領域31とからなる。
既知の横型MOSFETと、本実施形態に係る横型MOSFETとの上記構造上の相違点は、本実施形態に係る横型MOSFETの製造工程に起因するものである。従って、以下、本実施形態に係る横型MOSFETの製造方法につき、添付図面を参照して説明する。
(横型パワーMOSFETの製造方法)
図9乃至図14は、本発明の第2実施形態に係る横型パワーMOSFETの製造行程を示す部分縦断面図である。
図9(a)に示すように、P型シリコン基板1上に、膜厚5μmのN型エピタキシャル層2を成長させる。その後、加速エネルギー150keV及びドーズ量1×1013cm−2の条件で、N型不純物であるリン(P)をN型エピタキシャル層2の上部領域に注入する。その後、温度950℃程度及び時間30分程度の熱処理を行い、N型エピタキシャル層2の上部領域にN型オフセット層3を形成する。その後、LOCOS(Local Oxidation Of Silicon)法により、N型オフセット層3上に膜厚500nmのフィールド酸化膜4を形成する。
図9(b)に示すように、熱酸化法により、N型オフセット層3上に膜厚20nmのシリコン酸化膜21を形成する。続いて、CVD(Chemical Vapor Deposition)法により、シリコン酸化膜21上に膜厚300nmのシリコン窒化膜22を形成する。
図9(c)に示すように、シリコン窒化膜22上にレジスト膜を塗布し、レジスト膜を露光及び現像し、第1の選択領域に幅300nmの開口部24を有するレジストパターン23を形成する。
図10(a)に示すように、幅300nmの開口部24を有するレジストパターン23をマスクとして使用した異方性エッチングを行って、開口部24直下のシリコン窒化膜22及びシリコン酸化膜21を選択的に除去することで、シリコン窒化膜22及びシリコン酸化膜21を貫通する幅300nmの開口部25を形成する。この開口部25は開口端部22−1を有する。
図10(b)に示すように、レジストパターン23を除去する。幅300nmの開口部25を有するシリコン窒化膜22及びシリコン酸化膜21をマスクとして使用し、加速エネルギー200keV及びドーズ量1×1014cm−2の条件で、P型不純物であるボロン(B)をN型オフセット層3及びN型エピタキシャル層2の上面近傍領域に注入する。続けて、幅300nmの開口部25を有するシリコン窒化膜22及びシリコン酸化膜21をマスクとして使用し、加速エネルギー50keV及びドーズ量1×1013cm−2の条件で、P型不純物であるボロン(B)をN型オフセット層3の浅い領域に注入する。その後、温度950℃程度及び時間30分程度の熱処理を行い、注入された不純物の活性化を行って、浅い領域32と、該浅い領域32の下に位置すると共に、該浅い領域32より高い不純物濃度を有する深い領域31とからなるP型ボディ層の第1の領域5を選択的に形成する。
即ち、P型ボディ層の第1の領域5は、チャネル領域を含む浅い領域32と、該浅い領域の下に位置する深い領域31とからなる。深い領域31は、チャネル領域を含む浅い領域32より高い不純物濃度を有する。深い領域31が高い不純物濃度を有することで、Nソース層9−1とN型オフセット層3との間のパンチスルー耐性を高く維持できる。更に、チャネル領域を含む浅い領域32は、深い領域31より不純物濃度が低く、チャネル抵抗とゲート閾値電圧とを低減することで、素子の駆動能力を高めることが可能となる。チャネル領域の不純物濃度が低いことが、チャネル抵抗とゲート閾値電圧との低減には重要となるため、浅い領域32は、チャネル領域を含む程度の深さがあればよく、チャネル領域として働かない領域は、不純物濃度が高い深い領域31で構成し、Nソース層9−1とN型オフセット層3との間のパンチスルーの確実な防止を図る。
P型ボディ層の第1の領域5の底部の深さは、N型オフセット層3とN型エピタキシャル層2との界面より僅かに深い。P型ボディ層の第1の領域5の端部は、開口部25の開口端部22−1に水平方向位置でみて自己整合する。重要なことは、温度950℃程度及び時間30分程度の熱処理では、不純物の熱拡散、特に横方向への熱拡散は生じないことである。即ち、P型ボディ層の第1の領域5を形成するため、不純物の活性化のための熱処理を行うことは好ましいが、不純物の横方向への熱拡散が生じない程度に、熱処理の温度及び時間を抑制することが重要である。P型ボディ層の第1の領域5の形成のため、喩え不純物活性化のための熱処理を行ったとしても、この熱処理は、高温且つ長時間でないため、不純物の熱拡散、特に横方向の熱拡散を伴わない。よって、P型ボディ層の第1の領域5とN型オフセット層3との界面120の高い急峻性が得られると共に、この急峻な界面120は、P型半導体基板1の面に対し概ね垂直である。不純物の横方向への熱拡散を回避する観点から、不純物の活性化のための熱処理を行わなくてもよい。いずれにしても、P型ボディ層の第1の領域5の形成は、不純物の横方向への熱拡散を伴わない。このため、P型ボディ層の第1の領域5の幅は、開口部25の幅により画定される。よって、P型ボディ層の第1の領域5の幅Wは、300nmとなる。
図10(c)に示すように、開口部25直下のP型ボディ層の第1の領域5の露出表面を、熱酸化法により酸化して、膜厚20nmのシリコン酸化膜50を形成した後、シリコン窒化膜22及び開口部25中にレジスト膜を塗布し、レジスト膜を露光及び現像し、第2の選択領域に開口部27を有するレジストパターン26を形成する。レジストパターン26の開口部27の端部28は、水平方向位置でみて、P型ボディ層の第1の領域5の範囲内に位置する必要がある。このため、レジストパターン26の開口部27の端部28の位置合わせ精度に対する許容範囲を最大にするには、レジストパターン26の開口部27の端部28を、水平方向位置でみて、P型ボディ層の第1の領域5の中心位置に整合させるよう、レジスト膜のパターニングを行うことが好ましい。この場合、前述の位置合わせ精度に対する許容範囲は、P型ボディ層の第1の領域5の幅であるところの300nmの半分とすることができる。結果、シリコン酸化膜50は、部分的にレジストパターン26で覆われる。
図11(a)に示すように、レジストパターン26をマスクとして使用して、レジストパターン26の開口部27直下のシリコン窒化膜22及びシリコン酸化膜21並びにシリコン酸化膜50のうちレジストパターン26で覆われていない部分を異方性エッチングにより選択的に除去し、P型ボディ層の第1の領域5の上面と、N型オフセット層3の上面の一部を露出させる。
図11(b)に示すように、レジストパターン26を除去する。更に、シリコン酸化膜50のうちレジストパターン26で覆われていた残部を除去する。熱酸化法により、P型ボディ層の第1の領域5の上面と、N型オフセット層3の露出面に、膜厚20nmのゲート酸化膜6を形成する。
図11(c)に示すように、CVD(Chemical Vapor Deposition)法により、ゲート酸化膜6上、フィールド酸化膜4上及びシリコン窒化膜22上に、N型不純物を含むN型ポリシリコン膜29を堆積し、N型ポリシリコン膜29でシリコン窒化膜22の開口部を完全に埋め込む。
図12(a)に示すように、N型ポリシリコン膜29の上面がシリコン窒化膜22の上面に揃うまで、N型ポリシリコン膜29をCMP(Chemical Mechanical Polishing)法により除去し、N型ポリシリコンからなる膜厚300nmのゲート電極7を形成する。よって、ゲート電極7は、CMP行程により平坦化された上面7−3を有する。ここで、ゲート電極7の端部7−2は、シリコン窒化膜22の開口部の開口端部22−1により画定される。一方、図10(b)を参照して前述したように、P型ボディ層の第1の領域5の端部も、シリコン窒化膜22の開口部25の開口端部22−1により画定される。よって、ゲート電極7の端部7−2は、P型ボディ層の第1の領域5の端部と水平方向位置でみて整合する。従って、ゲート電極7は、P型ボディ層の第1の領域5と水平方向位置でみて整合する端部近傍領域7−1を有する。このことは、P型ボディ層100の第1の領域5は、横方向への熱拡散処理を行うことなく、ゲート電極7の端部近傍領域7−1直下に形成されることを意味する。
図12(b)に示すように、熱酸化法により、N型ポリシリコンからなるゲート電極7上に、膜厚20nmのシリコン酸化膜40を形成する。
図12(c)に示すように、シリコン窒化膜22及びシリコン酸化膜21を順にウエットエッチング法により除去し、N型オフセット層3の上面を露出させる。このウエットエッチング行程において、ゲート電極7上のシリコン酸化膜40は、このウエットエッチング行程により削られ除去される一方で、ゲート電極7が削られるのを防止する。この結果、ゲート電極7の平坦化された上面7−3が露出する。
図13(a)に示すように、フィールド酸化膜4上、ゲート電極7上、N型オフセット層3上にレジスト膜を塗布し、レジスト膜を露光及び現像し、ゲート電極7の平坦化された上面7−3、フィールド酸化膜4、及びN型オフセット層3のドレイン側の露出上面を覆うレジストパターン41を形成する。その後、このレジストパターン41及びゲート電極7の端部7−2をマスクとして使用し、加速エネルギー150keV及びドーズ量5×1013cm−2の条件で、P型不純物であるボロン(B)をN型オフセット層3及び型エピタキシャル層2の上面近傍領域に注入する。その後、温度950℃程度及び時間30分程度の熱処理を行い、注入された不純物の活性化を行って、P型ボディ層の第2の領域8を選択的に形成する。この結果、第1の領域5と第2の領域8とからなるP型ボディ層100が形成される。
P型ボディ層100の第2の領域8の底部の深さは、N型オフセット層3とN型エピタキシャル層2との界面より僅かに深い。重要なことは、温度950℃程度及び時間30分程度の熱処理では、不純物の熱拡散、特に横方向への熱拡散は生じないことである。即ち、P型ボディ層100の第2の領域8を形成するため、第2の領域8の不純物の活性化のための熱処理を行うことが好ましいが、既に形成したP型ボディ層100の第1の領域5の不純物の横方向への熱拡散が生じない程度に、第2の領域8の不純物の活性化のための熱処理の温度及び時間を抑制することが重要である。P型ボディ層100の第2の領域8の形成のため、喩え不純物活性化のための熱処理を行ったとしても、この熱処理は、高温且つ長時間でないため、既に形成したP型ボディ層100の第1の領域5の不純物の熱拡散、特に横方向の熱拡散を伴わない。よって、P型ボディ層の第1の領域5とN型オフセット層3との界面120の高い急峻性が得られると共に、この急峻な界面120は、P型半導体基板1の面に対し概ね垂直に保たれる。不純物の横方向への熱拡散を回避する観点から、不純物の活性化のための熱処理を行わなくてもよい。また、レジストパターン41及びゲート電極7の端部7−2をマスクとして使用し、イオン注入行程を行うため、P型ボディ層100の第1の領域5と第2の領域8との境界110は、ゲート電極7の端部7−2に自己整合される。
前述したように、P型ボディ層100の第2の領域8の不純物活性化のための前述の熱処理は、不純物の熱拡散を引き起こすような高温且つ長時間の熱拡散処理ではない。従って、ゲート電極7を構成するポリシリコンはN型不純物を含むものの、このN型不純物が熱拡散によりゲート酸化膜6を突き抜け、ゲート酸化膜6直下のP型ボディ層の第1の領域5の浅い領域32に含まれるチャネル領域やN型オフセット層3中に熱拡散することがない。この結果、デバイス特性を変動させてしまうことがない。
図13(b)に示すように、レジストパターン41を除去する。P型ボディ層100の第2の領域8上、フィールド酸化膜4上、ゲート電極7上、及びN型オフセット層3上にレジスト膜を塗布し、レジスト膜を露光及び現像し、P型ボディ層100の第1の領域5に対する近傍領域を除いて、第2の領域8上を覆うレジストパターン42を形成する。その後、このレジストパターン42をマスクとして使用し、加速エネルギー50keV及びドーズ量5×1015cm−2の条件で、N型不純物である砒素(As)を、P型ボディ層100の第2の領域8の上面近傍領域と、N型オフセット層3の上面近傍領域とに注入する。その後、温度950℃程度及び時間30分程度の熱処理を行い、注入された不純物の活性化を行って、Nソース層9−1及びNドレイン層9−2を形成する。
図13(c)に示すように、レジストパターン42を除去する。P型ボディ層100の第2の領域8の露出面上、Nソース層9−1上、Nドレイン層9−2上、フィールド酸化膜4上、及びゲート電極7上にレジスト膜を塗布し、レジスト膜を露光及び現像し、Nソース層9−1上、Nドレイン層9−2上、フィールド酸化膜4上、及びゲート電極7上を覆うレジストパターン43を形成する。その後、このレジストパターン43をマスクとして使用し、加速エネルギー50keV及びドーズ量5×1015cm−2の条件で、N型不純物である二弗化ボロン(BF )を、P型ボディ層100の第2の領域8の上面近傍領域に注入する。その後、温度950℃程度及び時間30分程度の熱処理を行い、注入された不純物の活性化を行って、P層10を形成する。
図14に示すように、レジストパターン43を除去する。その後、P層10上、Nソース層9−1上、Nドレイン層9−2上、フィールド酸化膜4上、及びゲート電極7上に、層間絶縁膜11を既知の方法により形成する。層間絶縁膜11にソースコンタクトホール及びドレインコンタクトホールを既知の方法により形成し、ソースコンタクト12及びドレインコンタクト13をソースコンタクトホール内及びドレインコンタクトホール内にそれぞれ形成する。ソースコンタクト12の底部は、Nソース層9−1の一部及びP層10の一部に接する。ドレインコンタクト13の底部は、Nドレイン層9−2の一部に接する。その後、ソースコンタクト12の上部に接するソース配線層14−1及びドレインコンタクト13の上部に接するドレイン配線層14−2を、層間絶縁膜11上に形成することで、横型パワーMOSFETの製造行程が完了する。
尚、本実施形態では、図13(b)に示す行程でNソース層9−1を先に形成し、その後、図13(c)に示す行程でP層10を形成したが、形成の順序を逆にしてもよい。即ち、図13(c)に示す行程でP層10を先に形成し、その後、図13(b)に示す行程でNソース層9−1を形成してもよい。
(効果)
本実施形態によれば、横型パワーMOSFETのボディ層100は、第1の領域5と第2の領域8から構成し、第1の領域5の形成行程と、第2の領域8の形成行程とを分けて行う。更に、ボディ層100の第1の領域5及び第2の領域8は、それぞれ、不純物のイオン注入行程で行うが、イオン注入行程後の熱拡散処理を行わない。即ち、P型不純物であるボロン(B)をN型オフセット層3に選択的に導入する第1のイオン注入行程の後、不純物の熱拡散処理を行うことなく、ボディ層100の第1の領域5を形成する。その後、ゲート電極形成領域にゲート電極7を形成する。その後、このゲート電極7をマスクとしてP型不純物であるボロン(B)をN型オフセット層3に選択的に導入する第2のイオン注入行程を行うが、不純物の熱拡散処理を行うことなく、ゲート電極7の端部7−2に自己整合したボディ層100の第2の領域8を形成する。これにより、第1の領域5と第2の領域8とからなるボディ層100が形成される。
P型ボディ層100の第1の領域5は、ゲート電極7を形成する前に形成するので、イオン注入行程により注入された不純物の横方向への熱拡散行程を行う必要がない。P型ボディ層の第1の領域5を形成するため、イオン注入行程の後、不純物の活性化のための熱処理を行うことが好ましいが、不純物の横方向への熱拡散が生じない程度に、熱処理の温度及び時間を抑制することが重要である。即ち、P型ボディ層の第1の領域5の形成のため、喩え不純物活性化のための熱処理を行ったとしても、この熱処理は、高温且つ長時間でないため、不純物の熱拡散、特に横方向の熱拡散を伴わない。よって、P型ボディ層の第1の領域5とN型オフセット層3との界面120の高い急峻性が得られると共に、この急峻な界面120は、P型半導体基板1の面に対し概ね垂直である。不純物の横方向への熱拡散を回避する観点から、不純物の活性化のための熱処理を行わなくてもよい。いずれにしても、P型ボディ層の第1の領域5の形成は、不純物の横方向への熱拡散を伴わない。
その後、ゲート電極7が形成される。ゲート電極7の端部7−2は、シリコン窒化膜22の開口部の開口端部22−1により画定される。一方、P型ボディ層100の第1の領域5の端部も、シリコン窒化膜22の開口部25の開口端部22−1により画定される。よって、ゲート電極7の端部7−2は、P型ボディ層の第1の領域5の端部と水平方向位置でみて整合する。従って、ゲート電極7は、P型ボディ層100の第1の領域5と水平方向位置でみて整合する端部近傍領域7−1を有する。このことは、P型ボディ層100の第1の領域5は、横方向への熱拡散処理を行うことなく、ゲート電極7の端部近傍領域7−1直下に形成されることを意味する。
一方、P型ボディ層100の第2の領域8は、ゲート電極7を形成した後に形成する。しかし、ゲート電極7の端部近傍領域7−1直下には、P型ボディ層100の第1の領域5が既に形成されている。このため、イオン注入行程により注入された不純物の横方向への熱拡散行程を行う必要がない。P型ボディ層100の第2の領域8の形成も、第1の領域5の形成と同様に、P型ボディ層100の第2の領域8を形成するため、イオン注入行程の後、不純物の活性化のための熱処理を行うことが好ましいが、不純物の横方向への熱拡散が生じない程度に、熱処理の温度及び時間を抑制することが重要である。即ち、P型ボディ層100の第2の領域8の形成のため、喩え不純物活性化のための熱処理を行ったとしても、この熱処理は、高温且つ長時間でないため、不純物の熱拡散、特に横方向の熱拡散を伴わない。よって、既に形成されたP型ボディ層100の第1の領域5とN型オフセット層3との界面120の高い急峻性が得られると共に、この急峻な界面120は、P型半導体基板1の面に対し概ね垂直を保つ。不純物の横方向への熱拡散を回避する観点から、不純物の活性化のための熱処理を行わなくてもよい。いずれにしても、P型ボディ層の第2の領域8の形成は、不純物の横方向への熱拡散を伴わない。また、ゲート電極7の端部7−2をマスクとして使用し、P型ボディ層の第2の領域8の形成のためのイオン注入行程を行うため、P型ボディ層100の第1の領域5と第2の領域8との境界110は、ゲート電極7の端部7−2に自己整合される。
前述したように、P型ボディ層100の第1の領域5の形成および第2の領域8の形成は、不純物の熱拡散を引き起こすような高温且つ長時間の熱拡散処理を伴わない。従って、ゲート電極7を構成するポリシリコンはN型不純物を含むものの、このN型不純物が熱拡散によりゲート酸化膜6を突き抜け、ゲート酸化膜6直下のP型ボディ層100の第1の領域5の上部領域からなるチャネル領域やN型オフセット層3中に熱拡散することがない。この結果、デバイス特性を変動させてしまうことがない。
更に、高温かつ長時間の熱拡散処理を行うことなくボディ層を形成するため、所望の領域にボディ層を形成するための制御が容易となり、素子の更なる微細化を可能にする。より具体的には、横型二重拡散構造のパワーMOSFETの製造の場合、ボディ層とオフセット層との界面の高い急峻性の確保と、この急峻な界面の位置の制御、及びボディ層とオフセット層とに亘る横方向における不純物濃度プロファイルの制御が容易となる。素子の微細化が可能になることで、素子のON抵抗の低減が可能となり、その結果、素子の消費電力の低減を図ることが可能となる。
更に、高温かつ長時間の熱拡散処理を行うことなくボディ層を形成するため、製造時間及び製造コストを抑制することが可能となる。
更に、高温かつ長時間の熱拡散処理を行うことなくボディ層を形成するため、同一基板上に横型パワーMOSFETと他の素子を形成する場合、当該他の素子への高温かつ長時間の熱拡散処理の影響を低減することができる。
更に、P型ボディ層100の第1の領域5は、チャネル領域を含む浅い領域32と、該浅い領域32の下に位置する深い領域31とからなる。深い領域31は、チャネル領域を含む浅い領域32より高い不純物濃度を有する。素子の駆動能力を上げるには、ボディ層100の第1の領域5の浅い領域32に含まれるチャネル領域のチャネル抵抗やゲート閾値電圧を低減する必要がある。このチャネル抵抗やゲート閾値電圧を低減するには、ボディ層100の第1の領域5の浅い領域32の不純物濃度を低く設計することが好ましい。一方、素子の微細化を図るためには、Nソース層9−1とN型オフセット層3との間のパンチスルー耐性を上げることが必要となる。このパンチスルー耐性を上げるには、ボディ層100のうち、チャネル領域を含む浅い領域32の下に位置する深い領域31の不純物濃度を高く設計することが好ましい。そこで、ボディ層100の第1の領域5のうちチャネルとして働く浅い領域32では不純物濃度を低くし、一方、チャネル以外の深い領域31では不純物濃度を高くすることで、素子の駆動能力の増加と、パンチスルー耐性の上昇との相反する両方の要求を満たすことが可能となる。この結果、素子の更なる微細化が可能となる。素子の微細化が可能になることで、素子のON抵抗の低減が可能となり、その結果、素子の消費電力の低減を図ることが可能となる。
尚、上記イオン注入は、基板面に垂直方向にイオンを打ち込む行程である。
また、上記第1及び第2実施形態ではN型MOSFETについて記載したが、異なるイオン種を用いることによりP型MOSFETに、本発明を適用することが可能である。
更に、前記ゲート電極は、不純物を有するポリシリコン層から構成したが、必ずしもこれに限るものではなく、更なる低抵抗化を図るため、前記ゲート電極の上部領域をシリサイド層又はサリサイド層で構成してもよい。
前述した各層の厚さや各層の不純物濃度は、あくまで一例にすぎず、設計変更可能であることはいうまでもない。
本発明の第1実施形態に係る横型パワーMOSFETの構造を示す部分縦断面図である。 本発明の第1実施形態に係る横型パワーMOSFETの製造行程を示す部分縦断面図である。 本発明の第1実施形態に係る横型パワーMOSFETの製造行程を示す部分縦断面図である。 本発明の第1実施形態に係る横型パワーMOSFETの製造行程を示す部分縦断面図である。 本発明の第1実施形態に係る横型パワーMOSFETの製造行程を示す部分縦断面図である。 本発明の第1実施形態に係る横型パワーMOSFETの製造行程を示す部分縦断面図である。 本発明の第1実施形態に係る横型パワーMOSFETの製造行程を示す部分縦断面図である。 本発明の第2実施形態に係る横型パワーMOSFETの構造を示す部分縦断面図である。 本発明の第2実施形態に係る横型パワーMOSFETの製造行程を示す部分縦断面図である。 本発明の第2実施形態に係る横型パワーMOSFETの製造行程を示す部分縦断面図である。 本発明の第2実施形態に係る横型パワーMOSFETの製造行程を示す部分縦断面図である。 本発明の第2実施形態に係る横型パワーMOSFETの製造行程を示す部分縦断面図である。 本発明の第2実施形態に係る横型パワーMOSFETの製造行程を示す部分縦断面図である。 本発明の第2実施形態に係る横型パワーMOSFETの製造行程を示す部分縦断面図である。
符号の説明
1 P型半導体基板
2 N型エピタキシャル層
3 N型オフセット層
4 フィールド酸化膜
5 P型ボディ層の第1の領域
6 ゲート絶縁膜
7 ゲート電極
7−1 ゲート電極の端部近傍領域
7−2 ゲート電極の端部
7−3 ゲート電極の平坦化された上面
8 P型ボディ層の第2の領域
9−1 Nソース層
9−2 Nドレイン層
10 P
11 層間絶縁膜
12 ソースコンタクト
13 ドレインコンタクト
14―1 ソース配線層
14−2 ドレイン配線層
21 シリコン酸化膜
22 シリコン窒化膜
22−1 開口端部
23 レジストパターン
24 開口部
25 開口部
26 レジストパターン
27 開口部
28 端部
29 N型ポリシリコン膜
31 第1の領域の深い領域
32 第1の領域の浅い領域
40 シリコン酸化膜
41 レジストパターン
42 レジストパターン
43 レジストパターン
50 シリコン酸化膜
100 P型ボディ層
110 境界
120 界面

Claims (8)

  1. 第1導電型の半導体層中に、第1の開口端部を有する第1のマスクを使用して第2導電型の不純物を選択的にイオン注入することで、不純物の熱拡散を伴わずに、第1の領域を形成する行程と、
    前記第1の領域と水平方向位置が整合する端部近傍領域を含むゲート電極を前記第1の開口端部によって前記ゲート電極の一端部を画定することにより形成する行程と、
    前記第1導電型の半導体層中に、少なくとも前記ゲート電極の前記一端部をマスクとして利用して第2導電型の不純物を選択的にイオン注入することで、不純物の熱拡散を伴わずに、前記第1の領域と第2の領域との境界を、前記ゲート電極の前記一端部に自己整合させると共に、前記第1の領域に隣接する前記第2の領域を形成することで、前記第1及び第2の領域を含むボディ層を形成する行程と、
    前記第1の領域を形成する行程の後、前記第1のマスクを選択的に除去して、前記第1の開口端部はそのまま残しつつ開口部を広げる行程と、
    ゲート絶縁膜を形成する行程の後、前記ゲート電極を構成するゲート電極物質で前記広げた開口部を完全に埋め込む行程と、
    前記ゲート電極物質を平坦化する行程と、を含むことで、
    平坦化した上面を有する前記ゲート電極を前記広げた開口部に形成することを特徴とする横型パワーMOSFETの製造方法。
  2. 前記第1のマスクは、前記第1導電型の半導体層上に形成されたシリコン窒化膜を含むことを特徴とする請求項に記載の横型パワーMOSFETの製造方法。
  3. 前記第1のマスクを選択的に除去する行程は、水平方向位置でみて、前記第1の領域が存在する範囲内に位置する一開口端部を有するレジストパターンを使用した異方性エッチングにより行うことを特徴とする請求項1または請求項2に記載の横型パワーMOSFETの製造方法。
  4. 第1導電型の半導体層中に、第2導電型の不純物を加速エネルギー及び注入ドーズ量を変えて行うことで選択的にイオン注入することで、不純物の熱拡散を伴わずに、チャネル領域を含む浅い領域の不純物濃度が、前記浅い領域の下方に位置する深い領域の不純物濃度より低い、深さ方向の不純物プロファイルを有する第1の領域を形成する行程と、
    前記第1の領域と水平方向位置が整合する端部近傍領域を含むゲート電極を形成する行程と、
    前記第1導電型の半導体層中に、第2導電型の不純物を選択的にイオン注入することで、不純物の熱拡散を伴わずに、前記ゲート電極の一端部と前記第1の領域とに自己整合すると共に、前記第1の領域に隣接する第2の領域を形成することで、前記第1及び第2の領域を含むボディ層を形成する行程と、
    を含むことを特徴とする横型パワーMOSFETの製造方法。
  5. 前記第1の領域と前記第2の領域との境界は、前記ゲート電極の前記一端部に自己整合することを特徴とする請求項に記載の横型パワーMOSFETの製造方法。
  6. 前記第1の領域は、前記第1導電型の半導体層に対し概垂直な界面を有することを特徴とする請求項1から請求項5のいずれか1項に記載の横型パワーMOSFETの製造方法。
  7. 前記第1の領域及び第2の領域を形成する行程は、前記選択的イオン注入の後、イオン注入された不純物を活性化するが、熱拡散はしない条件で熱処理を行う行程を更に含むことを特徴とする請求項1から請求項6のいずれか1項に記載の横型パワーMOSFETの製造方法。
  8. 前記ゲート電極は、不純物含有ポリシリコンを含むことを特徴とする請求項1から請求項7のいずれか1項に記載の横型パワーMOSFETの製造方法。
JP2005063096A 2005-03-07 2005-03-07 半導体装置及びその製造方法 Expired - Fee Related JP4890773B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005063096A JP4890773B2 (ja) 2005-03-07 2005-03-07 半導体装置及びその製造方法
US11/276,546 US7514332B2 (en) 2005-03-07 2006-03-06 Semiconductor device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005063096A JP4890773B2 (ja) 2005-03-07 2005-03-07 半導体装置及びその製造方法

Publications (2)

Publication Number Publication Date
JP2006245517A JP2006245517A (ja) 2006-09-14
JP4890773B2 true JP4890773B2 (ja) 2012-03-07

Family

ID=36944617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005063096A Expired - Fee Related JP4890773B2 (ja) 2005-03-07 2005-03-07 半導体装置及びその製造方法

Country Status (2)

Country Link
US (1) US7514332B2 (ja)
JP (1) JP4890773B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8497167B1 (en) * 2007-01-17 2013-07-30 National Semiconductor Corporation EDS protection diode with pwell-nwell resurf
KR101405310B1 (ko) 2007-09-28 2014-06-12 삼성전자 주식회사 반도체 집적 회로 장치 및 그 제조 방법
JP5420854B2 (ja) * 2008-04-28 2014-02-19 パナソニック株式会社 半導体装置およびその製造方法
CN102971855B (zh) 2010-06-21 2016-02-24 瑞萨电子株式会社 半导体器件及其制造方法
US8890144B2 (en) * 2012-03-08 2014-11-18 United Microelectronics Corp. High voltage semiconductor device
CN103325816B (zh) * 2012-03-19 2017-07-18 联华电子股份有限公司 高压半导体元件
CN116635984B (zh) * 2020-12-01 2024-03-15 日产自动车株式会社 半导体装置及其制造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5306652A (en) 1991-12-30 1994-04-26 Texas Instruments Incorporated Lateral double diffused insulated gate field effect transistor fabrication process
US5559044A (en) * 1992-09-21 1996-09-24 Siliconix Incorporated BiCDMOS process technology
JP3217554B2 (ja) * 1993-09-17 2001-10-09 株式会社東芝 高耐圧半導体装置
US5795793A (en) 1994-09-01 1998-08-18 International Rectifier Corporation Process for manufacture of MOS gated device with reduced mask count
US6724040B2 (en) * 1996-01-22 2004-04-20 Fuji Electric Co., Ltd. Semiconductor device
US5602046A (en) * 1996-04-12 1997-02-11 National Semiconductor Corporation Integrated zener diode protection structures and fabrication methods for DMOS power devices
JP3625603B2 (ja) * 1997-03-11 2005-03-02 ローム株式会社 Dmos構造を有する半導体装置およびその製造方法
KR100225411B1 (ko) * 1997-03-24 1999-10-15 김덕중 LDMOS(a lateral double-diffused MOS) 트랜지스터 소자 및 그의 제조 방법
US6100169A (en) * 1998-06-08 2000-08-08 Cree, Inc. Methods of fabricating silicon carbide power devices by controlled annealing
JP2000312002A (ja) * 1999-04-27 2000-11-07 Sanyo Electric Co Ltd 半導体装置とその製造方法
JP4872141B2 (ja) 1999-10-28 2012-02-08 株式会社デンソー パワーmosトランジスタ
JP3448546B2 (ja) * 2000-04-26 2003-09-22 三洋電機株式会社 半導体装置とその製造方法
JP4171251B2 (ja) * 2002-07-02 2008-10-22 三洋電機株式会社 半導体装置及びその製造方法
US6855985B2 (en) * 2002-09-29 2005-02-15 Advanced Analogic Technologies, Inc. Modular bipolar-CMOS-DMOS analog integrated circuit & power transistor technology
WO2004097942A1 (ja) * 2003-04-30 2004-11-11 Fujitsu Limited 半導体装置の製造方法
US7005354B2 (en) * 2003-09-23 2006-02-28 Texas Instruments Incorporated Depletion drain-extended MOS transistors and methods for making the same
JP4308096B2 (ja) * 2004-07-01 2009-08-05 パナソニック株式会社 半導体装置及びその製造方法

Also Published As

Publication number Publication date
US7514332B2 (en) 2009-04-07
JP2006245517A (ja) 2006-09-14
US20060199344A1 (en) 2006-09-07

Similar Documents

Publication Publication Date Title
KR100400079B1 (ko) 트랜치 게이트 구조를 갖는 전력용 반도체 소자의 제조 방법
US7550352B2 (en) MOS transistor having a recessed gate electrode and fabrication method thereof
US6642581B2 (en) Semiconductor device comprising buried channel region
US7332400B2 (en) Method of manufacturing a semiconductor device having a gate structure with low parasitic capacitance
US7242058B2 (en) Lateral semiconductor device using trench structure and method of manufacturing the same
KR19990030992A (ko) 더블 스페이서를 구비한 반도체 장치 및 그 제조 방법
JP4890773B2 (ja) 半導体装置及びその製造方法
JP2005072577A (ja) コンタクトマージンが確保できるシリサイド膜を具備した高集積半導体素子及びその製造方法
JP2010010408A (ja) 半導体装置及びその製造方法
JP2007317796A (ja) 半導体装置および半導体装置の製造方法
JP5378925B2 (ja) 半導体装置およびその製造方法
JP2005260055A (ja) 半導体装置およびその製造方法
JP4146857B2 (ja) 半導体装置及びその製造方法
JP2008140922A (ja) 半導体装置
JP5055697B2 (ja) 絶縁ゲート電界効果トランジスタ及びその動作方法
JP5630939B2 (ja) 半導体装置及びその製造方法
US20030107052A1 (en) Structure and method for fabricating a semiconductor device
JP2005150565A (ja) 半導体装置及びその製造方法
JP2001203348A (ja) 半導体装置及びその製造方法
JP2006245378A (ja) 電界効果トランジスタ及びその製造方法
JP2007207866A (ja) Mosトランジスタとその製造方法
JPH08236760A (ja) 半導体装置及びその製造方法
KR20000073979A (ko) 반도체소자 및 그 제조방법
JP2001024190A (ja) 半導体装置及びその製造方法
JPH06334180A (ja) 絶縁ゲート型トランジスタ

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070216

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070810

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20081203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081219

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees