JP4884404B2 - Method and apparatus for detecting internal information of secondary battery - Google Patents

Method and apparatus for detecting internal information of secondary battery Download PDF

Info

Publication number
JP4884404B2
JP4884404B2 JP2008011599A JP2008011599A JP4884404B2 JP 4884404 B2 JP4884404 B2 JP 4884404B2 JP 2008011599 A JP2008011599 A JP 2008011599A JP 2008011599 A JP2008011599 A JP 2008011599A JP 4884404 B2 JP4884404 B2 JP 4884404B2
Authority
JP
Japan
Prior art keywords
charge
discharge curve
secondary battery
battery
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008011599A
Other languages
Japanese (ja)
Other versions
JP2009080093A (en
Inventor
耕平 本蔵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vehicle Energy Japan Inc
Original Assignee
Hitachi Vehicle Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Vehicle Energy Ltd filed Critical Hitachi Vehicle Energy Ltd
Priority to JP2008011599A priority Critical patent/JP4884404B2/en
Priority to EP08014303.5A priority patent/EP2053414B1/en
Priority to CN2008102109179A priority patent/CN101383438B/en
Publication of JP2009080093A publication Critical patent/JP2009080093A/en
Application granted granted Critical
Publication of JP4884404B2 publication Critical patent/JP4884404B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、二次電池の内部情報の検知方法およびその機能を備えた装置に関する。   The present invention relates to a method for detecting internal information of a secondary battery and a device having the function.

二次電池(例えば、リチウム二次電池)は、高温環境下あるいは充電深度が深い状態で保存したり、充放電サイクルを行ったりすると劣化し、容量が低下することが知られている。いったん容量が低下した電池は、たとえ十分な充電を行ったとしても元の電池容量まで回復しない。この容量減少は、正極および負極の充放電に寄与する電極材料の減少や、電極材料と電解液の界面における不可逆な化学反応などによるものと考えられる。従来は、いったん電池を作製してしまうと、これらの電池内部の劣化因子を非破壊で別々に判定することが困難であった。このため、従来の電池の状態判定方法は、電池全体の劣化の程度を判定するものであった。   It is known that a secondary battery (for example, a lithium secondary battery) is deteriorated when the battery is stored in a high temperature environment or in a state where the charging depth is deep, or a charge / discharge cycle is performed, and the capacity is reduced. Once the capacity is reduced, the battery does not recover to the original capacity even if the battery is fully charged. This decrease in capacity is thought to be due to a decrease in the electrode material that contributes to charge and discharge of the positive electrode and the negative electrode, an irreversible chemical reaction at the interface between the electrode material and the electrolyte, and the like. Conventionally, once the batteries are manufactured, it is difficult to separately determine the deterioration factors inside these batteries in a non-destructive manner. For this reason, the conventional battery state determination method determines the degree of deterioration of the entire battery.

また、二次電池の使用は、一定範囲内の電池電圧または充電状態で行われる。しかし、二次電池の劣化に伴い、ある電池電圧または充電状態に対応する正極電位及び負極電位は変化する。このため、劣化前と同じ電池電圧範囲または充電状態範囲で二次電池の使用を続けた場合には、正極電位または負極電位が望ましくない領域に入り、電池寿命や安全性が低下する可能性がある。従来の内部情報検知方法では、正極電位および負極電位を高い精度で別々に取得することは不可能であったでの、このような事態を回避するのは困難であった。   The secondary battery is used at a battery voltage or a charged state within a certain range. However, as the secondary battery deteriorates, the positive electrode potential and the negative electrode potential corresponding to a certain battery voltage or state of charge change. For this reason, if the secondary battery continues to be used in the same battery voltage range or charged state range as before deterioration, the positive electrode potential or negative electrode potential may enter an undesirable region, and the battery life and safety may be reduced. is there. In the conventional internal information detection method, it has been impossible to separately acquire the positive electrode potential and the negative electrode potential with high accuracy, but it has been difficult to avoid such a situation.

これまでに提案された代表的な二次電池の劣化判定方法としては、所定時間あたりの電池電圧の変化ΔVを用いて電池の劣化判定を行う、などの方法が挙げられる。
特開2002−340997号公報 特開2001−292534号公報
As a typical secondary battery deterioration determination method proposed so far, there is a method of performing battery deterioration determination using a battery voltage change ΔV per predetermined time.
JP 2002-340997 A JP 2001-292534 A

上記の二次電池の劣化判定方法は、電池全体の劣化率を数値化する方法である。しかし、電池全体の劣化率を求めても、劣化した電池の内部で正極と負極や不可逆な化学反応がそれぞれどのような状況にあるのかを判定することはできず、応用範囲が限られるという問題があった。一方、電池の内部での正極と負極や不可逆な化学反応がそれぞれどのような状況があるのかを判定するためには、電池を解体する必要があり、電池が使えなくなるという問題があった。   The secondary battery degradation determination method is a method of quantifying the degradation rate of the entire battery. However, even if the deterioration rate of the entire battery is obtained, it is impossible to determine the situation of the positive and negative electrodes and irreversible chemical reaction inside the deteriorated battery, and the application range is limited. was there. On the other hand, in order to determine the situation of the positive and negative electrodes and the irreversible chemical reaction inside the battery, it is necessary to disassemble the battery, and there is a problem that the battery cannot be used.

本発明は、上記の課題を解決すべくなされたものであり、非破壊で、かつ簡便な方法で、二次電池の内部における正極の状況と負極の状況とを検知する技術を提供することを目的とする。   The present invention has been made to solve the above problems, and provides a technique for detecting the state of the positive electrode and the state of the negative electrode inside the secondary battery by a non-destructive and simple method. Objective.

本発明者は、微小な電流で二次電池の充放電を行った場合には、得られた二次電池の充放電カーブは、別途測定した正極単独および負極単独の充放電カーブの重ね合わせ計算を行うことで良好に再現されること、およびその計算に用いるパラメータとして、充放電に寄与する正極活物質量mp、充放電に寄与する負極活物質量mn、正極と負極の充放電カーブの位置関係についての指標Cを定めれば十分であることを見出した。なお、本明細書中では「充放電に寄与する活物質量」を、「有効活物質量」と表現する。 When the inventor performed charging / discharging of the secondary battery with a small current, the charging / discharging curve of the obtained secondary battery was calculated by superposing the charging / discharging curves of the positive electrode and the negative electrode separately measured separately. As parameters used for the calculation, the amount of positive electrode active material m p that contributes to charge and discharge, the amount of negative electrode active material m n that contributes to charge and discharge, the charge and discharge curves of the positive electrode and the negative electrode It was found that it is sufficient to define an index C for the positional relationship of. In the present specification, “amount of active material contributing to charge / discharge” is expressed as “amount of active active material”.

本発明の第一の態様は、二次電池の内部情報検知方法であって、
正極材料固有の充・放電カーブと負極材料固有の充・放電カーブとを取得するとともに、前記二次電池の実測に基づく電池全体の充・放電カーブを取得する第1のステップと、
充・放電に寄与する活物質量を補正するための第1の補正パラメータを用いて、前記正極材料固有の充・放電カーブ及び前記負極材料固有の充・放電カーブを補正し、正極全体の充・放電カーブ及び負極全体の充・放電カーブを求め、充・放電カーブの位置関係を補正するための第2の補正パラメータを用いて、前記正極全体の充・放電カーブ及び負極全体の充・放電カーブの位置関係を補正し、さらに重ね合わせることにより、電池全体の充・放電カーブ(「計算に基づく電池全体の充・放電カーブ」という)を求め、前記計算に基づく電池全体の充・放電カーブと前記実測に基づく電池全体の充・放電カーブとの相関性を求める第2のステップと、
前記第2のステップにおいて前記相関性が高くなる場合の前記第1の補正パラメータ及び前記第2の補正パラメータを特定する第3のステップと、
前記第3のステップで特定した第2の補正パラメータを用いて位置関係が補正された前記正極全体の充・放電カーブ及び前記負極全体の充・放電カーブを、前記二次電池の正極全体の充・放電カーブ及び負極全体の充・放電カーブと推定する第4のステップと、を有する。
A first aspect of the present invention is a method for detecting internal information of a secondary battery,
A first step of acquiring a charge / discharge curve specific to the positive electrode material and a charge / discharge curve specific to the negative electrode material, and acquiring a charge / discharge curve of the entire battery based on the actual measurement of the secondary battery;
Using the first correction parameter for correcting the amount of active material contributing to charging / discharging, the charging / discharging curve specific to the positive electrode material and the charging / discharging curve specific to the negative electrode material are corrected, and charging / discharging of the entire positive electrode is performed. -Obtaining the discharge curve and the entire charge / discharge curve of the negative electrode, and using the second correction parameter for correcting the positional relationship of the charge / discharge curve, the charge / discharge curve of the entire positive electrode and the charge / discharge of the entire negative electrode By correcting the positional relationship of the curves and superimposing them, the charging / discharging curve of the entire battery (referred to as “the charging / discharging curve of the entire battery based on the calculation”) is obtained, and the charging / discharging curve of the entire battery based on the calculation is calculated. And a second step for obtaining a correlation between the charge / discharge curve of the whole battery based on the actual measurement,
A third step of specifying the first correction parameter and the second correction parameter when the correlation is high in the second step;
The charge / discharge curve of the whole positive electrode and the charge / discharge curve of the whole negative electrode, the positional relationship of which are corrected using the second correction parameter specified in the third step, are charged to the charge / discharge curve of the whole positive electrode of the secondary battery. A fourth step of estimating the discharge curve and the charge / discharge curve of the entire negative electrode.

また、本発明の第二の態様は、二次電池の内部情報検知方法であって、
基礎データとしての正極材料固有の充・放電カーブ及び負極材料固有の充・放電カーブを取得するとともに、実測値としての被検知電池の充・放電カーブを取得する第1のステップと、
前記正極材料固有の充・放電カーブ、前記負極材料固有の充・放電カーブ、及び前記実測値としての被検知電池の充・放電カーブと、所定の補正パラメータとを用いて、被検知電池内部の正極の充・放電電カーブ及び負極の充・放電カーブを求める第2のステップと、
前記第2のステップで求められた、前記正極の充・放電カーブ、前記負極の充・放電カーブ、及び計算に用いた前記補正パラメータの3つのうちの少なくとも一つを出力する第3のステップと、を有する。
The second aspect of the present invention is a method for detecting internal information of a secondary battery,
A first step of acquiring a charge / discharge curve specific to the positive electrode material and a charge / discharge curve specific to the negative electrode material as basic data, and acquiring a charge / discharge curve of the detected battery as an actual measurement value;
Using the charge / discharge curve specific to the positive electrode material, the charge / discharge curve specific to the negative electrode material, the charge / discharge curve of the detected battery as the actual measurement value, and a predetermined correction parameter, A second step for determining a charge / discharge curve for the positive electrode and a charge / discharge curve for the negative electrode;
The obtained in the second step, the positive electrode charging and discharging curves, a third step of outputting at least one of the three of the negative electrode of the charging and discharging curves, and the correction parameters used in the calculation Have.

また、本発明には、これらの方法を実行する装置も含まれる。   The present invention also includes an apparatus for performing these methods.

次に、本発明の実施例について、図を用いて説明する。なお、本発明は以下に述べる実施例に限定されるものではない。また、これ以降、添え字のpは正極、添え字のnは負極を表すものとする。   Next, embodiments of the present invention will be described with reference to the drawings. In addition, this invention is not limited to the Example described below. Hereinafter, the subscript p represents the positive electrode, and the subscript n represents the negative electrode.

図1は、リチウム二次電池の内部情報を検知するための装置(「内部情報検知装置」という)1の概略構成図を示す。内部情報検知装置1は、CPU等の演算装置10と、RAMやROM等のメモリ11と、キーボードやマウス等の入力装置12と、ディスプレイ等の出力装置13と、外部機器とのインターフェース14とを備えた、コンピュータシステムによって達成される。内部情報検知装置1は、検知対象の電池(「被検知電池」という)から電圧変化などの内部情報を取得する装置(不図示)に接続されている。   FIG. 1 is a schematic configuration diagram of a device (referred to as “internal information detection device”) 1 for detecting internal information of a lithium secondary battery. The internal information detection apparatus 1 includes an arithmetic device 10 such as a CPU, a memory 11 such as a RAM and a ROM, an input device 12 such as a keyboard and a mouse, an output device 13 such as a display, and an interface 14 with an external device. This is achieved by a computer system with. The internal information detection device 1 is connected to a device (not shown) that acquires internal information such as a voltage change from a battery to be detected (referred to as “detected battery”).

なお、下記では、電池の放電特性に着目して内部情報を検知する場合について説明するが、当然のことながら、充電特性に関する内部情報を検知することもできる。充電特性に関する内部情報を検知する場合は、下記の説明において、「放電」とあるのを「充電」と読み代えればよい。   In the following description, the case where the internal information is detected by focusing on the discharge characteristics of the battery will be described, but it is possible to detect the internal information related to the charge characteristics as a matter of course. In the case of detecting internal information related to the charging characteristics, “discharge” may be replaced with “charge” in the following description.

図2は、内部情報として正極及び負極の状態(放電カーブ)を求める処理(再現計算処理)のフロー図である。   FIG. 2 is a flowchart of a process (reproduction calculation process) for obtaining the state (discharge curve) of the positive electrode and the negative electrode as internal information.

まず、演算装置10は、正極活物質固有の放電カーブと、負極活物質固有の放電カーブとを、メモリ11から読み込む(S101)。なお、メモリ11には、これらの放電カーブが予め格納されている。   First, the arithmetic unit 10 reads the discharge curve specific to the positive electrode active material and the discharge curve specific to the negative electrode active material from the memory 11 (S101). The memory 11 stores these discharge curves in advance.

具体的には、メモリ11には、放電カーブとして、
(a)単位質量あたりの正極・負極有効活物質に対する放電量qp、qnと、電位vp、vnと、の関係vp(qp)、vn(qn)で示される放電カーブ、
(b)単位質量あたりの正極・負極有効活物質に対する放電量qp、qnと、電位の変化率dvp/dqp、dvn/dqnと、の関係dvp(qp)/dqp、dvn(qn)/dqnで示される放電カーブ、などが格納されている。
Specifically, in the memory 11, as a discharge curve,
(A) Discharges indicated by the relations v p (q p ) and v n (q n ) between the discharge amounts q p and q n for the positive and negative electrode active materials per unit mass and the potentials v p and v n curve,
(B) Relationship between discharge amounts q p and q n for positive and negative electrode active active materials per unit mass and potential change rates dv p / dq p and dv n / dq n dv p (q p ) / dq The discharge curves indicated by p and dv n (q n ) / dq n are stored.

上記の(a)、(b)の放電カーブは、活物質材料におけるリチウム組成比を基準に表すこともできる。かかる場合、放電カーブは、
(c)活物質材料におけるリチウム組成比yと、電位vと、の関係v(y)、
(d)活物質材料におけるリチウム組成比yと、電位の変化率dv/dyと、の関係dv(y)/dy、
でそれぞれ示される。
The discharge curves (a) and (b) can also be expressed based on the lithium composition ratio in the active material. In such a case, the discharge curve is
(C) The relationship v (y) between the lithium composition ratio y and the potential v in the active material,
(D) Relationship between the lithium composition ratio y in the active material and the potential change rate dv / dy dv (y) / dy,
Respectively.

なお、上記(b)、(d)の放電カーブのように微分値を用いる利点は、以下の通りである。1つめの理由は、正極・負極それぞれの電位は有効活物質量に依存しないのに対し、それぞれの電位の放電量での微分は有効活物質量に反比例するため、正しくない有効活物質量を設定した場合の計算値と実測値とのずれが拡大されるためである。また2つ目の理由は、リチウム二次電池の内部抵抗をR、実測の際の放電電流をIとすると、電圧の実測値Vsには内部抵抗による電圧降下(電圧上昇)ΔV=R×Iが含まれるが、電圧の微分カーブを用いることでΔVの影響を小さくできるためである。 The advantages of using the differential value as in the discharge curves (b) and (d) are as follows. The first reason is that the potential of the positive electrode and the negative electrode does not depend on the amount of active active material, whereas the derivative of each potential at the discharge amount is inversely proportional to the amount of active active material. This is because the difference between the calculated value and the actually measured value when set is enlarged. The second reason also, when the internal resistance of the lithium secondary battery R, the discharge current at the time of actual measurement and I, the voltage drop (voltage rise) caused by the internal resistance in the measured value V s of the voltage [Delta] V = R × This is because the influence of ΔV can be reduced by using a voltage differential curve.

次に、演算装置10は、被検知電池から実測される放電カーブ(「実測に基づく電池全体の放電カーブ」という)を読み込む(S102)。なお、ここでは、S101で読み込んだ放電カーブの種類に対応する放電カーブを読み込む。   Next, the arithmetic unit 10 reads a discharge curve actually measured from the detected battery (referred to as “discharge curve of the whole battery based on the actual measurement”) (S102). Here, the discharge curve corresponding to the type of the discharge curve read in S101 is read.

すなわち、上記(a)のvp(qp)、vn(qn)で示される放電カーブを読み込んだ場合には、演算装置10は、放電量Qsと電池電圧Vsとの関係Vs(Qs)で示される放電カーブを読み込む。 That is, when the discharge curve indicated by v p (q p ) and v n (q n ) in (a) is read, the arithmetic unit 10 determines the relationship V between the discharge amount Q s and the battery voltage V s. Read the discharge curve indicated by s (Q s ).

一方、上記(b)のdvp(qp)/dqp、dvn(qn)/dqnで示される充電カーブを読み込んだ場合は、演算装置10は、放電量Qsと電池電圧の変化率dVs/dQsとの関係dVs(Qs)/dQsで示される放電カーブを読み込む。 On the other hand, when the charging curves indicated by dv p (q p ) / dq p and dv n (q n ) / dq n in (b) above are read, the arithmetic unit 10 calculates the discharge amount Q s and the battery voltage. Relationship with change rate dV s / dQ s A discharge curve indicated by dV s (Q s ) / dQ s is read.

なお、S101とS102との順番は逆でもよい。また、演算装置10は、これらの放電カーブを、測定データに基づくデータテーブルとして読み込んでもよいし、また数式として読み込んでもよい。また、放電カーブをデータテーブルとして読み込んだ場合には、後の計算に便利なように補正してもよい。例えば、一般にデータテーブル内において、あるxに対応する値をf(x)とすると、f(x)は、区切りのよい値xに対応して定められている。この場合、任意のxに対応するf(x)の値は、読み込んだデータテーブルの他の値から内挿して求められる。関数として読み込む場合、放電カーブは、例えば、放電量Qと、放電量Qの変化量ΔQに対する電圧の変化量ΔVすなわち電圧の微分値dV/dQとの関係で表される。データテーブルとして読み込む場合は、差分値ΔV/ΔQとの関係で表される。   Note that the order of S101 and S102 may be reversed. The arithmetic device 10 may read these discharge curves as a data table based on the measurement data, or may read them as mathematical expressions. Further, when the discharge curve is read as a data table, it may be corrected so as to be convenient for later calculation. For example, generally, in a data table, if a value corresponding to a certain x is f (x), f (x) is determined corresponding to a value x with good separation. In this case, the value of f (x) corresponding to an arbitrary x is obtained by interpolating from other values of the read data table. When reading as a function, the discharge curve is expressed, for example, by the relationship between the discharge amount Q and the change amount ΔV of the voltage with respect to the change amount ΔQ of the discharge amount Q, that is, the differential value dV / dQ of the voltage. When reading as a data table, it is represented by the relationship with the difference value ΔV / ΔQ.

次に、演算装置10は、S101で取得した放電カーブを補正するためのパラメータ(「補正パラメータ」という)を設定する(S103)。   Next, the arithmetic unit 10 sets a parameter (referred to as “correction parameter”) for correcting the discharge curve acquired in S101 (S103).

ここで補正パラメータは、正極有効活物質量mpと、負極有効活物質量mnと、正極の放電カーブの位置関係の指標Cpと、負極の放電カーブの位置関係の指標Cnとの4つである。 Here, the correction parameters are the positive electrode active active material amount m p , the negative electrode active active material amount mn , the positive discharge curve positional index C p, and the negative discharge curve positional index C n . There are four.

図3は、これらのパラメータの取り得る値の組み合わせを格納するパラメータテーブル100を示す。パラメータテーブル100は予めメモリ11に記憶されている。1つのレコード101には、4つのパラメータ(mp、mn、Cp、Cn)の組み合わせ(「パラメータ群」という)が格納されている。各パラメータには、上限及び下限があり、その範囲内で所定間隔で値が設定される。そして、パラメータテーブル100には、取り得る全てのパラメータ群が格納されている。すなわち、4つのパラメータ(mp、mn、Cp、Cn)が、それぞれ、N1、N2,N3,N4通りの値を取り得る場合、パラメータテーブル100には、N1*N2*N3*N4通りのパラメータ群のレコード101が存在する。 FIG. 3 shows a parameter table 100 that stores combinations of possible values of these parameters. The parameter table 100 is stored in the memory 11 in advance. One record 101 stores a combination of four parameters (m p , m n , C p , C n ) (referred to as “parameter group”). Each parameter has an upper limit and a lower limit, and values are set at predetermined intervals within the range. The parameter table 100 stores all possible parameter groups. That is, when the four parameters (m p , m n , C p , C n ) can take N1, N2, N3, and N4 values, respectively, the parameter table 100 includes N1 * N2 * N3 * N4. There is a record 101 of street parameter groups.

演算装置10は、パラメータテーブル100の先頭から順番に未選択のレコード101を1つ選択し、そのレコード101に格納されているパラメータ群を抽出し、抽出したパラメータ群に含まれているパラメータ値を、次処理のS104で用いるパラメータ値として設定する。   The arithmetic unit 10 selects one unselected record 101 in order from the top of the parameter table 100, extracts the parameter group stored in the record 101, and sets the parameter value included in the extracted parameter group. This is set as a parameter value used in S104 of the next process.

そして、演算装置10は、S101で読み込んだ、正極活物質固有の放電カーブと、負極活物質固有の放電カーブと、S103で設定したパラメータ値とを用いて、電池内部の正極全体の放電カーブおよび負極全体の放電カーブを求める(S104)。ここでの放電カーブの計算方法の例を以下に述べる。   Then, the arithmetic unit 10 uses the discharge curve specific to the positive electrode active material, the discharge curve specific to the negative electrode active material, and the parameter value set in S103 read in S101, and the discharge curve of the entire positive electrode inside the battery and A discharge curve of the entire negative electrode is obtained (S104). An example of the calculation method of the discharge curve here will be described below.

正極・負極全体の放電カーブにおける放電量をそれぞれQp、Qnとすると、Qp=qp×mp、Qn=qn×mnである。そこで、演算装置10は、
(1)図4に示すように、S101において活物質固有の放電カーブとしてv(q)を読み込み、S102ではVs(Qs)を読み込んだ場合には、正極全体の放電量Qpと電位Vpとの関係、すなわち電池内部の正極全体の放電カーブを、Vp(Qp)=vp(Qp/mp)を用いて求める。同様に、負極全体の放電量Qnと電位Vnと関係、すなわち電池内部の負極全体の放電カーブを、Vn(Qn)=vn(Qn/mn)を用いて求める。
(2)また、図5に示すように、S101において活物質固有の放電カーブとしてdv(q)/dqを読み込み、S102ではdVs(Qs)/dQsを読み込んだ場合(すなわち、微分値を用いる場合)には、正極全体の放電量Qpと電位変化率dVp/dQpとの関係、すなわち正極全体の放電カーブを、dVp(Qp)/dQp=(1/mp)×dvp(Qp/mp)/dqpを用いて求める。同様に、負極全体の放電量Qnと電位変化率dVn/dQnとの関係、すなわち負極全体の放電カーブを、dVn(Qn)/dQn=(1/mn)×dvn(Qn/mn)/dqnを用いて求める。
If the discharge amounts in the discharge curves of the whole positive electrode and negative electrode are Q p and Q n , respectively, Q p = q p × m p and Q n = q n × mn . Therefore, the arithmetic unit 10
(1) As shown in FIG. 4, when v (q) is read as a discharge curve specific to the active material in S101 and V s (Q s ) is read in S102, the discharge amount Q p and potential of the entire positive electrode The relationship with V p , that is, the discharge curve of the entire positive electrode inside the battery is obtained using V p (Q p ) = v p (Q p / m p ). Similarly, the relationship between the discharge amount Q n of the entire negative electrode and the potential V n , that is, the discharge curve of the entire negative electrode inside the battery is obtained using V n (Q n ) = v n (Q n / m n ).
(2) As shown in FIG. 5, when dv (q) / dq is read as a discharge curve specific to the active material in S101 and dV s (Q s ) / dQ s is read in S102 (that is, the differential value) ), The relationship between the discharge amount Q p of the entire positive electrode and the potential change rate dV p / dQ p , that is, the discharge curve of the entire positive electrode is expressed as dV p (Q p ) / dQ p = (1 / m p ) × dv p (Q p / m p ) / dq p Similarly, the relationship between the discharge amount Q n of the entire negative electrode and the potential change rate dV n / dQ n , that is, the discharge curve of the entire negative electrode is expressed as dV n (Q n ) / dQ n = (1 / m n ) × dv n It is calculated using (Q n / m n ) / dq n .

次に、演算装置10は、S104で得られた電池内部における正極全体の放電カーブおよび負極全体の放電カーブと、S103で設定したパラメータ値Cp、Cnとを用いて、電池全体の放電カーブの計算値(「計算に基づく電池全体の放電カーブ」という)を求める(S105)。概略すると、ここでは、放電カーブの位置関係を補正し、重ね合わせる(足し合わせる)という処理を行う。計算方法の一例を以下に述べる。また、図4及び図5に、計算方法を説明するための図を示す。 Next, the arithmetic unit 10 uses the discharge curve of the whole positive electrode and the whole negative electrode inside the battery obtained in S104, and the parameter values C p and C n set in S103, and the discharge curve of the whole battery. Is calculated (referred to as “discharge curve of the whole battery based on the calculation”) (S105). In summary, here, the process of correcting the positional relationship of the discharge curves and superimposing (adding) is performed. An example of the calculation method is described below. 4 and 5 are diagrams for explaining the calculation method.

まず、演算装置10は、S103で設定したCp、Cnを用いて、QpおよびQnに対してQc=Qp+Cp=Qn+Cnと定める。ここでQcは、「計算に基づく電池全体の放電カーブ」における放電量を意味する。次に、Qcと電池内部における正極電位V’pとの関係、すなわち正極全体の放電カーブを、V’p(Qc)=Vp(Qp)を用いて定める。同様に、Qcと電池内部における負極電位V’nとの関係、すなわち負極全体の放電カーブを、V’n(Qc)=Vn(Qn)を用いて定める。最後に、Qcと電池電圧の計算値Vcとの関係、すなわち「計算に基づく電池全体の放電カーブ」を、Vc(Qc)= V’p(Qc)-V’n(Qc)を用いて求める。 First, the arithmetic unit 10 determines Q c = Q p + C p = Q n + C n for Q p and Q n using C p and C n set in S103. Here, Q c means the discharge amount in the “discharge curve of the whole battery based on calculation”. Next, the relationship between Q c and the positive electrode potential V ′ p inside the battery, that is, the discharge curve of the entire positive electrode is determined using V ′ p (Q c ) = V p (Q p ). Similarly, the relationship between Q c and the negative electrode potential V ′ n inside the battery, that is, the discharge curve of the entire negative electrode is determined using V ′ n (Q c ) = V n (Q n ). Finally, the relationship between Q c and the calculated value V c of the battery voltage, that is, the “discharge curve of the whole battery based on the calculation” is expressed as V c (Q c ) = V ′ p (Q c ) −V ′ n (Q c ) to determine.

なお、微分値を用いる場合は、Qcに対する電池内部の正極全体の放電カーブを、{dVp(Qc)/dQc}’=dVp(Qp)/dQpを用いて定め、Qcに対する電池内部の負極全体の放電カーブを{dVn(Qc)/dQc}’=dVn(Qn)/dQnを用いて定め、「計算に基づく電池全体の放電カーブ」を、dVc(Qc)/dQc= {dVp(Qc)/dQc}’-{dVn(Qc)/dQc}’を用いて求める。 When using the differential value, the discharge curve of the entire positive electrode inside the battery with respect to Q c is determined using {dV p (Q c ) / dQ c } '= dV p (Q p ) / dQ p , and Q The discharge curve of the entire negative electrode inside the battery with respect to c is determined using {dV n (Q c ) / dQ c } '= dV n (Q n ) / dQ n , and the `` discharge curve of the entire battery based on calculation'' dV c (Q c ) / dQ c = {dV p (Q c ) / dQ c } ′ − {dV n (Q c ) / dQ c } ′

次に、演算装置10は、S102で取得した「実測に基づく電池全体の放電カーブ」と、S105で求めた「計算に基づく電池全体の放電カーブ」とを比較し、再現度(言い換えれば、「相関性」)を評価する(S106)。評価方法の一例としては、最小二乗法がある。具体的には、再現度を示すパラメータrを、あるQsに対してr= (Vs-Vc)^2、またはr=(dVs/dQs-dVc/dQc)^2と設定し、所定範囲内のQsに対するrの和をRとし、Rが小さいほど再現度が良好と定める。 Next, the arithmetic unit 10 compares the “discharge curve of the entire battery based on actual measurement” acquired in S102 with the “discharge curve of the entire battery based on calculation” obtained in S105, and reproducibility (in other words, “ Correlation ") is evaluated (S106). An example of the evaluation method is a least square method. Specifically, the parameter r indicating the reproducibility is set to r = (V s -V c ) ^ 2 or r = (dV s / dQ s -dV c / dQ c ) ^ 2 for a certain Q s . R is defined as the sum of r with respect to Q s within a predetermined range, and the smaller the R, the better the reproducibility.

なお、本実施例では、S103〜S106を逐次的に説明した。しかし、これらの処理の目的は、「実測に基づく電池全体の放電カーブ」に対する、「計算値に基づく電池全体の放電カーブ」の再現度を評価することであり、この目的の範囲内において処理の順番を適宜変更することができる。例えば、S104とS105は同時に行うことが可能であるし、またS105とS106は同時進行で行うことが可能である。   In this embodiment, S103 to S106 have been described sequentially. However, the purpose of these treatments is to evaluate the reproducibility of the “battery discharge curve of the whole battery based on the calculated value” with respect to the “discharge curve of the whole battery based on the actual measurement”. The order can be changed as appropriate. For example, S104 and S105 can be performed simultaneously, and S105 and S106 can be performed simultaneously.

次に、演算装置10は、再現度が良好であるか否かを判定する(S107)。判定方法の一例としては、上記の値Rが所定の数値より小さいかどうかにより判定する方法などがある。所定の値より小さい場合は、再現度が良好であるとする。あるいは、値Rが、この時点までに求めたいずれの値Rよりも小さいかどうかを判定し、そうである場合は、再現度が良好であるとしてもよい。   Next, the arithmetic unit 10 determines whether or not the reproducibility is good (S107). As an example of the determination method, there is a method of determining whether or not the value R is smaller than a predetermined numerical value. If it is smaller than the predetermined value, the reproducibility is assumed to be good. Alternatively, it is determined whether the value R is smaller than any of the values R obtained up to this point, and if so, the reproducibility may be good.

そして、良好であると判定した場合(S107でYes)のみ、演算装置10は、S103において設定したパラメータ値と、S104で求めた正極・負極全体の放電カーブ(Cp、Cnにより位置関係を補正したのちの正極・負極全体の放電カーブであってもよい)と、S105で求めた「計算に基づく電池全体の放電カーブ」と、S106で求めた再現度を示す値Rと、をメモリ11の所定の領域に登録する(S108)。 And only when it determines with it being favorable (it is Yes at S107), the arithmetic unit 10 has a positional relationship by the parameter value set in S103, and the discharge curve ( Cp , Cn ) of the whole positive electrode and negative electrode calculated | required by S104. (It may be the discharge curve of the whole positive electrode and negative electrode after correction), “the discharge curve of the whole battery based on the calculation” obtained in S105, and the value R indicating the reproducibility obtained in S106. (S108).

その後、演算装置10は、再現計算の終了条件を満たしたかどうかを判定する(S109)。終了条件の一例としては、パラメータテーブル100に格納されている全てのパラメータ群(レコード101)について計算が終了した場合や、所定の良好な再現度(すなわち、所定の値以下の値R)が得られた場合などが挙げられる。そして、終了条件を満たしていない場合(S109でNo)、演算装置10は、S103に戻って、パラメータテーブル100から未抽出のパラメータ群を抽出し、処理を続ける。   Thereafter, the arithmetic unit 10 determines whether or not the reproduction calculation end condition is satisfied (S109). As an example of the end condition, when calculation is completed for all parameter groups (record 101) stored in the parameter table 100, or a predetermined good reproducibility (that is, a value R equal to or less than a predetermined value) is obtained. And the like. If the end condition is not satisfied (No in S109), the arithmetic unit 10 returns to S103, extracts an unextracted parameter group from the parameter table 100, and continues the processing.

一方、終了条件を満たしている場合(S109でYes)、演算装置10は、S108において登録したデータを出力装置13を介して出力する(S110)。   On the other hand, when the end condition is satisfied (Yes in S109), the arithmetic device 10 outputs the data registered in S108 via the output device 13 (S110).

このとき、演算装置10は、登録したデータを全て出力してもよいし、代表的なものを一つまたは複数選んで出力してもよい。   At this time, the arithmetic unit 10 may output all the registered data, or may select and output one or more representative ones.

具体的には、演算装置10は、登録されている正極全体の放電カーブ及び負極全体の放電カーブ(Cp、Cnにより位置関係を補正したのちの正極・負極全体の放電カーブ)を、被検知電池の正極全体の放電カーブ及び負極全体の放電カーブとして、ディスプレイ上に描画する。また、登録されている「計算に基づく電池全体の放電カーブ」を、被検知電池の電池全体の放電カーブとして、ディスプレイ上に描画する。このとき、「実測に基づく電池全体の放電カーブ」を比較のために表示してもよい。なお、放電カーブは、グラフ表示に限らず、表を用いて表示してもよい。また、登録されている再現度を示す値Rを表示してもよい。演算装置10は、S108で登録されたデータの中でいずれを表示するかについて、ユーザから入力装置12を介して受け付けることができる。 Specifically, the arithmetic unit 10 applies the registered discharge curve for the entire positive electrode and the discharge curve for the entire negative electrode (discharge curve for the entire positive electrode / negative electrode after correcting the positional relationship using C p and C n ). It draws on a display as a discharge curve of the whole positive electrode of a detection battery, and a discharge curve of the whole negative electrode. Also, the registered “discharge curve of the entire battery based on the calculation” is drawn on the display as the discharge curve of the entire battery of the detected battery. At this time, the “discharge curve of the entire battery based on actual measurement” may be displayed for comparison. In addition, you may display a discharge curve not only with a graph display but with a table | surface. Further, a value R indicating the registered reproducibility may be displayed. The computing device 10 can accept from the user via the input device 12 which of the data registered in S108 is to be displayed.

以上、図2のフローについて説明した。   The flow of FIG. 2 has been described above.

なお、演算装置10は、複数の被検知電池に関する結果を、同時に表示することもできる。例えば、複数の被検知電池について、それぞれ図2のフローの処理を行い、それぞれS108で登録されたデータを同時に表示して比較できるようにする。   Note that the arithmetic device 10 can simultaneously display the results regarding a plurality of batteries to be detected. For example, the processing of the flow of FIG. 2 is performed for each of the plurality of detected batteries, and the data registered in S108 can be simultaneously displayed and compared.

また、同じ被検知電池の複数の測定結果に基づいて、図2のフローの処理を行い、電池内部の不可逆反応に関する情報を求めることもできる。例えば、同一の被検知電池を、放電を行わずに一定期間保存し、かつ保存前後の電池電圧を記録しておき、かつ、演算装置10は、(A)保存前および(B)保存後の放電カーブの実測値を取得するようにする。それぞれの場合について、図2のフローの処理を行い、それぞれの場合についてS108にて上述のデータを登録する。   Moreover, based on the several measurement result of the same to-be-detected battery, the process of the flow of FIG. 2 can be performed and the information regarding the irreversible reaction inside a battery can also be calculated | required. For example, the same battery to be detected is stored for a certain period without discharging, and the battery voltage before and after storage is recorded, and the arithmetic unit 10 can perform (A) before storage and (B) after storage The measured value of the discharge curve is acquired. In each case, the processing of the flow of FIG. 2 is performed, and in each case, the above-described data is registered in S108.

演算装置10は、こうして登録されたデータの中の補正パラメータ(mp、mn、Cp、Cn)を用いて、保存期間中に電池内部で不可逆な化学反応で消費されたリチウムイオンの量を求めることが可能である。 The arithmetic unit 10 uses the correction parameters (m p , m n , C p , C n ) in the data registered in this way, so that the lithium ions consumed by irreversible chemical reactions inside the battery during the storage period. It is possible to determine the quantity.

計算手順の一例を以下に示す。まず、Qp=mp×qp、Qn=mn×qn、Qp=Qn+Cn - Cpより、(Cn-Cp)=mp×qp - mn×qnとなり、したがって
Δ(Cn-Cp)=(qpΔmp qnΔmn)+(mpΔqp mnΔqn) ・・・式(1)
と近似できる。式(1)の近似によれば、保存前後における電池電圧の変化が小さい場合には、
不可逆な化学反応によるリチウムイオン消費量
=Δ(Cn - Cp) - (qpΔmp qnΔmn) ・・・式(2)
で得られる。S108で登録されたデータから、保存前後のCn、Cp、mp、mnが取得できる。また、再現計算によって、保存開始時点と保存終了時点の電池電圧に対応するqpとqnを取得し、保存期間中のqpとqnの平均値を取得できる。これらを上記式(2)に代入すれば、保存期間中の不可逆な化学反応によるリチウムイオンの消費量が得られる。また、式(1)の近似によれば、保存前後における有効活物質量の変化が小さい場合には、
不可逆な化学反応によるリチウムイオン消費=(mpΔqp mnΔqn)・・・式(3)
で得られる。S108で登録されたデータから、保存前後のCn、Cp、mp、mn、および保存開始時点と保存終了時点の電池電圧に対応するqpとqnを取得できる。保存期間中のmpとmnの平均値を取得し、これらを式(3)に代入すれば、保存期間中の不可逆な化学反応によるリチウムイオンの消費量が得られる。なお、実際に出力するデータはこうして求めた値の一つでもよいし、複数でもよい。
An example of the calculation procedure is shown below. First, Q p = m p × q p, Q n = m n × q n, Q p = Q n + C n - than C p, (C n -C p ) = m p × q p - m n × q n , and therefore Δ (C n −C p ) = (q p Δm p q n Δm n ) + (m p Δq p m n Δq n ) (1)
Can be approximated. According to the approximation of equation (1), if the change in battery voltage before and after storage is small,
Lithium ion consumption by irreversible chemical reaction
= Δ (C n −C p ) − (q p Δm p q n Δm n ) (2)
It is obtained by. From the data registered in S108, C n before and after storage, C p, m p, m n can be obtained. Further, by reproduction calculation, q p and q n corresponding to the battery voltage at the storage start time and storage end time can be acquired, and the average value of q p and q n during the storage period can be acquired. If these are substituted into the above formula (2), the consumption of lithium ions due to irreversible chemical reaction during the storage period can be obtained. Further, according to the approximation of equation (1), when the change in the amount of active active material before and after storage is small,
Lithium ion consumption by irreversible chemical reaction = (m p Δq p m n Δq n ) (3)
It is obtained by. From the data registered in S108, C n , C p , m p , m n before and after storage, and q p and q n corresponding to the battery voltage at the storage start time and storage end time can be acquired. Get the average value of m p and m n during storage, by substituting these into Equation (3), the consumption of lithium ions due to irreversible chemical reactions during storage can be obtained. Note that the data to be actually output may be one of the values thus obtained or a plurality of values.

さらに、演算装置10は、図2のフローの処理の結果として得られた、被検知電池における正極及び負極の放電カーブ、補正パラメータの組み合わせを基に、種々の状態判定や電池使用条件の変更などの操作を行うことができる。例えば、正極活物質の電位が一定以上にならないように、電池制御装置に対して、電池電圧の上限を再設定するなどの操作を高精度で行うことが可能である。以下に、いくつかの操作例を挙げる。   Furthermore, the arithmetic unit 10 determines various states, changes battery usage conditions, etc. based on combinations of positive and negative electrode discharge curves and correction parameters in the detected battery obtained as a result of the flow of FIG. Can be operated. For example, operations such as resetting the upper limit of the battery voltage can be performed with high accuracy on the battery control device so that the potential of the positive electrode active material does not exceed a certain level. Some examples of operations are given below.

<操作例1>
演算装置10は、例えば、(1)正極有効活物質量mpが初期値の7割以下、(2)負極有効活物質量mnが初期値の7割以下、(3)位置指標(Cn-Cp)の初期値からの変化量の絶対値が、測定時の放電容量の2割以上、のいずれかとなった場合に、被検知電池の交換を推奨するシグナルを出力装置13を介して出力する。なお、判定に用いる閾値は、電池を構成する活物質の材料や、電池設計時の正極と負極の活物質量の比、要求性能、などによって、システムごとに定めることができる。
<Operation example 1>
Arithmetic unit 10, for example, (1) positive effective amount of the active material m p is less than 7% of the initial value, (2) negative effective amount of the active material m n is less than 7% of the initial value, (3) position indicator (C n −C p ) When the absolute value of the change from the initial value is 20% or more of the discharge capacity at the time of measurement, a signal recommending replacement of the battery to be detected is output via the output device 13. Output. The threshold used for the determination can be determined for each system depending on the material of the active material constituting the battery, the ratio of the amount of the active material between the positive electrode and the negative electrode at the time of battery design, required performance, and the like.

<操作例2>
演算装置10は、被検知電池の上限電圧と下限電圧で規定される電池利用範囲における正極または負極の電位が所定範囲外にある場合に、正極または負極の電位が所定範囲内に収まるように、電池の上限電圧または下限電圧を新たに設定するようにすることができる。
<Operation example 2>
When the potential of the positive electrode or the negative electrode in the battery usage range defined by the upper limit voltage and the lower limit voltage of the battery to be detected is outside the predetermined range, the arithmetic device 10 is configured so that the potential of the positive electrode or the negative electrode is within the predetermined range. The upper limit voltage or the lower limit voltage of the battery can be newly set.

具体的に説明する。図2のフローの処理を行い、放電カーブを再現した段階で、電池内部の正極全体の放電カーブと負極全体の放電カーブの形状と位置関係とが正確に把握されている。従って、例えば電池を使用する際の上限電圧(例えば、4.1V)が定められてあると、その上限電圧に対応する正極の電位、負極の電位がそれぞれ分かる。   This will be specifically described. When the processing of the flow of FIG. 2 is performed and the discharge curve is reproduced, the shape and positional relationship of the discharge curve of the entire positive electrode inside the battery and the discharge curve of the entire negative electrode are accurately grasped. Therefore, for example, when an upper limit voltage (for example, 4.1 V) when a battery is used is determined, the positive electrode potential and the negative electrode potential corresponding to the upper limit voltage can be known.

また、電池の劣化によって、正極全体の放電カーブと負極全体の放電カーブの形状と位置関係は変化する。このため、電池の初期状態では、電池の上限電圧4.1Vに対応する正極の電位は4.2Vであったが、劣化が進むと、電池の上限電圧4.1Vに対応する正極の電位は4.3Vになる、といった事態が生じる場合がある。その一方、正極・負極の電極材料には、それぞれ適正に使用できる電位範囲が存在し、その範囲外では劣化の進行が速くなる。   Moreover, the shape and positional relationship of the discharge curve of the whole positive electrode and the discharge curve of the whole negative electrode change with deterioration of a battery. Therefore, in the initial state of the battery, the potential of the positive electrode corresponding to the upper limit voltage 4.1V of the battery was 4.2V, but as the deterioration progressed, the potential of the positive electrode corresponding to the upper limit voltage 4.1V of the battery became 4.3V. May occur. On the other hand, there are potential ranges in which the positive electrode and the negative electrode material can be used properly, and the deterioration progresses faster outside these ranges.

上記のことから、具体的な設定方法として、演算装置10は、
(1)予め、正極の使用電圧(例えば、(Li/Li+反応が生じる電位を基準として)3.7〜4.2V)を決めておく。
(2)また、負極の使用電圧(例えば、0.05〜1.3V)を決めておく。
(3)そして、再現計算によって得られた正極全体の放電カーブにおいて、正極の使用電圧を満たす放電量Qの範囲を決める。
(4)同じく負極全体の放電カーブにおいて、負極の使用電圧を満たす放電量Qの範囲を決める。
(5)そして、上記(3)と(4)で決めた範囲において重複する部分を、新しい電池使用範囲と決める。
(6)さらに、上記(5)決めた放電量Qの範囲に対応する電池電圧を、再現計算によって得られた「計算に基づく電池全体の放電カーブ」から求める。
(7)上記(6)で得られた電圧の最大値と最小値を、それぞれ新しい上限電圧、新しい下限電圧と定める。
From the above, as a specific setting method, the arithmetic unit 10
(1) The working voltage of the positive electrode (for example, 3.7 to 4.2 V (based on the potential at which the Li / Li + reaction occurs)) is determined in advance.
(2) Moreover, the working voltage (for example, 0.05-1.3V) of a negative electrode is determined.
(3) Then, in the discharge curve of the whole positive electrode obtained by the reproduction calculation, the range of the discharge amount Q that satisfies the working voltage of the positive electrode is determined.
(4) Similarly, in the discharge curve of the entire negative electrode, the range of the discharge amount Q that satisfies the working voltage of the negative electrode is determined.
(5) Then, the overlapping portion in the ranges determined in the above (3) and (4) is determined as a new battery usage range.
(6) Further, the battery voltage corresponding to the range of the determined discharge amount Q is obtained from the “discharge curve of the entire battery based on the calculation” obtained by the reproduction calculation.
(7) The maximum value and the minimum value of the voltage obtained in the above (6) are determined as a new upper limit voltage and a new lower limit voltage, respectively.

<操作例3>
演算装置1は、算出された満充電状態における負極の電位が所定範囲にある場合に、被検知電池に内部短絡の危険性があることを警告するようにしてもよい。具体的に説明する。充電の際には、負極活物質の内部にリチウムイオンが吸蔵されるが、限界量を超えて吸蔵させようとした場合には、活物質の内部には吸蔵されず、活物質の表面にリチウム金属として析出する。この際、金属リチウムは針状の結晶として析出するため、場合によっては正極と負極を隔てるセパレータを貫通して内部短絡を起こす。
<Operation example 3>
The computing device 1 may warn that there is a risk of internal short circuit in the detected battery when the potential of the negative electrode in the fully charged state is within a predetermined range. This will be specifically described. During charging, lithium ions are occluded inside the negative electrode active material. However, if it is attempted to occlude more than the limit amount, lithium ions are not occluded inside the active material and lithium is not absorbed on the surface of the active material. Deposit as metal. At this time, since metallic lithium is precipitated as needle-like crystals, an internal short circuit is caused through the separator separating the positive electrode and the negative electrode in some cases.

一方、単位質量の負極活物質のリチウムイオン吸蔵量と負極電位は一対一の関係にある。したがって、電池の上限電圧(=満充電状態)に対応する負極電位(再現計算から求められる)が、限界量に対応する負極電位より小さければ、満充電状態では負極表面にリチウム金属が析出していることが疑われる。   On the other hand, the lithium ion occlusion amount of the negative electrode active material of unit mass and the negative electrode potential have a one-to-one relationship. Therefore, if the negative electrode potential (obtained from the reproduction calculation) corresponding to the upper limit voltage (= full charge state) of the battery is smaller than the negative electrode potential corresponding to the limit amount, lithium metal is deposited on the negative electrode surface in the full charge state. Suspected of being.

上記のことから、演算装置10は、
(1)予め、警告を発する負極電位(例えば0.03V)を決めておく。
(2)そして、再現計算によって得られた負極の放電カーブにおいて、電池の上限電圧(例えば、4.1V)に対応する負極の電位を求める。
(3)そして、上記(2)で得られた電位が上記(1)で決めた電位より小さい場合には、警告を発する。
From the above, the arithmetic unit 10
(1) A negative electrode potential (for example, 0.03 V) for issuing a warning is determined in advance.
(2) Then, in the negative electrode discharge curve obtained by the reproduction calculation, the potential of the negative electrode corresponding to the upper limit voltage (for example, 4.1 V) of the battery is obtained.
(3) When the potential obtained in (2) is smaller than the potential determined in (1), a warning is issued.

<操作例4>
演算装置10は、被検知電池の残存寿命を計算して出力することもできる。具体的に説明する。まず、電池の放電容量は、(1)正極活物質固有の放電カーブvp(qp)、(2)負極活物質固有の放電カーブvn(qn)、(3)有効正極活物質量mp、(4)有効負極活物質量mn、(5)正極と負極の位置関係(Cn-Cp)、(6)上限電圧Vmax・下限電圧Vmin、によって決まる。このうち上記(1)、(2)、(6)の値は、上記実施例のとおり求めることができる。
<Operation example 4>
The arithmetic device 10 can also calculate and output the remaining life of the battery to be detected. This will be specifically described. First, the discharge capacity of the battery is (1) discharge curve v p (q p ) specific to the positive electrode active material, (2) discharge curve v n (q n ) specific to the negative electrode active material, and (3) the amount of effective positive electrode active material. m p , (4) amount of effective negative electrode active material m n , (5) positional relationship between positive electrode and negative electrode (C n −C p ), and (6) upper limit voltage V max and lower limit voltage V min . Among these, the values of (1), (2), and (6) can be obtained as in the above embodiment.

従って、上記(3)、(4)、(5)の値が、それぞれ使用期間t・環境温度T・保存電圧V・負荷Pなどに対してどのような関数であるかを決めることができれば、上記(1)〜(6)の値を組み合わせて、電池の放電容量Q(t,T,V,P,・・・)を計算することができる。   Therefore, if it is possible to determine what functions the values of (3), (4), and (5) above are for the period of use t, environmental temperature T, storage voltage V, load P, etc. The discharge capacity Q (t, T, V, P,...) Of the battery can be calculated by combining the values (1) to (6).

まず、上記(3)、(4)、(5)の関数形が与えられた場合の、電池の放電カーブ、および電池の放電容量、および電池の残存寿命の計算方法について説明する。   First, a battery discharge curve, a battery discharge capacity, and a battery remaining life calculation method when the functions (3), (4), and (5) are given will be described.

電池の放電カーブにおける計算上の放電量をQpに定める。すると、計算で得られる電池の放電カーブVc(Qp)は、電池内部での正極全体の放電カーブVp(Qp)および負極全体の放電カーブVn(Qn)を用いて、
Vc(Qp)=Vp(Qp)-Vn(Qn) と書ける。
The calculated amount of discharge in the battery discharge curve is defined as Q p . Then, the discharge curve V c (Q p ) of the battery obtained by calculation is calculated using the discharge curve V p (Q p ) of the whole positive electrode and the discharge curve V n (Q n ) of the whole negative electrode inside the battery,
V c (Q p ) = V p (Q p ) −V n (Q n ) can be written.

ここで、前述のように、
Qp=mp×qp、Qn=mn×qn、Qn=Qp-(Cn - Cp) である。また、前述のように、
Vp(Qp)=vp(Qp/mp)、 Vn(Qn)=vn(Qn/mn) である。したがって、電池の放電カーブの計算値は、
Vc(Qp)= vp(Qp/mp) - vn({Qp-(Cn-Cp)}/mn) となる。得られた電池の放電カーブの計算値において、
Vc(Qp,min)=Vmax、Vc(Qp,max)=Vminを満たすQp,min、Qp,maxを求めれば、電池の放電容量Qは、
Q=Qp,max-Qp,minで得られる。
Where, as mentioned above,
Q p = m p × q p , Q n = m n × q n , Q n = Q p − (C n −C p ). Also, as mentioned above,
V p (Q p ) = v p (Q p / m p ), V n (Q n ) = v n (Q n / m n ). Therefore, the calculated value of the battery discharge curve is
V c (Q p ) = v p (Q p / m p ) −v n ({Q p − (C n −C p )} / m n ) In the calculated value of the discharge curve of the obtained battery,
If Q p, min and Q p, max satisfying V c (Q p, min ) = V max , V c (Q p, max ) = V min are obtained, the discharge capacity Q of the battery is
Q = Q p, max -Q p, min .

以上の計算を様々な使用期間tに対して行い、それぞれ電池の放電容量Q(t)を求める。寿命末期の容量Qendに対してQ(tend)=Qendを満たすtendが当該電池の寿命になる。現在の使用期間がt0であるとすると、残存寿命は(tend-t0)で与えられる。 The above calculation is performed for various usage periods t, and the discharge capacity Q (t) of each battery is obtained. Q (t end) = satisfy Q end The t end The becomes lifetime of the battery with respect to capacity Q end The end of life. If the current usage period is t 0 , the remaining lifetime is given by (t end −t 0 ).

次に、上記(3)、(4)、(5)の値が、それぞれ使用期間t・環境温度T・保存電圧V・負荷Pなどに対してどのような関数であるかを決める方法について説明する。   Next, a description will be given of a method for determining what functions (3), (4), and (5) above are for the period of use t, environmental temperature T, storage voltage V, load P, and the like. To do.

上記(3)、(4)、(5)として、簡単な関数形を決めておいてもよい。例えば、演算装置10は、有効正極活物質量、及び有効負極活物質量を、例えば、
m(t)=m0×exp(−t/τ) (ただし、τ(タウ)は定数)と表し、
正極と負極の位置関係については、例えば、
(Cn-Cp)=A×√t (ただし、Aは定数)と表し、
τやAについては、予め定める、あるいは複数のデータがある場合にはフィッティングで求める
Simple functions may be determined as (3), (4), and (5) above. For example, the arithmetic unit 10 calculates the effective positive electrode active material amount and the effective negative electrode active material amount, for example,
m (t) = m 0 × exp (−t / τ) (where τ (tau) is a constant)
For the positional relationship between the positive electrode and the negative electrode, for example,
(C n -C p ) = A × √t (where A is a constant)
τ and A are determined in advance or obtained by fitting when there are multiple data

または、演算装置10は、上記(3)、(4)、(5)を、例えば以下のように表す。
まず、(3)有効正極活物質量mpについて、mp(t)の時間変化率 dmp/dtをmp 自身の整式、すなわち、
d mp /dt=Σn An mp n (ただしnは整数。またAnは、使用期間tとxにはよらず、電池使用条件T,V,P,…に対して一意に定まる量。)
と表す。ここでAnは、関数または表として内部情報検知装置1のメモリ11に格納させてもよい。
被検知電池の状態検知時点での使用期間t0におけるmp値mp0は、上記実施例のとおり求めることができるので、上記の整式と初期条件
mp(t0)=mp0
を組み合わせることによって、t≧t0 におけるm(t)の値を推定することができる。
演算装置10は、(4)、(5)の値も同様に求めることができる。
Alternatively, the arithmetic unit 10 represents the above (3), (4), and (5) as follows, for example.
First, (3) the effective amount of the positive electrode active material m p, a time change rate dm p / dt of m p (t) of m p own polynomial, i.e.,
dm p / dt = Σ n A n m p n (where n is an integer. A n is a quantity that is uniquely determined for the battery usage conditions T, V, P,. .)
It expresses. Where A n may also be stored in the memory 11 of the internal information detection apparatus 1 as a function or a table.
Since the m p value m p0 in the usage period t 0 at the time of detecting the state of the battery to be detected can be obtained as in the above embodiment, the above formula and initial conditions
m p (t 0 ) = m p0
Can be used to estimate the value of m (t) at t ≧ t 0 .
The arithmetic unit 10 can similarly determine the values of (4) and (5).

または、演算装置10は、上記(3)、(4)、(5)を、例えば以下のように表す。
(3)有効正極活物質量mpについて、上記整式と上記初期条件に加えて、境界条件を定めて上記整式のmpの解を求め、mpを電池使用条件T,V,P,・・・および使用期間tの関数として表し、直接mpの値を求めることができる。このとき、演算装置10がmpの解を求める操作を行ってもよいし、予め求めた解をメモリ11に記憶しておき演算装置10が読み込んでもよい。
Alternatively, the arithmetic unit 10 represents the above (3), (4), and (5) as follows, for example.
(3) For the effective positive electrode active material amount m p , in addition to the above equation and the above initial condition, the boundary condition is determined to find the solution of m p in the above equation, and m p is determined as the battery usage conditions T, V, P,. .. And expressed as a function of the period of use t, and the value of m p can be determined directly. At this time, the arithmetic device 10 may perform an operation for obtaining a solution of m p , or the arithmetic device 10 may read the solution obtained in advance in the memory 11.

境界条件としては、例えば、十分に長い使用期間tに対してmpが使用期間tによらない値mp∞になるとして、
mp(t→∞)→mp∞
を用いてもよい。またmp∞は、電池使用条件T,V,P,・・・の関数であってもよい。
As the boundary conditions, for example, a sufficiently long service life t m p relative does not depend on the use period t value m P∞,
m p (t → ∞) → m p∞
May be used. M p∞ may be a function of battery usage conditions T, V, P ,.

演算装置10は、(4)、(5)の値も同様に求めることができる。     The arithmetic unit 10 can similarly determine the values of (4) and (5).

さらに、使用期間中に二次電池の使用条件が変更される場合に配慮して下記の通りとしてもよい。   Further, the following may be taken into consideration when the usage conditions of the secondary battery are changed during the usage period.

演算装置10は、使用期間中に二次電池の使用条件が変更される場合の上記(3)、(4)、(5)の値を、例えば以下のように表す。   The arithmetic unit 10 represents the values of the above (3), (4), and (5) when the use condition of the secondary battery is changed during the use period, for example, as follows.

上記t0以降の二次電池の使用条件について、例えば、使用期間t1までは使用条件Aで、使用期間t1からt2までは使用条件Bで使用するものとする。 For the service condition for the secondary battery of the after t 0, for example, until use period t 1 in use conditions A, from use period t 1 to t 2 is assumed to be used in operating conditions B.

(3)有効正極活物質量mpについて、上記t0における上記mpの値mp (t0)は、上記状態検知方法で求めることができる。使用期間t0〜t1における上記mpの値は、以下のように求める。 (3) effective amount of the positive electrode active material m p, the value m p (t 0) of the m p in the t 0 can be obtained by the above state detection method. The value of m p in the usage period t 0 to t 1 is obtained as follows.

上記mpの変化率を示す整式において、上記使用条件Aに対応する係数を用いる。そして、上記整式の数値計算または上記整式の解析解を用いて、使用期間t0〜t1における上記mpの値mp (t)を算出する。
こうして上記t1における上記mpの値mp (t1)が求められる。使用期間t1〜t2における上記mpの値は、使用期間t0〜t1における上記mpの最終値であるmp (t1)を初期値として、同様に求めることができる。
In the equation showing the rate of change of m p , a coefficient corresponding to the use condition A is used. Then, using the analytic solution of the numerical calculation or the polynomial of the polynomial, to calculate the value m p of the m p in the use period t 0 ~t 1 a (t).
Thus the value m p of the m p in the t 1 (t 1) is obtained. Value of the m p in the use period t 1 ~t 2 is a is a final value of the m p in the use period t 0 ~t 1 m p (t 1) as an initial value, can be determined similarly.

このような手順によって、使用期間中に二次電池の使用条件が変更される場合の上記mpの値を求めることができる。使用条件が二回以上変更される場合でも、同様の手順で上記mpの使用期間tの関係mp (t)を求めることができる。演算装置10は、(4)、(5)も同様に求めることができる。 By such a procedure, the value of m p when the use condition of the secondary battery is changed during the use period can be obtained. Even when the use condition is changed twice or more, the relationship m p (t) of the use period t of the above m p can be obtained by the same procedure. The arithmetic unit 10 can similarly obtain (4) and (5).

以上、いくつかの操作例について説明した。   Heretofore, several operation examples have been described.

なお、再現計算の際にパラメータとして位置指標Cを用いる理由は二つある。一つは正極の放電カーブと負極の放電カーブを重ね合わせる際の両者の位置関係を決めるためである。もう一つは重ね合わせ計算で得られた放電カーブの放電量のゼロ点と、実測値の放電カーブの放電量のゼロ点を合わせるためである。従って、再現精度の観点からは、少なくとも2つの位置指標Cを再現計算に用いるのが望ましい。   There are two reasons for using the position index C as a parameter in the reproduction calculation. One is to determine the positional relationship between the discharge curve of the positive electrode and the discharge curve of the negative electrode. The other is to match the zero point of the discharge amount of the discharge curve obtained by the overlay calculation with the zero point of the discharge amount of the actually measured discharge curve. Therefore, from the viewpoint of reproduction accuracy, it is desirable to use at least two position indexes C for the reproduction calculation.

ただし、計算負荷の軽減のために、位置指標Cを一つにすることも可能である。この場合には、処理S106の直前に、「実測に基づく電池全体の放電カーブ」と「計算に基づく電池全体の放電カーブ」の放電量のゼロ点を合わせるための処理を行えばよい。具体的には、演算装置10は、予め基準となる電池電圧Vrefと放電量Qrefを定めておき、各放電カーブにおいてVrefに対応する放電量Qs0、およびQc0をそれぞれ求め、「実測に基づく電池全体の放電カーブ」の放電量に定数(Qref-Qs0)を加え、「計算に基づく電池全体の放電カーブ」の放電量に定数(Qref-Qc0)を加えて、両放電カーブの放電量を統一する。または、別の方法として、演算装置10は、予め基準とする放電量Qrefを定めておき、まず「実測に基づく電池全体の放電カーブ」においてQrefに対応する電池電圧Vs0または微分電圧(dV/dQ)s0を求め、次に「計算に基づく電池全体の放電カーブ」においてVs0または(dV/dQ)s0を与える放電量Qc1を求め、「計算に基づく電池全体の放電カーブ」の放電量に定数(Qref−Qc1)を加えて、両放電カーブの放電量を統一する。 However, the position index C can be united to reduce the calculation load. In this case, a process for matching the zero points of the discharge amounts of the “discharge curve of the entire battery based on actual measurement” and the “discharge curve of the entire battery based on calculation” may be performed immediately before the process S106. Specifically, the arithmetic device 10 determines a reference battery voltage V ref and a discharge amount Q ref in advance, and obtains discharge amounts Q s0 and Q c0 corresponding to V ref in each discharge curve, respectively. Add a constant (Q ref -Q s0 ) to the discharge amount of the `` discharge curve of the entire battery based on actual measurement '', add a constant (Q ref -Q c0 ) to the discharge amount of the `` discharge curve of the entire battery based on calculation '', Unify the discharge amount of both discharge curves. Or, alternatively, the arithmetic unit 10, the discharge amount Q is determined in advance to ref, first battery voltage V s0 or differential voltage corresponding to the Q ref in the "entire battery discharge curves based on actual measurement," to advance the reference ( dV / dQ) s0 , then calculate the discharge amount Q c1 that gives V s0 or (dV / dQ) s0 in `` Calculation discharge curve of the whole battery based on calculation ''. A constant (Q ref −Q c1 ) is added to the discharge amount to unify the discharge amounts of both discharge curves.

また、本発明は、上記の実施例に限定されない。   Further, the present invention is not limited to the above embodiments.

上記実施例において、内部情報検知装置1のメモリ11に格納されると説明したデータ(正極活物質固有の放電カーブ及び負極活物質固有の放電カーブ、パラメータテーブル100)を、被検知電池と一体となって構成される装置のメモリ(不図示)に格納させてもよい。すなわち、図2のS101において、演算装置10は、被検知電池側のメモリから、正極活物質固有の放電カーブ及び負極活物質固有の放電カーブを取得する。また、S103において、被検知電池側のメモリから、パラメータ群を取得する。こうすれば、被検知電池に固有のデータを、内部情報検知装置1のメモリ11に格納する必要がない。   In the above embodiment, the data described as being stored in the memory 11 of the internal information detection device 1 (discharge curve specific to the positive electrode active material and discharge curve specific to the negative electrode active material, parameter table 100) is integrated with the detected battery. You may store in the memory (not shown) of the apparatus comprised. That is, in S101 of FIG. 2, the arithmetic unit 10 acquires a discharge curve specific to the positive electrode active material and a discharge curve specific to the negative electrode active material from the memory on the detected battery side. In S103, a parameter group is acquired from the memory on the detected battery side. In this way, there is no need to store data specific to the battery to be detected in the memory 11 of the internal information detection device 1.

また、本発明における内部情報検知方法は、材料を限定せず、あらゆる正極活物質およびあらゆる負極活物質およびあらゆる正極活物質と負極活物質の組み合わせに適用できる。   The internal information detection method in the present invention is not limited to materials, and can be applied to any positive electrode active material, any negative electrode active material, and any combination of positive electrode active material and negative electrode active material.

また、電気自動車の電源システムに適用することができる。この場合、電気自動車本体はリチウム二次電池とメモリ部分を有する。メモリ部分には、夜間充電時の挙動または本発明の適用を目的とした充放電の際の充放電挙動を保存するのが望ましい。上記した内部情報検知装置1は、サービスセンターに配置される。そして、車両点検時に、図2のフローの処理により、リチウム二次電池の内部情報を検知する。   Further, it can be applied to a power supply system of an electric vehicle. In this case, the electric vehicle main body has a lithium secondary battery and a memory portion. In the memory portion, it is desirable to store the behavior during night charge or the charge / discharge behavior during charge / discharge for the purpose of applying the present invention. The internal information detection apparatus 1 described above is arranged in a service center. And the internal information of a lithium secondary battery is detected by the process of the flow of FIG. 2 at the time of vehicle inspection.

また、本発明を工業用または家庭用の蓄電池システムに適用することができる。この場合、蓄電システム本体は、リチウム二次電池とメモリ部分を有する。メモリ部分には、夜間充電時の挙動または本発明の適用を目的とした充放電の際の充放電挙動を保存するのが望ましい。上記した内部情報検知装置1は、点検作業を行う作業員が保持する。そして、点検時に、図2のフローの処理により、リチウム二次電池の内部情報を検知する。または、内部情報検知装置1は、蓄電システムと定期的に通信接続し、リチウム二次電池の内部情報を検知するようにしてもよい。   Further, the present invention can be applied to industrial or household storage battery systems. In this case, the power storage system main body includes a lithium secondary battery and a memory portion. In the memory portion, it is desirable to store the behavior during night charge or the charge / discharge behavior during charge / discharge for the purpose of applying the present invention. The internal information detection apparatus 1 described above is held by an operator who performs inspection work. And the internal information of a lithium secondary battery is detected by the process of the flow of FIG. 2 at the time of inspection. Alternatively, the internal information detection apparatus 1 may periodically connect to the power storage system to detect internal information of the lithium secondary battery.

以上説明したように、本発明によって、二次電池の内部における正極全体の充放電カーブと負極全体の充放電カーブの状況を非破壊で知ることができる。これにより、非破壊で電池劣化の要因を特定でき、高精度な寿命判定が可能になる。さらに、本発明によれば、再現計算の結果を応用することによって、劣化電池の適切な使用範囲を高精度で判断したり、充放電反応種の減少量を非破壊で取得したりすることも可能である。   As described above, according to the present invention, the state of the charge / discharge curve of the entire positive electrode and the charge / discharge curve of the entire negative electrode inside the secondary battery can be known in a non-destructive manner. Thereby, the cause of battery deterioration can be specified nondestructively, and the life can be determined with high accuracy. Furthermore, according to the present invention, by applying the result of the reproduction calculation, it is possible to determine an appropriate use range of the deteriorated battery with high accuracy, or to obtain the reduction amount of the charge / discharge reactive species in a non-destructive manner. Is possible.

内部情報検知装置の概略構成図。The schematic block diagram of an internal information detection apparatus. 再現計算処理のフロー図。Flow chart of reproduction calculation processing. パラメータテーブルの構成を示す図。The figure which shows the structure of a parameter table. 正極、負極、及び電池全体の放電カーブの模式図Schematic diagram of discharge curves for positive electrode, negative electrode, and entire battery 正極、負極、及び電池全体の放電カーブの模式図Schematic diagram of discharge curves for positive electrode, negative electrode, and entire battery

符号の説明Explanation of symbols

1…内部情報検知装置、10…演算装置、11…メモリ、12…入力装置、13…出力装置、14…インターフェース   DESCRIPTION OF SYMBOLS 1 ... Internal information detection apparatus, 10 ... Arithmetic unit, 11 ... Memory, 12 ... Input device, 13 ... Output device, 14 ... Interface

Claims (13)

二次電池の内部情報検知方法であって、
基礎データとしての正極材料固有の充・放電カーブ及び負極材料固有の充・放電カーブを取得するとともに、実測値としての被検知電池の充・放電カーブを取得する第1のステップと、
前記正極材料固有の充・放電カーブ、前記負極材料固有の充・放電カーブ、及び前記実測値としての被検知電池の充・放電カーブと、所定の補正パラメータとを用いて、被検知電池内部の正極の充・放電電カーブ及び負極の充・放電カーブを求める第2のステップと、
前記第2のステップで求められた、前記正極の充・放電カーブ、前記負極の充・放電カーブ、及び計算に用いた前記補正パラメータの3つのうちの少なくとも一つを出力する第3のステップと、
と有することを特徴とする二次電池の内部情報検知方法。
A method for detecting internal information of a secondary battery,
A first step of acquiring a charge / discharge curve specific to the positive electrode material and a charge / discharge curve specific to the negative electrode material as basic data, and acquiring a charge / discharge curve of the detected battery as an actual measurement value;
Using the charge / discharge curve specific to the positive electrode material, the charge / discharge curve specific to the negative electrode material, the charge / discharge curve of the detected battery as the actual measurement value, and a predetermined correction parameter, A second step for determining a charge / discharge curve for the positive electrode and a charge / discharge curve for the negative electrode;
The obtained in the second step, the positive electrode charging and discharging curves, a third step of outputting at least one of the three of the negative electrode of the charging and discharging curves, and the correction parameters used in the calculation ,
A method for detecting internal information of a secondary battery, comprising:
請求項1に記載の二次電池の内部情報検知方法であって、
前記第2のステップは、
充・放電に寄与する活物質量を補正するための第1の補正パラメータを用いて、前記正極材料固有の充・放電カーブ及び前記負極材料固有の充・放電カーブを補正し、正極全体の充・放電カーブ及び負極全体の充・放電カーブを求め、
充・放電カーブの位置関係を補正するための第2の補正パラメータを用いて、前記正極全体の充・放電カーブ及び負極全体の充・放電カーブの位置関係を補正し、さらに重ね合わせることにより、電池全体の充・放電カーブ(「計算に基づく電池全体の充・放電カーブ」という)を求め、
前記計算に基づく電池全体の充・放電カーブと前記実測に基づく電池全体の充・放電カーブとの相関性を求める相関性算出ステップと、
前記相関性算出ステップにおいて前記相関性が高くなる場合の前記第1の補正パラメータ及び前記第2の補正パラメータを特定する補正パラメータ特定ステップと、
前記補正パラメータ特定ステップで特定した第2の補正パラメータを用いて位置関係が補正された前記正極全体の充・放電カーブ及び前記負極全体の充・放電カーブを、前記二次電池の正極全体の充・放電カーブ及び負極全体の充・放電カーブと推定する推定ステップと、を有する
ことを特徴とする二次電池の内部情報検知方法。
A method for detecting internal information of a secondary battery according to claim 1,
The second step includes
Using the first correction parameter for correcting the amount of active material contributing to charging / discharging, the charging / discharging curve specific to the positive electrode material and the charging / discharging curve specific to the negative electrode material are corrected, and charging / discharging of the entire positive electrode is performed.・ Calculate the discharge curve and charge / discharge curve of the whole negative electrode.
By using the second correction parameter for correcting the positional relationship of the charging / discharging curve, correcting the positional relationship of the charging / discharging curve of the entire positive electrode and the charging / discharging curve of the entire negative electrode, and further superimposing them, Obtain the charge / discharge curve of the entire battery (referred to as the “charge / discharge curve of the entire battery based on the calculation”)
A correlation calculating step for obtaining a correlation between the charge / discharge curve of the entire battery based on the calculation and the charge / discharge curve of the entire battery based on the actual measurement;
A correction parameter specifying step for specifying the first correction parameter and the second correction parameter when the correlation is high in the correlation calculating step;
The charge / discharge curve of the whole positive electrode and the charge / discharge curve of the whole negative electrode, whose positional relationship is corrected using the second correction parameter specified in the correction parameter specifying step, are charged with the charge / discharge curve of the whole positive electrode of the secondary battery. An internal information detection method for a secondary battery, comprising: an estimation step for estimating a discharge curve and a charge / discharge curve of the entire negative electrode.
請求項1に記載の二次電池の内部情報検知方法であって、
前記充・放電カーブは、
充・放電量と、前記充・放電量の変化量に対する電圧の変化量との関係である
ことを特徴とする二次電池の内部情報検知方法。
A method for detecting internal information of a secondary battery according to claim 1,
The charge / discharge curve is
A method for detecting internal information of a secondary battery, characterized in that the relationship is between a charge / discharge amount and a voltage change amount with respect to the charge / discharge amount change amount.
請求項1に記載の二次電池の内部情報検知方法であって、
前記第2のステップで求められた、前記正極の充・放電カーブ、前記負極の充・放電カーブ、及び計算に用いた前記補正パラメータのいずれかが所定範囲にある場合に、被検知電池の交換を推奨するシグナルを出力する
ことを特徴とする二次電池の内部情報検知方法。
A method for detecting internal information of a secondary battery according to claim 1,
Replacement of the detected battery when any of the charge / discharge curve of the positive electrode, the charge / discharge curve of the negative electrode, and the correction parameter used in the calculation obtained in the second step is within a predetermined range. A method for detecting internal information of a secondary battery, characterized in that a signal recommending the output is output.
請求項1に記載の二次電池の内部情報検知方法であって、
前記第2のステップで求められた正極の充・放電カーブ及び負極の充・放電カーブにおいて、前記被検知電池の上限電圧と下限電圧とに対応して規定される正極または負極の電位が電池利用範囲である所定範囲内にない場合に、正極または負極の電位が所定範囲内に収まるように、前記被検知電池の上限電圧または下限電圧を新たに設定する
ことを特徴とする二次電池の内部情報検知方法。
A method for detecting internal information of a secondary battery according to claim 1,
In charging and discharging curves of the charge-discharge curves and the negative of the positive electrode obtained in the second step, the potential of the positive electrode or negative electrode to correspond to the upper limit voltage and lower limit voltage Ru are provisions of the detection target cell If not within the predetermined range is a battery usable range, the two potential of the positive electrode or negative electrode, characterized in that to fall within the predetermined range, newly set a maximum voltage or minimum voltage of the detection target cell primary Battery internal information detection method.
請求項1に記載の二次電池の内部情報検知方法であって、
前記第2のステップで求められた正極の充・放電カーブ及び負極の充・放電カーブを用いて算出された満充電状態における負極の電位が所定範囲にある場合に、被検知電池に内部短絡の危険性があることを警告する
ことを特徴とする二次電池の内部情報検知方法。
A method for detecting internal information of a secondary battery according to claim 1,
When the potential of the negative electrode in the fully charged state calculated using the charge / discharge curve of the positive electrode and the charge / discharge curve of the negative electrode determined in the second step is within a predetermined range, an internal short circuit is detected in the detected battery. A method for detecting internal information of a secondary battery, characterized by warning that there is a danger.
請求項1に記載の二次電池の内部情報検知方法であって、
前記第2のステップで求められた正極の充・放電カーブ及び負極の充・放電カーブを用いて、被検知電池の内部における充・放電反応種の減少量を計算して出力する
ことを特徴とする二次電池の内部情報検知方法。
A method for detecting internal information of a secondary battery according to claim 1,
Using the charge / discharge curve of the positive electrode and the charge / discharge curve of the negative electrode determined in the second step, the amount of decrease in charge / discharge reaction species in the detected battery is calculated and output, To detect internal information of secondary battery.
請求項1に記載の二次電池の内部情報検知方法であって、
前記第2のステップで求められた正極の充・放電カーブ及び負極の充・放電カーブを用いて、被検知電池の残存寿命を計算して出力する
ことを特徴とする二次電池の内部情報検知方法。
A method for detecting internal information of a secondary battery according to claim 1,
The internal information detection of the secondary battery, wherein the remaining life of the battery to be detected is calculated and output using the charge / discharge curve of the positive electrode and the charge / discharge curve of the negative electrode obtained in the second step. Method.
請求項1に記載の二次電池の内部情報検知方法であって、
前記第2のステップで用いた前記補正パラメータの値を初期値として、
前記補正パラメータの時間変化率が前記補正パラメータ自身の整式で表され、
かつ、前記整式における各項の係数の値は、少なくとも温度と電池電圧または電極電位を変数とする関数または表から求められることを用いて、
少なくとも一つの、二次電池のある使用時間に対して前記補正パラメータの値を求め、
上記の手順で求めた前記補正パラメータを用いて二次電池の放電容量または充電容量を求め、
得られた前記充電容量または放電容量が予め定められた基準値と一致する場合に、
前記使用時間を被検知電池の寿命と定義して、
前記寿命または前記寿命から求めた残存寿命を求める
ことを特徴とする二次電池の内部情報検知方法。
A method for detecting internal information of a secondary battery according to claim 1,
Using the value of the correction parameter used in the second step as an initial value,
The rate of change of the correction parameter with time is represented by an equation of the correction parameter itself,
And, by using the value of the coefficient of each term in the above equation, which is obtained from a function or table having at least temperature and battery voltage or electrode potential as variables,
Determining a value of the correction parameter for at least one usage time of the secondary battery;
Using the correction parameter obtained in the above procedure, obtain the discharge capacity or charge capacity of the secondary battery,
When the obtained charge capacity or discharge capacity matches a predetermined reference value,
By defining the usage time as the life of the battery to be detected,
A method for detecting internal information of a secondary battery, wherein the lifetime or a remaining lifetime determined from the lifetime is determined.
請求項8に記載の二次電池の内部情報検知方法であって、
二次電池のある使用時間に対する前記補正パラメータを求める際に、
二次電池を第1の条件で使用する第1の期間、および、前記第1の期間に時間的に連続して続く、第2の条件で使用する第2の期間、の組み合わせを少なくとも1つ定義し、
前記第1の期間における前記補正パラメータの初期値x1、および、
前記第1の条件に対応する前記整式またはその解を用いて、前記第1の期間における前記補正パラメータの最終値x2を算出し、
前記最終値x2を前記第2の期間における上記補正パラメータの初期値として用いて、
前記第2の条件に対応する前記整式またはその解を用いて、
前記第2の期間における前記補正パラメータの最終値x3を算出する、という手順を含む
ことを特徴とする二次電池の内部情報検知方法。
A method for detecting internal information of a secondary battery according to claim 8,
When obtaining the correction parameter for a certain usage time of the secondary battery,
At least one combination of a first period in which the secondary battery is used in the first condition and a second period in which the secondary battery is used in the second condition that continues in time to the first period. Define
An initial value x1 of the correction parameter in the first period, and
The final value x2 of the correction parameter in the first period is calculated using the polynomial or the solution corresponding to the first condition,
Using the final value x2 as the initial value of the correction parameter in the second period,
Using the polynomial or its solution corresponding to the second condition,
A method for detecting internal information of a secondary battery, comprising a step of calculating a final value x3 of the correction parameter in the second period.
二次電池の内部情報検知装置において、
基礎データとしての正極材料固有の充・放電カーブ及び負極材料固有の充・放電カーブを取得するとともに、実測値としての被検知電池の充・放電カーブを取得する第1の手段と、
前記正極材料固有の充・放電カーブ、前記負極材料固有の充・放電カーブ、及び前記実測値としての被検知電池の充・放電カーブと、所定の補正パラメータとを用いて、被検知電池内部の正極の充・放電電カーブ及び負極の充・放電カーブを求める第2の手段と、
前記第2の手段で求められた、前記正極の充・放電カーブ、前記負極の充・放電カーブ、及び計算に用いた前記補正パラメータの3つのうちの少なくとも一つを出力する第3の手段と、
を有することを特徴とする二次電池の内部情報検知装置。
In the internal information detection device of the secondary battery,
A first means for acquiring a charge / discharge curve specific to the positive electrode material and a charge / discharge curve specific to the negative electrode material as basic data, and acquiring a charge / discharge curve of the detected battery as an actual measurement value;
Using the charge / discharge curve specific to the positive electrode material, the charge / discharge curve specific to the negative electrode material, the charge / discharge curve of the detected battery as the actual measurement value, and a predetermined correction parameter, A second means for obtaining a charge / discharge curve of the positive electrode and a charge / discharge curve of the negative electrode;
The obtained by the second means, the positive electrode charging and discharging curves, and third means for outputting at least one of the three of the negative electrode of the charging and discharging curves, and the correction parameters used in the calculation ,
An internal information detection device for a secondary battery, comprising:
請求項11に記載の二次電池の内部情報検知装置であって、
前記第2の手段は、
充・放電に寄与する活物質量を補正するための第1の補正パラメータを用いて、前記正極材料固有の充・放電カーブ及び前記負極材料固有の充・放電カーブを補正し、正極全体の充・放電カーブ及び負極全体の充・放電カーブを求め、
充・放電カーブの位置関係を補正するための第2の補正パラメータを用いて、前記正極全体の充・放電カーブ及び負極全体の充・放電カーブの位置関係を補正し、さらに重ね合わせることにより、電池全体の充・放電カーブ(「計算に基づく電池全体の充・放電カーブ」という)を求め、
前記計算に基づく電池全体の充・放電カーブと前記実測に基づく電池全体の充・放電カーブとの相関性を求める相関性算出手段と、
前記相関性算出手段において前記相関性が高くなる場合の前記第1の補正パラメータ及び前記第2の補正パラメータを特定する補正パラメータ特定手段と、
前記補正パラメータ特定手段で特定した第2の補正パラメータを用いて位置関係が補正された前記正極全体の充・放電カーブ及び前記負極全体の充・放電カーブを、前記二次電池の正極全体の充・放電カーブ及び負極全体の充・放電カーブと推定する推定手段と、を有する
ことを特徴とする二次電池の内部情報検知装置。
The internal information detection device for a secondary battery according to claim 11,
The second means includes
Using the first correction parameter for correcting the amount of active material contributing to charging / discharging, the charging / discharging curve specific to the positive electrode material and the charging / discharging curve specific to the negative electrode material are corrected, and charging / discharging of the entire positive electrode is performed.・ Calculate the discharge curve and charge / discharge curve of the whole negative electrode.
By using the second correction parameter for correcting the positional relationship of the charging / discharging curve, correcting the positional relationship of the charging / discharging curve of the entire positive electrode and the charging / discharging curve of the entire negative electrode, and further superimposing them, Obtain the charge / discharge curve of the entire battery (referred to as the “charge / discharge curve of the entire battery based on the calculation”)
Correlation calculating means for obtaining a correlation between the charge / discharge curve of the entire battery based on the calculation and the charge / discharge curve of the entire battery based on the actual measurement;
Correction parameter specifying means for specifying the first correction parameter and the second correction parameter when the correlation is high in the correlation calculating means;
The charge / discharge curve of the whole positive electrode and the charge / discharge curve of the whole negative electrode, the positional relationship of which has been corrected using the second correction parameter specified by the correction parameter specifying means, are charged to the charge / discharge curve of the whole positive electrode of the secondary battery. An internal information detection device for a secondary battery, comprising: an estimation unit that estimates a discharge curve and a charge / discharge curve of the entire negative electrode.
請求項11に記載の二次電池の内部情報検知装置であって、
前記第2の手段で用いられた前記補正パラメータの値を初期値として、
前記補正パラメータの時間変化率が前記補正パラメータ自身の整式で表され、
かつ、前記整式における各項の係数の値は、少なくとも温度と電池電圧または電極電位を変数とする関数または表から求められることを用いて、
少なくとも一つの、二次電池のある使用時間に対して前記補正パラメータの値を求め、
上記の手順で求めた前記補正パラメータを用いて二次電池の放電容量または充電容量を求め、
得られた前記充電容量または放電容量が予め定められた基準値と一致する場合に、
前記使用時間を被検知電池の寿命と定義して、
前記寿命または前記寿命から求めた残存寿命を求める
ことを特徴とする二次電池の内部情報検知装置。
The internal information detection device for a secondary battery according to claim 11,
Using the value of the correction parameter used in the second means as an initial value,
The rate of change of the correction parameter with time is represented by an equation of the correction parameter itself,
And, by using the value of the coefficient of each term in the above equation, which is obtained from a function or table having at least temperature and battery voltage or electrode potential as variables,
Determining a value of the correction parameter for at least one usage time of the secondary battery;
Using the correction parameter obtained in the above procedure, obtain the discharge capacity or charge capacity of the secondary battery,
When the obtained charge capacity or discharge capacity matches a predetermined reference value,
By defining the usage time as the life of the battery to be detected,
An internal information detection device for a secondary battery, wherein the lifetime or a remaining lifetime determined from the lifetime is determined.
JP2008011599A 2007-09-07 2008-01-22 Method and apparatus for detecting internal information of secondary battery Expired - Fee Related JP4884404B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008011599A JP4884404B2 (en) 2007-09-07 2008-01-22 Method and apparatus for detecting internal information of secondary battery
EP08014303.5A EP2053414B1 (en) 2007-09-07 2008-08-11 Method and apparatus for detecting internal information of secondary battery
CN2008102109179A CN101383438B (en) 2007-09-07 2008-08-12 Internal information testing method of secondary battery and apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007232546 2007-09-07
JP2007232546 2007-09-07
JP2008011599A JP4884404B2 (en) 2007-09-07 2008-01-22 Method and apparatus for detecting internal information of secondary battery

Publications (2)

Publication Number Publication Date
JP2009080093A JP2009080093A (en) 2009-04-16
JP4884404B2 true JP4884404B2 (en) 2012-02-29

Family

ID=40463133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008011599A Expired - Fee Related JP4884404B2 (en) 2007-09-07 2008-01-22 Method and apparatus for detecting internal information of secondary battery

Country Status (2)

Country Link
JP (1) JP4884404B2 (en)
CN (1) CN101383438B (en)

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102472799B (en) * 2009-07-31 2015-04-08 本田技研工业株式会社 Apparatus for managing electricity storage capacity
CN102369627B (en) * 2009-09-25 2013-09-11 丰田自动车株式会社 Secondary battery system
CN105277899B (en) * 2010-01-19 2018-02-13 株式会社杰士汤浅国际 The charged state measure device and charged state assay method of secondary cell
JP5537236B2 (en) 2010-04-13 2014-07-02 トヨタ自動車株式会社 Lithium ion secondary battery deterioration determination device and deterioration determination method
JP5682955B2 (en) 2010-08-04 2015-03-11 Necエナジーデバイス株式会社 Lithium secondary battery control system and lithium secondary battery state detection method
US9213070B2 (en) 2011-05-31 2015-12-15 Kabushiki Kaisha Toshiba Calculation method, calculation system, and calculation apparatus
JP5889548B2 (en) * 2011-05-31 2016-03-22 株式会社東芝 Battery deterioration calculation device
WO2013157132A1 (en) * 2012-04-20 2013-10-24 日立ビークルエナジー株式会社 Secondary battery system and secondary battery degradation state determination method
KR101521328B1 (en) * 2012-05-11 2015-05-18 주식회사 엘지화학 Method and system for estimating characteristics of blended-electrode for secondary battery
JP5874543B2 (en) * 2012-06-08 2016-03-02 株式会社Gsユアサ Storage device lifetime estimation device, lifetime estimation method, and storage system
JP5878088B2 (en) * 2012-06-28 2016-03-08 株式会社日立製作所 Battery module and state estimation method thereof
CN103091639A (en) * 2013-01-11 2013-05-08 中兴通讯股份有限公司 Battery service life detecting method and detecting device
JP6038275B2 (en) * 2013-02-22 2016-12-07 株式会社日立製作所 Secondary battery deterioration diagnosis method and apparatus using the same
WO2014147753A1 (en) * 2013-03-19 2014-09-25 株式会社日立製作所 Device for detecting internal information about secondary battery
EP3051305B1 (en) * 2013-09-25 2019-04-17 Hitachi, Ltd. Status determining method for secondary battery, status determining apparatus for secondary battery, secondary battery system, and charge/discharge control apparatus having status determining apparatus
CN103576097B (en) * 2013-11-19 2016-12-07 清华大学 The method of estimation of health status SOH of battery and system
WO2015075814A1 (en) * 2013-11-22 2015-05-28 株式会社日立製作所 Secondary battery remaining life diagnosis method, remaining life diagnosis device, and battery system provided with same
CN104793143B (en) * 2014-01-20 2017-11-21 ***通信集团河北有限公司 A kind of method and device for determining storage battery safety voltage
CN103792497B (en) * 2014-02-26 2016-06-29 中国科学院宁波材料技术与工程研究所 A kind of discharge curve computational methods of two phase reaction material and homogeneous reaction material mixing
JP6251091B2 (en) 2014-03-17 2017-12-20 株式会社東芝 Secondary battery internal state calculation device and secondary battery internal state calculation method
JP2015178963A (en) 2014-03-18 2015-10-08 株式会社東芝 calculation apparatus and calculation method
CN103985895A (en) * 2014-04-17 2014-08-13 小米科技有限责任公司 Cell control method, device and terminal
JP2015230193A (en) 2014-06-04 2015-12-21 ソニー株式会社 Deterioration state estimation device, charge state estimation device, ocv curve calculation/generation device, and electricity storage device
JP6186385B2 (en) * 2014-07-10 2017-08-23 東洋ゴム工業株式会社 Degradation diagnosis method and degradation diagnosis system for sealed secondary battery
EP2990818B1 (en) 2014-09-01 2019-11-27 Yokogawa Electric Corporation Secondary battery capacity measurement system and secondary battery capacity measurement method
JP6294207B2 (en) 2014-10-17 2018-03-14 株式会社日立製作所 Secondary battery control method
JP6183663B2 (en) * 2015-03-09 2017-08-23 トヨタ自動車株式会社 Secondary battery control device
US10700389B2 (en) 2015-07-31 2020-06-30 Hitachi, Ltd. Battery control device
CN105158698B (en) * 2015-08-28 2017-12-22 江苏大学 Battery state-of-health estimation on line method based on charging voltage curve
JP2017073331A (en) * 2015-10-09 2017-04-13 株式会社デンソー Secondary battery device
JP6380417B2 (en) 2016-01-21 2018-08-29 横河電機株式会社 Secondary battery capacity measuring system and secondary battery capacity measuring method
JP6613969B2 (en) * 2016-03-09 2019-12-04 トヨタ自動車株式会社 Secondary battery system
JP6602735B2 (en) * 2016-09-21 2019-11-06 日立オートモティブシステムズ株式会社 Secondary battery control device
WO2018112881A1 (en) * 2016-12-23 2018-06-28 深圳中兴力维技术有限公司 Rapid prediction method for battery charging performance and system thereof
CN106646263A (en) * 2017-01-16 2017-05-10 珠海市魅族科技有限公司 Electric quantity metering method and electric quantity metering device
US10408883B2 (en) * 2017-03-31 2019-09-10 GM Global Technology Operations LLC Method and apparatus for monitoring a DC power source
JP6982445B2 (en) 2017-09-20 2021-12-17 株式会社東芝 Battery evaluation device, battery control device, battery evaluation method, battery evaluation program, control circuit and power storage system.
JP6672351B2 (en) * 2018-02-13 2020-03-25 株式会社東芝 Calculation device and calculation method
JP6784731B2 (en) * 2018-08-06 2020-11-11 ミネベアミツミ株式会社 Deterioration judgment system and deterioration judgment method for secondary batteries
CN109856546B (en) * 2019-01-07 2024-01-19 银隆新能源股份有限公司 Secondary battery material system detection method
JP7096193B2 (en) * 2019-04-04 2022-07-05 矢崎総業株式会社 Battery control unit and battery system
KR20200122111A (en) * 2019-04-17 2020-10-27 주식회사 엘지화학 Apparatus, method and battery pack for determining degradation state of battery
WO2020215154A1 (en) 2019-04-23 2020-10-29 Dpm Technologies Inc. Fault tolerant rotating electric machine
JP2020201080A (en) * 2019-06-07 2020-12-17 本田技研工業株式会社 Battery state determination method for lithium ion secondary battery
CN110333464A (en) * 2019-07-24 2019-10-15 国家电网有限公司 Method of instructing operation and device
JP7293055B2 (en) * 2019-09-11 2023-06-19 株式会社東芝 Charge/discharge control device, battery pack, vehicle, and charge/discharge control method
KR102596153B1 (en) * 2020-08-14 2023-10-30 주식회사 엘지에너지솔루션 Apparatus and method for managing battery
CA3217299A1 (en) * 2021-05-04 2022-11-10 Tung Nguyen Battery control systems and methods
CN117337545A (en) 2021-05-13 2024-01-02 Exro技术公司 Method and device for driving coils of a multiphase motor
CN114089193A (en) * 2021-10-19 2022-02-25 清华大学 Method and device for estimating temperature and negative pole potential of battery on line and computer equipment
JP2023102800A (en) * 2022-01-13 2023-07-26 株式会社日立製作所 Method for evaluating deterioration of storage battery
CN115099020A (en) * 2022-06-17 2022-09-23 湖北亿纬动力有限公司 Power battery parameter full life cycle prediction method and device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3669669B2 (en) * 1998-09-18 2005-07-13 松下電器産業株式会社 Battery characteristic analysis method and analysis apparatus using the same
CN100448135C (en) * 2001-11-24 2008-12-31 艾默生网络能源有限公司 Float cut-off method for voltage of battery in UPS
JP4157317B2 (en) * 2002-04-10 2008-10-01 株式会社日立製作所 Status detection device and various devices using the same
JP4401734B2 (en) * 2002-10-11 2010-01-20 キヤノン株式会社 Secondary battery internal resistance detection method, internal resistance detection device, internal resistance detection program, and medium containing the program
JP2004171955A (en) * 2002-11-20 2004-06-17 Nissan Motor Co Ltd Bipolar battery, battery pack with multiple bipolar batteries connected, charge control system for controlling charge of bipolar battery or battery pack, and vehicle with battery pack or charge system mounted thereon
CN1333262C (en) * 2004-01-02 2007-08-22 清华大学 Judging method of electromobile car battery discharging termination bused on small wave transformation
CN1862279B (en) * 2005-05-11 2010-04-28 苏州润源电气技术有限公司 Method for estimating aging rate and testing fault of battery, and apparatus for managing and monitoring battery

Also Published As

Publication number Publication date
CN101383438A (en) 2009-03-11
JP2009080093A (en) 2009-04-16
CN101383438B (en) 2010-10-27

Similar Documents

Publication Publication Date Title
JP4884404B2 (en) Method and apparatus for detecting internal information of secondary battery
JP6982445B2 (en) Battery evaluation device, battery control device, battery evaluation method, battery evaluation program, control circuit and power storage system.
CN111448468B (en) Method, device and system for detecting consistency of battery pack
CN104698385B (en) Battery state calculating device and battery state calculating method
KR102435037B1 (en) A method for calibrating a battery, a method for estimating the state of health of a battery, and a system for performing theses methods
US20160195589A1 (en) Degradation diagnosis system and degradation diagnosis method for secondary battery
EP2711727B1 (en) Battery condition estimation device and method of generating open circuit voltage characteristic
JP7141012B2 (en) Secondary battery system
US9537325B2 (en) Battery state estimation system, battery control system, battery system, and battery state estimation method
JP5220269B2 (en) Method and apparatus for detecting deterioration / charge state of storage battery
EP2053414B1 (en) Method and apparatus for detecting internal information of secondary battery
JP6460860B2 (en) Method for estimating the health of battery cells
JP2019056595A (en) Secondary battery system
JP5878088B2 (en) Battery module and state estimation method thereof
US20160351974A1 (en) Deterioration degree calculating method, control method, and control device for lithium ion secondary battery
JP2019045351A (en) Secondary battery system
JP2010139260A (en) System of estimating remaining life of secondary battery and method for estimating remaining life thereof
JP2013187031A (en) Lithium ion secondary battery system, inspection method of lithium ion secondary battery, control method of lithium ion secondary battery
WO2015075814A1 (en) Secondary battery remaining life diagnosis method, remaining life diagnosis device, and battery system provided with same
JP2019061741A (en) Secondary battery system
JP2020079723A (en) Secondary battery system
KR20140084823A (en) Method for checking deterioration of battery
JP2003168489A (en) Detecting method of charging/discharging state of alkaline storage battery
CN112394290A (en) Method and device for estimating SOH of battery pack, computer equipment and storage medium
CN112415409B (en) Method and device for estimating battery capacity, storage medium and vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees