JP4884315B2 - Oscillating gear unit - Google Patents

Oscillating gear unit Download PDF

Info

Publication number
JP4884315B2
JP4884315B2 JP2007169063A JP2007169063A JP4884315B2 JP 4884315 B2 JP4884315 B2 JP 4884315B2 JP 2007169063 A JP2007169063 A JP 2007169063A JP 2007169063 A JP2007169063 A JP 2007169063A JP 4884315 B2 JP4884315 B2 JP 4884315B2
Authority
JP
Japan
Prior art keywords
gear
tooth
teeth
concave
gears
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007169063A
Other languages
Japanese (ja)
Other versions
JP2009008142A (en
Inventor
武男 荻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ogino Industrial Co Ltd
Original Assignee
Ogino Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ogino Industrial Co Ltd filed Critical Ogino Industrial Co Ltd
Priority to JP2007169063A priority Critical patent/JP4884315B2/en
Publication of JP2009008142A publication Critical patent/JP2009008142A/en
Application granted granted Critical
Publication of JP4884315B2 publication Critical patent/JP4884315B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Retarders (AREA)
  • Gears, Cams (AREA)

Description

本発明は、ハウジングに固定された歯数n1 の第1歯車と、出力軸に取付けられた歯数n4 の第4歯車とを、入力軸との各軸芯を一致させて配置し、歯数n2 の第2歯車および歯数n3 の第3歯車を一体に設けた回転体を、第2歯車が第1歯車と噛み合い、第3歯車が第4歯車と噛み合うように前記入力軸の傾斜部で軸支し、前記第1、第2歯車の各ピッチ円を通る共通球面の中心点と、前記第3、第4歯車の各ピッチ円を通る共通球面の中心点とが一致する点を原点とするXY座標のX軸上に前記入力軸の軸芯を配置し、かつ、第1、第2歯車の噛み合い点と第4、第3歯車の噛み合い点とを該XY座標の同一象限若しくは異なる象限上に置いてなる揺動型歯車装置に関する。   According to the present invention, a first gear having n1 teeth fixed to a housing and a fourth gear having n4 teeth attached to an output shaft are arranged with their respective axis centers aligned with the input shaft, and the number of teeth A rotating body integrally provided with a second gear with n2 and a third gear with n3 teeth is provided at the inclined portion of the input shaft so that the second gear meshes with the first gear and the third gear meshes with the fourth gear. A point where the center point of the common sphere passing through the pitch circles of the first and second gears and the center point of the common sphere passing through the pitch circles of the third and fourth gears coincides with the origin. The axis of the input shaft is arranged on the X axis of the XY coordinates to be used, and the meshing points of the first and second gears and the meshing points of the fourth and third gears are the same quadrant or different quadrants of the XY coordinates. The present invention relates to a rocking gear device placed on top.

従来より、揺動運動を行ういわゆる揺動型歯車装置を用いた減速歯車装置の原理が知られていた。この揺動型歯車装置は、4つの歯車のみで大減速比を得ることが可能であり、様々な利点を有するものである。しかしながら、揺動型歯車装置はその歯形を高精度かつ低コストでの生産が困難な球面インボリュート歯形とする必要があり、実用化には至らなかった。本発明者はこの球面インボリュート歯形に替えて、一方の歯車の歯形を、歯すじ方向において歯厚および歯たけが等しいいわゆる等高歯とし、他方の歯形を該等高歯の歯形を創成転写し、さらに該等高歯を、ローラ状のコロを凸状歯として用いることにより、揺動型歯車装置の実用化を可能とした。なお、揺動型歯車装置の詳細については、特公平7−56324 号公報(特許文献1)に開示されている。   Conventionally, the principle of a reduction gear device using a so-called oscillating gear device for oscillating motion has been known. This oscillating gear device can obtain a large reduction ratio with only four gears, and has various advantages. However, the oscillating gear device needs to have a spherical involute tooth profile that is difficult to produce with high accuracy and low cost, and has not been put into practical use. Instead of this spherical involute tooth profile, the present inventor changed the tooth profile of one of the gears to a so-called contour tooth having the same tooth thickness and tooth depth in the tooth direction, and the other tooth profile was created and transferred to the tooth profile of the contour tooth. Furthermore, the swing-type gear device can be put to practical use by using the contoured teeth and roller-shaped rollers as convex teeth. The details of the oscillating gear device are disclosed in Japanese Patent Publication No. 7-56324 (Patent Document 1).

図10には、本発明者による揺動型歯車装置の要部断面が示されている。揺動型歯車装置は、入力軸1と出力軸2との間を、第1〜第4歯車A1〜A4 で連結し、これらの歯車によって減速を行っている。この第1〜第4歯車A1〜A4は傘歯車である。そして、第1歯車A1 はハウジング6に一体的に固定されている。また、第2歯車A2 および第3歯車A3 は1つの回転体3に設けられ、回転体3は入力軸1の傾斜部1aで回転自在に支承されている。このように回転体3を傾斜支持すると、入力軸1の回転に伴って回転体3に揺動運動を発生させることができる。また、各歯車の噛み合い部にコロ4aが介在されこのコロの転動により噛み合い摩擦を吸収している。   FIG. 10 shows a cross section of the main part of the oscillating gear device by the present inventor. In the oscillating gear device, the input shaft 1 and the output shaft 2 are connected by first to fourth gears A1 to A4, and the speed is reduced by these gears. The first to fourth gears A1 to A4 are bevel gears. The first gear A1 is fixed integrally to the housing 6. The second gear A2 and the third gear A3 are provided on one rotating body 3, and the rotating body 3 is rotatably supported by the inclined portion 1a of the input shaft 1. When the rotating body 3 is supported in an inclined manner as described above, a swinging motion can be generated in the rotating body 3 as the input shaft 1 rotates. In addition, a roller 4a is interposed in the meshing portion of each gear, and meshing friction is absorbed by the rolling of this roller.

図11に示すように、コロ4aは、第1歯車A1(第4歯車A4 )に形成された凹溝4bによって転動自在に支持されている。そして、凹溝4bから突出するコロ4aによって、半円柱状の凸状歯4を形成している。また、第2歯車A2 (第3歯車A3 )にも半円弧状凹溝を形成し、凹状歯5として構成する。そして、回転体3が矢印Bで示す方向に揺動運動を行うと、第2歯車A2 (第3歯車A3 )は矢印Cで示す方向に移動し、各凹状歯5と凸状歯4とを噛み合わせていく。この際に、各凹状歯と凸状歯との間に生ずる摺動を、コロ4aの転動で吸収している。
特公平7−56324号公報
As shown in FIG. 11, the roller 4a is rotatably supported by a concave groove 4b formed in the first gear A1 (fourth gear A4). And the semicylindrical convex tooth | gear 4 is formed with the roller 4a which protrudes from the ditch | groove 4b. Further, the second gear A2 (third gear A3) is also formed with a semicircular arc-shaped groove and formed as a concave tooth 5. When the rotating body 3 swings in the direction indicated by the arrow B, the second gear A2 (third gear A3) moves in the direction indicated by the arrow C, and the concave teeth 5 and the convex teeth 4 are moved. Engage with each other. At this time, the sliding generated between the concave teeth and the convex teeth is absorbed by the rolling of the rollers 4a.
Japanese Examined Patent Publication No. 7-56324

上記の揺動型歯車装置は、上記凸状歯を凹溝とコロとで構成、すなわち、噛み合い部にコロを介在させることにより、原理的には噛み合い部の摩擦抵抗が低減されることになり、伝達効率を高めることが可能となる。しかしながら、噛み合い部の構成要素が増えることにより噛み合い精度の確保が大きな課題となる。一体型の凸状歯と凹状歯の噛み合いであれば2部品個々の精度と2者間の位置決め精度を確保すればよいが、噛み合い構成要素としてコロが増加することによって、3部品の個別精度に加えて3者間の位置決め精度の確保が極めて複雑になる。   In the above-mentioned oscillating gear device, the convex teeth are composed of concave grooves and rollers, that is, by interposing the rollers in the meshing portion, the frictional resistance of the meshing portion is reduced in principle. It becomes possible to increase the transmission efficiency. However, securing the meshing accuracy becomes a major issue due to the increase in the components of the meshing portion. If it is meshing of integral convex teeth and concave teeth, it is sufficient to ensure the accuracy of each of the two parts and the positioning accuracy between the two, but by increasing the roller as the meshing component, the individual precision of the three parts is increased. In addition, ensuring the positioning accuracy among the three parties becomes extremely complicated.

この種の揺動型歯車装置は、第1歯車A1〜第4歯車A4の噛み合いが、第2歯車A2および第3歯車A3が第1歯車A1および第4歯車A4に対して面ぶれ運動を行いながら噛み合いが行われるため、噛み合い始めから噛み合い離脱の間、各歯車の歯すじ方向の母線が互いに交差することになり、凸状歯と凹状歯を単純な直線形状に形成した場合、相互に噛み合い干渉部が生じ噛み合い歯車として成立しない。それ故、凸状歯および凹状歯の両者をともに単純な形状にすることはできず、一方を単純な形状の等高歯とし、他方の歯形を創成加工機を用いて凸状歯を創成転写した創成歯形とすることによって、干渉の生じない適正な噛み合いが得られることになる。   In this type of oscillating gear device, the meshing of the first gear A1 to the fourth gear A4 causes the second gear A2 and the third gear A3 to run out of motion relative to the first gear A1 and the fourth gear A4. Since the meshing is carried out while the meshing is started and the meshing is disengaged, the generatrix of each gear will cross each other, and if the convex and concave teeth are formed in a simple linear shape, they mesh with each other. An interference part is generated and the meshing gear is not established. Therefore, both convex teeth and concave teeth cannot be made into simple shapes, one is made into a contoured tooth with a simple shape, and the other tooth form is created and transferred using a creation machine. By using the generated tooth profile, proper meshing without interference can be obtained.

しかしながら、創成歯としての凹状歯は、きわめて複雑な形状となるため、凹状歯の位置決めは、回転方向だけでなく歯すじ方向においても厳密に行う必要があり、その位置決め作業は、単にコロが増加したことによる煩雑さだけでなく、それ以上の煩雑さとなる。高精度の位置決め精度を得るためには、複雑な組み立て治具を用いたり複雑な作業を行うことによってある程度は可能であるが、生産性を考慮した場合限界がある。そこで、多少の位置決め精度のばらつきがあっても、適正な噛み合い精度が得られるように、最終組付けに先立って組み合わせ歯車ごとに個別になじみ加工を行い、干渉部を除去することが考えられるが、この方法は、余分な加工工程が増えるだけでなく、特に創成歯のなじみ加工を行う場合には特別な創成加工機を用いる必要があり、生産性において問題がある。   However, since the concave tooth as the generating tooth has a very complicated shape, it is necessary to position the concave tooth not only in the rotational direction but also in the tooth line direction. This is not only complicated, but also more complicated. In order to obtain a high positioning accuracy, it is possible to some extent by using a complicated assembly jig or performing a complicated operation, but there is a limit in considering productivity. Therefore, even if there is some variation in positioning accuracy, it may be possible to remove the interference portion by performing individual fitting for each combination gear prior to final assembly so that proper meshing accuracy can be obtained. This method not only increases the number of extra processing steps, but also has a problem in productivity because it requires the use of a special generating machine, particularly when the generating teeth are used.

そこで、このような問題を解決するために、凸状歯を構成するコロの回転方向におけるコロの支持剛性を高め、かつコロの硬度を凹状歯の硬度より高くすることにより、基準歯としての凸状歯による凹状歯の初期なじみを促進することが考えられるが、この方法においても十分な解決にはならない。   Therefore, in order to solve such problems, the support rigidity of the rollers in the rotation direction of the rollers constituting the convex teeth is increased, and the hardness of the rollers is made higher than the hardness of the concave teeth, so that Although it is conceivable to promote initial conformation of the concave teeth by the teeth, this method is not a sufficient solution.

つまり、この方法によれば、確かに、組み立て前のなじみ加工などの特別な作業を必要としないが、初期なじみが完了するまでの間は、異常当たりとなり騒音の発生は如何ともしがたい。なじみ時間を短縮するためには、より磨耗しやすくするように凹状歯の硬度を下げる必要があるが、低くし過ぎると凹状歯の耐久性に影響を与えることになる。なじみ時間の短縮と耐久性の維持とは相反する特性があり、その両立は難しい。   That is, according to this method, there is no need for special work such as running-in before assembling. However, until the initial running-in is completed, an abnormal hit occurs and it is difficult to generate noise. In order to shorten the conforming time, it is necessary to lower the hardness of the concave teeth so as to be more easily worn. However, if it is too low, the durability of the concave teeth will be affected. There is a contradictory property between shortening the fitting time and maintaining durability, and it is difficult to achieve both.

本発明はかかる点に鑑みてなされたもので、噛み合い歯の耐久性の確保と噛み合い精度の確保の両立を図り、かつ加工精度の自由度および位置決め精度の自由度の高い揺動型歯車装置を提供することをその目的とする。   The present invention has been made in view of the above points, and an oscillating gear device that ensures both the durability of the meshing teeth and the meshing accuracy, and has a high degree of freedom in machining accuracy and positioning accuracy. Its purpose is to provide.

上記課題を解決するための本発明の請求項1に係わる手段は、ハウジングに固定された歯数n1 の第1歯車と、出力軸に取付けられた歯数n4 の第4歯車とを、入力軸との各軸芯を一致させて配置し、歯数n2の第2歯車および歯数n3 の第3歯車を一体に設けた回転体を、第2歯車が第1歯車と噛み合い、第3歯車が第4歯車と噛み合うように前記入力軸の傾斜部で軸支し、前記第1、第2歯車の各ピッチ円を通る共通球面の中心点と、前記第3、第4歯車の各ピッチ円を通る共通球面の中心点とが一致する点を原点とするXY座標のX軸上に前記入力軸の軸芯を配置し、かつ、第1、第2歯車の噛み合い点と第4、第3歯車の噛み合い点とを該XY座標の同一象限若しくは異なる象限上に置いてなる揺動型歯車装置であって、
上記第1ないし第4歯車が傘歯車として構成され、
該第1ないし第4歯車のうち第1歯車および第4歯車が、ピッチ円錐上において等間隔で歯車中心から放射方向に伸びる断面半円状の凹溝と、該凹溝内に転動自在に配置される円柱状のコロとで等高歯としての凸状歯として構成され、上記第1歯車および第4歯車とそれぞれ噛み合う第2および第3歯車が、該凸状歯と噛み合う所定円弧形状の凹状歯として構成され、
上記凸状歯は、歯すじ長さが該凹状歯の歯すじ長さより長く設定されており、
上記凸状歯を構成する凹溝は、コロが凹溝内において周方向の傾動を許容するように、その開口部が基準ピッチ円直径を基点に歯すじ方向端部に向かって拡大する拡大部が形成されていることを特徴とする。
According to a first aspect of the present invention for solving the above-mentioned problems, a first gear having n1 teeth fixed to the housing and a fourth gear having n4 teeth attached to the output shaft are connected to the input shaft. And the second gear meshes with the first gear, and the third gear rotates with the rotating gear integrally provided with the second gear having the number of teeth n2 and the third gear having the number of teeth n3. A center point of a common spherical surface that passes through the pitch circles of the first and second gears and is supported by the inclined portion of the input shaft so as to mesh with the fourth gear, and the pitch circles of the third and fourth gears. The axis of the input shaft is arranged on the X axis of the XY coordinates with the origin coincident with the center point of the common spherical surface that passes through, and the meshing point of the first and second gears and the fourth and third gears And the meshing point of the oscillating gear device in the same or different quadrants of the XY coordinates,
The first to fourth gears are configured as bevel gears,
Of the first to fourth gears, the first gear and the fourth gear have a semicircular groove having a semicircular cross section extending radially from the gear center at equal intervals on the pitch cone, and can freely roll into the groove. The second and third gears, which are configured as convex teeth as contour teeth with the arranged cylindrical rollers and mesh with the first gear and the fourth gear, respectively, have a predetermined arc shape that meshes with the convex teeth. Configured as concave teeth,
The convex teeth are set such that the tooth length is longer than the tooth length of the concave teeth,
The concave groove that constitutes the convex teeth has an enlarged portion whose opening expands toward the end of the tooth-pitch direction with the reference pitch circle diameter as a base point so that the rollers allow tilting in the circumferential direction within the concave groove. Is formed.

上記のように構成することにより、各歯車の組み立て精度に多少の狂いがあったとしても、凸状歯と凹状歯の噛み合い過程において、コロが凹溝内において基準ピッチ円を起点に、凹状歯の歯先位置に対応して傾動することによって、凹状歯との噛み合いが適正になり、局部的な異常面圧の発生は抑制されることになる。したがって、加工精度および位置決め精度の自由度が拡大し、噛み合い歯の耐久性を損なうことなく生産性の向上を図ることができる。   By configuring as described above, even if there is a slight deviation in the assembly accuracy of each gear, in the meshing process between the convex teeth and the concave teeth, the rollers start from the reference pitch circle in the concave groove, and the concave teeth By tilting in accordance with the position of the tooth tip, the meshing with the concave teeth becomes appropriate, and the occurrence of local abnormal surface pressure is suppressed. Therefore, the degree of freedom of processing accuracy and positioning accuracy is increased, and productivity can be improved without impairing the durability of the meshing teeth.

しかも、凸状歯を構成する凹溝の形状が、凸状歯を創成転写する凹状歯と同様の形状とすることができるので、同一の加工手段にて加工することが可能となり、生産性が特に向上する。特に、創成歯としての凹状歯を創成転写する加工手段として、特開平10−235519に示す加工手段を用いる場合、いわゆる揺動型歯車機構を用いてワークを揺動運動させながら、連続的に加工を行うことができ、割り出し手段を用いた加工に比べ、きわめて加工速度を高めることができ、かつピッチ間誤差の最小化を図ることができる。   In addition, the shape of the concave grooves constituting the convex teeth can be the same shape as the concave teeth for generating and transferring the convex teeth, so that it can be processed by the same processing means, and productivity is increased. Especially improved. In particular, when using the processing means disclosed in Japanese Patent Laid-Open No. 10-235519 as a processing means for generating and transferring a concave tooth as a generating tooth, continuous processing is performed while swinging the workpiece using a so-called oscillating gear mechanism. Compared with the processing using the indexing means, the processing speed can be extremely increased and the error between pitches can be minimized.

請求項2に係わる手段は、請求項1において、上記凸状歯と上記凹状歯の基準ピッチ円直径が歯すじ方向ほぼ中央に設定され、上記凸状歯を構成する凹溝の拡大部が、その開口部が基準ピッチ円直径をはさんで歯すじ方向外方および歯すじ方向内方に拡大する鼓形状に形成されていることを特徴とする。このように構成することにより、拡大部の拡大幅を凹状歯との角度誤差に対し最小にすることができるので、凹状歯との噛み合い精度の確保と、コロの凹溝内での位置決め安定性の確保との両立を図ることができる。   According to a second aspect of the present invention, in the first aspect, a reference pitch circle diameter of the convex teeth and the concave teeth is set at substantially the center of the streak direction, and the enlarged portion of the concave groove constituting the convex teeth is The opening is formed in a drum shape that expands outward in the tooth trace direction and inward in the tooth trace direction across the reference pitch circle diameter. With this configuration, the enlarged width of the enlarged portion can be minimized with respect to the angle error with the concave tooth, so that the engagement accuracy with the concave tooth is ensured and the positioning stability in the concave groove of the roller is ensured. It is possible to achieve compatibility with

請求項3に係わる手段は、請求項1において、上記凸状歯の凹溝が、上記凹状歯と同様に凸状歯を創成転写した創成歯形あるいは近似創成歯形としたことを特徴とする。このように構成することで、まったく同一の生産手段での加工が可能となり、生産性が向上する。   According to a third aspect of the present invention, in the first aspect of the present invention, the concave groove of the convex tooth is a generating tooth profile or an approximate generating tooth profile obtained by creating and transferring a convex tooth in the same manner as the concave tooth. By configuring in this way, processing with exactly the same production means becomes possible, and productivity is improved.

請求項4に係わる手段は、請求項1〜3の1つにおいて、上記凸状歯を構成するコロの硬度が、上記凹状歯の硬度より高い硬度に設定されていることを特徴とする。このように構成することにより、初期なじみの向上により凹溝の拡大部の拡大幅を小さくすることが可能となり、コロの凹溝内での位置決め安定性をより向上させることができる。   According to a fourth aspect of the present invention, in any one of the first to third aspects, the hardness of the rollers constituting the convex teeth is set higher than the hardness of the concave teeth. By comprising in this way, it becomes possible to make small the expansion width of the expansion part of a ditch | groove by the improvement of initial conformity, and can improve the positioning stability in the ditch | groove of a roller more.

本発明は、噛み合い歯の耐久性の確保と噛み合い精度の確保の両立を図り、かつ加工精度の自由度および位置決め精度の自由度の高い揺動型歯車装置を提供することができる。   The present invention can provide an oscillating gear device that ensures both the durability of the meshing teeth and the meshing accuracy, and has a high degree of freedom in processing accuracy and positioning accuracy.

以下本発明の実施例を図1〜図9に基づいて説明する。なお、上記従来例と同一ないし相当部分は同一符号を付し詳細な説明は省略する。   Embodiments of the present invention will be described below with reference to FIGS. The same or corresponding parts as those in the conventional example are given the same reference numerals, and detailed description thereof is omitted.

まず、本発明に係わる実施態様の説明に先立って、揺動型歯車装置について、その基本構造および基本原理について追加説明する。図に示す揺動型歯車装置は、ハウジング6に固定された歯数n1 の第1歯車A1と、出力軸2に取付けられた歯数n4 の第4歯車A4とを、入力軸1との各軸芯を一致させて配置し、歯数n2 の第2歯車A2および歯数n3 の第3歯車A3を一体に設けた回転体3を、第2歯車A2が第1歯車A1と噛み合い、第3歯車A3が第4歯車A4と噛み合うように前記入力軸1の傾斜部1aで軸支し、前記第1、第2歯車の各ピッチ円を通る共通球面の中心点と、前記第3、第4歯車の各ピッチ円を通る共通球面の中心点が一致する点を原点OとするXY座標のX軸上に前記入力軸の軸芯Gを配置し、かつ、上記原点Oから所定の角度傾斜する軸上に上記傾斜部1aの軸芯Hを配置し、第1、第2歯車の噛み合い点と第4、第3歯車の噛み合い点とを該XY座標の同一象限若しくは異なる象限上に置くことによって構成される。   First, prior to the description of the embodiments according to the present invention, the basic structure and basic principle of the oscillating gear device will be additionally described. The oscillating gear device shown in the figure includes a first gear A1 having n1 teeth fixed to a housing 6 and a fourth gear A4 having n4 teeth attached to an output shaft 2 and each input shaft 1. The rotating body 3 is arranged in such a manner that the shaft center is aligned and the second gear A2 having the number of teeth n2 and the third gear A3 having the number of teeth n3 are integrally provided. The second gear A2 meshes with the first gear A1, and the third gear A center point of a common spherical surface that is supported by the inclined portion 1a of the input shaft 1 so that the gear A3 meshes with the fourth gear A4 and passes through the pitch circles of the first and second gears, and the third and fourth The axis G of the input shaft is arranged on the X axis of the XY coordinates with the origin O as a point where the center points of the common spherical surfaces passing through the pitch circles of the gears coincide with each other, and the input shaft is inclined at a predetermined angle from the origin O. The axis H of the inclined portion 1a is disposed on the shaft, and the meshing points of the first and second gears and the meshing points of the fourth and third gears Are placed in the same quadrant or different quadrants of the XY coordinates.

上記揺動型歯車装置は、より具体的には、減速比に対応した歯数に設定された4つの円錐傘歯車として第1〜第4歯車A1〜A4を有し、第1歯車と第2歯車の歯車対と、第3歯車と第4歯車の歯車対の二組の歯車対にて構成されている。この二組の歯車対にそれぞれ所定の歯数差を与えることによって所定の減速比が得られる。このうち第1歯車A1 は、ハウジング6に一体的に固定され、回転をしない固定歯車である。第2歯車A2 、第3歯車A3 は、入力軸1の傾斜部1aによって軸支される回転体3に形成されている。また、第4歯車A4 は出力軸2に設けられている。   More specifically, the oscillating gear device has first to fourth gears A1 to A4 as four conical bevel gears set to the number of teeth corresponding to the reduction ratio, and the first gear and the second gear. It is composed of two gear pairs, a gear pair of gears and a gear pair of third gear and fourth gear. A predetermined reduction ratio is obtained by giving a predetermined difference in the number of teeth to each of the two sets of gear pairs. Of these, the first gear A1 is a fixed gear that is integrally fixed to the housing 6 and does not rotate. The second gear A 2 and the third gear A 3 are formed on the rotating body 3 that is supported by the inclined portion 1 a of the input shaft 1. The fourth gear A4 is provided on the output shaft 2.

回転体3は、入力軸1の軸芯Gに対して所定の角度をなす軸芯Hを有する傾斜部1aによって支持されている。この傾斜角は、噛み合い歯車対の各歯車間の歯数差すなわち基準ピッチ円直径の差に対応した偏心量になるように設定される。   The rotating body 3 is supported by an inclined portion 1 a having an axis H that forms a predetermined angle with respect to the axis G of the input shaft 1. This inclination angle is set to be an eccentric amount corresponding to the difference in the number of teeth between the gears of the meshing gear pair, that is, the difference in the reference pitch circle diameter.

したがって、入力軸1が回転すると、傾斜部1aが首を振るような運動をし、これに軸支される回転体3は、揺動運動をする。この、回転体3の揺動運動に伴い、第2歯車A2 を第1歯車A1 に、また、第3歯車A3 を第4歯車A4 にそれぞれ噛み合わせていく。すると、第2歯車A2 は、1周期の揺動運動(入力軸1の1回転)当り、第1歯車A1 との歯数差に相当する分だけ第1歯車A1 に対して回転する。すなわち、第1歯車A1 と、第2歯車A2 との間で、一段階の減速がなされる。また、第3歯車と第4歯車との間に歯数差を与えておけば、この間でも同様の減速作用が行われ、二段階の減速がなされる。   Therefore, when the input shaft 1 rotates, the inclined portion 1a moves such that the head swings, and the rotating body 3 pivotally supported by the inclined portion 1a performs a swinging motion. As the rotator 3 swings, the second gear A2 is engaged with the first gear A1, and the third gear A3 is engaged with the fourth gear A4. Then, the second gear A2 rotates with respect to the first gear A1 by an amount corresponding to the difference in the number of teeth from the first gear A1 per one cycle of swinging motion (one rotation of the input shaft 1). That is, a one-stage reduction is performed between the first gear A1 and the second gear A2. Further, if a difference in the number of teeth is given between the third gear and the fourth gear, the same speed reduction action is performed during this time, and two-stage speed reduction is performed.

この場合、最終減速比は上記二組の歯車対の歯数差によって決まる。つまり、減速比をR(入力軸1が1回転したときの出力軸2の回転数)とすると、
R=1−(n1×n3)/(n2×n4) ・・・・・(i)
と表すことができる。
In this case, the final reduction ratio is determined by the difference in the number of teeth of the two sets of gear pairs. In other words, if the reduction ratio is R (the rotational speed of the output shaft 2 when the input shaft 1 makes one revolution),
R = 1− (n1 × n3) / (n2 × n4) (i)
It can be expressed as.

ここで、n1:第1歯車A1の歯数,n2:第2歯車A2の歯数,n3:第3歯車A3の歯数,n4:第4歯車A4の歯数とし、n1=99,n2=100,n3=101,n4=100とすると、減速比R=1/10000となる。また、n1=9,n2=10,n3=11,n4=10とすると、減速比R=1/100となる。このように4つの歯車の歯数をそれぞれ任意に設定することにより高減速から低減速の幅広い減速比が得られる。   Here, n1: number of teeth of the first gear A1, n2: number of teeth of the second gear A2, n3: number of teeth of the third gear A3, n4: number of teeth of the fourth gear A4, n1 = 99, n2 = When 100, n3 = 101, and n4 = 100, the reduction ratio R = 1/10000. If n1 = 9, n2 = 10, n3 = 11, and n4 = 10, the reduction ratio R = 1/100. In this way, by setting the number of teeth of the four gears arbitrarily, a wide reduction ratio from high speed reduction to reduction speed can be obtained.

なお、前述のごとく、第1歯車A1 の歯数と第2歯車A2 の歯数差が1の場合には、揺動運動が1周期進むと、第1歯車A1 と第2歯車A2 との間で、噛み合う歯は1つずれる。また、同歯数差が2の場合は、揺動運動が1周期進むと、第1歯車A1 と第2歯車A2 との間で、噛み合う歯は2つずれる。同様にして、歯数差がnの場合には、噛み合う歯はn個ずれることになる。このことは、第3、第4歯車A3,A4 の関係においても同じである。なお、図1に示す実施態様は、第1,第2歯車間のみに歯数差を与え、第3,第4歯車間は歯数差ゼロとした一段減速の実施態様を示している。   As described above, when the difference between the number of teeth of the first gear A1 and the number of teeth of the second gear A2 is 1, when the oscillating motion advances by one cycle, the distance between the first gear A1 and the second gear A2 Thus, the teeth that mesh are shifted by one. Further, when the difference in the number of teeth is 2, when the oscillating motion advances by one cycle, the meshing teeth are shifted between the first gear A1 and the second gear A2. Similarly, when the difference in the number of teeth is n, the meshing teeth are shifted by n. This also applies to the relationship between the third and fourth gears A3 and A4. The embodiment shown in FIG. 1 shows an embodiment of one-stage reduction in which the difference in the number of teeth is given only between the first and second gears and the difference in the number of teeth is zero between the third and fourth gears.

揺動型歯車装置の減速比は、上述の説明で明らかなように高減速から低減速の幅広い減速比を得られるものであるが、特に低減速比を得る場合、噛み合い歯車間の基準ピッチ円直径の差が大きくなり、この差に対応して傾斜部の傾斜角を大きくする必要があり、これによって、回転体の揺動運動の振幅が大きくなり、振動的に不利となる。   The speed reduction ratio of the oscillating gear device can obtain a wide speed reduction ratio from a high speed reduction to a reduction speed, as is clear from the above description. In particular, when obtaining a reduction speed ratio, the reference pitch circle between the meshing gears. The difference in diameter becomes large, and it is necessary to increase the inclination angle of the inclined portion corresponding to this difference. This increases the amplitude of the oscillating motion of the rotating body, which is disadvantageous in terms of vibration.

この振動は、バランサーを設けることで低減することは可能であるが、構造が複雑になり、コストが増大するといった新たな問題が発生する。そこで、本発明に係わる実施態様においては、二組の歯車対のうち、第1歯車A1,第2歯車A2の歯車対において歯数差を与え、第3歯車A3,第4歯車A4の歯車対側の歯数差をゼロにすることで所定の減速比が得られるように構成されている。一例として、第1〜第4歯車の歯数n1〜n4を、
n1=99,n2=100,n3=100,n4=100とすることで、減速比Rは(i)式により、R=1/100となり、上述の低減速の例と同様の減速比が得られる。
Although this vibration can be reduced by providing a balancer, a new problem arises that the structure becomes complicated and the cost increases. Therefore, in the embodiment according to the present invention, a gear number difference is given to the gear pair of the first gear A1 and the second gear A2 of the two gear pairs, and the gear pair of the third gear A3 and the fourth gear A4. A predetermined reduction ratio is obtained by setting the difference in the number of teeth on the side to zero. As an example, the number of teeth n1 to n4 of the first to fourth gears,
By setting n1 = 99, n2 = 100, n3 = 100, and n4 = 100, the reduction ratio R becomes R = 1/100 according to the equation (i), and the same reduction ratio as the above-described reduction speed example is obtained. It is done.

このように、第1歯車A1,第2歯車A2からなる歯車対のみの一段減速とすることで、上述の二段減速の例と比べて、基準ピッチ円直径は大きくなるものの、基準ピッチ円直径の差を小さくすることができ、同一減速比を小さい傾斜角で得ることが可能となる。このように傾斜角を小さくすることで振動の低減だけでなく、第1歯車と第4歯車間の軸間距離の短縮化および第3歯車の歯形の簡略化も可能となる。   As described above, the single pitch reduction of only the gear pair composed of the first gear A1 and the second gear A2 makes the reference pitch circle diameter larger than that of the above-described two-step reduction example, but the reference pitch circle diameter. Thus, the same reduction ratio can be obtained with a small inclination angle. Thus, by reducing the inclination angle, not only the vibration can be reduced, but also the distance between the first gear and the fourth gear can be shortened and the tooth profile of the third gear can be simplified.

さらに、第1歯車,第2歯車からなる歯車対側のみでの一段減速とする場合、第3歯車と第4歯車については、同一歯数であれば減速比に影響を与えることはなく、任意に設定できる。したがって、第3歯車A3,第4歯車A4の歯数を第1歯車A1,第2歯車A2のいずれか一方の歯数と同一歯数にすることにより、4つの歯車のうち3つの歯車の歯数を同一にすることができ、加工効率、すなわち生産効率の向上に大きく貢献する。   Furthermore, in the case of one-stage reduction only on the side of the gear pair consisting of the first gear and the second gear, the third gear and the fourth gear do not affect the reduction ratio as long as they have the same number of teeth, and are arbitrary. Can be set. Therefore, by setting the number of teeth of the third gear A3 and the fourth gear A4 to be the same as the number of teeth of either the first gear A1 or the second gear A2, the teeth of three gears out of the four gears. The number can be made the same, greatly contributing to the improvement of processing efficiency, that is, production efficiency.

この場合、第3歯車A3,第4歯車の歯数を第2歯車の歯数と同一にあるいは第1歯車の歯数と同一にしてもよいが、前者の場合、第2歯車A2,第3歯車A3の歯数を同数とすることで、第2歯車と第3歯車の周方向の位相を一致させることができるので、第1歯車A1,第2歯車A2の噛み合い位置と、第3歯車A3,第4歯車A4の噛み合い位置の位相を一致させることができ、回転体に作用するアキシャル荷重が同一タイミングで作用することになり、回転体の振動を最小にすることができる。   In this case, the number of teeth of the third gear A3 and the fourth gear may be the same as the number of teeth of the second gear or the number of teeth of the first gear, but in the former case, the second gear A2, the third gear. By making the number of teeth of the gear A3 the same, the circumferential phase of the second gear and the third gear can be matched, so that the meshing position of the first gear A1 and the second gear A2 and the third gear A3 , The phase of the meshing position of the fourth gear A4 can be matched, and the axial load acting on the rotating body acts at the same timing, and the vibration of the rotating body can be minimized.

また、後者の場合、加工の効率化において特に有利となる。つまり、第1歯車と第2歯車間に歯数差を与え一段減速を行う場合、歯車の歯形形状については、4つの歯車のうち第2歯車のみ相違し、他の第1歯車A1,第3歯車A3,第4歯車A4の残り3つの歯車の形状を共通化できるので、同一加工設備での共通加工が可能となる。   In the latter case, it is particularly advantageous in improving processing efficiency. That is, when the first gear and the second gear are provided with a difference in the number of teeth and one-stage reduction is performed, only the second gear of the four gears is different from the first gear A1, the third gear. Since the shapes of the remaining three gears of the gear A3 and the fourth gear A4 can be made common, common machining with the same machining facility becomes possible.

続いて揺動型歯車装置の歯形を求める手法について、以下説明する。ここで、図1に示す揺動型歯車装置の各傘歯車の歯形を求める手法を示す展開図を図3に、その要部拡大図を図4に示す。なお、各歯車A1,A2,A3,A4 は摸式的にピッチ円錐で示している。   Next, a method for obtaining the tooth profile of the oscillating gear device will be described below. Here, FIG. 3 is a development view showing a method for obtaining the tooth profile of each bevel gear of the swinging gear device shown in FIG. 1, and FIG. Each gear A1, A2, A3, A4 is schematically shown as a pitch cone.

ここでは、第1歯車A1 、第2歯車A2 の各ピッチ円を通る共通球面Cir1と、第3歯車A3 、第4歯車A4 の各ピッチ円を通る共通球面Cir2とを考える。そして、各共通球面の中心点を一致させ、該一致点を原点Oとする。さらに、原点Oを原点とするXY座標を考える。このXY座標のX軸上に入力軸1の軸芯Gを配置する。また、第1、第2歯車A1 ,A2の噛み合い点をC1 、第3、第4歯車A3 ,A4 の噛み合い点をC2 とする。そして、噛み合い点C1,C2 を、第1象限と第3象限若しくは第2象限と第4象限に置く。   Here, a common spherical surface Cir1 passing through the pitch circles of the first gear A1 and the second gear A2 and a common spherical surface Cir2 passing through the pitch circles of the third gear A3 and the fourth gear A4 are considered. Then, the center points of the respective common spherical surfaces are made coincident with each other, and the coincidence point is set as the origin O. Further, XY coordinates with the origin O as the origin are considered. The axis G of the input shaft 1 is arranged on the X axis of the XY coordinates. Further, the meshing point of the first and second gears A1 and A2 is C1, and the meshing point of the third and fourth gears A3 and A4 is C2. Then, the meshing points C1, C2 are placed in the first quadrant and the third quadrant or the second quadrant and the fourth quadrant.

また、入力軸1の軸芯Gと傾斜部1aの軸芯Hとがなす角度をθ、第1歯車A1 の背円錐とピッチ円錐の中心線とでなす角度をθ1 、第2歯車A2 の背円錐とピッチ円錐の中心線とでなす角度をθ2 とすると、θ1 +θ2 =θである。なお、θ1 ,θ2 のいずれか一方の角度を零とすることも可能であり、この場合は、前記角度を零とした方の歯車が冠歯車となる。同様にして、第3、第4歯車A3 ,A4 の背円錐と各ピッチ円錐の中心線とでなす角度は、第3歯車A3 はθ3 、第4歯車A4 はθ4 かつθ3 +θ4 =θである。 The angle formed between the axis G of the input shaft 1 and the axis H of the inclined portion 1a is θ, the angle formed between the back cone of the first gear A1 and the center line of the pitch cone is θ 1 , and the second gear A2 If the angle formed by the back cone and the center line of the pitch cone is θ 2 , θ 1 + θ 2 = θ. It is also possible to make either one of the angles θ 1 and θ 2 zero, and in this case, the gear having the zero angle becomes the crown gear. Similarly, the third angle formed by the fourth gear A3, back cone and the center line of each pitch cone of A4, the third gear A3 is theta 3, the fourth gear A4 theta 4 cutlet theta 3 + theta 4 = θ.

また、第1〜第4歯車の歯数をそれぞれn1 ,n2 ,n3 ,n4とする。ここで、第1〜第4歯車A1〜A4 の各ピッチ円錐の頂点O1 ,O2 ,O3 ,O4 から、各背円錐の頂点D1,D2,D3,D4 までの距離D1D2,D2O2,D3O3,D4O4を、ピッチ円半径とする円筒歯車ER1,ER2 ,ER3 ,ER4 を考える。そして、このピッチ円上に形成されるインボリュート歯形若しくは任意の歯形を想定し、これを第1〜第4歯車A1〜A4 の相当円筒歯車とする。ここで、該相当円筒歯車の相当歯数をZ1 ,Z2 ,Z3 ,Z4 とすると、
Z1 =n1 /Sinθ1 ……(ii)
Z2 =n2 /Sinθ2 ……(iii )
Z3 =n3 /Sinθ3 ……(iv)
Z4 =n4 /Sinθ4 ……(v)
と表すことができる。
The number of teeth of the first to fourth gears is n1, n2, n3, and n4, respectively. Here, the distances D1D2, D2O2, D3O3, D4O4 from the vertices O1, O2, O3, O4 of the pitch cones of the first to fourth gears A1-A4 to the vertices D1, D2, D3, D4 of the dorsal cones are set. Consider the cylindrical gears ER1, ER2, ER3, ER4 with pitch circle radii. An involute tooth profile or an arbitrary tooth profile formed on the pitch circle is assumed, and this is assumed to be an equivalent cylindrical gear of the first to fourth gears A1 to A4. Here, if the equivalent number of teeth of the equivalent cylindrical gear is Z1, Z2, Z3, Z4,
Z1 = n1 / Sinθ 1 (ii)
Z2 = n2 / Sinθ 2 (iii)
Z3 = n3 / Sinθ 3 (iv)
Z4 = n4 / Sinθ 4 (v)
It can be expressed as.

したがって、この種の揺動型歯車装置の歯形は、上記式(ii),(iii )で得られる関係を有する相当円筒歯車において、第1歯車A1 に等高歯の歯形を形成し、さらに、第2歯車A2 に該歯形を創成転写することで形成される。第3、第4歯車A3 ,A4 も同様にして形成される。すなわち、第1〜第4歯車A1〜A4は2対の等高歯歯車対が形成されることになり、従来の球面インボリュウト歯形に比べて加工精度の自由度の高い揺動型歯車装置が得られることになる。(なお、第1,第2歯車間における一段減速の場合、第3歯車は凸状歯の創成転写は必須ではない。)
以上のような基本構成および基本原理の揺動型歯車装置の本発明に係わる特徴部分について、以下図1〜図9に基づいて詳細に説明する。
Therefore, the tooth profile of this type of oscillating gear device is the equivalent cylindrical gear having the relationship obtained by the above formulas (ii) and (iii), and the tooth profile of the contour tooth is formed on the first gear A1. It is formed by generating and transferring the tooth profile to the second gear A2. The third and fourth gears A3 and A4 are formed in the same manner. That is, the first to fourth gears A1 to A4 are formed with two pairs of constant-tooth gears, and an oscillating gear device having a higher degree of freedom in machining accuracy than a conventional spherical involute tooth profile is obtained. Will be. (In the case of a one-stage reduction between the first and second gears, the third gear does not necessarily require the creation of convex teeth.)
The characteristic portions according to the present invention of the oscillating gear device having the basic configuration and the basic principle as described above will be described in detail with reference to FIGS.

次に、以上のように構成される一段減速機構の各歯形形状について説明する。第1〜第4の4つの歯車のうち第1歯車A1および第4歯車A4は、円柱コロ4aと該コロを位置決め保持する凹溝4bとを備え、歯すじ方向に歯厚,歯たけの等しい等高歯としての凸状歯4として構成されている。一方、上記第1,第4歯車と噛み合う第2歯車A2および第3歯車A3は、上記等高歯としての凸状歯4と噛み合う所定の円弧形状をなす凹状歯5として構成されている。   Next, each tooth profile shape of the one-stage reduction mechanism configured as described above will be described. Of the first to fourth gears, the first gear A1 and the fourth gear A4 are provided with a cylindrical roller 4a and a concave groove 4b for positioning and holding the roller, and the tooth thickness, tooth depth, etc. are equal in the direction of the tooth trace. It is configured as convex teeth 4 as high teeth. On the other hand, the second gear A2 and the third gear A3 meshing with the first and fourth gears are configured as concave teeth 5 having a predetermined arc shape meshing with the convex teeth 4 as the contour teeth.

このうち、第2歯車A2は、第1歯車A1との間に歯数差を有し、傾斜部1aにより所定の偏心量を持っていることによって、噛み合い始め位置から最大噛み合い位置にかけて、また最大噛み合い位置から噛み合い離脱位置にかけて、歯すじ方向の母線が交差しながら噛み合いを行うものであるため、単純な直線状の凹状歯とした場合、凹状歯5の開口部において干渉が生じる。したがって、第2歯車A2の歯形は、後に詳細に説明するように凸状歯4との噛み合いが適正に行われるように凸状歯4を創成転写した創成歯あるいは近似創成歯として形成されている。   Of these, the second gear A2 has a difference in the number of teeth from the first gear A1, and has a predetermined amount of eccentricity due to the inclined portion 1a. Since meshing is performed while the generatrix line crosses from the meshing position to the meshing disengagement position, interference is generated at the opening of the concave tooth 5 when a simple straight concave tooth is used. Accordingly, the tooth profile of the second gear A2 is formed as a generating tooth or an approximate generating tooth obtained by generating and transferring the convex tooth 4 so that the mesh with the convex tooth 4 is properly performed as will be described in detail later. .

また、回転体3の他方の軸端面に形成され、第4歯車A4と噛み合う第3歯車A3は、第4歯車と同一軸芯でかつ同一歯数をなしているので、回転体3の揺動運動に伴って、サイクロイド曲線に沿った挙動は行うものの、上記第2歯車のように歯すじ方向における母線が交差することはないので、歯すじ方向に同一断面の円弧歯形として形成される。
なお、第3,第4歯車間に歯数差を与え、二段減速を行う場合には、第3歯車の歯形は、第2歯車と同様に、凸状歯を創成転写した創成歯形もしくは近似創成歯として形成する必要がある。また、第1〜第4歯車の基準ピッチ円直径(PCD)はそれぞれ歯すじ方向中央に設定されている。
Further, the third gear A3 formed on the other shaft end surface of the rotating body 3 and meshed with the fourth gear A4 has the same axis as the fourth gear and the same number of teeth. Along with the movement, although the behavior along the cycloid curve is performed, the generatrix in the tooth trace direction does not intersect like the second gear, so that it is formed as an arc tooth profile having the same cross section in the tooth trace direction.
In addition, when a difference in the number of teeth is given between the third and fourth gears, and the two-stage reduction is performed, the tooth profile of the third gear is the same as the second gear, which is a generating tooth profile obtained by creating and transferring convex teeth or an approximation. It is necessary to form as a tooth. Further, the reference pitch circle diameter (PCD) of the first to fourth gears is set at the center of the tooth trace direction.

さらに、上記第1〜第4歯車を構成する凸状歯4および凹状歯5は、一例として、高炭素クロム軸受け鋼(SUJ2)にて形成され、熱処理により所定の硬度に調節されている。具体的には、噛み合い要素としてのコロ4aおよび凹状歯5は、ともに所定の負荷能力が得られるように、ロックウエル硬度で58〜68の範囲において、コロ4aの硬度が凹状歯5の硬度より高く設定されている。その一例としてコロを65に、また凹状歯を62とし、3程度の硬度差に設定されている。この硬度差は、2〜5程度であればよいが、その差が大きすぎると初期なじみに対しては有利であるが、凹状歯の磨耗に伴う耐久性に影響を与えることになり、また硬度差を小さくするとその逆となる。上記の例のように3程度の硬度差が好ましい。   Furthermore, the convex teeth 4 and the concave teeth 5 constituting the first to fourth gears are formed of high carbon chromium bearing steel (SUJ2) as an example, and are adjusted to a predetermined hardness by heat treatment. Specifically, the rollers 4a and the concave teeth 5 as the meshing elements have a Rockwell hardness in the range of 58 to 68 so that the hardness of the rollers 4a is higher than the hardness of the concave teeth 5 so that a predetermined load capacity can be obtained. Is set. As an example, the roller is 65 and the concave teeth are 62, and the hardness difference is set to about 3. This hardness difference may be about 2 to 5, but if the difference is too large, it is advantageous for initial familiarity, but it will affect the durability associated with the wear of concave teeth, and the hardness The opposite is true if the difference is reduced. A hardness difference of about 3 is preferable as in the above example.

以上のように、コロ4aが、耐摩耗性が高くかつ剛性の高い基準歯として構成されるとともに凹状歯5が、相対的に耐摩耗性の低い創成歯形として構成されているので、加工精度および位置決め精度に多少の狂いがあっても、回転体3の揺動運動に伴いコロ4aと凹状歯5の噛み合いが行われることによって凹状歯5の初期なじみが促進されることになる。なお、上記の実施形態において、凸状歯としてのコロ4aおよび凹状歯5は同一材料にて成形されているが、互いに異なる材料であってもよい。その場合、基準歯としてのコロ4aが、凹状歯5に対し相対的に耐摩耗性が高い材料であればよい。   As described above, the roller 4a is configured as a reference tooth having high wear resistance and high rigidity and the concave tooth 5 is configured as a generating tooth profile having relatively low wear resistance. Even if the positioning accuracy is slightly deviated, the initial fit-in of the concave teeth 5 is promoted by the meshing of the rollers 4a and the concave teeth 5 with the swinging motion of the rotating body 3. In the above embodiment, the rollers 4a and the concave teeth 5 as convex teeth are formed of the same material, but may be different materials. In that case, the roller 4a as the reference tooth may be a material having a relatively high wear resistance with respect to the concave tooth 5.

また、凹状歯5のなじみ性は、硬度によって大きく影響を受けるが、位置決めの狂いに伴う干渉程度によっても大きく影響を受ける。したがって、上記のように、凹状歯5の歯すじ長さを短くし、かつPCDが歯すじ方向中央部付近に設定され、凸状歯との干渉部の最小化を図ることにより、コロ4aとの噛み合いなじみの範囲が最小となり、凹状歯5の耐久性を損なうことなくそのなじみ性を向上させる上でより有利になる。   In addition, the conformability of the concave teeth 5 is greatly affected by the hardness, but is also greatly affected by the degree of interference associated with the positioning error. Accordingly, as described above, the length of the streaks of the concave teeth 5 is shortened, and the PCD is set near the central portion in the streak direction, thereby minimizing the interference portion with the convex teeth, so that the rollers 4a and This is more advantageous in improving the conformability of the concave teeth 5 without impairing the durability of the concave teeth 5.

また、上記凸状歯を構成する凹溝4bは、コロ4aと常時接触し、コロ4aを基準歯として所定位置に保持するものであるため、コロ4aと凹状歯5との間における噛み合いなじみ性は特に必要がなく、コロ4aと同一の材料でかつ同一硬度であってもよく、また、凹状歯5と同程度の硬度に調節しコロ4aの硬度より低くしてもよい。この場合、凹溝4bの硬度がコロ4aより低いことで、相対的にコロ4aの磨耗を最小限に防ぐことができ、コロ4aと凹状歯5の噛み合いに置ける接触面圧を安定的に維持できるのでより好ましい。   Further, the concave groove 4b constituting the convex tooth is in constant contact with the roller 4a and holds the roller 4a as a reference tooth at a predetermined position, so that the meshing compatibility between the roller 4a and the concave tooth 5 is good. Is not particularly necessary, and may be made of the same material and the same hardness as the roller 4a, or may be adjusted to a hardness comparable to the concave tooth 5 and lower than the hardness of the roller 4a. In this case, since the hardness of the concave groove 4b is lower than that of the roller 4a, the wear of the roller 4a can be relatively prevented to a minimum, and the contact surface pressure that can be placed in meshing between the roller 4a and the concave tooth 5 is stably maintained. It is more preferable because it is possible.

すなわち、長期の使用によってコロ4aが凹溝4b内を転動することで相互の磨耗が進行した場合、凹溝4bの磨耗についてはコロ4aの外形に沿うように磨耗することになり面圧の増大については有利となるが、コロ4aの磨耗については、磨耗によりコロ4aの直径が小さくなり凹溝4bに対する面圧が増大することになる。それ故、凹溝4bの硬度を上記凹状歯5と同様にコロ4aの硬度に対し低く設定することで接触面圧の安定化が可能となり、面圧の増大による磨耗の悪循環を防止でき、その耐久性を向上させることができる。   That is, when the roller 4a rolls in the concave groove 4b due to long-term use and the mutual wear progresses, the wear of the concave groove 4b is worn along the outer shape of the roller 4a. Although the increase is advantageous, the wear of the roller 4a decreases the diameter of the roller 4a due to the wear and increases the surface pressure against the concave groove 4b. Therefore, it is possible to stabilize the contact surface pressure by setting the hardness of the concave groove 4b to be lower than the hardness of the roller 4a in the same manner as the concave tooth 5, and to prevent a vicious cycle of wear due to an increase in the surface pressure. Durability can be improved.

以下、第1〜第4歯車の歯形について、より詳細に説明する。まず、凸状歯として構成される第1歯車および第4歯車について説明する。なお、第1歯車A1および第4歯車A4は同一歯形をなすので、以下第1歯車を代表して説明する。   Hereinafter, the tooth profiles of the first to fourth gears will be described in more detail. First, the first gear and the fourth gear configured as convex teeth will be described. Since the first gear A1 and the fourth gear A4 have the same tooth profile, the first gear will be described below as a representative.

上記凸状歯4は、歯すじ長さが凹状歯5の歯すじ長さより長く設定されている。その長さは、第2歯車A2の揺動運動に伴う噛み合い始め位置から噛み合い離脱位置の間で、第2歯車A2の凹状歯開口部における干渉除去幅が歯すじ方向両端で最大となるように、有効噛み合い長さが長く設定されている。また、凸状歯4を構成するコロ4aは第1歯車A1のハブに固定手段としてのリテーナ7,8によって歯すじ方向両端において係止する必要があるので、上記凸状歯4の長さはコロ4aの係止分の寸法を考慮してさらに長く設定されている。つまり、凸状歯4を構成するコロ4aの歯すじ長さは、凹状歯5の歯すじ長さに対して、有効歯すじ長さの差分とリテーナ係止分の長さが加算された寸法として設定されている。またコロ4aの外径は、歯すじ方向全域において同一直径となっている。   The convex teeth 4 are set so that the tooth length is longer than the tooth length of the concave teeth 5. The length is such that the interference removal width at the concave tooth opening of the second gear A2 is maximized at both ends of the tooth trace direction between the meshing start position and the meshing disengagement position associated with the swinging motion of the second gear A2. The effective meshing length is set to be long. Further, since the rollers 4a constituting the convex teeth 4 need to be locked at both ends in the tooth trace direction by retainers 7 and 8 as fixing means to the hub of the first gear A1, the length of the convex teeth 4 is as follows. The length of the roller 4a is set longer in consideration of the size of the locking portion. That is, the length of the tooth 4a of the roller 4a constituting the convex tooth 4 is a dimension obtained by adding the difference of the effective tooth length and the length of the retainer to the tooth length of the concave tooth 5. Is set as Moreover, the outer diameter of the roller 4a is the same diameter in the whole tooth line direction.

上記凸状歯4として構成されるコロ4aは、第1歯車の歯数と同数備え、その軸方向(歯すじ方向)の両端部において外側リテーナ7、内側リテーナ8によって位置決め保持されている。各リテーナ7,8はリング状に形成されており、軸方向内端には第1、第4歯車A1、A4の係止溝9と係合する環状の係止爪がそれぞれ形成されている。軸方向の外端には、コロ4aの軸端部を保持する環状の係止爪がそれぞれ形成されている。このリテーナ7,8はポリアミド系あるいはポリイミド系の樹脂にて形成され、自身が所定の外力の作用により変形が可能で、コロ4aの変位を弾性的に許容するように構成されている。   The rollers 4a configured as the convex teeth 4 have the same number as the number of teeth of the first gear, and are positioned and held by the outer retainer 7 and the inner retainer 8 at both ends in the axial direction (tooth direction). The retainers 7 and 8 are formed in a ring shape, and annular locking claws that are engaged with the locking grooves 9 of the first and fourth gears A1 and A4 are formed at the inner ends in the axial direction. At the outer end in the axial direction, annular locking claws that hold the shaft end portion of the roller 4a are formed. The retainers 7 and 8 are made of polyamide or polyimide resin, and can be deformed by the action of a predetermined external force, and are elastically allowed to displace the rollers 4a.

以上のように構成される凸状歯4としてのコロ4aを支持する凹溝4bは、コロの外形に対応した円弧歯形として形成され、その開口形状は、図9に示すように、凹状歯5とコロ4aとの噛み合いの際、コロが凹溝内において基準ピッチ円直径位置(PCD)を基点に周方向(歯厚方向)に傾動しうるように、基準ピッチ円直径位置を基点に歯すじ方向外方および歯筋方向内方に向かって連続的に拡大するいわゆる鼓形状に形成されている。(なお、図9は図2の要部の拡大斜視図を示すが、図2においては、縮尺の関係で拡大部4eが図示されていない。)
この拡大部4eの拡大程度は、大きいほど噛み合い位置の狂いに対する吸収代は大きくなるが、むやみに大きくするとコロ4aの位置決め保持が不安定になるので、拡大程度は最小とし、凹溝4bの弾性変形分とで傾動幅を分担するように形成する必要がある。その意味において、拡大部4eの拡大形状は、基準ピッチ円直径位置を含む所定の範囲を歯すじ方向に同一断面をなす直線部とし、その端部から歯すじ方向端部にかけて連続的に拡大する拡大部を形成するようにしてもよい。この場合、直線部の長さは、凹状歯との噛み合いの際、凹溝内面が容易に弾性変形し、噛み合い時異常面圧が発生しないように設定する必要がある。また、拡大部の役割機能は、上述のコロ4aと凹状歯5間の硬度差によるなじみ作用と同様に歯車間の誤差を吸収し、適正な噛み合いを促進するためのものである。したがって、なじみ作用との兼ね合いで拡大部4eの拡大範囲を最小化することも可能となる。
The concave groove 4b that supports the roller 4a as the convex tooth 4 configured as described above is formed as an arc tooth shape corresponding to the outer shape of the roller, and the opening shape thereof is a concave tooth 5 as shown in FIG. When the roller 4a meshes with the roller 4a, the tooth pitches with the reference pitch circle diameter position as the base point so that the roller can tilt in the circumferential direction (tooth thickness direction) with the reference pitch circle diameter position (PCD) as the base point in the groove. It is formed in a so-called drum shape that continuously expands outward in the direction and inward in the tooth trace direction. (FIG. 9 shows an enlarged perspective view of the main part of FIG. 2, but the enlarged portion 4e is not shown in FIG. 2 due to the reduced scale.)
As the degree of enlargement of the enlarged portion 4e increases, the absorption margin for the misalignment of the meshing position increases, but if it is increased excessively, the positioning and holding of the roller 4a becomes unstable. Therefore, the degree of enlargement is minimized, and the elasticity of the groove 4b is reduced. It is necessary to form the tilt width to be shared by the deformation. In that sense, the enlarged shape of the enlarged portion 4e is a linear portion having the same cross section in the tooth trace direction within a predetermined range including the reference pitch circle diameter position, and continuously expands from the end portion to the end of the tooth trace direction. An enlarged portion may be formed. In this case, it is necessary to set the length of the straight portion so that the inner surface of the groove is easily elastically deformed when engaged with the concave teeth and no abnormal surface pressure is generated during the engagement. Further, the role function of the enlarged portion is to absorb an error between the gears and promote proper meshing in the same manner as the conforming action due to the hardness difference between the roller 4a and the concave tooth 5 described above. Therefore, it is possible to minimize the enlargement range of the enlargement portion 4e in consideration of the conforming action.

その断面形状としては、図5に示すように、凹状歯5の断面形状と同様に多重円弧にて形成されている。具体的にはコロ4aの半径に対し1より大きい半径rを持つ2つの円弧でもって、その円弧中心をコロ4a中心に対してオフセットさせて形成されている。それ故、凹溝4bおよび凹状歯5の開口部近くには、二つの接触点P0、P0が形成され、コロ4aとの間で45度より小さい所定の(たとえば15度)の接触角αが得られるとともに、この接触点P0、P0から溝底に向かってコロ4aの外周から徐々に離間することで溝底近辺に所定のオイル溜り4d,5bが形成されることになる。 As shown in FIG. 5, the cross-sectional shape is formed by multiple arcs as in the cross-sectional shape of the concave tooth 5. Specifically, two arcs having a radius r larger than 1 with respect to the radius of the roller 4a are formed by offsetting the center of the arc with respect to the center of the roller 4a. Therefore, two contact points P 0 and P 0 are formed near the openings of the concave groove 4b and the concave teeth 5, and a predetermined contact angle smaller than 45 degrees (for example, 15 degrees) with the roller 4a. α is obtained, and predetermined oil reservoirs 4d and 5b are formed in the vicinity of the groove bottom by gradually separating from the outer periphery of the roller 4a from the contact points P 0 and P 0 toward the groove bottom.

図5の断面位置は、歯すじ方向中央すなわち基準ピッチ円直径位置における断面を示し、その位置より歯筋方向内方および外方は、拡大部4eに対応して基準ピッチ円位置における円弧より大きい半径の円弧(図5の仮想線)をなしている。
なお、接触角αとは、基本的に凸状歯4aと凹状歯5の噛み合いにおいて互いの母線が重なり合う最大噛み合い位置における角度をいう。
The cross-sectional position in FIG. 5 shows a cross section at the center of the tooth trace direction, that is, at the reference pitch circle diameter position, and the inside and outside of the tooth trace direction from that position are larger than the arc at the reference pitch circle position corresponding to the enlarged portion 4e. A circular arc of a radius (imaginary line in FIG. 5) is formed.
Note that the contact angle α is basically an angle at the maximum meshing position where the buses overlap each other when meshing the convex teeth 4 a and the concave teeth 5.

また、上述のように凹溝4bおよび凹状歯5の断面を多重円弧で形成し、接触点P0、P0を開口部近くに設定することで、その接触角αを小さくすることができ、特に凹状歯5において、伝達効率の向上および歯車各部の耐久性の向上に大きく貢献する。 Moreover, the contact angle α can be reduced by forming the cross section of the concave groove 4b and the concave tooth 5 as multiple arcs as described above and setting the contact points P 0 and P 0 near the opening, In particular, the concave tooth 5 greatly contributes to improvement of transmission efficiency and durability of each part of the gear.

つまり、第1歯車A1および第2歯車A2の噛み合い部には図5の凹状歯5の接触点P0ではコロ4aに対し荷重Pがかかる。この荷重Pは第1、第2歯車A1、A2のピッチ円錐と平行な方向の分力である回転伝達力Tと、同じくピッチ円錐と垂直な方向の分力であるアキシャル力Fとに成分を分けて考えることができる。このアキシャル力が大きくなれば逆に回転伝達力が小さくなる。しかもアキシャル力は、第2歯車A2が形成される回転体3に曲げ力として作用し回転体3を支障するベアリングに悪影響を与え歯車装置としての耐久性を損なうことになる。 That is, the load P is applied to the first gear A1 and the second contact point P 0 in the roller 4a of the concave tooth 5 of FIG. 5 in the engaging portion of the gear A2. This load P has components for a rotational transmission force T, which is a component force in a direction parallel to the pitch cone of the first and second gears A1, A2, and an axial force F, which is also a component force in a direction perpendicular to the pitch cone. Can be considered separately. Conversely, if this axial force increases, the rotation transmission force decreases. In addition, the axial force acts as a bending force on the rotating body 3 on which the second gear A2 is formed, adversely affects the bearing that interferes with the rotating body 3, and impairs the durability of the gear device.

したがって、接触角αを小さくすれば、アキシャル力が小さくなり、伝達効率の向上および耐久性の向上がともに可能となる。なお、凸状歯を構成する凹溝4bにおいては、このアキシャル力は第1歯車が固定されるハウジング6にて受けることになるので、上述の耐久性には影響を与えることはない。   Therefore, if the contact angle α is reduced, the axial force is reduced, and both transmission efficiency and durability can be improved. Note that, in the concave groove 4b constituting the convex teeth, this axial force is received by the housing 6 to which the first gear is fixed, and thus the above-described durability is not affected.

次に第2歯車A2に形成される凹状歯5の歯形について詳細に説明する。凹状歯5は、先に概略説明したように、第1歯車A1としての凸状歯4を創成転写することによって形成される。   Next, the tooth profile of the concave tooth 5 formed on the second gear A2 will be described in detail. The concave teeth 5 are formed by generating and transferring the convex teeth 4 as the first gear A1, as schematically described above.

図6は、第1歯車と第2歯車の噛み合いにあたって、第1歯車の凸状歯としての等高歯に対し、第2歯車の凹状歯を同一深さ、同一歯厚の等高凹歯(干渉状況を説明する上での仮想形状)とし、第2歯車が矢印方向に揺動運動する際、凸状等高歯としてのコロ4aと等高凹歯としての凹状歯5の関係を2次元的に示す模式図である。この場合、第2歯車の歯数が第1歯車の歯数より多く設定され、その基準ピッチ円直径は歯数差分大きく設定されるとともに歯すじ方向中央に設定される。また、第1歯車の中心は入出力軸の軸芯Gを中心とし、第2歯車は傾斜部の軸芯H上の中心を持ち、中心Hは中心Gの周りを偏心回転する。   FIG. 6 shows that when meshing the first gear and the second gear, the concave gear teeth of the second gear are the same depth as the convex teeth of the first gear. When the second gear swings and moves in the direction of the arrow, the relationship between the roller 4a as a convex contour tooth and the concave tooth 5 as a contour concave tooth is two-dimensional. FIG. In this case, the number of teeth of the second gear is set to be larger than the number of teeth of the first gear, and the reference pitch circle diameter is set larger than the difference in the number of teeth and set in the center of the tooth line direction. The center of the first gear is centered on the axis G of the input / output shaft, the second gear has the center on the axis H of the inclined portion, and the center H rotates eccentrically around the center G.

したがって、第2歯車が矢印方向に揺動運動つまり偏心運動すると、凹状歯とコロとは所定の角度範囲Eにおいて噛み合いが行われることになる。この場合、コロと凹状歯とは母線M1、M2に対して歯すじ方向に同一幅(同一径)に形成されているので、母線が重なる最大噛み合い位置W1位置においては適正な噛み合いとなるが、その前後の噛み合い角度位置では、母線が互いに交差し、凹状歯5にはコロ4aとの干渉が生じる。   Therefore, when the second gear swings in the direction of the arrow, that is, moves eccentrically, the concave teeth and the rollers are engaged in a predetermined angle range E. In this case, the rollers and the concave teeth are formed to have the same width (the same diameter) in the direction of the teeth with respect to the buses M1 and M2, and therefore the proper meshing occurs at the maximum meshing position W1 where the buses overlap. At the meshing angle positions before and after that, the bus lines intersect with each other, and the concave teeth 5 interfere with the rollers 4a.

この母線の交差は、噛み合い始め位置W2および噛み合い離脱位置W3とで最大となり、しかも交差方向が最大噛み合い位置を基点に前後で逆の傾きとなるので、その干渉部(図中斜線付与部)は噛み合い始め位置W2から最大噛み合い位置W1までの角度範囲では基準ピッチ円直径(PCD)外側では凹状歯5の反回転方向側で発生し、基準ピッチ円直径内側では回転方向側に発生する。また、最大噛み合い位置W1から噛み合い離脱位置W3までの角度範囲では、基準ピッチ円直径の外側と内側では、上記とは逆の方向に干渉部が発生する。   The intersection of the buses is maximum at the meshing start position W2 and the meshing disengagement position W3, and the crossing direction has a reverse inclination before and after the maximum meshing position as a base point, so that the interference part (hatched part in the figure) is In the angle range from the meshing start position W2 to the maximum meshing position W1, it occurs on the counter-rotation direction side of the concave teeth 5 outside the reference pitch circle diameter (PCD), and occurs on the rotation direction side inside the reference pitch circle diameter. Further, in the angle range from the maximum meshing position W1 to the meshing disengagement position W3, interference portions are generated in the direction opposite to the above on the outside and inside of the reference pitch circle diameter.

よって、凹状歯5の開口部には、噛み合い始め位置から噛み合い離脱位置の噛み合い範囲において、基準ピッチ円直径を基点に歯すじ方向内外に拡大する鼓形状の干渉部が生まれる。   Therefore, in the opening portion of the concave tooth 5, a drum-shaped interference portion is created that expands in and out of the tooth trace direction with the reference pitch circle diameter as a base point in the meshing range from the meshing start position to the meshing disengagement position.

この干渉部は、第1歯車と第2歯車の基準ピッチ円直径の差、つまり傾斜部の傾斜角によって影響を受け、その傾斜角が小さければ第1歯車と第2歯車間の偏心量が小さくなり上述の母線の交差角が小さくなり、上述の干渉部が小さくなり、逆に傾斜角が大きくなると、その交差角が大きくなり干渉部は大きく(歯すじ方向、歯底方向、歯厚方向ともに)なる。   The interference portion is affected by the difference in the reference pitch circle diameter between the first gear and the second gear, that is, the inclination angle of the inclined portion. If the inclination angle is small, the amount of eccentricity between the first gear and the second gear is small. When the crossing angle of the above-mentioned bus line becomes small, the above-mentioned interference part becomes small, and conversely, when the inclination angle becomes large, the crossing angle becomes large and the interference part becomes large (both the tooth trace direction, the root direction and the tooth thickness direction )Become.

また、この干渉部は、第1歯車と第2歯車の基準ピッチ円直径の差による影響だけでなく、凹状歯の歯すじ長さおよび基準ピッチ円直径の設定位置によっても大きく影響を受ける。歯筋長さが長くなるほど歯すじ方向端部での干渉幅が大きくなる。また、歯すじ長さが一定でも、基準ピッチ円直径の設定位置をたとえば、歯すじ方向内端および外端に設定した場合には、基準ピッチ円直径から一方の端部までの距離が大きくなるので、基準ピッチ円直径を起点に歯すじ方向他端に向かっていわゆるラッパ状に広がりきわめて大きい干渉部が発生することになる。   In addition, the interference portion is greatly influenced not only by the difference between the reference pitch circle diameters of the first gear and the second gear but also by the setting positions of the tooth length of the concave teeth and the reference pitch circle diameter. As the tooth trace length increases, the interference width at the end of the tooth trace direction increases. In addition, even if the tooth trace length is constant, when the reference pitch circle diameter setting position is set at, for example, the inner end and the outer end in the tooth trace direction, the distance from the reference pitch circle diameter to one end is increased. Therefore, an extremely large interference portion is generated that spreads in a so-called trumpet shape toward the other end in the tooth trace direction starting from the reference pitch circle diameter.

したがって、凹状歯は後述の創成加工機によってその干渉部が除去されることにより所定の噛み合い範囲における適正な噛み合いが得られることになるが、干渉部除去後の歯形は伝達効率および加工精度の自由度に対しても大きく影響することになるので、干渉幅を支配する凹状歯の歯すじ長さおよび基準ピッチ円直径の設定を干渉幅が最小になるように考慮する必要がある。つまり、干渉幅が大きくなると、コロ4aとの噛み合い角度範囲、特に噛み合い始め位置および噛み合い離脱位置におけるコロとの接触角が大きくなり、その分アキシャル方向の分力が大きくなり伝達効率の低下につながる。   Therefore, the concave teeth can be properly meshed in the predetermined meshing range by removing the interference part by a generating machine, which will be described later, but the tooth profile after the interference part removal is free of transmission efficiency and machining accuracy. Therefore, it is necessary to consider the setting of the streak length of the concave tooth that governs the interference width and the reference pitch circle diameter so that the interference width is minimized. That is, when the interference width increases, the meshing angle range with the roller 4a, particularly the contact angle with the roller at the meshing start position and the meshing disengagement position, and the component force in the axial direction increases accordingly, leading to a decrease in transmission efficiency. .

また、この干渉幅の拡大は、加工形態の自由度および加工精度の自由度にも影響を与える。つまり、創成加工機を用いて加工を行えば、精度の確保は可能であるが、特別な加工機を新たに用意する必要があり、従来の直線的加工機で加工するにはあまりにも複雑な加工工程が必要となり、精度の確保と生産性の自由度の両立が困難になる。   In addition, the increase in the interference width also affects the degree of freedom of the processing form and the degree of freedom of the processing accuracy. In other words, it is possible to ensure accuracy if machining is performed using a creation machine, but it is necessary to prepare a new special machine, which is too complicated to process with a conventional linear machine. Processing steps are required, making it difficult to achieve both accuracy and productivity.

したがって、本実施態様においては、第1歯車と第2歯車化における一段減速のみの減速作用の設定による傾斜角の最小化に加えて、凹状歯の歯すじ長さを凸状歯より大幅に短く設定し、かつ基準ピッチ円直径を歯すじ中央に設定しているので、その干渉部を最小にすることができ、精度の確保と生産性の自由度確保の両立を図ることができる。   Therefore, in this embodiment, in addition to minimizing the inclination angle by setting the speed reducing action of only one speed reduction in the first gear and the second gear, the tooth length of the concave teeth is significantly shorter than that of the convex teeth. Since it is set and the reference pitch circle diameter is set at the center of the tooth trace, the interference portion can be minimized, and both ensuring of accuracy and ensuring of freedom of productivity can be achieved.

図7は、図6で明らかになった干渉部を除去した状態の凹状歯の歯形を示すもので、上記噛み合い範囲において最大噛み合い位置を含む前後5つの噛み合い位置での干渉部の除去状態を示す。   FIG. 7 shows the tooth profile of the concave tooth with the interference portion clarified in FIG. 6 removed, and shows the removal state of the interference portion at the front and rear meshing positions including the maximum meshing position in the meshing range. .

図中、歯底から開口端にかけて描かれている三角形状のエリアは、上記角度位置ごとに発生する干渉部が除去された干渉除去部が示されている。すなわち、第1エリアE1は噛み合い始め位置における干渉除去部に相当するエリアで、基準ピッチ円直径PCD1をはさんで回転方向側と半回転方向側にそれぞれ位置する。第2エリアE2は、噛み合い始め位置W2と最大噛み合い位置W1の間の中間角度位置での干渉除去部に相当するエリアを示す。第3および第4エリアE3、E4は最大噛み合い位置W3から噛み合い離脱方向での上記と同様の干渉除去エリアを示す。なお、エリアE3は干渉が発生しない非干渉除去部で、最大噛み合い位置W1でコロが接触するエリアを示す。   In the drawing, a triangular area drawn from the root of the tooth to the opening end shows an interference removing portion from which the interference portion generated at each angular position is removed. That is, the first area E1 is an area corresponding to the interference removing portion at the meshing start position, and is located on the rotation direction side and the half rotation direction side across the reference pitch circle diameter PCD1. The second area E2 indicates an area corresponding to the interference removal unit at an intermediate angle position between the meshing start position W2 and the maximum meshing position W1. The third and fourth areas E3 and E4 indicate the same interference removal area as described above in the meshing disengagement direction from the maximum meshing position W3. Area E3 is a non-interference removing portion where interference does not occur, and indicates an area where the roller contacts at the maximum meshing position W1.

この図から明らかなように、上記各干渉除去部は、基準ピッチ円直径を基点に半径方向内外(歯すじ方向内外)に向かってそれぞれ拡大するが傾斜角が小さいことに加えて、基準ピッチ円直径が中央にあることと歯すじ長さが短いこととでその拡大率は比較的小さく保たれる。なお、図7に示す上述の干渉除去部を示すエリアは連続した回転の元では連続した曲面となり、エリアを画成する線は存在しないが説明の都合上、上記の角度位置ごとの除去エリアを示した。   As is clear from this figure, each of the interference canceling parts expands radially inward and outward (inside and outside of the streak direction) with the reference pitch circle diameter as a base point, but in addition to the small inclination angle, the reference pitch circle The enlargement ratio is kept relatively small by the fact that the diameter is in the center and the tooth trace length is short. Note that the area indicating the above-described interference removal unit shown in FIG. 7 is a continuous curved surface under continuous rotation, and there is no line that defines the area, but for the convenience of explanation, the removal area for each angular position is described above. Indicated.

以上の説明で明らかなように、傾斜角の最小化、歯すじ長さの短縮化および歯すじ中央部への基準ピッチ円直径の設定により、歯すじ方向両端部における干渉除去部の拡大率を比較的小さくすることができ、その分、噛み合い始め位置および噛み合い離脱位置におけるコロとの接触角が小さくなり伝達効率が向上する。その意味において、基準ピッチ円直径の設定は、歯すじ方向中央を基点に歯すじ方向内方あるいは外方おいてそれぞれ歯すじ長さの30%の範囲であることが望ましく、それ以上中心からずれると一端部における干渉除去部の拡大率がおおきくなり過ぎるので好ましくない。より好ましくは両端の干渉除去部がほぼ等しくなるように基準ピッチ円直径を設定する必要がある。   As is clear from the above explanation, the enlargement ratio of the interference removal portion at both ends of the tooth trace direction is reduced by minimizing the inclination angle, shortening the tooth trace length, and setting the reference pitch circle diameter at the center of the tooth trace. The contact angle with the roller at the meshing start position and the meshing disengagement position is reduced, and transmission efficiency is improved accordingly. In that sense, it is desirable that the reference pitch circle diameter is set within 30% of the length of the tooth streak inward or outward from the center of the tooth streak direction, and further deviates from the center. Since the enlargement ratio of the interference removal portion at one end is too large, it is not preferable. More preferably, it is necessary to set the reference pitch circle diameter so that the interference removal portions at both ends are substantially equal.

その意味において基準ピッチ円直径の位置は、歯すじ中央より若干外方に配置する必要がある。つまり、基準ピッチ円直径を歯すじ方向中心に設定した場合半径方向内端と外端とではモジュールに差があり、この点に起因して内端と外端の間に干渉幅の差が生じ、外端が内端より大きくなる傾向がある。図7は、基準ピッチ円直径を凹状歯の歯すじ方向中央に設定した場合(PCD1)と、中央より半径方向外方に設定した場合(基準ピッチ円直径PCD2)において開口部の内端および外端の開口幅の関係を示すもので、この図から明らかなように、PCD1の場合は、半径方向外端の幅H1は内端の幅H2より広く、また、PCD2の場合はその開口幅は、外端側が縮小し内端側が拡大しH1’,H2’となり、その結果、両者はほぼ等しい開口幅となる。それ故、基準ピッチ円直径を中央より外方に設定することにより干渉幅を等しくすることができる。なお、図8は、基準ピッチ円直径(PCD)位置における断面図で、点線は歯すじ方向外端部を示し、一点差線は歯すじ方向内端を示す。 In that sense, the position of the reference pitch circle diameter needs to be arranged slightly outward from the center of the tooth trace. In other words, when the reference pitch circle diameter is set at the center of the tooth trace direction, there is a difference in the module between the inner end and the outer end in the radial direction, and this causes a difference in interference width between the inner end and the outer end. The outer end tends to be larger than the inner end. Fig. 7 shows the inner and outer edges of the opening when the reference pitch circle diameter is set at the center of the concave teeth (PCD1) and radially outward from the center (reference pitch circle diameter PCD2). FIG. 6 shows the relationship between the opening widths of the ends. As is apparent from this figure, in the case of PCD1, the width H 1 of the radially outer end is wider than the width H 2 of the inner end, and in the case of PCD2, the opening thereof The width is reduced at the outer end side and enlarged at the inner end side to become H 1 ′, H 2 ′. As a result, both have substantially the same opening width. Therefore, the interference width can be made equal by setting the reference pitch circle diameter outward from the center. FIG. 8 is a cross-sectional view at the reference pitch circle diameter (PCD) position. The dotted line indicates the outer end portion in the tooth trace direction, and the one-dot difference line indicates the inner end in the tooth trace direction.

以上のように構成される第2歯車A2の凹状歯5および第1,第4歯車の凹溝5の歯形の成形方法としては、特開平10−235519号に詳細に開示されている加工手段がある。この加工手段は、ワークを保持する保持手段を本発明が対象とするいわゆる揺動型歯車機構を介して駆動するように構成されており、ワークおよび保持手段を揺動運動させながらワークと対を成す凸状円弧断面のカッターホイルを歯すじ方向に移動させることにより、上述のような鼓形状の歯形が形成される。   As a method of forming the tooth profile of the concave tooth 5 of the second gear A2 and the concave groove 5 of the first and fourth gears configured as described above, there is a processing means disclosed in detail in Japanese Patent Laid-Open No. 10-235519. is there. This processing means is configured to drive the holding means for holding the workpiece via a so-called oscillating gear mechanism that is the subject of the present invention. The processing means is paired with the workpiece while oscillating the workpiece and the holding means. By moving the cutter wheel having a convex arcuate cross section in the tooth trace direction, the above-described tooth-shaped tooth profile is formed.

つまり、第2歯車A2の凹状歯5は、凸状歯4と干渉する干渉除去部が除去されて適切な歯形として創成転写され、またコロ4aを保持する凹溝4bは、コロ4aの周方向の傾動が可能となるように、歯筋方向に拡大する拡大部4eが形成されることになる。この場合、第2歯車A2の凹状歯5の成形は、凸状歯4のコロ4aとの干渉のない適切な噛み合いを行うためのものであり、また、コロ4aを位置決め保持する凹溝4bの成形は、凹状歯5との噛み合いの際位置決め精度のばらつきを吸収するためのものであり、両者はその目的が相違している。   That is, the concave tooth 5 of the second gear A2 is created and transferred as an appropriate tooth shape by removing the interference removing portion that interferes with the convex tooth 4, and the concave groove 4b holding the roller 4a is formed in the circumferential direction of the roller 4a. Thus, the enlarged portion 4e that expands in the tooth trace direction is formed. In this case, the formation of the concave teeth 5 of the second gear A2 is for proper engagement with the convex teeth 4 without interference with the rollers 4a, and the concave grooves 4b for positioning and holding the rollers 4a. The molding is for absorbing the variation in positioning accuracy when meshing with the concave teeth 5, and the purpose of both is different.

したがって、凹状歯5の成形に当たっては、加工手段としての揺動歯車機構の減速比および傾斜部の傾斜角を揺動型歯車装置の減速比および傾斜角と同一仕様にする必要がある。一方、凹溝の成形は、凹状歯5との加工仕様を異ならせることも可能であるが、同一仕様にするほうが生産性を高める意味で有利となる。また、凹溝4bの成形は、揺動歯車機構を用いた創成加工手段に限らず、たとえば割り出し手段を用いた成形手段であってもよいが、揺動方歯車機構を用いた創成加工手段による成形のほうが、歯形間のピッチ誤差を最小にすることができるのでより好ましい。   Therefore, when forming the concave teeth 5, it is necessary to make the reduction ratio of the oscillating gear mechanism as the processing means and the inclination angle of the inclined portion have the same specifications as the reduction ratio and the inclination angle of the oscillating gear device. On the other hand, in forming the concave groove, it is possible to make the processing specification different from that of the concave tooth 5, but it is advantageous to increase the productivity by making the same specification. The formation of the concave groove 4b is not limited to the creation processing means using the swinging gear mechanism, and may be, for example, the forming means using the indexing means, but by the creation processing means using the swinging gear mechanism. Molding is more preferable because the pitch error between the tooth profiles can be minimized.

つまり、凸状歯を構成する凹溝は一般的に割り出し手段を用いて成形することが可能であるが、割り出し手段を用いた場合、ピッチ間の精度は割り出し手段の精度によって支配されることになるが、揺動型歯車機構を用いた創成加工手段によれば、所定仕様、たとえば凹状歯の歯数および傾斜角に対応した揺動型歯車機構によって、ワークを揺動させながら連続的に歯形を成形できるので、ピッチ間精度はきわめて向上する。   That is, the concave grooves constituting the convex teeth can generally be formed by using the indexing means, but when using the indexing means, the accuracy between the pitches is governed by the accuracy of the indexing means. However, according to the generating means using the oscillating gear mechanism, the tooth profile is continuously oscillated while the workpiece is oscillated by the oscillating gear mechanism corresponding to the predetermined specifications, for example, the number of teeth and the inclination angle of the concave teeth. Can be formed, so the pitch accuracy is greatly improved.

つぎに、第3歯車の歯形について説明する。第3歯車は、第4歯車と歯数および基準ピッチ円直径を同じくし、かつ両歯車のピッチ円錐の頂点が原点O(偏心量ゼロ位置)と一致するように配置されているので、第3歯車と第4歯車の噛み合いは、同一位置にて噛み合い離脱を繰り返すのみとなり、相対的な噛み合い位置の移動はなく、その間での減速作用は生じない。したがって、第3歯車と第4歯車の噛み合い過程において、上記第1歯車と第2歯車の噛み合い過程のように、歯すじ方向の母線の交差は発生しないので、第2歯車で発生するような形態の干渉は発生しない。それ故、第3歯車の歯形すなわち、凹状歯の形状は第4歯車の直線状のコロと噛み合うように歯筋方向において同一断面の円弧形状に形成されている。   Next, the tooth profile of the third gear will be described. The third gear has the same number of teeth and reference pitch circle diameter as the fourth gear, and is arranged so that the apex of the pitch cone of both gears coincides with the origin O (the zero eccentricity zero position). The meshing between the gear and the fourth gear is merely repeated meshing and disengaging at the same position, there is no movement of the relative meshing position, and no deceleration action occurs between them. Therefore, in the meshing process of the third gear and the fourth gear, the crossing of the generatrix line does not occur unlike the meshing process of the first gear and the second gear. No interference occurs. Therefore, the tooth shape of the third gear, that is, the shape of the concave tooth is formed in an arc shape having the same cross section in the tooth trace direction so as to mesh with the linear roller of the fourth gear.

具体的には、コロとの接触角が第2歯車の接触角と同様に15度なるように多重円弧で構成されている。したがって、第3歯車は、回転体の揺動運動に伴って、サイクロイド曲線に沿って第4歯車との噛み合い離脱を繰り返すが、実質的な噛み合い過程においては、凹状歯の中心と上記凸状歯の中心とが軸方向の同一線上を直線的に移動して、干渉することなく適正な噛み合いが行われることになる。   Specifically, it is composed of multiple arcs so that the contact angle with the roller is 15 degrees, similar to the contact angle of the second gear. Accordingly, the third gear repeatedly engages and disengages with the fourth gear along the cycloid curve as the rotating body swings. In the substantial meshing process, the center of the concave teeth and the convex teeth are repeated. The center of the shaft moves linearly on the same line in the axial direction, and proper meshing is performed without interference.

また一方で、第3歯車は、第2歯車と同様に回転体の軸端面に形成され、回転体と同一部品を構成するものであるため、第2歯車と同様に鼓形状に形成すれば、第2歯車と第3歯車とを同一の加工手段での加工が可能となり、回転体としての生産性が向上する。また第3歯車を鼓形状にすることによって、第1〜第4歯車の凹溝および凹状歯のすべてを同一の加工手段で同一加工でき、特に、上述の揺動方歯車機構を用いた加工手段で加工すれば、その生産性の向上だけでなく、すべての噛み合い歯車のピッチ間誤差を最小にすることができ、噛み合い精度が極めて向上する。   On the other hand, the third gear is formed on the shaft end surface of the rotating body like the second gear, and constitutes the same part as the rotating body. The second gear and the third gear can be processed by the same processing means, and the productivity as a rotating body is improved. Further, by forming the third gear into a drum shape, all of the concave grooves and the concave teeth of the first to fourth gears can be processed by the same processing means, and in particular, the processing means using the above-described swinging gear mechanism. In addition to improving the productivity, it is possible to minimize the pitch error of all meshing gears, and the meshing accuracy is greatly improved.

また、第3歯車の歯形を第2歯車の歯型と同様の形状にすることによって、単に生産性の向上だけでなく、第3歯車の凹状歯の歯すじ方向両端の開口部が幅広に形成されているので、第4歯車との位置決め誤差が生じた場合にも凸状歯の歯先を凹状歯内に誘導するいわゆる自己求心作用により噛み合いを促進できる。またこのように鼓形状に形成することで、凹状歯の剛性が適度に弱められるので、第4歯車との角度位置に多少の誤差があっても、凹状歯の弾性変形によって異常面圧の発生を抑制できる。   Further, by making the tooth profile of the third gear the same as the tooth profile of the second gear, not only the productivity is improved, but also the openings at both ends of the concave teeth of the third gear are formed wide. Therefore, even when a positioning error with the fourth gear occurs, meshing can be promoted by a so-called self-centering action that guides the tip of the convex tooth into the concave tooth. Moreover, since the rigidity of the concave teeth is moderately weakened by forming the drum shape in this way, even if there is some error in the angular position with the fourth gear, abnormal surface pressure is generated due to the elastic deformation of the concave teeth. Can be suppressed.

以上の説明で明らかなように、第1〜第4歯車の歯形を上記実施態様のように構成することにより、噛み合い歯の耐久性の確保と噛み合い精度の確保の両立を図り、かつ加工精度の自由度および位置決め精度の自由度の高い揺動型歯車装置を得ることができる。   As is clear from the above description, by configuring the tooth profiles of the first to fourth gears as in the above embodiment, it is possible to achieve both ensuring of the durability of the meshing teeth and securing of the meshing accuracy, and the processing accuracy. An oscillating gear device having a high degree of freedom and positioning accuracy can be obtained.

本発明は上記の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更が可能である。   The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present invention.

本発明に係わる揺動歯車装置の断面図。Sectional drawing of the rocking gear apparatus concerning this invention. 本発明に係わる揺動歯車装置の要部の正面図。The front view of the principal part of the rocking gear apparatus concerning this invention. 本発明に係わる揺動歯車装置の相当平歯車への展開説明図。Explanatory drawing to the equivalent spur gear of the rocking gear apparatus concerning this invention. 図4の要部の拡大図。The enlarged view of the principal part of FIG. 本発明に係わる揺動歯車装置の第1実施態様の歯形の断面。The tooth profile section of the 1st embodiment of the rocking gear device concerning the present invention. 本発明に係わる揺動歯車装置の凸状歯と凹状歯の関係を示す模式図。The schematic diagram which shows the relationship between the convex-tooth and concave-tooth of the rocking gear apparatus concerning this invention. 本発明に係わる揺動歯車装置の凹状歯の拡大斜視図。The expansion perspective view of the concave tooth of the rocking gear device concerning the present invention. 図7の断面図。Sectional drawing of FIG. 第1歯車(第4歯車)の歯形形状を示す拡大斜視図。The expansion perspective view which shows the tooth profile shape of a 1st gearwheel (4th gearwheel). 従来の揺動型歯車装置の断面図Sectional view of a conventional oscillating gear device 従来の揺動型歯車装置の噛み合い部の説明図。Explanatory drawing of the meshing part of the conventional rocking | fluctuation type gear apparatus.

符号の説明Explanation of symbols

1 入力軸
1a 傾斜部
2 出力軸
3 回転体3
4 凸状歯
4a コロ
4b 凹溝
4e 拡大部
5 凹状歯
1 Input shaft 1a Inclined part 2 Output shaft 3 Rotating body 3
4 Convex Teeth 4a Roller 4b Concave Groove 4e Enlarged Part 5 Concave Teeth

Claims (4)

ハウジングに固定された歯数n1 の第1歯車と、出力軸に取付けられた歯数n4 の第4歯車とを、入力軸との各軸芯を一致させて配置し、歯数n2 の第2歯車および歯数n3 の第3歯車を一体に設けた回転体を、第2歯車が第1歯車と噛み合い、第3歯車が第4歯車と噛み合うように前記入力軸の傾斜部で軸支し、前記第1、第2歯車の各ピッチ円を通る共通球面の中心点と、前記第3、第4歯車の各ピッチ円を通る共通球面の中心点とが一致する点を原点とするXY座標のX軸上に前記入力軸の軸芯を配置し、かつ、第1、第2歯車の噛み合い点と第4、第3歯車の噛み合い点とを該XY座標の同一象限若しくは異なる象限上に置いてなる揺動型歯車装置であって、
上記第1ないし第4歯車が傘歯車として構成され、
該第1ないし第4歯車のうち第1歯車および第4歯車が、ピッチ円錐上において等間隔で歯車中心から放射方向に伸びる断面半円状の凹溝と、該凹溝内に転動自在に配置される円柱状のコロとで等高歯としての凸状歯として構成され、上記第1歯車および第4歯車とそれぞれ噛み合う第2および第3歯車が、該凸状歯と噛み合う所定円弧形状の凹状歯として構成され、
上記凸状歯は、歯すじ長さが該凹状歯の歯すじ長さより長く設定されており、
上記凸状歯を構成する凹溝は、コロが凹溝内において周方向の傾動を許容するように、その開口部が基準ピッチ円直径を基点に歯すじ方向端部に向かって拡大する拡大部が形成されていることを特徴とする揺動型歯車装置。
A first gear having n1 teeth fixed to the housing and a fourth gear having n4 teeth attached to the output shaft are arranged with their axis centers aligned with the input shaft, and a second gear having n2 teeth A rotating body integrally provided with a gear and a third gear having n3 teeth is pivotally supported by the inclined portion of the input shaft so that the second gear meshes with the first gear and the third gear meshes with the fourth gear; An XY coordinate having an origin at a point where the center point of the common spherical surface passing through each pitch circle of the first and second gears coincides with the center point of the common spherical surface passing through each pitch circle of the third and fourth gears. The axis of the input shaft is disposed on the X axis, and the meshing points of the first and second gears and the meshing points of the fourth and third gears are placed in the same quadrant or different quadrants of the XY coordinates. An oscillating gear device comprising:
The first to fourth gears are configured as bevel gears,
Of the first to fourth gears, the first gear and the fourth gear have a semicircular groove having a semicircular cross section extending radially from the gear center at equal intervals on the pitch cone, and can freely roll into the groove. The second and third gears, which are configured as convex teeth as contour teeth with the arranged cylindrical rollers and mesh with the first gear and the fourth gear, respectively, have a predetermined arc shape that meshes with the convex teeth. Configured as concave teeth,
The convex teeth are set such that the tooth length is longer than the tooth length of the concave teeth,
The concave groove that constitutes the convex teeth has an enlarged portion whose opening expands toward the end of the tooth-pitch direction with the reference pitch circle diameter as a base point so that the rollers allow tilting in the circumferential direction within the concave groove. An oscillating gear device characterized in that is formed.
上記凸状歯と上記凹状歯の基準ピッチ円直径が歯すじ方向ほぼ中央に設定され、上記凸状歯を構成する凹溝の拡大部が、その開口部が基準ピッチ円直径をはさんで歯すじ方向外方および歯すじ方向内方に拡大する鼓形状に形成されていることを特徴とする請求項1に記載の揺動型歯車装置。   The reference pitch circle diameter of the convex tooth and the concave tooth is set at the center of the tooth trace direction, and the enlarged portion of the concave groove constituting the convex tooth is a tooth with the opening portion sandwiching the reference pitch circle diameter. 2. The oscillating gear device according to claim 1, wherein the oscillating gear device is formed in a drum shape that expands outward in the stripe direction and inward in the tooth stripe direction. 上記凸状歯の凹溝が、上記凹状歯と同様に凸状歯を創成転写した創成歯形あるいは近似創成歯形としたことを特徴とする請求項1に記載の揺動型歯車装置。   2. The oscillating gear device according to claim 1, wherein the concave groove of the convex tooth is a generating tooth profile or an approximate generating tooth profile obtained by generating and transferring a convex tooth in the same manner as the concave tooth. 上記凸状歯を構成するコロの硬度が、上記凹状歯の硬度より高い硬度に設定されていることを特徴とする請求項1〜3の1つに記載の揺動型歯車装置。   The oscillating gear device according to any one of claims 1 to 3, wherein a hardness of the rollers constituting the convex teeth is set to be higher than a hardness of the concave teeth.
JP2007169063A 2007-06-27 2007-06-27 Oscillating gear unit Active JP4884315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007169063A JP4884315B2 (en) 2007-06-27 2007-06-27 Oscillating gear unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007169063A JP4884315B2 (en) 2007-06-27 2007-06-27 Oscillating gear unit

Publications (2)

Publication Number Publication Date
JP2009008142A JP2009008142A (en) 2009-01-15
JP4884315B2 true JP4884315B2 (en) 2012-02-29

Family

ID=40323426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007169063A Active JP4884315B2 (en) 2007-06-27 2007-06-27 Oscillating gear unit

Country Status (1)

Country Link
JP (1) JP4884315B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5158419B2 (en) * 2008-01-29 2013-03-06 株式会社ジェイテクト Vehicle steering system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0756324B2 (en) * 1990-05-14 1995-06-14 一郎 上村 Conical rolling equal tooth bevel gear device and processing method of the same device
JP2785079B2 (en) * 1991-05-31 1998-08-13 住友重機械工業株式会社 Inner meshing planetary gear device and method of forming outer pin hole contact surface for contacting outer pin of the inner meshing planetary gear device
JPH10246293A (en) * 1997-03-04 1998-09-14 Namu:Kk Speed change gear device

Also Published As

Publication number Publication date
JP2009008142A (en) 2009-01-15

Similar Documents

Publication Publication Date Title
JP5337008B2 (en) Flexure meshing gear device and method of manufacturing the external gear
JPH01206137A (en) Planetary gear
JP5860113B2 (en) Elbow manufacturing method
JP2010156430A (en) Deceleration device
JP4935510B2 (en) Oscillating gear unit
JP2023184669A (en) gear unit
JP2009024765A (en) Ball type reduction gear
JP4971012B2 (en) Oscillating gear unit
JP6878036B2 (en) Eccentric swing type gear device
JP4939185B2 (en) Oscillating gear unit
JP4961225B2 (en) Oscillating gear unit
JP4971011B2 (en) Oscillating gear unit
JP4939191B2 (en) Oscillating gear unit
JP2016169833A (en) Tripod-type constant velocity universal joint
JP4884315B2 (en) Oscillating gear unit
JP2013100911A (en) Flexible meshing type gear device and method for determining tooth profile of flexible meshing type gear device
JP4922741B2 (en) Oscillating gear unit
JP4498816B2 (en) Eccentric oscillation type planetary gear unit
JP2010174983A (en) Rocking gear device
JP2016166674A (en) Speed reducer or accelerator
JP2013092179A (en) Gear transmission device
JP4498823B2 (en) Eccentric oscillation type planetary gear unit
JP4971013B2 (en) Oscillating gear unit
JPH11315908A (en) Gear pair and coriolis motion gear device
JP5143781B2 (en) Oscillating gear unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4884315

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250