JP4498823B2 - Eccentric oscillation type planetary gear unit - Google Patents

Eccentric oscillation type planetary gear unit Download PDF

Info

Publication number
JP4498823B2
JP4498823B2 JP2004147352A JP2004147352A JP4498823B2 JP 4498823 B2 JP4498823 B2 JP 4498823B2 JP 2004147352 A JP2004147352 A JP 2004147352A JP 2004147352 A JP2004147352 A JP 2004147352A JP 4498823 B2 JP4498823 B2 JP 4498823B2
Authority
JP
Japan
Prior art keywords
teeth
external
internal
gear
crankshaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004147352A
Other languages
Japanese (ja)
Other versions
JP2005330981A (en
Inventor
憲一 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nabtesco Corp
Original Assignee
Nabtesco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2004147352A priority Critical patent/JP4498823B2/en
Application filed by Nabtesco Corp filed Critical Nabtesco Corp
Priority to EP05704240.0A priority patent/EP1712814B1/en
Priority to EP12000500.4A priority patent/EP2463549B1/en
Priority to EP12000498.1A priority patent/EP2463548B1/en
Priority to KR1020067015361A priority patent/KR101140794B1/en
Priority to TW094102766A priority patent/TW200537040A/en
Priority to US10/597,534 priority patent/US7476174B2/en
Priority to PCT/JP2005/001188 priority patent/WO2005072067A2/en
Priority to CN2008100989634A priority patent/CN101328953B/en
Priority to EP12000499.9A priority patent/EP2461071B1/en
Priority to CN2008100989649A priority patent/CN101368612B/en
Publication of JP2005330981A publication Critical patent/JP2005330981A/en
Application granted granted Critical
Publication of JP4498823B2 publication Critical patent/JP4498823B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Retarders (AREA)

Description

この発明は、内歯歯車に噛み合う外歯歯車をクランク軸によって偏心揺動させるようにした偏心揺動型遊星歯車装置に関する。     The present invention relates to an eccentric oscillating planetary gear device in which an external gear meshing with an internal gear is eccentrically oscillated by a crankshaft.

従来の偏心揺動型遊星歯車装置としては、例えば以下の特許文献1に記載されているようなものが知られている。
特開平7−299791号公報
As a conventional eccentric oscillating planetary gear device, for example, one described in Patent Document 1 below is known.
JP-A-7-299791

このものは、内周に多数の円柱状ピンで構成された内歯が設けられた内歯歯車と、複数のクランク軸孔および貫通孔が形成され、外周にトロコイド歯形からなり前記内歯に噛み合うとともに、該内歯より1個だけ歯数が少ない外歯を有する外歯歯車と、各クランク軸孔に挿入され、回転することで外歯歯車を偏心揺動させるクランク軸と、前記クランク軸を回転可能に支持するとともに、各貫通孔に挿入された複数の柱部を有する支持体とを備えたものである。   This has an internal gear provided with internal teeth composed of a large number of cylindrical pins on the inner periphery, a plurality of crankshaft holes and through holes, and has a trochoidal tooth profile on the outer periphery and meshes with the inner teeth. And an external gear having external teeth that have only one fewer teeth than the internal teeth, a crankshaft that is inserted into each crankshaft hole and rotates to eccentrically swing the external gear, and the crankshaft. A support body that rotatably supports and has a plurality of column portions inserted into the respective through holes.

近年、このような遊星歯車装置において、大型化、特に外歯歯車を大径化することなく、また、外歯から内歯に付与される駆動分力(接圧)を増大させることなく、出力トルクを増大させることが要求されるようになってきた。   In recent years, in such a planetary gear device, it is possible to output without increasing the size, in particular without increasing the diameter of the external gear, and without increasing the driving force (contact pressure) applied from the external teeth to the internal teeth. Increasing torque has been required.

ここで、前述の出力トルクは、外歯と内歯(ピン)との各接触点での駆動分力の接線方向成分に内歯歯車の中心から前記接触点までの距離を乗じた値の合計となるが、内歯歯車の中心から接触点までの距離は、大型化防止の要請から、一定であるので、出力トルクを増大させるには、駆動分力の接線方向成分を増大させることが考えられる。そして、このような駆動分力の接線方向成分の増大は、駆動分力の作用線が集合する集合点を半径方向外側に移動させて、前記作用線を外歯歯車に対して接線方向側に傾斜させることで達成することができる。   Here, the aforementioned output torque is the sum of values obtained by multiplying the tangential direction component of the driving component at each contact point between the external tooth and the internal tooth (pin) by the distance from the center of the internal gear to the contact point. However, since the distance from the center of the internal gear to the contact point is constant in order to prevent an increase in size, it is considered to increase the tangential component of the driving component to increase the output torque. It is done. The increase in the tangential component of the drive component force is caused by moving the set point where the action lines of the drive component force gather radially outward so that the action line moves toward the tangential side with respect to the external gear. This can be achieved by tilting.

しかしながら、前述した集合点の位置(内歯歯車の中心からの半径方向距離)を内歯(ピン)の歯数で除することにより求められる、外歯歯車の内歯歯車に対する偏心量は、外歯の歯先が内歯歯車の内周に干渉するのを回避するためには、内歯(ピン)の半径の 0.5倍未満でなければならず(従来の遊星歯車装置では0.40〜0.45倍程度)、この結果、前述のように集合点を半径方向外側に移動させるには制限があって、出力トルクを充分に増大させることができないという課題があった。     However, the amount of eccentricity of the external gear with respect to the internal gear, which is obtained by dividing the position of the set point (radial distance from the center of the internal gear) by the number of teeth of the internal gear (pin), is To avoid the tooth tip from interfering with the inner circumference of the internal gear, it must be less than 0.5 times the radius of the internal tooth (pin) (about 0.40 to 0.45 times for conventional planetary gear devices) As a result, as described above, there is a limitation in moving the set point radially outward, and there is a problem that the output torque cannot be increased sufficiently.

この発明は、大型化を防止しながら出力トルクを増大させることができる偏心揺動型遊星歯車装置を提供することを目的とする。   An object of the present invention is to provide an eccentric oscillating planetary gear device capable of increasing an output torque while preventing an increase in size.

このような目的は、第1に、内周に多数の円柱状ピンで構成された内歯が設けられた内歯歯車と、少なくとも1個のクランク軸孔および複数の貫通孔が形成され、外周にトロコイド歯形からなり前記内歯に噛み合うとともに、該内歯より1個だけ歯数が少ない外歯を有する外歯歯車と、各クランク軸孔に挿入され、回転することで外歯歯車を偏心揺動させるクランク軸と、前記クランク軸を回転可能に支持するとともに、各貫通孔に挿入された複数の柱部を有する支持体とを備えた偏心揺動型遊星歯車装置において、前記外歯歯車の内歯歯車に対する偏心量をH、内歯を構成するピンの半径をRとしたとき、前記偏心量Hを半径Rの 0.5〜 1.0倍の範囲内となすとともに、各外歯を歯先から所定量だけ切除して外歯と内歯歯車の内周との干渉を回避するようにした偏心揺動型遊星歯車装置により達成することができる。     The first object is to form an internal gear provided with internal teeth constituted by a large number of cylindrical pins on the inner periphery, at least one crankshaft hole and a plurality of through holes. The external gear has a trochoidal tooth shape and meshes with the internal teeth, and has only one external tooth with a smaller number of teeth than the internal teeth, and is inserted into each crankshaft hole and rotated to rotate the external gear eccentrically. In an eccentric oscillating planetary gear device comprising: a crankshaft to be moved; and a support body that rotatably supports the crankshaft and has a plurality of column portions inserted into each through hole. When the amount of eccentricity with respect to the internal gear is H and the radius of the pins constituting the internal teeth is R, the amount of eccentricity H is within the range of 0.5 to 1.0 times the radius R, and each external tooth is located from the tooth tip. Only a fixed amount is removed to prevent interference between the external teeth and the internal circumference of the internal gear. It can be achieved by an eccentric oscillating-type planetary gear device designed to avoid.

第2に、同様の偏心揺動型遊星歯車装置において、前記外歯歯車の内歯歯車に対する偏心量をH、内歯を構成するピンの半径をRとしたとき、偏心量Hを半径Rの 0.5〜 1.0倍の範囲内となすとともに、隣接する内歯間の内歯歯車内周を所定深さだけ切除して、外歯と内歯歯車の内周との干渉を回避するようにした偏心揺動型遊星歯車装置により達成することができる。   Secondly, in the same eccentric oscillating planetary gear device, when the eccentric amount of the external gear with respect to the internal gear is H and the radius of the pin constituting the internal gear is R, the eccentric amount H is the radius R. Eccentricity that is within the range of 0.5 to 1.0 times, and that the internal circumference of the internal gear between adjacent internal teeth is cut by a predetermined depth to avoid interference between the external teeth and the internal circumference of the internal gear. This can be achieved by an oscillating planetary gear device.

前記請求項1に係る発明においては、偏心量Hを半径Rの 0.5倍以上としたので、該偏心量Hに内歯の歯数Zを乗じて求められる、内歯歯車の中心Oから集合点Cまでの半径方向距離Lを従来より大と、即ち、集合点Cを半径方向外側に大きく移動させることができる。これにより、駆動分力Kの作用線Sが外歯歯車に対して接線方向側に大きく傾斜して、駆動分力Kの接線方向成分が増大し、これにより、内、外歯の噛み合い歯数に変化のない場合には、出力トルクが増大するのである。   In the invention according to claim 1, since the amount of eccentricity H is 0.5 or more times the radius R, the set point from the center O of the internal gear is obtained by multiplying the amount of eccentricity H by the number of teeth Z of the internal teeth. The radial distance L to C can be made larger than before, that is, the set point C can be moved greatly outward in the radial direction. As a result, the line of action S of the driving component force K is greatly inclined toward the tangential direction side with respect to the external gear, and the tangential component of the driving component force K is increased, whereby the number of meshing teeth of the inner and outer teeth is increased. When there is no change in the output torque, the output torque increases.

ここで、前述のように偏心量Hを半径Rの 0.5倍以上とすると、外歯の歯先が内歯歯車の内周に干渉するが、各外歯を歯先から所定量だけ切除することで、このような外歯と内歯歯車の内周との干渉を回避するようにしている。一方、請求項2に係る発明においては、隣接する内歯間の内歯歯車内周を所定深さだけ切除して、外歯と内歯歯車の内周との干渉を回避するようにしている。なお、前記偏心量Hが半径Rの 1.0倍を超えると、前述のいずれの場合も外歯歯車の偏心揺動回転時に外歯と内歯とが干渉する回転位置が生じてしまうため、偏心量Hは半径Rの 1.0倍以下でなければならない。   Here, if the amount of eccentricity H is 0.5 times or more of the radius R as described above, the external tooth tip interferes with the inner periphery of the internal gear, but each external tooth is cut from the tooth tip by a predetermined amount. Thus, such interference between the external teeth and the inner periphery of the internal gear is avoided. On the other hand, in the invention according to claim 2, the inner periphery of the internal gear between adjacent internal teeth is cut by a predetermined depth to avoid interference between the external teeth and the inner periphery of the internal gear. . If the amount of eccentricity H exceeds 1.0 times the radius R, a rotational position where the external teeth and the internal teeth interfere with each other during the eccentric oscillating rotation of the external gear occurs in any of the above cases. H must be less than 1.0 times the radius R.

また、請求項3に記載のように構成すれば、歯面に尖った部位が生じるのを防止しながら、強力に出力トルクを増大させることができる。
また、請求項4に記載のように構成すれば、外歯の曲げ剛性が高くなり、さらに外歯の加工を容易にすることができる。
Further, according to the third aspect of the present invention, the output torque can be increased strongly while preventing a pointed portion from being generated on the tooth surface.
Moreover, if comprised as described in Claim 4, the bending rigidity of an external tooth will become high, and also the process of an external tooth can be made easy.

以下、この発明の実施例1を図面に基づいて説明する。
図1、2、3において、11はロボット等に使用される偏心揺動型遊星歯車装置であり、この遊星歯車装置11は、例えば図示していないロボットのアーム、ハンド等に取り付けられた略円筒状の回転ケース12を有する。この回転ケース12の内周でその軸方向中央部には断面が半円形をした多数のピン溝13が形成され、これらのピン溝13は軸方向に延びるとともに周方向に等距離離れて配置されている。
Embodiment 1 of the present invention will be described below with reference to the drawings.
In FIGS. 1, 2, and 3, reference numeral 11 denotes an eccentric oscillating planetary gear device used for a robot or the like. A rotating case 12 is provided. A large number of pin grooves 13 having a semicircular cross section are formed in the central portion in the axial direction on the inner periphery of the rotating case 12, and these pin grooves 13 extend in the axial direction and are arranged at equal distances in the circumferential direction. ing.

14は多数(ピン溝13と同数)の円柱状をしたピンからなる内歯であり、これらの内歯(ピン)14はそのほぼ半分がピン溝13内に挿入されることで回転ケース12の内周に周方向に等距離離れて設けられている。前述した回転ケース12、内歯(ピン)14は全体として、内周15aに複数の円柱状ピンで構成された内歯14が設けられた内歯歯車15を構成する。この結果、内歯歯車15(固定ケース12)の内周15aは、全ての内歯14を構成するピンの中心を通過するピン円P上またはその極く近傍に位置している。ここで、前記内歯(ピン)14は25〜 100本程度配置されるが、30〜80本の範囲内が好ましい。その理由は、内歯(ピン)14の本数を前述の範囲内とし、後述する外歯歯車18と内歯歯車15との噛み合いの前段に減速比が1/1〜1/7の平歯車減速機を設けて、前段と後段の減速比を組み合わせることにより、高減速比を容易に得ることができるとともに、固有振動数の高い高減速比の遊星歯車装置を構成することができるからである。   14 is an internal tooth composed of a number of cylindrical pins (the same number as the pin groove 13), and almost half of these internal teeth (pins) 14 are inserted into the pin groove 13 so that the rotating case 12 The inner circumference is provided at an equal distance in the circumferential direction. The rotary case 12 and the internal teeth (pins) 14 described above constitute an internal gear 15 in which internal teeth 14 formed of a plurality of cylindrical pins are provided on an inner periphery 15a. As a result, the inner periphery 15a of the internal gear 15 (fixed case 12) is located on or very close to the pin circle P passing through the centers of the pins constituting all the internal teeth 14. Here, about 25 to 100 inner teeth (pins) 14 are arranged, but preferably in the range of 30 to 80. The reason is that the number of internal teeth (pins) 14 is within the above-mentioned range, and a spur gear reduction with a reduction ratio of 1/1 to 1/7 is set before the meshing of the external gear 18 and the internal gear 15 described later. This is because a high reduction ratio can be easily obtained and a planetary gear device having a high natural frequency and a high reduction ratio can be configured by providing a machine and combining the reduction ratios of the front and rear stages.

前記内歯歯車15内にはリング状をした複数(ここでは2個)の外歯歯車18が軸方向に並べられて収納され、これら外歯歯車18の外周にはトロコイド歯形、詳しくはペリトロコイド歯形からなる多数の外歯19がそれぞれ形成されている。そして、前記外歯歯車18の外歯19の歯数は前記内歯(ピン)14の歯数より1だけ少ない(歯数差が1である)。このように内歯(ピン)14と外歯19との歯数差を1としたのは、これらの歯数差が2以上の値Gである場合に比較し、高減速比とすることができるとともに、加工コストを低減させることができるからである。   A plurality of (in this case, two) external gears 18 in the form of a ring are accommodated in the axial direction in the internal gear 15, and a trochoidal tooth profile, more specifically a peritrochoid, is arranged on the outer periphery of the external gear 18. A large number of external teeth 19 each having a tooth shape are formed. The number of external teeth 19 of the external gear 18 is one less than the number of internal teeth (pins) 14 (the difference in the number of teeth is 1). In this way, the difference in the number of teeth between the internal teeth (pins) 14 and the external teeth 19 is set to 1, compared to the case where the difference in the number of teeth is a value G of 2 or more, a high reduction ratio can be obtained. This is because the processing cost can be reduced.

ここで、歯数差が2以上の値Gである外歯歯車とは、トロコイド外歯歯車の外形輪郭を、外歯19間ピッチを該Gの値で除した距離だけ周方向にずらすとともに、これら周方向にずれたG個の外形輪郭が重なり合った部分を歯形として取り出した外歯歯車のことである(特開平3−181641号公報参照)。そして、これら外歯歯車18と内歯歯車15とは内接した状態で外歯19と内歯(ピン)14とが噛み合っているが、2つの外歯歯車18の最大噛み合い部(噛み合いの最も深い部位)は 180度だけ位相がずれている。   Here, the external gear whose tooth number difference is a value G of 2 or more means that the outer contour of the trochoid external gear is shifted in the circumferential direction by a distance obtained by dividing the pitch between the external teeth 19 by the value of G, This is an external gear obtained by taking out a portion where G outlines deviated in the circumferential direction overlap each other as a tooth profile (see Japanese Patent Laid-Open No. 3-181641). The external teeth 19 and the internal teeth (pins) 14 are meshed with each other while the external gear 18 and the internal gear 15 are inscribed, but the maximum meshing portion (the most meshed portion of the two external gears 18). The deep part) is 180 degrees out of phase.

各外歯歯車18には少なくとも1個、ここでは3個の軸方向に貫通したクランク軸孔21が形成され、これらの複数のクランク軸孔21は外歯歯車18の中心軸から半径方向に等距離離れるとともに、周方向に等距離離れている。22は各外歯歯車18に形成された複数(クランク軸孔21と同数である3個)の貫通孔であり、これらの貫通孔22はクランク軸孔21と周方向に交互に配置されるとともに、周方向に等距離離れて配置されている。そして、前記貫通孔22は半径方向外側に向かって周方向幅が広くなった略ベース形を呈している。   Each external gear 18 is formed with at least one, in this case, three crankshaft holes 21 penetrating in the axial direction, and the plurality of crankshaft holes 21 are arranged in the radial direction from the central axis of the external gear 18. Along with the distance, they are equidistant in the circumferential direction. Reference numeral 22 denotes a plurality of (three as many as the crankshaft holes 21) through-holes formed in each external gear 18. These through-holes 22 are alternately arranged in the circumferential direction with the crankshaft holes 21. , Are arranged equidistantly in the circumferential direction. The through-hole 22 has a substantially base shape with a circumferential width increasing toward the outside in the radial direction.

25は回転ケース12内に遊嵌され図示していない固定ロボット部材に取り付けられた支持体(キャリア)であり、この支持体25は外歯歯車18の軸方向両外側に配置された一対の略リング状を呈する端板部26、27と、一端が端板部26に一体的に連結され、他端が複数のボルト28により端板部27に着脱可能に連結された複数(貫通孔22と同数である3本)の柱部29とから構成されている。そして、前記端板部26、27同士を連結する柱部29は軸方向に延びるとともに、外歯歯車18の貫通孔22内に若干の間隙を保持しながら挿入(遊嵌)されている。   Reference numeral 25 denotes a support body (carrier) that is loosely fitted in the rotary case 12 and is attached to a fixed robot member (not shown). The support body 25 is a pair of substantially arranged externally in the axial direction of the external gear 18. Ring-shaped end plate portions 26, 27, and a plurality of (through-hole 22 and through-hole 22), one end of which is integrally connected to end plate portion 26 and the other end is detachably connected to end plate portion 27 by a plurality of bolts 28. 3) which is the same number). The column portion 29 that connects the end plate portions 26 and 27 extends in the axial direction, and is inserted (freely fitted) into the through hole 22 of the external gear 18 while maintaining a slight gap.

31は前記支持体25、詳しくは端板部26、27の外周と回転ケース12の軸方向両端部内周との間に介装された一対の軸受であり、これらの軸受31により内歯歯車15は支持体25に回転可能に支持される。35は周方向に等角度離れて配置された少なくとも1本(クランク軸孔21と同数である3本)のクランク軸であり、これらのクランク軸35は、その軸方向一端部に外嵌された円錐ころ軸受36およびその軸方向他端部に外嵌された円錐ころ軸受37によって支持体25、詳しくは端板部26、27に回転可能に支持されている。   31 is a pair of bearings interposed between the support body 25, specifically, the outer periphery of the end plate portions 26 and 27 and the inner periphery of both end portions in the axial direction of the rotary case 12, and the internal gear 15 is supported by these bearings 31. Is rotatably supported by the support 25. Reference numeral 35 denotes at least one (three as many as the crankshaft holes 21) crankshafts arranged at an equal angle in the circumferential direction, and these crankshafts 35 are externally fitted at one end in the axial direction. A tapered roller bearing 36 and a tapered roller bearing 37 fitted on the other axial end thereof are rotatably supported by the support body 25, specifically the end plate portions 26 and 27.

前記クランク軸35はその軸方向中央部にクランク軸35の中心軸から等距離だけ偏心した2個の偏心カム38を有し、これら偏心カム38は互いに 180度だけ位相がずれている。ここで、前記クランク軸35の偏心カム38は外歯歯車18のクランク軸孔21内にそれぞれ遊嵌されるとともに、これらの間には針状ころ軸受39が介装され、この結果、前記外歯歯車18とクランク軸35との相対回転が許容される。また、各クランク軸35の軸方向一端には外歯車40が固定され、これらの外歯車40には図示していない駆動モータの出力軸41の一端部に設けられた外歯車42が噛み合っている。   The crankshaft 35 has two eccentric cams 38 that are eccentric by an equal distance from the central axis of the crankshaft 35 at the center in the axial direction, and these eccentric cams 38 are out of phase with each other by 180 degrees. Here, the eccentric cam 38 of the crankshaft 35 is loosely fitted in the crankshaft hole 21 of the external gear 18, and a needle roller bearing 39 is interposed between them, and as a result, the outer cam 38 is inserted. Relative rotation between the toothed gear 18 and the crankshaft 35 is allowed. An external gear 40 is fixed to one end of each crankshaft 35 in the axial direction, and an external gear 42 provided at one end of an output shaft 41 of a drive motor (not shown) meshes with these external gears 40. .

そして、駆動モータが作動して外歯車40が回転すると、クランク軸35が自身の中心軸回りに回転し、この結果、クランク軸35の偏心カム38が外歯歯車18のクランク軸孔21内において偏心回転し、外歯歯車18が偏心揺動回転をする。このとき、互いに噛み合っている内歯(ピン)14と外歯19との接触点には、図4に示すように、外歯19から対応する内歯(ピン)14に対して作用線S方向の駆動分力Kがそれぞれ付与される。   When the drive motor operates and the external gear 40 rotates, the crankshaft 35 rotates around its own central axis, and as a result, the eccentric cam 38 of the crankshaft 35 is moved into the crankshaft hole 21 of the external gear 18. As a result, the external gear 18 rotates eccentrically. At this time, at the contact point between the internal teeth (pins) 14 and the external teeth 19 that are meshed with each other, as shown in FIG. 4, the action line S direction from the external teeth 19 to the corresponding internal teeth (pins) 14 The driving component force K is applied.

ここで、前述した各駆動分力Kの作用線Sは前記接触点における歯面に垂直な線上に位置するが、これら複数の作用線Sは、前述のように内歯(ピン)14が円柱状を呈し、外歯19がトロコイド歯形から構成されているので、外歯歯車18上の一点、即ち集合点Cで集合(交差)する。そして、このような遊星歯車装置11の内歯歯車15からロボットのアーム等に出力される出力トルクは、外歯19と内歯(ピン)14との各接触点での駆動分力Kの接線方向成分に、内歯歯車15の中心Oから前記接触点までの距離を乗じた値の合計となる。   Here, the action line S of each driving component force K described above is located on a line perpendicular to the tooth surface at the contact point, but the plurality of action lines S are formed by the inner teeth (pins) 14 being circular as described above. Since it has a columnar shape and the external teeth 19 are formed of a trochoidal tooth profile, the external teeth 19 gather (intersect) at one point on the external gear 18, that is, the set point C. The output torque output from the internal gear 15 of the planetary gear device 11 to the robot arm or the like is tangent to the driving component K at each contact point between the external teeth 19 and the internal teeth (pins) 14. The sum of values obtained by multiplying the direction component by the distance from the center O of the internal gear 15 to the contact point.

そして、この実施形態においては、前述した出力トルクを増大させるため、外歯歯車18の内歯歯車15に対する偏心量Hを、従来の制限を超えて、内歯14を構成するピンの半径Rの 0.5倍以上としたのである。このように偏心量Hを半径Rの 0.5倍以上とすると、内歯歯車15の中心Oから集合点Cまでの半径方向距離L(偏心量Hに内歯(ピン)14の歯数Zを乗じることで求められる)を従来より大と、即ち、集合点Cの位置を半径方向外側に大きく移動させることができる。   In this embodiment, in order to increase the output torque described above, the eccentric amount H of the external gear 18 with respect to the internal gear 15 exceeds the conventional limit, and the radius R of the pin constituting the internal tooth 14 is increased. It is 0.5 times or more. When the eccentric amount H is 0.5 times or more of the radius R in this way, the radial distance L from the center O of the internal gear 15 to the set point C (the eccentric amount H is multiplied by the number of teeth Z of the internal teeth (pins) 14). The position of the set point C can be moved greatly outward in the radial direction.

これにより、前記作用線Sが外歯歯車18に対して従来より接線方向側に大きく傾斜して、駆動分力Kの接線方向成分が増大し、この結果、内、外歯14、19の噛み合い歯数に変化のない場合には、出力トルクが増大するのである。但し、前記偏心量Hが半径Rの 1.0倍を超えると、外歯歯車18の偏心揺動回転時に外歯19と内歯(ピン)14とが干渉する回転位置が生じてしまうため、前記偏心量Hは半径Rの 0.5〜 1.0倍の範囲内でなければならない。   As a result, the action line S is largely inclined toward the tangential side with respect to the external gear 18 so that the tangential component of the driving component K is increased. As a result, the internal and external teeth 14 and 19 are meshed. When there is no change in the number of teeth, the output torque increases. However, if the amount of eccentricity H exceeds 1.0 times the radius R, a rotational position where the external teeth 19 and the internal teeth (pins) 14 interfere with each other during the eccentric oscillation rotation of the external gear 18 occurs. The quantity H must be in the range of 0.5 to 1.0 times the radius R.

また、前述のように内歯歯車15の中心Oから集合点Cまでの半径方向距離(偏心量Hに内歯(ピン)14の歯数Zを乗じることで求められる)をLとし、前記内歯14を構成する全てのピンの中心を通過するピン円Pの半径をQとしたとき、これらの比L/Qの値は0.86〜1.00の範囲内であることが好ましい。   As described above, the radial distance from the center O of the internal gear 15 to the set point C (determined by multiplying the eccentricity H by the number of teeth Z of the internal teeth (pins) 14) is L, When the radius of the pin circle P passing through the centers of all the pins constituting the tooth 14 is Q, the value of these ratios L / Q is preferably in the range of 0.86 to 1.00.

その理由は、前記比L/Qの値が0.86以上であると、図5から明らかなように、荷重比率がほぼ一定となって、同一トルクを得るために、外歯19にかかるトルク伝達に関する荷重をほぼ一定で最小とすることができる、O.86未満となると、荷重比率の変化が大きくなって、外歯19にかかるトルク伝達に関する荷重が増大するからであり、一方、前記比L/Qの値が1.00を超えると、外歯19の創成時に歯面に尖った部位が生じてしまうからである。   The reason is that when the value of the ratio L / Q is 0.86 or more, as is clear from FIG. 5, the load ratio becomes substantially constant and the torque is applied to the external teeth 19 in order to obtain the same torque. This is because when the load is almost constant and can be minimized, and when the load is less than O.86, the change in the load ratio increases, and the load related to torque transmission applied to the external teeth 19 increases. This is because, when the value of Q exceeds 1.00, a pointed portion is generated on the tooth surface when the external tooth 19 is created.

ここで、前述のグラフは以下の諸元においてシミュレーションを行い求めたものである。即ち、各遊星歯車装置の内歯(ピン)の歯数Z(本数)を40、内歯(ピン)の直径Dを10mm、ピン円Pの半径Qを 120mm、外歯の歯数を39の一定値とする一方、L/Qの値を 0.5から 1.0の範囲で変化させ、集合点Cに作用する駆動分力Kを合成した合力の接線方向成分を求めた。ここで、図5にはL/Qの値が0.75のときの前記接線方向成分を、荷重比率が指数1であるとしてグラフ表示している。   Here, the above-mentioned graph is obtained by performing simulation in the following specifications. That is, the number of teeth Z (number) of the internal teeth (pins) of each planetary gear device is 40, the diameter D of the internal teeth (pins) is 10 mm, the radius Q of the pin circle P is 120 mm, and the number of external teeth is 39. While maintaining a constant value, the value of L / Q was changed in the range of 0.5 to 1.0, and the tangential component of the resultant force obtained by synthesizing the driving component K acting on the set point C was obtained. Here, in FIG. 5, the tangential direction component when the value of L / Q is 0.75 is displayed as a graph with the load ratio being index 1.

そして、前述のようにL/Qの値が0.86〜1.00の範囲内にあるとき、内歯(ピン)14の直径D(半径R×2)を、ピン円Pの直径M(半径Q×2)を外歯19の歯数Uで除した値、即ち、M/Uの値近傍、具体的にはM/U±2mmの範囲内とすることが好ましい。その理由は、直径DがM/Uの値近傍であると、図6に示すグラフから明らかなように、内歯(ピン)14と外歯19との接触点でのヘルツ応力が、急激に増大を開始する点より内側の低い値に維持され、外歯19の歯面寿命を延ばすことができるからである。   As described above, when the value of L / Q is in the range of 0.86 to 1.00, the diameter D (radius R × 2) of the internal teeth (pins) 14 is changed to the diameter M (radius Q × 2) of the pin circle P. ) Divided by the number of teeth U of the external teeth 19, that is, in the vicinity of the value of M / U, specifically within the range of M / U ± 2 mm. The reason is that when the diameter D is in the vicinity of the value of M / U, the Hertz stress at the contact point between the inner teeth (pins) 14 and the outer teeth 19 suddenly increases, as is apparent from the graph shown in FIG. This is because it is maintained at a lower value inside the point where the increase starts and the tooth surface life of the external teeth 19 can be extended.

また、前記直径Dは、ヘルツ応力をほぼ一定の最小値とするには、図6から明らかなようにM/U±0.75mmの範囲内がさらに好ましい。なお、この図6に示すグラフも、偏心量Hを 2.7mmとした以外は前記図5のグラフと同様の条件で、内歯(ピン)14の直径Dを変化させながらシミュレーションを行って、外歯19と内歯(ピン)14との接触点におけるヘルツ応力を求め、直径DがM/Uに等しいときのヘルツ応力値を指数1として表示している。   Further, the diameter D is more preferably within the range of M / U ± 0.75 mm, as is apparent from FIG. 6, in order to make the Hertzian stress a substantially constant minimum value. The graph shown in FIG. 6 is also simulated by changing the diameter D of the internal teeth (pins) 14 under the same conditions as the graph of FIG. 5 except that the eccentricity H is 2.7 mm. The Hertz stress at the contact point between the tooth 19 and the internal tooth (pin) 14 is obtained, and the Hertz stress value when the diameter D is equal to M / U is displayed as an index 1.

そして、前述のように偏心量Hを半径Rの 0.5倍以上とすると、内歯(ピン)14に両歯面が接触する外歯19が大型、即ち、歯厚、歯丈が共に大きくなるため、該外歯19がほぼピン円P上に位置している内歯歯車15(回転ケース12)の内周15aを越えて侵入し、これらの間で干渉が発生する。このため、この実施例では、前記外歯19を歯先から所定量だけ(図3に仮想線で示す部位分だけ)、外歯歯車18の中心を曲率中心とする円に沿って切除し、外歯19と内歯歯車15の内周15aとの干渉を回避するようにしている。なお、これらの外歯19における切除量は、内歯歯車15と外歯歯車18との最大噛み合い部において、切除後の外歯19の先端と、内歯歯車15の内周15aとの間に僅かな間隙が生じる程度が好ましい。   If the eccentric amount H is 0.5 times the radius R or more as described above, the external teeth 19 whose both tooth surfaces are in contact with the internal teeth (pins) 14 are large, that is, both the tooth thickness and the tooth height are large. The external teeth 19 enter beyond the inner periphery 15a of the internal gear 15 (rotating case 12) positioned on the pin circle P, and interference occurs between them. For this reason, in this embodiment, the external teeth 19 are excised from the tooth tip by a predetermined amount (only the portion indicated by the phantom line in FIG. 3), along a circle whose center of curvature is the center of the external gear 18, Interference between the external teeth 19 and the inner periphery 15a of the internal gear 15 is avoided. It should be noted that the amount of cutting in the external teeth 19 is between the tip of the external teeth 19 after cutting and the inner periphery 15a of the internal gear 15 at the maximum meshing portion between the internal gear 15 and the external gear 18. It is preferable that a slight gap is generated.

また、前述のように各外歯19を部分的に切除した場合において、切除後のいずれか1個の外歯19における回転方向前側エッジ19aと回転方向後側エッジ19bとの間の距離をEとするとともに、隣接する2つの外歯19における回転方向前側エッジ19aと回転方向後側エッジ19bとの間の距離をFとしたとき、前記距離Eを距離Fより大とすることが好ましい。その理由は、このようにすると、外歯19の曲げ剛性が高くなり、さらに外歯の加工を容易にすることができるからである。   Further, when each external tooth 19 is partially excised as described above, the distance between the rotation direction front edge 19a and the rotation direction rear edge 19b in any one of the external teeth 19 after excision is expressed as E. In addition, when the distance between the rotation direction front edge 19a and the rotation direction rear edge 19b in two adjacent external teeth 19 is F, the distance E is preferably larger than the distance F. The reason is that, in this way, the bending rigidity of the external teeth 19 is increased, and the processing of the external teeth can be facilitated.

そして、前述のように各外歯19を歯先から所定量だけ切除すると、内歯(ピン)14と外歯19とはその一部でのみ、前述したL/Qの値が 1.0のときであっても約 1/3、この実施例では約 3/4でのみ噛み合うようになるため、残りの約 1/4の内歯(ピン)14は外歯19に接触せずピン溝13から抜け出ようとする。このため、この実施例では、前記軸受31のアウターレース31aの内端面に前記内歯(ピン)14の両端部が挿入される挿入穴31bを形成し、これにより、内歯(ピン)14がピン溝13から抜け出るのを防止するようにしている。そして、このとき、外歯19から内歯(ピン)14に対して約 3/8の範囲で駆動力が伝達される。   Then, when each external tooth 19 is excised from the tooth tip by a predetermined amount as described above, the internal teeth (pins) 14 and the external teeth 19 are only a part of them, and the above-mentioned L / Q value is 1.0. Even if there is about 1/3, only about 3/4 in this embodiment, the remaining internal teeth (pins) 14 do not contact the external teeth 19 and come out of the pin groove 13 Try to. For this reason, in this embodiment, insertion holes 31b into which both end portions of the inner teeth (pins) 14 are inserted are formed on the inner end surface of the outer race 31a of the bearing 31, whereby the inner teeth (pins) 14 are formed. The pin groove 13 is prevented from coming out. At this time, the driving force is transmitted from the outer teeth 19 to the inner teeth (pins) 14 in a range of about 3/8.

前述した挿入穴31bは全体として外歯19に接触していない内歯(ピン)14がピン溝13から抜け出すのを防止する規制手段43を構成する。なお、前述の規制手段43として、挿入穴31bの代わりに、アウターレース31aの内端面に形成され、幅が内歯(ピン)14の直径と同一である円周溝を用いたり、あるいは、前記2個の外歯歯車18間に配置され、外周が全ての内歯(ピン)14に接触する1個のピン押さえリングを用いてもよい。   The aforementioned insertion hole 31b constitutes a restricting means 43 that prevents the internal teeth (pins) 14 that are not in contact with the external teeth 19 from coming out of the pin grooves 13 as a whole. As the aforementioned restricting means 43, instead of the insertion hole 31b, a circumferential groove formed on the inner end surface of the outer race 31a and having the same width as the diameter of the inner teeth (pins) 14 can be used. A single pin holding ring that is disposed between the two external gears 18 and whose outer periphery contacts all the internal teeth (pins) 14 may be used.

次に、この発明の実施例1の作用について説明する。
今、駆動モータが作動し、クランク軸35が自身の中心軸回りに同一方向に同一速度で回転しているとする。このとき、クランク軸35の偏心カム38が外歯歯車18のクランク軸孔21内において偏心回転して外歯歯車18を偏心揺動回転させるが、前記外歯歯車18の外歯19の歯数が内歯(ピン)14の数より1個だけ少ないので、回転ケース12およびロボットのアーム等は外歯歯車18の偏心揺動回転により低速で回転する。
Next, the operation of the first embodiment of the present invention will be described.
Now, it is assumed that the drive motor operates and the crankshaft 35 is rotating around the center axis in the same direction and at the same speed. At this time, the eccentric cam 38 of the crankshaft 35 rotates eccentrically in the crankshaft hole 21 of the external gear 18 to rotate the external gear 18 eccentrically, and the number of teeth of the external teeth 19 of the external gear 18 is increased. Is one less than the number of internal teeth (pins) 14, the rotating case 12, the robot arm, and the like rotate at a low speed due to the eccentric oscillation rotation of the external gear 18.

ここで、前述のように偏心量Hを半径Rの 0.5倍以上としたので、内歯歯車15の中心Oから集合点Cまでの距離Lが従来より大と、即ち、集合点Cの位置を半径方向外側に大きく移動させることができ、これにより、前記作用線Sが外歯歯車18に対して従来より接線方向側に大きく傾斜して、駆動分力Kの接線方向成分が増大し、出力トルクが増大するのである。   Here, since the eccentric amount H is set to 0.5 times or more of the radius R as described above, the distance L from the center O of the internal gear 15 to the set point C is larger than before, that is, the position of the set point C is set. The action line S can be greatly moved outward in the radial direction, so that the tangential direction component of the driving component K increases and the output line S is inclined more to the tangential direction side than the conventional gear 18. Torque increases.

図7、8は、この発明の実施例2を示す図である。この実施例においては、前記実施例1のように外歯19の切除を行わず、隣接する内歯(ピン)14間の内歯歯車15(回転ケース12)の内周15aおよび各内歯(ピン)14の周囲の内周15aを、所定深さ、ここでは内歯(ピン)14の半径Rにほぼ等しい深さだけ切除して、外歯19と内歯歯車15(回転ケース12)の内周15aとの干渉を回避するようにしている。ここで、この内周15aの切除量は外歯19の前記侵入量に合わせて適宜決定すればよい。     7 and 8 are views showing Embodiment 2 of the present invention. In this embodiment, the external teeth 19 are not cut as in the first embodiment, and the internal circumference 15a of the internal gear 15 (rotating case 12) between the adjacent internal teeth (pins) 14 and the internal teeth ( The inner circumference 15a around the pin (14) is cut by a predetermined depth, here a depth substantially equal to the radius R of the inner tooth (pin) 14, and the outer teeth 19 and the inner gear 15 (rotating case 12) Interference with the inner periphery 15a is avoided. Here, the amount of resection of the inner periphery 15a may be appropriately determined according to the amount of penetration of the external teeth 19.

この結果、各内歯(ピン)14の半径方向外端は切除後の内歯歯車15の内周15aに線接触し、これにより、各内歯(ピン)14に付与される駆動分力Kの半径方向成分は回転ケース12が受ける。このとき、ピン溝13が存在しなくなるため、各内歯(ピン)14は自由に移動することができるようになる。このため、この実施例においては、軸受31と外歯歯車18との間に、内歯(ピン)14の両端部が挿入される挿入穴45が形成された規制手段としての2個のピン押さえリング46を介装するとともに、これら2個のピン押さえリング46を内歯歯車15に回転不要に固定し、前述した内歯(ピン)14の移動を規制するようにしている。なお、他の構成、作用は前記実施例1と同様である。   As a result, the radially outer end of each internal tooth (pin) 14 is in line contact with the inner periphery 15a of the internal gear 15 after cutting, and thereby, the drive component force K applied to each internal tooth (pin) 14 is reached. The rotating case 12 receives the radial component of. At this time, since the pin groove 13 does not exist, each internal tooth (pin) 14 can move freely. For this reason, in this embodiment, two pin pressers as restricting means in which insertion holes 45 into which both ends of the internal teeth (pins) 14 are inserted are formed between the bearing 31 and the external gear 18. While interposing the ring 46, these two pin pressing rings 46 are fixed to the internal gear 15 without rotation, and the movement of the internal teeth (pins) 14 described above is restricted. Other configurations and operations are the same as those in the first embodiment.

なお、前述の実施例においては、外歯歯車18に複数(3個)のクランク軸孔21を形成するとともに、各クランク軸孔21に同一方向に等速回転するクランク軸35をそれぞれ挿入して外歯歯車18を偏心揺動回転させるようにしたが、この発明においては、外歯歯車18の中心軸上に形成された1個のクランク軸孔に1本のクランク軸を挿入し、このクランク軸の回転により外歯歯車を偏心揺動回転させるようにしてもよい。この場合には、支持体の柱部は貫通孔の内周に線接触する必要がある。     In the above-described embodiment, a plurality (three) of the crankshaft holes 21 are formed in the external gear 18, and the crankshafts 35 that rotate at the same speed in the same direction are inserted into the crankshaft holes 21, respectively. Although the external gear 18 is rotated eccentrically and rotated, in the present invention, one crankshaft is inserted into one crankshaft hole formed on the central shaft of the external gear 18, and the crank The external gear may be rotated eccentrically by rotating the shaft. In this case, the pillar portion of the support needs to be in line contact with the inner periphery of the through hole.

また、前述の実施例においては、支持体25を固定し、内歯歯車15を低速回転させるようにしたが、この発明においては、内歯歯車を固定し、支持体を低速回転させるようにしてもよい。さらに、この発明においては、前記遊星歯車装置11の前段に減速比が 1/7より小さい( 1/1に近い)平歯車減速機を設け、2段で減速するようにしてもよい。このようにすれば、固有振動数の高い高減速比の歯車装置を得ることができる。また、前述の実施例1においては、外歯19を歯先から所定量だけ、実施例2においては、内歯(ピン)14間の内歯歯車15(回転ケース12)の内周15aを所定深さだけ切除するようにしたが、この発明においては、外歯および内歯歯車の内周の双方を切除するようにしてもよい。   In the above-described embodiment, the support 25 is fixed and the internal gear 15 is rotated at a low speed. However, in the present invention, the internal gear is fixed and the support is rotated at a low speed. Also good. Furthermore, in the present invention, a spur gear reducer having a reduction ratio smaller than 1/7 (close to 1/1) may be provided in the preceding stage of the planetary gear unit 11 to reduce the speed in two stages. If it does in this way, the gear apparatus of a high reduction ratio with a high natural frequency can be obtained. Further, in the first embodiment, the outer teeth 19 are a predetermined amount from the tooth tip, and in the second embodiment, the inner periphery 15a of the internal gear 15 (rotary case 12) between the inner teeth (pins) 14 is predetermined. Although only the depth is cut, in the present invention, both the external teeth and the inner periphery of the internal gear may be cut.

この発明は、内歯歯車に噛み合う外歯歯車をクランク軸によって偏心揺動させるようにした偏心揺動型遊星歯車装置に適用できる。   The present invention can be applied to an eccentric oscillating planetary gear device in which an external gear meshing with an internal gear is eccentrically oscillated by a crankshaft.

この発明の実施例1を示す側面断面図である。It is side surface sectional drawing which shows Example 1 of this invention. 図1のI−I矢視断面図である。It is II sectional view taken on the line of FIG. 内歯と外歯との噛み合い状態を示す図2と同様の断面図である。It is sectional drawing similar to FIG. 2 which shows the meshing state of an internal tooth and an external tooth. 内歯に付与される駆動分力Kおよびその作用線Sを示す説明図である。It is explanatory drawing which shows the drive component force K provided to an internal tooth, and its action line S. FIG. L/Qの値と荷重比率との関係を示すグラフである。It is a graph which shows the relationship between the value of L / Q, and a load ratio. 内歯(ピン)の直径Dとヘルツ応力比との関係を示すグラフである。It is a graph which shows the relationship between the diameter D of an internal tooth (pin), and Hertzian stress ratio. この発明の実施例2を示す図1と同様の断面図である。It is sectional drawing similar to FIG. 1 which shows Example 2 of this invention. この発明の実施例2を示す図2と同様の断面図である。It is sectional drawing similar to FIG. 2 which shows Example 2 of this invention.

符号の説明Explanation of symbols

11…遊星歯車装置 14…内歯(ピン)
15…内歯歯車 15a…内周
18…外歯歯車 19…外歯
19a…回転方向前側エッジ 19b…回転方向後側エッジ
21…クランク軸孔 22…貫通孔
25…支持体 29…柱部
35…クランク軸 H…偏心量
P…ピン円 C…集合点
S…作用線 K…駆動分力
R…ピン半径 Q…ピン円半径
E…距離 F…距離
11 ... Planetary gear unit 14 ... Internal teeth (pin)
15 ... Internal gear 15a ... Inner circumference
18 ... External gear 19 ... External gear
19a: Front edge in the rotational direction 19b: Rear edge in the rotational direction
21 ... Crankshaft hole 22 ... Through hole
25 ... Support 29 ... Column
35 ... Crankshaft H ... Eccentric amount P ... Pin circle C ... Meeting point S ... Line of action K ... Drive component force R ... Pin radius Q ... Pin circle radius E ... Distance F ... Distance

Claims (4)

内周に多数の円柱状ピンで構成された内歯が設けられた内歯歯車と、少なくとも1個のクランク軸孔および複数の貫通孔が形成され、外周にトロコイド歯形からなり前記内歯に噛み合うとともに、該内歯より1個だけ歯数が少ない外歯を有する外歯歯車と、各クランク軸孔に挿入され、回転することで外歯歯車を偏心揺動させるクランク軸と、前記クランク軸を回転可能に支持するとともに、各貫通孔に挿入された複数の柱部を有する支持体とを備えた偏心揺動型遊星歯車装置において、前記外歯歯車の内歯歯車に対する偏心量をH、内歯を構成するピンの半径をRとしたとき、前記偏心量Hを半径Rの 0.5〜 1.0倍の範囲内となすとともに、各外歯を歯先から所定量だけ切除して外歯と内歯歯車の内周との干渉を回避するようにしたことを特徴とする偏心揺動型遊星歯車装置。     An internal gear provided with internal teeth composed of a large number of cylindrical pins on the inner periphery, at least one crankshaft hole and a plurality of through holes are formed, and has a trochoidal tooth shape on the outer periphery and meshes with the internal teeth And an external gear having external teeth that have only one fewer teeth than the internal teeth, a crankshaft that is inserted into each crankshaft hole and rotates to eccentrically swing the external gear, and the crankshaft. In an eccentric oscillating planetary gear device that is rotatably supported and includes a support body having a plurality of pillars inserted into each through hole, the eccentric amount of the external gear with respect to the internal gear is H, When the radius of the pin constituting the tooth is R, the amount of eccentricity H is within a range of 0.5 to 1.0 times the radius R, and each external tooth is excised from the tooth tip by a predetermined amount to external teeth and internal teeth. It is characterized by avoiding interference with the inner circumference of the gear. The eccentric oscillating to type planetary gear device. 内周に多数の円柱状ピンで構成された内歯が設けられた内歯歯車と、少なくとも1個のクランク軸孔および複数の貫通孔が形成され、外周にトロコイド歯形からなり前記内歯に噛み合うとともに、該内歯より1個だけ歯数が少ない外歯を有する外歯歯車と、各クランク軸孔に挿入され、回転することで外歯歯車を偏心揺動させるクランク軸と、前記クランク軸を回転可能に支持するとともに、各貫通孔に挿入された複数の柱部を有する支持体とを備えた偏心揺動型遊星歯車装置において、前記外歯歯車の内歯歯車に対する偏心量をH、内歯を構成するピンの半径をRとしたとき、偏心量Hを半径Rの 0.5〜 1.0倍の範囲内となすとともに、隣接する内歯間の内歯歯車内周を所定深さだけ切除して、外歯と内歯歯車の内周との干渉を回避するようにしたことを特徴とする偏心揺動型遊星歯車装置。     An internal gear provided with internal teeth composed of a large number of cylindrical pins on the inner periphery, at least one crankshaft hole and a plurality of through holes are formed, and has a trochoidal tooth shape on the outer periphery and meshes with the internal teeth And an external gear having external teeth that have only one fewer teeth than the internal teeth, a crankshaft that is inserted into each crankshaft hole and rotates to eccentrically swing the external gear, and the crankshaft. In an eccentric oscillating planetary gear device that is rotatably supported and includes a support body having a plurality of pillars inserted into each through hole, the eccentric amount of the external gear with respect to the internal gear is H, When the radius of the pin constituting the tooth is R, the amount of eccentricity H is in the range of 0.5 to 1.0 times the radius R, and the inner periphery of the internal gear between adjacent internal teeth is cut by a predetermined depth. To avoid interference between the external teeth and the inner periphery of the internal gear Eccentric oscillating type planetary gear device, characterized in that the. 前記内歯を構成する全てのピンの中心を通過するピン円Pの半径をQとし、前記内歯歯車の中心Oから、外歯から対応する内歯に対して付与される駆動分力Kの作用線Sが重なり合う集合点Cまでの半径方向距離をLとしたとき、前記半径方向距離Lを前記半径Qの0.86〜1.00倍の範囲内とした請求項1または2記載の偏心揺動型遊星歯車装置。     The radius of the pin circle P passing through the centers of all the pins constituting the internal teeth is Q, and the driving component force K applied from the external teeth to the corresponding internal teeth from the center O of the internal gears. The eccentric oscillating planet according to claim 1 or 2, wherein the radial distance L is set to be within a range of 0.86 to 1.00 times the radius Q, where L is the radial distance to the set point C where the action lines S overlap. Gear device. 前記切除後のいずれか1個の外歯における回転方向前側エッジと回転方向後側エッジとの間の距離をEとするとともに、隣接する2つの外歯における回転方向前側エッジと回転方向後側エッジとの間の距離をFとしたとき、前記距離Eを距離Fより大とした請求項1または3に記載の偏心揺動型遊星歯車装置。     The distance between the rotation direction front edge and the rotation direction rear edge of any one external tooth after the resection is E, and the rotation direction front edge and the rotation direction rear edge of two adjacent external teeth The eccentric oscillating planetary gear device according to claim 1 or 3, wherein the distance E is set to be greater than the distance F, where F is a distance between and.
JP2004147352A 2004-01-30 2004-05-18 Eccentric oscillation type planetary gear unit Expired - Lifetime JP4498823B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2004147352A JP4498823B2 (en) 2004-05-18 2004-05-18 Eccentric oscillation type planetary gear unit
CN2008100989634A CN101328953B (en) 2004-01-30 2005-01-28 Eccentric oscillating-type planetary gear device
EP12000498.1A EP2463548B1 (en) 2004-01-30 2005-01-28 Eccentric oscillating-type planetary gear device
KR1020067015361A KR101140794B1 (en) 2004-01-30 2005-01-28 Eccentric oscillating-type planetary gear device
TW094102766A TW200537040A (en) 2004-01-30 2005-01-28 Eccentric oscillating-type planetary gear device
US10/597,534 US7476174B2 (en) 2004-01-30 2005-01-28 Eccentric oscillating-type planetary gear device
EP05704240.0A EP1712814B1 (en) 2004-01-30 2005-01-28 Eccentric oscillating-type planetary gear device
EP12000500.4A EP2463549B1 (en) 2004-01-30 2005-01-28 Eccentric oscillating-type planetary gear device
EP12000499.9A EP2461071B1 (en) 2004-01-30 2005-01-28 Eccentric oscillating-type planetary gear device
CN2008100989649A CN101368612B (en) 2004-01-30 2005-01-28 Eccentric swing type planetary gear device
PCT/JP2005/001188 WO2005072067A2 (en) 2004-01-30 2005-01-28 Eccentric oscillating-type planetary gear device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004147352A JP4498823B2 (en) 2004-05-18 2004-05-18 Eccentric oscillation type planetary gear unit

Publications (2)

Publication Number Publication Date
JP2005330981A JP2005330981A (en) 2005-12-02
JP4498823B2 true JP4498823B2 (en) 2010-07-07

Family

ID=35485789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004147352A Expired - Lifetime JP4498823B2 (en) 2004-01-30 2004-05-18 Eccentric oscillation type planetary gear unit

Country Status (1)

Country Link
JP (1) JP4498823B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4901242B2 (en) * 2006-03-02 2012-03-21 ナブテスコ株式会社 Differential oscillating speed reducer
JP4846490B2 (en) * 2006-08-28 2011-12-28 ナブテスコ株式会社 Crankshaft, crankshaft manufacturing method, and reduction gear
CN101960172B (en) * 2008-03-03 2013-11-06 纳博特斯克株式会社 Eccentric speed reducer
KR20180069853A (en) * 2015-10-13 2018-06-25 닝보 에이치에스-파워 드라이브 테크놀로지 코. 엘티디 Intermixing transmission mechanism
CN108412967A (en) * 2017-02-09 2018-08-17 安徽聚隆机器人减速器有限公司 A kind of eccentric oscillation gear device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5723456U (en) * 1981-06-25 1982-02-06
JPH02261943A (en) * 1989-03-30 1990-10-24 Teijin Seiki Co Ltd Planetary gearing speed reduction machine
JPH0544789A (en) * 1991-08-13 1993-02-23 Sumitomo Heavy Ind Ltd Internal planetary gear structure
JPH07299791A (en) * 1994-12-02 1995-11-14 Teijin Seiki Co Ltd Deceleration device for joint drive of industrial robot

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5723456U (en) * 1981-06-25 1982-02-06
JPH02261943A (en) * 1989-03-30 1990-10-24 Teijin Seiki Co Ltd Planetary gearing speed reduction machine
JPH0544789A (en) * 1991-08-13 1993-02-23 Sumitomo Heavy Ind Ltd Internal planetary gear structure
JPH07299791A (en) * 1994-12-02 1995-11-14 Teijin Seiki Co Ltd Deceleration device for joint drive of industrial robot

Also Published As

Publication number Publication date
JP2005330981A (en) 2005-12-02

Similar Documents

Publication Publication Date Title
JP4969680B2 (en) Eccentric oscillation type planetary gear unit
US7476174B2 (en) Eccentric oscillating-type planetary gear device
EP2068038B1 (en) Reduction gear
JP4913045B2 (en) Eccentric oscillating speed reducer and turning structure of industrial robot using eccentric oscillating speed reducer
JP5445216B2 (en) Planetary gear mechanism
JP5121696B2 (en) Reduction gear
JP2005226827A (en) Eccentrically swinging gear device
TW201804099A (en) Gear transmission device characterized in that the sliding bearing is applied to the bearing of gear transmission device to stably drive thereof
TW201730453A (en) Speed reducer for improving configuration precision and suppressing abrasion and damage of components
JP2010249262A (en) Eccentric oscillating gear assembly
JP5388746B2 (en) Swing type reducer
JP4498823B2 (en) Eccentric oscillation type planetary gear unit
JP2014005900A (en) Eccentric rocking gear device
JP4498816B2 (en) Eccentric oscillation type planetary gear unit
JP4626948B2 (en) Eccentric oscillation type planetary gear unit
JP5798882B2 (en) Gear transmission
JP4632852B2 (en) Industrial robot swivel structure
JP2005201308A (en) Eccentric oscillation type planetary gear device
JP6890563B2 (en) Eccentric swing type speed reducer
CN207975194U (en) Speed changer
JP7506967B2 (en) Gear Unit
JP4437457B2 (en) Industrial robot swivel structure
JP2022186256A (en) Speed reducer
JP4966136B2 (en) Eccentric oscillating gear unit
JP2009036224A (en) Eccentric oscillation type gear device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100414

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4498823

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250