JP4879094B2 - 半導体発光素子及びその製造方法 - Google Patents

半導体発光素子及びその製造方法 Download PDF

Info

Publication number
JP4879094B2
JP4879094B2 JP2007150816A JP2007150816A JP4879094B2 JP 4879094 B2 JP4879094 B2 JP 4879094B2 JP 2007150816 A JP2007150816 A JP 2007150816A JP 2007150816 A JP2007150816 A JP 2007150816A JP 4879094 B2 JP4879094 B2 JP 4879094B2
Authority
JP
Japan
Prior art keywords
layer
light emitting
semiconductor
reinforcing member
semiconductor light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007150816A
Other languages
English (en)
Other versions
JP2008305922A (ja
Inventor
規人 鈴木
大輔 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2007150816A priority Critical patent/JP4879094B2/ja
Publication of JP2008305922A publication Critical patent/JP2008305922A/ja
Application granted granted Critical
Publication of JP4879094B2 publication Critical patent/JP4879094B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Description

本発明は、半導体発光素子及びその製造方法に関するものである。
半導体レーザ素子や発光ダイオード等の半導体発光素子は、光通信システムをはじめとする様々な分野において広く利用されている。このような半導体発光素子の一例として、垂直共振器型面発光レーザ(VCSEL:Vertical Cavity Surface Emitting Laser)が知られている。VCSELは、活性層の上下に半導体ミラー層を設けることによって、半導体基板に対して垂直方向に共振器が構成される発光素子である(例えば、特許文献1,2,3参照)。
このようなVCSELにおいて、光学的な特性を向上させるために、光閉じ込め効果を向上する構成が検討されている。例えば特許文献1には、上記したように、メサ状の台地の下部側に形成された半導体ミラー層に電極の一部を配置することで、光閉じ込め効果を向上させる構成が開示されている。
特開2003−324234号公報 特開2005−86054号公報 特開平5−218574号公報
しかしながら、従来の光閉じ込め効果を向上させる構成を用いると、VCSELの製造工程が複雑になるという課題があった。例えば、メサ状の台地の下部側に半導体ミラー層が形成される構成において、電極の一部を半導体ミラー層内に埋め込むためには、基板裏側からエッチング等の操作が必要となる。
本発明は、このような技術課題を解決するためになされたものであって、光閉じ込め構造の形成工程を簡単化することが可能な半導体発光素子およびその製造方法を提供することを目的とする。
そこで、本発明に係る半導体発光素子は、基板と、基板の一方面である上面側に設けられ、電流が供給されることによって発光する活性層を含むメサ部と、活性層に対して基板側にメサ形状に形成された第1のミラー層と、メサ部において、第1のミラー層との間に活性層が介在するように形成された第2のミラー層と、基板の上面から第1のミラー層の側面にわたって、第1のミラー層を囲むように設けられた補強部材と、を備え、第1のミラー層は、半導体積層方向に直交する面での断面積がメサ部での活性層の断面積よりも小さくなるように形成され、活性層と基板との間に、第1のミラー層と共に、第1のミラー層を囲む補強部材の少なくとも一部が配置されていること、を特徴として構成される。
上記した本発明に係る半導体発光素子において、本発明者は、メサ部の下部側に配置された半導体ミラー層の積層方向に直交する断面を小さく形成することで、光閉じ込め効果を向上させると共に、光閉じ込め構造の形成工程を簡単化できることを見出した。このような構成では、メサ部の下部に備わる第1のミラー層の有効径が狭まることから、光閉じ込め効果を向上させることができる。しかし、このような構成においては、メサ部下部側がくびれた形状となるため、メサ部が応力に絶えられる機械的強度を備えるべく、くびれた箇所を補強する必要がある。そこで、メサ状に形成された第1のミラー層の側面を補強部材で覆い、半導体発光素子の機械的強度の低下を抑制する構成とした。これにより、補強部材と第1のミラー層との屈折率差によって、より一層光閉じ込め効果を向上することができるため、半導体発光素子の発光出力を向上することができる。
ここで、メサ部において、電流を狭窄する電流狭窄領域を有する電流狭窄層を備え、第1のミラー層は、半導体積層方向に直交する面での断面積がメサ部での電流狭窄領域の断面積よりも大きいことが好適である。このような構成では、電流狭窄領域から電流注入され発光する活性層の径よりも第1のミラー層の径が大きく形成されることから、活性層で発生される光が第1のミラー層に確実に入射される。よって、活性層で発生される光を効率良く共振器内に閉じ込めることができる。
また、半導体発光素子において、補強部材は、活性層を含むメサ部の発する熱を伝導する熱伝導部材によって構成されていることが好ましい。このような構成では、発熱する活性層の下方に熱伝導部材で形成される補強部材が配置され、活性層で生じる熱を効率的に伝導することができる。さらに、補強部材が第1のミラー層の側面を覆っているため、活性層全体の熱が放熱され、半導体発光素子の発光性能の劣化を防ぐことができる。
また、補強部材は導電性部材で形成され、電極として用いられることが好ましい。このような構成では、導電性部材で形成された補強部材が電極として活性層付近に配置されるため、半導体多層構造の各層間、若しくは活性層と後述するクラッド層との間に生じる障壁により大きな抵抗を有する第1のミラー層を介さずに活性層に電流を供給できるため、半導体発光素子の低抵抗化を実現できる。これにより、低消費電力で半導体発光素子を動作させることができる。
また、補強部材は、活性層において発生される光を反射する金属で形成されていることが好ましい。これにより補強部材が第1のミラー層の光閉じ込め効果を一層向上させることができると共に、放熱性と導電性を有することができる。
また、半導体発光素子において、活性層と第1のミラー層との間に設けられたクラッド層とを備え、クラッド層はメサ部の最下層に位置することが好ましい。この構成では、半導体素子製造工程においてクラッド層をエッチングストップ層として機能させて、光閉じ込め構造形成工程を簡単化することができる。さらに、活性層から発生される光は、メサ部の上面側から出射されることが好適である。
また、本発明に係る半導体発光素子の製造方法は、電流が供給されることによって発光する活性層と、活性層が間に介在するように形成された第1のミラー層及び第2のミラー層とを備える半導体発光素子の製造方法であって、基板上に、基板側から第1のミラー層、活性層、及び第2のミラー層を含む複数の半導体層を順次形成する半導体層形成工程と、活性層及び第2のミラー層を含む上部積層体に対してエッチングを行って、基板の一方面である上面側に設けられたメサ部を形成するメサ部形成工程と、メサ部の側面上にマスクを形成するマスク形成工程と、マスクが形成されたメサ部よりも基板側に位置する第1のミラー層に対してエッチングを行って、第1のミラー層を、半導体積層方向に直交する面での断面積がメサ部での活性層の断面積よりも小さくなるメサ形状とするエッチング工程と、第1のミラー層を囲む補強部材を、基板の上面から第1のミラー層の側面にわたって、活性層と基板との間に、第1のミラー層と共に、補強部材の少なくとも一部が配置されるように形成する補強部材形成工程と、を備えている。
このような製造方法では、第1のミラー層の有効径を狭めることにより、光閉じ込め効果を向上させた半導体発光素子を製造することができる。また、第1のミラー層の側面を囲むように補強部材を埋め込むことで、第1のミラー層の径が小さくなった場合であってもメサ部が応力に耐えられる構成とすることができる。また、マスク形成工程で形成したマスクをエッチング工程および補強部材形成工程の双方において利用できるため、製造工程を簡略化することができる。
ここで、半導体層形成工程において、第1のミラー層と活性層との間にクラッド層を形成し、エッチング工程において、クラッド層をエッチングストップ層として、第1のミラー層のエッチングを行うことが好ましい。このような製造方法では、メサ部の下部側に第1のミラー層を削り、孔や溝を形成する場合でも基板裏側からエッチングをする必要が無く、全ての工程が基板表側から行える。
また、半導体層形成工程において、第1のミラー層と第2のミラー層との間に酸化用半導体層を形成し、メサ部形成工程において、活性層、第2のミラー層、及び酸化用半導体層を含む上部積層体に対してエッチングを行って、酸化用半導体層が側面に露出するようにメサ部を形成すると共に、酸化用半導体層に対してメサ部の側面から酸化処理を行って、電流を狭窄する電流狭窄領域を有する電流狭窄層を形成する酸化工程を更に備えることが好適である。これにより、酸化用半導体層の側面を酸化して、電流狭窄領域を有する電流狭窄層を好適に形成することができる。
また、エッチング工程において、第1のミラー層を、半導体積層方向に直交する面での断面積が、電流狭窄層での電流狭窄領域の断面積よりも大きくなるメサ形状とすることが好適である。これにより、活性層から発生される光が確実に第1のミラー層に入射される半導体発光素子を製造することができる。
また、補強部材形成工程において、補強部材を、活性層を含むメサ部の発する熱を伝導する熱伝導部材で形成することが好適である。このような製造方法では、発熱する活性層の下部近傍に熱伝導部材で形成される補強部材を配置することによって、活性層で生じる熱を効率的に伝導する半導体発光素子を製造することができる。
また、補強部材形成工程において、補強部材を導電性部材で形成することが好ましく、活性層付近に電極として導電性部材で形成された補強部材を配置することで、半導体多層構造の各層間、若しくは活性層やクラッド層の各層間に生じる障壁により大きな抵抗を有する第1のミラー層を介さずに活性層に電流を供給できるため、低抵抗化した半導体発光素子を製造することができる。また、低消費電力で動作する半導体発光素子を製造することができる。
さらに、補強部材形成工程において、補強部材を、活性層において発生される光を反射する金属で形成することが好適であり、第1のミラー層の光閉じ込め効果が一層向上し、放熱性と導電性に優れた半導体発光素子を製造することができる。
本発明によれば、半導体発光素子において、光閉じ込め構造を簡単な工程で形成することができる。
以下、添付図面を参照して本発明の実施形態について説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明のものと必ずしも一致していない。
図1は、本発明の実施形態に係る半導体発光素子の構成を示す上面図、図2は、図1に示した半導体発光素子のII−II線における側断面図、図3は、図2に示した半導体発光素子の側断面図のメサ部及びその周辺における層構造を示す拡大図である。図1及び図2に示した半導体発光素子1は、垂直共振器型面発光レーザ(VCSEL)であり、例えば光源装置として好適に利用されるものである。
図1に示すように、半導体発光素子1は、基板11と、メサ部20と、基板11上面からメサ部20の下方にわたって形成された補強部材40と、メサ部20の側面を囲う絶縁膜41と、メサ部20の上面および絶縁膜41の上面に連続して配置された電極部材50とを備えて構成されている。メサ部20は、水平断面が円形の円柱状に形成されている。
図2に示すように、基板11上方に、メサ部20が形成されている。基板11は、半導体基板であり、例えばn型のGaAs基板が用いられる。また、基板11上方に形成されたメサ部20は、活性層21を含む多層膜によって形成されている。メサ部20が有する活性層21は、電流が供給されることによって所定の発光スペクトルで発光する発光層である。このような活性層21としては、例えば、Ga0.45In0.55P/Al0.3GaInPの半導体積層構造で構成された多重量子井戸(MQW:Multi Quantum Well)活性層を用いることができる。メサ部20は、この活性層21から発せられた光を垂直に共振させる垂直共振器の一部を構成している。
また、基板11上には、下部n型DBR(Distributed Bragg Reflector)層(第1のミラー層)24および補強部材40が形成されている。
下部n型DBR層24は、活性層21から発生された光を反射する機能を備えており、例えばAl組成比が異なるAlGaAs層が交互に積層された半導体多層構造が用いられる。また、下部n型DBR層24は活性層21の基板11側にメサ形状に形成され、半導体積層方向に直交する面での断面積が、メサ部20での活性層21の断面積よりも小さく形成されている。なお、以下実施形態においては、DBR層の構成を一部省略して模式的に図示している。
補強部材40は、基板11の上面から下部n型DBR層24の側面にわたって連続して形成されると共に、下部n型DBR層24の側面を囲むように形成される。また、補強部材40は、補強部材40の基板11と反対側の面である上面40aが下部n型DBR層24の基板11と反対側の面である上面24aと一致するように形成される。そして、この下部n型DBR層24の上面24a上および補強部材40の上面40a上にメサ部20が形成されている。すなわち、補強部材40は、活性層21を含むメサ部20と基板11との間に、下部n型DBR層24と共に配置されている。ここで、補強部材40は、熱伝導性を有する材料で形成されることが好ましい。また、補強部材40は、導電性を有する材料で形成されることが好ましい。補強部材40は、このような熱伝導性、導電性を有する材料として、例えば金属で形成される。尚、この金属は、光を反射する機能を有していることが好ましい。
また、メサ部20において、活性層21とメサ部20の上面20aとの間には上部p型DBR層(第2のミラー層)25が形成されている。この上部p型DBR層25は、下部n型DBR層24と同様に、活性層21から発生された光を反射する機能を備えており、例えばAl組成比が異なるAlGaAs層が交互に積層された半導体多層構造が用いられる。
このように、半導体発光素子1において、下部n型DBR層24と上部p型DBR層25との間に活性層21が介在するため、活性層21で発生された光が下部n型DBR層24と上部p型DBR層25との間で共振する垂直共振器が形成される。また、上部p型DBR層25は、下部DBR層24に比べて反射率が小さく構成され、これにより、メサ部20の上面20a側から共振した光の一部を出射する構成となっている。この場合、図2に示すように、電極部材50によってメサ部20の上面20a側に発光窓部20bが形成される。発光窓部20bは、メサ部20の上方からみて円形の開口であり、その半径はメサ部20の半径より小さく形成されている。また、発光窓部20bは、メサ部20側の半径が、その反対側の半径に比べて小さいテーパ状に形成されている。
また、図3に示すように、メサ部20において、活性層21と下部n型DBR層24との間には下部クラッド層27が形成され、活性層21と上部p型DBR層25との間には、上部クラッド層26が形成される。下部クラッド層27は、メサ部20の最下層であり、下部n型DBR層24の上面24a上および補強部材40の上面40a上に形成される。また、下部クラッド層27は、下部n型DBR層24をエッチングして、光閉じ込め構造を形成する際、メサ部20に形成された共振構造を保護するエッチングストップ層として機能する。尚、クラッド層26は、個々の半導体発光素子において必要に応じて形成すればよい。
また、メサ部20において、上部クラッド層26と上部p型DBR層25との間に酸化狭窄層22が形成されている。酸化狭窄層22は、活性層21に対する電流を狭窄する半導体層であり、AlGaAsなどのAlを含む化合物半導体から形成される。酸化狭窄層22のうちで、外周側の所定領域は、AlGaAsが酸化されることによって高抵抗化された酸化領域22aとして形成される。そして、この酸化領域22aの内周で囲まれた領域は、メサ部20の上方からみて円形状の酸化狭窄領域22bとして形成される。また、酸化狭窄領域の直径は、好ましくは、下部n型DBR層24の直径よりも小さく形成される。尚、酸化狭窄層22は、個々の半導体発光素子において必要に応じて形成すればよい。
また、メサ部20において、上部DBR層25のメサ部20の上面側にはp型コンタクト層23が形成されている。さらに、図2及び図3に示すように、メサ部20は、多層膜の上面および表面の保護膜として、例えばシリコン窒化物からなるパッシベーション膜12を含んでいる。
また、図2に示すように、メサ部20の側面には、絶縁膜41が形成されている。絶縁膜41は、半導体発光素子1の電極間を絶縁する機能を有し、基板11上に配置され、基板11と反対側の端面である上面41aがメサ部20の上面20aよりも突出して形成されている。
また、電極部材50は、メサ部20の上面20a上および絶縁膜41の上面41a上に連続して形成されている。この電極部材50は、図1に示すように、メサ部20の上面上に円形の開口である発光窓部20bを形成する。
また、図2に示すように、電極部材50とp型コンタクト層23との間には、p型コンタクト電極51が形成されている。このp型コンタクト電極51は、メサ部20の上面20a側を覆うパッシベーション膜12に形成された開口部12bを介して、メサ部20の上面20aと接触し、p型コンタクト層23と電気的に接続している。尚、p型コンタクト電極51は、個々の半導体発光素子において必要に応じて形成すればよい。
また、基板11上にn型コンタクト電極55が形成されている。n型コンタクト電極55は、補強部材40と基板11との間に介在して形成される。さらに、パッシベーション膜12に形成された開口部12aには、電極部材53が形成される。n型コンタクト電極55、補強部材40、電極部材53は電気的に接続されている。
次に、本実施形態に係る半導体発光素子1について、作用効果を説明する。
図2に示す半導体発光素子1において、電流が電極部材50、p型コンタクト電極51を介してメサ部20に供給された場合、活性層21が発光する。活性層21から発生した光は、下部n型DBR層24と上部p型DBR層25との間の共振器で共振される。また、上部p型DBR層25は、下部n型DBR層24に比べて反射率が小さく構成されている。このため、共振された光の一部はメサ部20の発光窓部20bからレーザ光として出射される。
この時、半導体発光素子1において、メサ形状に形成された下部n型DBR層24の積層方向に直交する断面がメサ部20での活性層21の断面積よりも小さく形成されていることから、下部n型DBR層24の有効径が狭まり、光閉じ込め効果を向上することができる。さらに、下部n型DBR層24の積層方向に直交する断面が、メサ部20での酸化狭窄領域22bの断面積よりも大きく形成されていることから、活性層21で発生される光が下部n型DBR層24に確実に入射される。よって、活性層21で発生される光を効率良く共振器で共振することができる。
また、メサ部20下部側がくびれた形状となるため、メサ形状に形成された下部n型DBR層24の側面を補強部材40で覆うことで、半導体発光素子1の機械的強度低下を抑制できる。また、補強部材40と下部n型DBR層24との屈折率差によって、より一層光閉じ込め効果を向上することができるため、半導体発光素子1の発光出力を向上することができる。さらに、補強部材40は、活性層21において発生される光を反射する金属で形成されていることから、補強部材40が下部n型DBR層24の光閉じ込め効果を一層向上させることができる。
また、図3に示すように、活性層21への電流注入を未酸化部である酸化狭窄領域22bに限定し、実効的な活性層体積を小さくすることによって発光閾値電流の低減や、高速応答性を実現することができる。さらに、電流狭窄領域22bから電流注入され発光する活性層21の径よりも下部n型DBR層24の径が大きく形成されることから、活性層21で発生される光が下部n型DBR層24に確実に入射される。よって、活性層21で発生される光を効率良く共振器で共振することができる。
また、特許文献2に記載の半導体発光素子は、放熱体をメサ部の下部に配置して放熱性を向上させる構成となっており、特許文献3に記載の半導体発光素子は、導電部材をメサ部の側面に配置して放熱性を向上させる構成となっているが、本実施形態の半導体発光素子1の補強部材40は基板11の上面から下部n型DBR層24の側面にわたって、下部n型DBR層24を囲むように設けられており、メサ部20から基板11上に熱を効率的に逃がすことができる構成となっている。また、このような構成では、発熱する活性層21の下方に熱伝導部材で形成される補強部材40が配置され、活性層21で生じる熱を一層効率的に伝導することができる。
また、このような構成では、n型コンタクト電極55、補強部材40、電極部材53が電気的に接続されることから、補強部材40が電極として機能する。これにより、活性層21への電気的接続の経路において、半導体多層構造の各層間、若しくは活性層やクラッド層の各層間に生じる障壁により大きな抵抗を有する下部n型DBR層24を介さずに活性層21に電流を供給できるため、低抵抗化を実現することができるため、半導体発光素子1の低抵抗化を実現できる。これにより、低消費電力で半導体発光素子1を動作させることができる。
さらに、半導体発光素子1の素子製造工程において、クラッド層27がエッチングストップ層として機能することから、特許文献1のようにメサ部の下部側に孔や溝を形成する場合でも基板裏側からエッチングをする必要が無く、全ての工程が基板11の表側から行える上に、エッチング工程及び補強部材形成工程において同一レジストを利用して製造できることから、工程を簡略化することができる。
次に、本実施形態に係る半導体発光素子1の製造方法について説明する。図4〜図14は、図1に示す半導体発光素子1の製造工程を示す側断面図である。
まず、図4に示すように、半導体層形成工程を行う。基板11上にVCSELの共振器構造をエピタキシャル成長技術により形成する。エピタキシャル成長は、例えば膜厚制御に優れた有機金属気相成長法(MOCVD:Metal Organic Chemical Vapor Deposition)や、分子線成長法(MBE:Molecular Beam Epitaxy)によって行う。
n型GaAsを基板11として使用する場合、基板11上に、下部n型DBR層24、n型クラッド層27、活性層21、p型クラッド層26、p型酸化用層31、上部p型DBR層25、p型コンタクト層23を順にエピタキシャル成長させる。それぞれの組成および膜厚は、例えば、下部n型DBR層24がn型(Al0.90Ga0.10As/Al0.5Ga0.5As)層で膜厚53nm/48nmの55周期、n型クラッド層27がn型AlGaInP層で膜厚150nm、活性層21がGa0.45In0.55P/Al0.3GaInP層で膜厚7nm/5nmの3周期、p型クラッド層26がp型AlGaInP層で膜厚100nm、p型酸化用層31がp型Al0.96Ga0.04Asで膜厚30nm、上部p型DBR層25がp型Al0.90Ga0.10As/Al0.50Ga0.50Asで膜厚53nm/48nmの33周期、p型コンタクト層23がp型GaAsで膜厚50nmである。
次に、図5に示すように、メサ部形成工程を行う。p型酸化用層31が側面に露出するように、エッチングによって、例えば直径が40μm、高さ5μmの円柱状のメサ台地32を形成する。下部n型DBR層24より上に積層されたn型クラッド層27、活性層21、p型クラッド層26、p型酸化用層31、上部p型DBR層25、p型コンタクト層23からなる上部積層体がエッチング対象となる。エッチングは、ウェットエッチング法で行われる。また、メサ台地の大きさを均一性よく形成するために、ドライエッチング法で行われても良い。以下説明では、メサ台地32をメサ部20と称して説明する。
次に、図6に示すように、酸化狭窄層の酸化工程を行う。酸化狭窄層22となる図5のp型酸化用層31は、Gaが少量添加されたAlGaAsが用いられる。p型酸化用層31の酸化処理は、高温雰囲気中に水蒸気を供給することにより行われる。これにより、p型酸化用層31の側壁側の領域が酸化して酸化領域22aを形成する。この酸化処理によって、例えば直径40μmの円環状の酸化領域22aと、直径10μmの円形状の酸化狭窄領域22bが形成され、酸化狭窄層22となる。
次に、図7に示すように、マスク形成工程およびエッチング工程を行う。マスク形成工程として、メサ部20を囲むようにマスクとしてレジスト90を塗布し、その後エッチング工程を行う。エッチング工程は、等方性エッチングが好ましいため、ウェットエッチングで行うことが好適である。このエッチングは、半導体積層方向に直交する面での下部n型DBR層24の断面積が、メサ部20での活性層21の断面積よりも小さく、且つ、メサ部20での電流狭窄領域22bの断面積よりも大きくなるように行う。また、エッチングの際、選択性エッチャントを使用し、メサ部20の最下層に形成されたn型クラッド層27でメサ部20へのエッチングがストップするようにエッチングを行う。ここで、半導体積層方向に直交する面での下部n型DBR層24の断面の直径は、例えば15μmであり、エッチングの深さは、例えば12μmである。
このエッチングによって、メサ部20の下方にエッチング溝24bを形成すると共に、メサ形状の下部n型DBR層24を形成する。形成された下部n型DBR層24は有効径が小さいため、これによって光閉じ込め効果を向上させる構造となる。また、n型クラッド層27をエッチングストップ組成で形成することで、メサ部20を保護しながらエッチングを行うことができる。
次に、図8に示すように、n型コンタクト電極形成工程を行う。エッチング工程で使用したレジスト90を用いて、蒸着によりn型コンタクト電極55を形成する。n型コンタクト電極55は、例えば、GaAs系の基板11を用いた場合、AuGe/Ni/Auの積層構造で構成され、その膜厚は、例えば120nm/30nm/300nmである。
次に、図9に示すように、補強部材形成工程を行う。補強部材40の形成は、めっきによる金属膜形成により行う。エッチング工程で使用したレジスト90を用いてメサ部20の側面に金属が付着することを防止しながら、補強部材40を基板11上からメサ部20の下方に形成されたエッチング溝を埋めるように連続して形成する。さらに、補強部材40が下部n型DBR層24の側面を囲むように形成する。すなわち、補強部材40を下部n型DBR層24と共に、メサ部20と基板11との間に形成することができる。補強部材40の材料として、放熱性の高いAuが用いられるが、同じく放熱性の高いCuやAlであってもよい。また、Auのように、導電性及び光を反射する性質を有していることが好ましい。また、補強部材40は、例えば、基板11上に10μmの厚さで形成され、外径が100μmの円形状に形成される。このように、レジスト90を流用して工程を進めることで、工数低減が可能となる。補強部材40を形成後、レジスト90を除去する。
次に、図10に示すように、パッシベーション膜形成工程を行う。パッシベーション膜12は、素子の信頼性を考慮してシリコン窒化膜が使用される。例えば、SiN膜を160nm積層する。また、パッシベーション膜12の形成は、メサ台地32全体を均等に被覆し、メサ台地32の側面に緻密な膜を形成できるプラズマ気相成長法(PCVD:Plasma Chemical Vapor Deposition)を用いるのがよい。
次に、図11に示すように、スルーホール形成工程を行う。この工程は、補強部材40を電極として使用する場合に必要な処理である。パッシベーション膜12をウェットエッチングもしくはドライエッチングによりエッチングし、開口部12aを形成する。
次に、図12に示すように、p型コンタクト電極形成工程を行う。まず、メサ部20上面のパッシベーション膜12をウェットエッチングもしくはドライエッチングによりエッチングし、メサ部20の上方からみて円環状の開口部12bを形成する。この円環状の開口部12bの内径は、例えば12μmである。尚、開口部12bの形成には加工制御が良いドライエッチングを用いる方が好ましい。開口部12bを形成後、蒸着によりp型コンタクト電極用膜を積層し、リフトオフ法により開口部12bにp型コンタクト電極51を形成する。p型コンタクト電極51は、例えば、GaAs系の基板11を用いた場合、不純物ドーピングを行うことでコンタクト抵抗を低下できるAuZn/Au系の積層構造が用いられる。また、Ti/Pt/Auを用いても良い。この積層構造の膜厚は、例えばAu/AuZn/Auにおいて各々100nm/160nm/200nmである。また、p型コンタクト電極51を、円環状の内径が例えば12μmの薄膜として形成する。
次に、図13に示すように、絶縁膜形成工程を行う。絶縁膜41は、メサ部20の側面を囲むように形成する。メサ部20の側面を囲む絶縁膜41は、メサ部20の上方からみて、例えば内径が34μmで、外径が60μmの円環状に形成される。また、絶縁膜41の材料は、メサ部20が発する熱に対する耐熱性と、加工工程に使用する薬品に対する耐薬品性と、加工容易性を備えていることが好ましく、例えばポリイミドが用いられる。また、ポリイミドよりも誘電率が低く、低静電容量で上記性質を備えることができるベンゾシクロブテン(BCB:Benzocyclobutene)を用いても良い。さらに、絶縁膜41は、充分な放熱性を備えていることが一層好ましい。
次に、図14に示すように、電極部材形成工程を行う。まず、電極部材用膜を、Ti/Pt/Auの積層構造を有するように蒸着して形成する。膜厚は、各々30nm/15nm/1000nmである。次に、リフトオフ法によって、メサ部20の上面20aと絶縁膜41の上面41aとの上に、電極部材50を連続して形成する。この時、メサ部20の上面20a上に形成した電極部材50をメサ部20の上方からみて円環状に形成し、形成された電極部材50の内円が発光窓部12bとなる。発光窓部12bの直径は例えば12μmである。また、電極部材用膜からリフトオフ法によって電極部材50を形成すると同時に、同じ電極部材用膜から電極部材53を開口部12aに形成する。
図6〜図14に示す工程を行うことで、半導体発光素子1の製造において、光閉じ込め構造の形成工程を簡単化することができる。
以上に述べた製造方法では、半導体発光素子1の下部n型DBR層24の有効径を狭めることにより、光閉じ込め効果を向上させた半導体発光素子1を製造することができる。また、下部n型DBR層24の側面を囲むように補強部材24を埋め込むことで、下部n型DBR層24の径が小さくなった場合であってもメサ部20が応力に耐えられる半導体発光素子1を製造することができる。さらに、下部n型DBR層24を囲む補強部材40が、光を反射する金属で形成されることから、光閉じ込め効果を一層向上させることができる。
また、このような製造方法では、メサ部20の下部側に溝を形成する場合、基板11の裏側からエッチングをする必要が無く、全ての工程が基板11の表側から行えると共に、一度形成したレジスト90を流用してその後の工程を行うことができるので、工程を簡略化することができる。
また、このような製造方法では、酸化用半導体層22の側面を酸化して電流狭窄領域22bを好適に形成することができると共に、メサ部20での電流狭窄領域22bの断面が、半導体積層方向に直交する面での下部n型DBR層24の断面よりも小さく形成されることから、活性層21から発生される光が確実に下部n型DBR層24に入射される半導体発光素子1を製造することができる。
また、このような製造方法では、補強部材40は基板11の上面から下部n型DBR層24の側面にわたって、下部n型DBR層24を囲むように形成できるため、基板11上に熱を効率的に逃がすことができる構成を持った半導体発光素子1を製造することができる。また、このような構成では、発熱する活性層21の下方に熱伝導部材で形成される補強部材40が配置されるため、活性層21で生じる熱を一層効率的に伝導することができる。
また、このような製造方法では、n型コンタクト電極55、補強部材40、電極部材53が電気的に接続されることから、補強部材40が電極として機能する。これにより、活性層21への電気的接続の経路において、半導体多層構造の各層間、若しくは活性層やクラッド層の各層間に生じる障壁により大きな抵抗を有する下部n型DBR層24を介さずに活性層21に電流を供給できるため、低抵抗化を実現した半導体発光素子1を製造することができる。これにより、低消費電力で動作する半導体発光素子1を製造することができる。
なお、上述した実施形態は、本発明に係る半導体発光素子の一例を示すものである。本発明に係る半導体発光素子は、実施形態に係る半導体発光素子に限られるものではなく、実施形態に係る半導体発光素子を変形し、又は他のものに適用したものであってもよい。
例えば、本実施形態では、メサ部20においてn型クラッド層27がエッチングストップ層として機能する半導体発光素子1及びその製造方法を示したが、メサ部20においてn型クラッド層27の下方にエッチングストップ層を形成する場合であっても、光閉じ込め構造の形成を簡単化することができる。
また、本実施形態では、メサ部20の形状が円柱状である半導体発光素子1及びその製造方法について説明したが、メサ部20の水平方向の断面は円柱状であるものに限られず、矩形であっても光閉じ込め構造の形成を簡単化することができる。
また、本実施形態では、メサ部20が一つより構成される半導体発光素子1及びその製造方法について説明したが、メサ部20の数に限定されず、メサ部20を複数備え、アレイ化して構成される半導体発光素子に適用した場合であっても、光閉じ込め構造の形成を簡単化することができる。
また、本実施形態では、n型の基板11を用いた半導体発光素子1及びその製造方法について説明したが、本実施形態のp型の基板11を用いて、本実施形態のn型とp型を入れ替えて構成される半導体発光素子に適用した場合であっても、光閉じ込め構造の形成を簡単化することができる。
本実施形態に係る半導体発光素子1の構成を示す上面図である。 図1に示した半導体発光素子1のII−II線における側断面図である。 図2に示した半導体発光素子1の側断面図のメサ部20及びその周辺における層構造を示す拡大図である。 図1に示す半導体発光素子1の半導体層形成工程を示す側断面図である。 図1に示す半導体発光素子1のメサ部形成工程を示す側断面図である。 図1に示す半導体発光素子1の酸化工程を示す側断面図である。 図1に示す半導体発光素子1のマスク形成工程およびエッチング工程を示す側断面図である。 図1に示す半導体発光素子1のn型コンタクト電極形成工程を示す側断面図である。 図1に示す半導体発光素子1の補強部材形成工程を示す側断面図である。 図1に示す半導体発光素子1のパッシベーション膜形成工程を示す側断面図である。 図1に示す半導体発光素子1のスルーホール形成工程を示す側断面図である。 図1に示す半導体発光素子1のp型コンタクト電極形成工程を示す側断面図である。 図1に示す半導体発光素子1の絶縁膜形成工程を示す側断面図である。 図1に示す半導体発光素子1の電極部材形成工程を示す側断面図である。
符号の説明
1,2…半導体発光素子、11…基板、20…メサ部、21…活性層、22…酸化狭窄層、24,25…DBR層(第1,第2のミラー層)、26,27…クラッド層、40…補強部材、41…絶縁膜、50,53…電極部材。

Claims (14)

  1. 基板と、
    前記基板の一方面である上面側に設けられ、電流が供給されることによって発光する活性層を含むメサ部と、
    前記活性層に対して前記基板側にメサ形状に形成された第1のミラー層と、
    前記メサ部において、前記第1のミラー層との間に前記活性層が介在するように形成された第2のミラー層と、
    前記基板の上面から前記第1のミラー層の側面にわたって、前記第1のミラー層を囲むように設けられた補強部材と、
    を備え、
    前記第1のミラー層は、半導体積層方向に直交する面での断面積が前記メサ部での前記活性層の断面積よりも小さくなるように形成され、前記活性層と前記基板との間に、前記第1のミラー層と共に、前記第1のミラー層を囲む前記補強部材の少なくとも一部が配置されていること、
    を特徴とする半導体発光素子。
  2. 前記メサ部において、電流を狭窄する電流狭窄領域を有する電流狭窄層を備え、
    前記第1のミラー層は、半導体積層方向に直交する面での断面積が前記メサ部での前記電流狭窄領域の断面積よりも大きいこと、
    を特徴とする請求項1に記載の半導体発光素子。
  3. 前記補強部材は、前記活性層を含む前記メサ部の発する熱を伝導する熱伝導部材によって構成されていることを特徴とする請求項1または2に記載の半導体発光素子。
  4. 前記補強部材は導電性部材で形成され、電極として用いられることを特徴とする請求項1〜3の何れか一項に記載の半導体発光素子。
  5. 前記補強部材は、前記活性層において発生される光を反射する金属で形成されていることを特徴とする請求項1〜4の何れか一項に記載の半導体発光素子。
  6. 前記活性層と前記第1のミラー層との間に設けられたクラッド層とを備え、
    前記クラッド層は、前記メサ部の最下層に位置すること、
    を特徴とする請求項1〜5の何れか一項に記載の半導体発光素子。
  7. 前記活性層から発生される光は、前記メサ部の上面側から出射されることを特徴とする請求項1〜6の何れか一項に記載の半導体発光素子。
  8. 電流が供給されることによって発光する活性層と、前記活性層が間に介在するように形成された第1のミラー層及び第2のミラー層とを備える半導体発光素子の製造方法であって、
    基板上に、前記基板側から前記第1のミラー層、前記活性層、及び前記第2のミラー層を含む複数の半導体層を順次形成する半導体層形成工程と、
    前記活性層及び前記第2のミラー層を含む上部積層体に対してエッチングを行って、前記基板の一方面である上面側に設けられたメサ部を形成するメサ部形成工程と、
    前記メサ部の側面上にマスクを形成するマスク形成工程と、
    前記マスクが形成された前記メサ部よりも前記基板側に位置する前記第1のミラー層に対してエッチングを行って、前記第1のミラー層を、半導体積層方向に直交する面での断面積が前記メサ部での前記活性層の断面積よりも小さくなるメサ形状とするエッチング工程と、
    前記第1のミラー層を囲む補強部材を、前記基板の上面から前記第1のミラー層の側面にわたって、前記活性層と前記基板との間に、前記第1のミラー層と共に、前記補強部材の少なくとも一部が配置されるように形成する補強部材形成工程と、
    を備えることを特徴とする半導体発光素子の製造方法。
  9. 前記半導体層形成工程において、前記第1のミラー層と前記活性層との間にクラッド層を形成し、
    前記エッチング工程において、前記クラッド層をエッチングストップ層として、前記第1のミラー層のエッチングを行うことを特徴とする請求項8に記載の半導体発光素子の製造方法。
  10. 前記半導体層形成工程において、前記第1のミラー層と前記第2のミラー層との間に酸化用半導体層を形成し、
    前記メサ部形成工程において、前記活性層、前記第2のミラー層、及び前記酸化用半導体層を含む前記上部積層体に対してエッチングを行って、前記酸化用半導体層が側面に露出するように前記メサ部を形成すると共に、
    前記酸化用半導体層に対して前記メサ部の側面から酸化処理を行って、電流を狭窄する電流狭窄領域を有する電流狭窄層を形成する酸化工程を更に備えることを特徴とする請求項8または9に記載の半導体発光素子の製造方法。
  11. 前記エッチング工程において、前記第1のミラー層を、半導体積層方向に直交する面での断面積が、前記電流狭窄層での前記電流狭窄領域の断面積よりも大きくなる前記メサ形状とすることを特徴とする請求項10に記載の半導体発光素子の製造方法。
  12. 前記補強部材形成工程において、前記補強部材を、前記活性層を含む前記メサ部の発する熱を伝導する熱伝導部材で形成することを特徴とする請求項8〜11の何れか一項に記載の半導体発光素子の製造方法。
  13. 前記補強部材形成工程において、前記補強部材を、導電性部材で形成することを特徴とする請求項8〜12の何れか一項に記載の半導体発光素子の製造方法。
  14. 前記補強部材形成工程において、前記補強部材を、前記活性層において発生される光を反射する金属で形成することを特徴とする請求項8〜13の何れか一項に記載の半導体発光素子の製造方法。
JP2007150816A 2007-06-06 2007-06-06 半導体発光素子及びその製造方法 Expired - Fee Related JP4879094B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007150816A JP4879094B2 (ja) 2007-06-06 2007-06-06 半導体発光素子及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007150816A JP4879094B2 (ja) 2007-06-06 2007-06-06 半導体発光素子及びその製造方法

Publications (2)

Publication Number Publication Date
JP2008305922A JP2008305922A (ja) 2008-12-18
JP4879094B2 true JP4879094B2 (ja) 2012-02-15

Family

ID=40234384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007150816A Expired - Fee Related JP4879094B2 (ja) 2007-06-06 2007-06-06 半導体発光素子及びその製造方法

Country Status (1)

Country Link
JP (1) JP4879094B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008022793B4 (de) * 2008-05-08 2010-12-16 Universität Ulm Vollständig selbstjustierter oberflächenemittierender Halbleiterlaser für die Oberflächenmontage mit optimierten Eigenschaften
DE102009033686A1 (de) * 2009-07-17 2011-01-20 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauteil und Verfahren zur Herstellung eines anorganischen optoelektronischen Halbleiterbauteils
JP6581022B2 (ja) * 2015-03-20 2019-09-25 株式会社東芝 半導体発光デバイスおよび光半導体デバイス

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2799328B2 (ja) * 1989-06-16 1998-09-17 科学技術振興事業団 面発光型半導体レーザ
EP0499659A1 (de) * 1991-02-18 1992-08-26 Siemens Aktiengesellschaft Oberflächenemittierende Halbleiterlaserarraystruktur mit vertikalem Resonator ohne Substrat
JP2002353563A (ja) * 2001-05-24 2002-12-06 Rohm Co Ltd 半導体発光素子およびその製法
JP4025227B2 (ja) * 2002-03-29 2007-12-19 株式会社東芝 半導体積層基板および光半導体素子
JP4411040B2 (ja) * 2003-09-10 2010-02-10 株式会社リコー 面発光型半導体レーザ

Also Published As

Publication number Publication date
JP2008305922A (ja) 2008-12-18

Similar Documents

Publication Publication Date Title
US7924899B2 (en) Vertical-cavity surface-emitting laser diode (VCSEL), method for fabricating VCSEL, and optical transmission apparatus
RU2633643C2 (ru) Vcsel с внутрирезонаторными контактами
JP2002353563A (ja) 半導体発光素子およびその製法
JP4962743B2 (ja) 発光装置
US10958042B2 (en) Semiconductor light-emitting device and method for manufacturing semiconductor light-emitting device
US8228964B2 (en) Surface emitting laser, surface emitting laser array, and image formation apparatus
EP3886274B1 (en) Light emitting device and light emitting apparatus
US7871841B2 (en) Method for manufacturing semiconductor light-emitting device
CN115473123A (zh) 垂直腔面发射激光器及其制作方法
JP4087152B2 (ja) 面発光半導体レーザ素子及びレーザアレイ
JP4224981B2 (ja) 面発光半導体レーザ素子およびその製造方法
JP4879094B2 (ja) 半導体発光素子及びその製造方法
JP5006242B2 (ja) 面発光半導体レーザ素子
JP6004063B1 (ja) 面発光型半導体レーザ素子の製造方法
JP4548329B2 (ja) 面発光型半導体レーザ
JP2010003885A (ja) 面発光レーザ
JP7312113B2 (ja) 面発光半導体レーザ
JP5087321B2 (ja) 半導体発光素子
JP2008283137A (ja) 面発光半導体レーザ
JP5064072B2 (ja) 光源装置
JPH09205250A (ja) 横方向電流注入型面発光半導体レーザ装置およびその製造方法
JP2005085836A (ja) 面発光半導体レーザ素子及びその製造方法
CN114207969B (zh) 垂直谐振器型发光元件
JP2006190762A (ja) 半導体レーザ
JP2003031842A (ja) 半導体発光素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees