JP4868663B2 - Low temperature fired porcelain composition - Google Patents

Low temperature fired porcelain composition Download PDF

Info

Publication number
JP4868663B2
JP4868663B2 JP2001188241A JP2001188241A JP4868663B2 JP 4868663 B2 JP4868663 B2 JP 4868663B2 JP 2001188241 A JP2001188241 A JP 2001188241A JP 2001188241 A JP2001188241 A JP 2001188241A JP 4868663 B2 JP4868663 B2 JP 4868663B2
Authority
JP
Japan
Prior art keywords
glass
weight
low
sio
softening point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001188241A
Other languages
Japanese (ja)
Other versions
JP2003002682A (en
Inventor
辰治 古瀬
誠一郎 平原
秀司 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001188241A priority Critical patent/JP4868663B2/en
Publication of JP2003002682A publication Critical patent/JP2003002682A/en
Application granted granted Critical
Publication of JP4868663B2 publication Critical patent/JP4868663B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron

Description

【0001】
【発明の属する技術分野】
本発明は、マイクロ波やミリ波などの高周波領域において使用される種々の共振器用材料やMIC用誘電体基板材料、誘電体導波路用材料や積層型セラミックコンデンサ等の焼結促進助剤として好適に用いることができる低温焼成磁器組成物に関する。
【0002】
【従来技術】
近年においては、携帯電話をはじめとする移動体通信等の発達および普及に伴い、電子回路基板や電子部品の材料として、誘電体セラミックスの需要が増大しつつある。
【0003】
従来、電子回路や電子部品において、誘電体セラミックスと導通抵抗の小さいAg、Cu等の内部導体を同時焼成するに際しては、誘電体セラミックスに対して等量程度のガラスを混合せしめて低温焼成化を達成していた。これにより、導体線路の伝送損失は小さくなったが、低温焼成化のために使用したガラスにより材料の誘電損失が大幅に増加して、電子回路基板において共振回路やインダクタンスのQ値が小さくなる等の問題があった。
【0004】
そこで、この問題点を解決するために、導通抵抗の小さいAg、Cu等と同時焼成可能な低温焼成基板に好適な結晶化ガラスが提案されている。例えば、特開平4−292460号公報には、アノーサイトチタン酸カルシウム系のガラスとTiOを用い、Ag、Cu等の内部導体と同時に焼成できる低温焼成基板が提案されている。
【0005】
【発明が解決しようとする課題】
しかしながら、特開平4−292460号公報等に記載される低温焼成基板では、低温焼成化に配合したガラス成分が焼結後も残存するため、6GHzの測定周波数でQ値が330程度と材料Qとしてはまだ低く、共振回路やインダクタンスのQ値を向上させるためには十分ではないという問題があった。
【0006】
このように、Q値を向上させる上では焼結後に残存するガラスを極力低減させることが必要であるが、そのためには、ガラスを結晶化させるか、出発組成におけるガラス量を低減させることが考えられる。しかしながら、ガラスを結晶化させる方法では、ガラスの結晶化温度のバラツキにより焼結挙動の不安定性に起因し、導体等との同時焼成において、反り、ハガレが起こるという問題がある。
【0007】
また、従来のガラスの場合、添加量が30重量%よりも少なくなると、1000℃以下の焼成温度では充分な焼結ができず、磁器中に気孔が多数存在し、その結果、誘電損失が増加し、所望のQ値が得られないものであった。
【0008】
また、従来より軟化点が600℃以下の低軟化点ガラスが知られているが、従来のガラスは、PbOを主体とするもの(特開平5−116984号、特開平9−169543号)、あるいはSiOを主体とするもの(特開平8−48956号、特開平10−95633号)である。
【0009】
PbOを主体とするものは、将来的に電子部品から鉛廃絶とする業界全体の動きに反し、環境破壊、人体への悪影響という問題があり、SiOを主体とするものは、ガラス化が容易であるという特性はあるが、その反面、結晶化が不十分でガラス成分が残留するため、高Q値実現が困難となるという問題がある。
【0010】
従って、本発明は、PbO、SiOを主体とすることなく、600℃以下の軟化点を有する低軟化点ガラスとセラミックスと複合化させることによってCu、Agなどの低抵抗導体との低温焼成が可能であって、Q値の高い磁器を得ることのできる低温焼成磁器組成物を提供することを目的とするものである。
【0011】
【課題を解決するための手段】
本発明者らは、PbOなどを添加することなく、少量のSiOと、MgO、CaO、BaO、及びSrOの群から選ばれる少なくとも1種、AlおよびBのうちの少なくとも1種、およびLiO、NaO及びKOの群から選ばれる少なくとも1種を所定の比率で混合することによって、ガラスの軟化点を下げることができ、さらにかかる低軟化点ガラスをセラミックフィラーに対して少量添加することによって、Cuなどの低抵抗材料と同時焼成可能であり、かつ得られる磁器のQ値を改善できるという知見を得、本発明に至った。
【0012】
即ち、本発明の低温焼成磁器組成物は、MgTiO、SrTiO、CaTiO、MgSiO、BaTi、Al、TiO、SiO、(Mg,Ti)(BO)O、ZrOの群から選ばれる少なくとも1種のセラミックス粉末100重量部に対して、SiO を10〜30重量%、MgO、CaO、BaO、及びSrOの群から選ばれる少なくとも1種を10〜60重量%、Al およびB のうちの少なくとも1種を20〜50重量%、Li O、Na O及びK Oの群から選ばれる少なくとも1種を0〜30重量%の割合で含み、上記成分の合計量が95重量%以上であり、かつ軟化点が600℃以下である低軟化点ガラスを1〜20重量部含有することを特徴とする。これにより磁器の低温での焼結性を高めることができるとともに、磁器の30〜300℃の熱膨張係数(α)を80〜150×10−7/℃に制御することできる。
また、焼結の際、前記低軟化点ガラスが、前記セラミックス粉末と反応して結晶化し、残存ガラスによるQ値の劣化を抑制でき、更に高Q値を有する磁器を得ることができる。
【0013】
本発明によれば、PbOなどを用いることなく、ガラスの軟化点を600℃以下に下げることができるとともに、このガラスとセラミックスとを複合化した場合に、ガラス含有量を大幅に低減した場合においても1000℃以下で焼結することができるために、最終的に得られる磁器のQ値を向上することができる。
【0014】
【発明の実施の形態】
軟化点ガラスは、SiOを10〜30重量%、MgO、CaO、BaO、及びSrOの群から選ばれる少なくとも1種を10〜60重量%、AlおよびBのうちの少なくとも1種を20〜50重量%を必須成分として含むものである。また、任意成分として、LiO、NaO及びKOの群から選ばれる少なくとも1種を0〜30重量%の割合で含むものである。なお、これらの必須成分および任意成分は合計で95重量%以上とすることによって、軟化点を600℃以下、特に580℃以下に低下させることができる。
【0015】
各成分の含有量を上記の範囲に限定したのは、SiO量が10重量%より少ないと、ガラス化が不可能であり、SiO量が30重量%よりも多いと、セラミックスと複合化した場合、焼成後の磁器中にガラス成分が増えてQ値劣化の原因となってしまう。SiO量は、15〜20重量%が望ましい。
【0016】
MgO、CaO、BaO、及びSrOの群から選ばれる少なくとも1種が10重量%よりも少ないと、軟化点を600℃以下に低くすることができず、60重量%よりも多いとQ値を低下させてしまう。このMgO、CaO、BaO、及びSrOの群から選ばれる少なくとも1種の含有量は30〜50重量%が望ましい。
【0017】
AlおよびBのうちの少なくとも1種が20重量%よりも少ないとガラス化が不可能であり、50重量%よりも多いとセラミックスと複合化した場合、焼成後の磁器中にガラス成分が増えてQ値劣化の原因となる。AlおよびBのうちの少なくとも1種は20〜40重量%が望ましい。
【0018】
これによって、他のセラミックフィラーとの混合組成物において、低温での焼結性を高めることができる結果、このガラスを少量添加することによって、低温での焼結を可能にすることができる。
【0019】
また、このガラスは、単体で30〜300℃の熱膨張係数(α)が80〜150×10−7/℃であることが望ましく、これにより他のセラミックスとの混合組成物によって形成される磁器の熱膨張係数を高めることができる。
【0020】
かかるガラスを作製するには、まず、原料粉末として、SiOと、MgCO、CaCO、BaCO、及びSrCOの群から選ばれる少なくとも1種、Al、及びBの1種または2種以上、LiCO、NaCO、及びKCOの群から選ばれる少なくとも1種の各粉末を用い、これらを所定比率で秤量、混合し、熔解した後、粉砕する。
【0021】
具体的には、原料粉末を上記組成となるように秤量して乾式にて混合し、連続熔解炉等によって1200℃以上、特に1500℃以下で熔解した後、1対の冷却された金属ロール間に溶融物を通す(ロールアウト)ことによって急冷してリボン状のガラス成形体を作製する。得られたリボン状ガラス成形体を、乾式で粉砕する。乾式粉砕にあたっては、先ず、ボールミルにて粗粉砕を行った後、風力分級を行いながらさらに微粉砕を行うことによって、所定の粒度分布のガラス粉末を得ることができる。
【0022】
本発明によれば、上記の乾式粉砕によって最終的に得られるガラス粉末の平均粒径が1〜3μmであることが望ましい。これは、平均粒径を1〜3μmとすることによって後述するセラミックスとの複合化にあたって、セラミックスとガラスとの混合分散性を向上させることができる結果、低軟化ガラスの熱特性を安定かつ効果的に引き出すことが可能となる。
【0023】
なお、ガラス粉末の原料は、上記の炭酸塩以外にも熱処理により酸化物を生成する水酸化物、硝酸塩等の金属塩を用いても良い。
【0024】
また、ガラスは、上記の成分が、合計で95重量%以上、特に99重量%以上含有されていることが必要であり、95重量%よりも少ないと、所望の特性が得られない場合がある。なお、このガラス中には不可避不純物として、Zr、Fe、Hf、Sn、P等が含まれることもある。また、特性を損なわない範囲であれば、MnO、AgO,ZrO,Fe,P,ZnO,CuO,Co,RuOの群から選ばれる少なくとも1種の化合物を意図的に添加することもできる。但し、それらの合計量は、上記の理由から酸化物換算で5重量%以下、特に1重量%以下であることが必要である。
【0025】
記低軟化点ガラスは、軟化点が非常に低いことに伴い、他のセラミックス粉末と混合し焼成する場合に、少量の添加によって低温での焼結性を高めることができる。
そのために、ガラスの残存に伴って磁器のQ値が低下するのを防止し、高いQ値の磁器を得ることができる。
【0026】
上記ガラスと混合されるセラミックスとしては、MgTiO、SrTiO、CaTiO、MgSiO、BaTi、Al、TiO、SiO、(Mg,Ti)(BO)O、ZrOの群から選ばれる少なくとも1種のセラミックスが挙げられる。
これらの中で、所望の特性に応じて適宜選択される。例えば、誘電率εrが20未満のものを得るためには、上記の中でも、MgTiO、MgSiO、Al、SiO、(Mg,Ti)(BO)O、ZrOの群から選ばれる少なくとも1種が好適であり、また誘電率εrが20以上のものを得るためには、上記の中でもSrTiO、CaTiO、BaTi、TiOの群から選ばれる少なくとも1種が好適に選択される。
【0027】
本発明によれば、上記セラミックス粉末100重量部に対して、前記低軟化点ガラスを1〜20重量部、特に3〜15重量部の割合で添加することによって、1050℃以下の低温での焼成を実現することができ、これによって磁器のQ値を高めることができる。
【0028】
ガラス量を上記の範囲に限定したのは、上記ガラス量が1重量部よりも少ないと、低温での焼結性に効果がなく、Cuなどの低抵抗導体との同時焼成ができなくなり、逆に20重量部を超えると磁器全体に占めるガラス量が増加するため、磁器のQ値が低下するためである。低軟化点ガラスの配合量は焼結性を維持し、高いQ値を得るという観点から前記セラミックス粉末に対して3〜15重量部であることが望ましい。
【0029】
上記セラミックスとガラスとからなる磁器を作製するには、上記のセラミックスと低軟化点ガラスとを所定比率で混合した後、さらに有機バインダーなどの成形助剤を添加混合し、これをプレス成形、ドクターブレード法やカレンダーロール法などによるシート成形法などの周知の成形方法によって成形する。そして、この成形体を大気中で400〜600℃で加熱して成形助剤を分解除去した後、さら1050℃以下、特に870〜920℃の低温で焼成することによって、アルキメデス法によって測定される吸水率が0.1%以下の高密度の磁器を得ることができる。
【0030】
上記のようにして得られる磁器は、ガラス量が少ないことから、ガラスの残存に伴うQ値の低下が抑制される結果、測定周波数2GHzでのQ値が2000以上、特に3000以上の特性を有する磁器を得ることができる。また、比誘電率も用いるセラミックスに応じて5〜90の範囲に適宜調整することも可能となる。
【0031】
さらに、かかる磁器は、高いQ値を有することから、特に1GHz以上の高周波信号を伝送させる配線基板における絶縁基板材料として好適である。かかる磁器は低温で焼成が可能となるために、AgやCuを主成分とする導体との同時焼成が可能となる。配線基板としては、高周波用の半導体素子をキャビティ内に収納した公知の半導体素子収納用パッケージや、マイクロストリップ線路やコプレーナ線路などの高周波回路が形成されたり、コンデンサ素子や抵抗素子などの電子部品を表面実装した高周波用回路基板、アンテナ用送受信用の各種基板などが挙げられる。
【0032】
また、低軟化低ガラスは、単体での30〜300℃の熱膨張係数(α)が80〜150×10−7/℃と高いことから、他のセラミックスとの組み合わせによって磁器の熱膨張係数を80〜150×10−7/℃に制御することができ、特に上記の熱膨張係数の磁器を絶縁基板として用いることによって、混合組成物によって形成される磁器の熱膨張係数を高めることができる。
【0033】
その結果、かかる配線基板をエポキシ樹脂などを含む絶縁材料を絶縁基板とするマザーボードとの熱膨張差を近似させることができるために、配線基板をマザーボード表面に表面実装した場合において、温度変化が激しい環境下においても熱膨張差に起因する磁器中の内部応力の発生を抑制するため配線基板のマザーボードへの実装信頼性を向上させることができる。
【0034】
【実施例】
料として純度99.9%以上の、SiO、98.9%以上のAl、及びB、さらにアルカリ土類炭酸塩(MgCO、CaCO、BaCO、SrCO)、アルカリ金属炭酸塩(LiCO、NaCO、KCO)を、表1に示す割合となるように秤量し、1時間乾式混合を行った。
【0035】
次に、この混合物を連続熔解炉にて1400℃で溶融した後、ロールアウトにより約0.5mm厚のリボン状成形体を得た。このリボン状成形体を、ボールミルにて100メッシュ以下まで乾式粉砕した後、風力分級を行いながらZrOボールミルにて平均粒径が1.5μmになるように粉砕した。
【0036】
ロールアウト後のリボン状のガラス成形体を用いて30〜300℃で熱機械的分析にて熱膨張係数を、ガラス粉末を用いてDTAにてガラスの軟化点を測定した。
【0037】
【表1】

Figure 0004868663
【0038】
料No.1〜18は、いずれも軟化点が600℃以下で、熱膨張係数が80〜150×10-7/℃の特性を有し、低温焼成基板添加用ガラスとして好適なガラス物性を有した。
【0039】
これに対して、試料No.6、12、23〜25は、いずれも軟化点が600℃を超えており、目的とする特性が得られなかった。
実施例
原料として純度99%以上の、MgTiO、SrTiO、CaTiO、MgSiO、BaTi、Al、TiO、SiO、ZrO、および(Mg,Ti)(BO)O合成物と表1に示したガラスフリットを、表2に示す割合となるように秤量し、純水を媒体とし、ZrOボールを用いたボールミルにて20時間湿式混合し、粉砕後の平均粒径を2.0μm以下とした。
【0040】
次に、この混合物を乾燥して脱水し、800℃で1時間仮焼した。この仮焼物を、粉砕粒径が1.4μm以下になるように粉砕し、誘電特性評価用の試料として直径60mm高さ2mmの円柱状に1ton/cmの圧力でプレス成形し、大気中で910〜1050℃で2時間焼成して、直径50mm、高さ1mmの円柱状の磁器を得た。
【0041】
得られた磁器に対して、アルキメデス法によって吸水率を測定するとともに、30〜300℃で熱機械的分析にて熱膨張係数を測定した。また、磁器の誘電特性の評価は、上記の試料を用いて誘電体円柱共振器法にて周波数2GHzにおける比誘電率とQ値を測定した。
【0042】
【表2】
Figure 0004868663
【0043】
料No.1〜9は、ガラス量が20重量%以下であっても、いずれも1050℃以下の焼成温度で吸水率0.1%以下に緻密化されており、比誘電率が6.0〜120、Q値が2000以上の優れた誘電特性を有するものであった。
【0044】
これに対して、軟化点が600℃よりも高い試料No.6、12、24、25のガラスを用いた場合、ガラス量が20重量%では吸水率0.1%以下の緻密な磁器を得ることができず、Q値が小さいものであった。
【0045】
これに対して、軟化点が600℃よりも高い試料No.6、12、24、25のガラスを用いた場合、ガラス量が20重量%では吸水率0.1%以下の緻密な磁器を得ることができず、Q値が小さいものであった。[0001]
BACKGROUND OF THE INVENTION
The present invention, as various resonator materials and MIC dielectric substrate materials, sintering promoting aid such materials and multilayer ceramic capacitor dielectric waveguide for use in a high frequency region such as microwave and millimeter wave that can be suitably used to low temperature fired ceramic composition.
[0002]
[Prior art]
In recent years, with the development and popularization of mobile communications such as mobile phones, the demand for dielectric ceramics as materials for electronic circuit boards and electronic components is increasing.
[0003]
Conventionally, in an electronic circuit or an electronic component, when simultaneously firing a dielectric ceramic and an internal conductor such as Ag or Cu having a small conduction resistance, an equal amount of glass is mixed with the dielectric ceramic to perform low-temperature firing. It was achieved. As a result, the transmission loss of the conductor line is reduced, but the dielectric loss of the material is greatly increased by the glass used for low-temperature firing, and the Q value of the resonance circuit and the inductance is reduced in the electronic circuit board. There was a problem.
[0004]
Therefore, in order to solve this problem, a crystallized glass suitable for a low-temperature fired substrate that can be fired simultaneously with Ag, Cu, or the like having a low conduction resistance has been proposed. For example, Japanese Laid-Open Patent Publication No. 4-292460 proposes a low-temperature fired substrate that can be fired simultaneously with an internal conductor such as Ag or Cu using anoritic calcium titanate glass and TiO 2 .
[0005]
[Problems to be solved by the invention]
However, in the low-temperature fired substrate described in JP-A-4-292460, etc., since the glass component blended in the low-temperature firing remains after sintering, the Q value is about 330 at the measurement frequency of 6 GHz as the material Q. Is still low and is not sufficient to improve the Q value of the resonance circuit and inductance.
[0006]
Thus, in order to improve the Q value, it is necessary to reduce the glass remaining after sintering as much as possible. For that purpose, it is considered to crystallize the glass or reduce the glass amount in the starting composition. It is done. However, in the method of crystallizing glass, there is a problem that warpage or peeling occurs in simultaneous firing with a conductor or the like due to instability of the sintering behavior due to variations in the crystallization temperature of the glass.
[0007]
In addition, in the case of conventional glass, if the amount added is less than 30% by weight, sufficient sintering cannot be performed at a firing temperature of 1000 ° C. or less, and there are many pores in the porcelain, resulting in an increase in dielectric loss. However, the desired Q value was not obtained.
[0008]
Conventionally, low-softening point glass having a softening point of 600 ° C. or lower is known. Conventional glass mainly comprises PbO (Japanese Patent Laid-Open Nos. 5-116984 and 9-169543), or These are mainly composed of SiO 2 (Japanese Patent Application Laid-Open Nos. 8-48956 and 10-95633).
[0009]
Those mainly composed of PbO is, in the future contrary to industry-wide movement to lead elimination from the electronic component, environmental destruction, there is a problem that adverse effects on the human body, which mainly composed of SiO 2 is easy to vitrification However, there is a problem that it is difficult to realize a high Q value because the crystallization is insufficient and the glass component remains.
[0010]
Accordingly, the present invention, PbO, without a main component SiO 2, Cu by complexed with low-softening point glass and ceramics having a softening point of 600 ° C. or less, low temperature and low resistance conductor such as Ag An object of the present invention is to provide a low-temperature fired ceramic composition that can be fired and can obtain a high Q value ceramic.
[0011]
[Means for Solving the Problems]
The present inventors have added a small amount of SiO 2 and at least one selected from the group of MgO, CaO, BaO, and SrO, at least one of Al 2 O 3 and B 2 O 3 without adding PbO or the like. One kind and at least one selected from the group consisting of Li 2 O, Na 2 O and K 2 O can be mixed at a predetermined ratio to lower the softening point of the glass. By adding a small amount to the ceramic filler, the inventors have obtained the knowledge that they can be fired simultaneously with a low-resistance material such as Cu and can improve the Q value of the resulting ceramic.
[0012]
That is , the low-temperature fired porcelain composition of the present invention includes MgTiO 3 , SrTiO 3 , CaTiO 3 , Mg 2 SiO 4 , BaTi 4 O 9 , Al 2 O 3 , TiO 2 , SiO 2 , (Mg, Ti) 2 (BO 4 ) At least one selected from the group of 10 to 30% by weight of SiO 2 , MgO, CaO, BaO, and SrO with respect to 100 parts by weight of at least one ceramic powder selected from the group of O and ZrO 2. 10 to 60% by weight, at least one of Al 2 O 3 and B 2 O 3 is 20 to 50% by weight, and at least one selected from the group of Li 2 O, Na 2 O and K 2 O is 0 to wherein a proportion of 30 wt%, to characterized in that the total amount of the component is 95 wt% or more and a softening point contains 1-20 parts by weight of low-softening point glass which is at 600 ° C. or less . Thus it is possible to improve sinterability at a low temperature porcelain, the thermal expansion coefficient of 30 to 300 ° C. of porcelain (alpha) can be controlled to 80~150 × 10 -7 / ℃.
Further, during the sintering, the low softening point glass reacts with the ceramic powder to be crystallized, so that deterioration of the Q value due to the residual glass can be suppressed, and a ceramic having a high Q value can be obtained.
[0013]
According to the present invention, the glass softening point can be lowered to 600 ° C. or lower without using PbO or the like, and when the glass and the ceramic are combined, the glass content is greatly reduced. Since it can be sintered at 1000 ° C. or lower, the Q value of the finally obtained porcelain can be improved.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Low softening point glass, a SiO 2 10 to 30 wt%, MgO, CaO, BaO, and at least one selected from the group of SrO 10 to 60% by weight, of Al 2 O 3 and B 2 O 3 It contains at least one of 20 to 50% by weight as an essential component. Furthermore, it is intended to include as optional components, Li 2 O, at least one kind of a proportion of 0 to 30 wt% selected from the group consisting of Na 2 O and K 2 O. In addition, a softening point can be reduced to 600 degrees C or less, especially 580 degrees C or less by making these essential components and arbitrary components into 95 weight% or more in total.
[0015]
The content of each component is limited within the above range, the amount of SiO 2 is less than 10 wt%, it is impossible vitrification, the SiO 2 amount is larger than 30 wt%, ceramics and composite In such a case, the glass component increases in the ceramic after firing, causing deterioration of the Q value. The amount of SiO 2 is desirably 15 to 20% by weight.
[0016]
If at least one selected from the group consisting of MgO, CaO, BaO and SrO is less than 10% by weight, the softening point cannot be lowered to 600 ° C. or lower, and if it exceeds 60% by weight, the Q value is lowered. I will let you. The content of at least one selected from the group of MgO, CaO, BaO and SrO is preferably 30 to 50% by weight.
[0017]
When at least one of Al 2 O 3 and B 2 O 3 is less than 20% by weight, vitrification is impossible, and when it is more than 50% by weight, when it is combined with ceramics, In addition, the glass component increases, causing deterioration of the Q value. At least one of Al 2 O 3 and B 2 O 3 is desirably 20 to 40 wt%.
[0018]
Thereby, in a mixed composition with other ceramic fillers, the sinterability at a low temperature can be enhanced. As a result, by adding a small amount of this glass, it is possible to sinter at a low temperature.
[0019]
Further, it is desirable that this glass has a thermal expansion coefficient (α) of 30 to 300 ° C. as a single unit of 80 to 150 × 10 −7 / ° C., and thereby a porcelain formed by a mixed composition with other ceramics. The thermal expansion coefficient of can be increased.
[0020]
In order to produce such glass, first, as a raw material powder, at least one selected from the group of SiO 2 , MgCO 3 , CaCO 3 , BaCO 3 , and SrCO 3 , Al 2 O 3 , and B 2 O 3 is used. One or more kinds, at least one powder selected from the group of Li 2 CO 3 , Na 2 CO 3 , and K 2 CO 3 was used, and these were weighed, mixed, and melted at a predetermined ratio. Smash.
[0021]
Specifically, the raw material powder is weighed so as to have the above composition, mixed in a dry manner, melted at 1200 ° C. or more, particularly 1500 ° C. or less with a continuous melting furnace or the like, and then between a pair of cooled metal rolls The ribbon is rapidly cooled by passing the melt through (roll out) to produce a ribbon-shaped glass molded body. The obtained ribbon-like glass molded body is pulverized by a dry method. In dry pulverization, first, coarse pulverization is performed by a ball mill, and then fine pulverization is performed while air classification is performed, whereby a glass powder having a predetermined particle size distribution can be obtained.
[0022]
According to the present invention, it is desirable that the average particle diameter of the glass powder finally obtained by the dry pulverization is 1 to 3 μm. This is because when the average particle size is 1 to 3 μm, the composite dispersibility of the ceramic and the glass can be improved in the composite with the ceramic as will be described later. As a result, the thermal characteristics of the low softening glass are stabilized and effective. It becomes possible to pull out.
[0023]
In addition, as a raw material of the glass powder, metal salts such as hydroxides and nitrates that generate oxides by heat treatment other than the above carbonates may be used.
[0024]
Further, glass is above components, total 95 wt% or more, it is necessary that they are contained in particular 99 wt% or more, when less than 95 wt%, if desired characteristics can not be obtained is there. This glass may contain Zr, Fe, Hf, Sn, P, etc. as inevitable impurities. Further, as long as it does not impair the characteristics, at least selected from MnO 2, Ag 2 O, ZrO 2, Fe 2 O 3, P 2 O 3, ZnO, CuO, Co 3 O 4, RuO 2 of Group 1 Certain compounds can also be added intentionally. However, the total amount thereof needs to be 5% by weight or less, particularly 1% by weight or less, in terms of oxide, for the above reasons.
[0025]
Upper SL low softening point glass is, as the softening point to be very low, in the case of mixing with other ceramic powder sintering, it is possible to improve sinterability at a low temperature by a small amount of addition.
Therefore, it is possible to prevent the Q value of the porcelain from being lowered with the remaining glass, and to obtain a high Q value porcelain.
[0026]
Ceramics mixed with the glass include MgTiO 3 , SrTiO 3 , CaTiO 3 , Mg 2 SiO 4 , BaTi 4 O 9 , Al 2 O 3 , TiO 2 , SiO 2 , (Mg, Ti) 2 (BO 4 ). Examples thereof include at least one ceramic selected from the group of O and ZrO 2 .
Among these, it selects suitably according to a desired characteristic. For example, in order to obtain a dielectric constant εr of less than 20, among the above, MgTiO 3 , Mg 2 SiO 4 , Al 2 O 3 , SiO 2 , (Mg, Ti) 2 (BO 4 ) O, ZrO 2 And at least one selected from the group of SrTiO 3 , CaTiO 3 , BaTi 4 O 9 , and TiO 2 among the above is preferable in order to obtain a dielectric constant εr of 20 or more. One type is suitably selected.
[0027]
According to the present invention, the low-softening point glass is added at a ratio of 1 to 20 parts by weight, particularly 3 to 15 parts by weight, with respect to 100 parts by weight of the ceramic powder, and fired at a low temperature of 1050 ° C. or lower. Thus, the Q value of the porcelain can be increased.
[0028]
The reason for limiting the glass amount to the above range is that if the amount of glass is less than 1 part by weight, there is no effect on sintering at low temperature, and simultaneous firing with a low-resistance conductor such as Cu cannot be performed. If the amount exceeds 20 parts by weight, the amount of glass in the entire porcelain increases, and the Q value of the porcelain decreases. The blending amount of the low softening point glass is desirably 3 to 15 parts by weight with respect to the ceramic powder from the viewpoint of maintaining sinterability and obtaining a high Q value.
[0029]
In order to produce a ceramic made of the above ceramics and glass, the above ceramics and low softening point glass are mixed in a predetermined ratio, and then a molding aid such as an organic binder is added and mixed, and this is press molded, doctored Molding is performed by a known molding method such as a blade molding method or a sheet molding method using a calendar roll method. And after heating this molded object at 400-600 degreeC in air | atmosphere, decomposition | disassembly removal of a shaping | molding adjuvant, it is measured by Archimedes method by baking at 1050 degrees C or less, especially 870-920 degreeC low temperature. A high-density porcelain having a water absorption rate of 0.1% or less can be obtained.
[0030]
Is that porcelain obtained as described above, since the amount of glass is small, a result of decrease in the Q value caused by the residual glass is suppressed, Q value at a measuring frequency of 2GHz is 2000 or more, particularly 3000 or more characteristics Can be obtained. In addition, the relative dielectric constant can be appropriately adjusted in the range of 5 to 90 according to the ceramic used.
[0031]
Furthermore, since such a porcelain has a high Q value, it is particularly suitable as an insulating substrate material in a wiring board that transmits a high-frequency signal of 1 GHz or more. Since such a porcelain can be fired at a low temperature, it can be fired simultaneously with a conductor mainly composed of Ag or Cu. As a wiring board, a known semiconductor element storage package in which a semiconductor element for high frequency is stored in a cavity, a high frequency circuit such as a microstrip line or a coplanar line, or an electronic component such as a capacitor element or a resistance element is formed. Examples include surface-mounted high-frequency circuit boards and various antenna transmission / reception boards.
[0032]
In addition , the low softening low glass has a high coefficient of thermal expansion (α) of 30 to 300 ° C. as a single unit, which is as high as 80 to 150 × 10 −7 / ° C. It can be controlled to 80 to 150 × 10 −7 / ° C., and in particular, by using a ceramic having a thermal expansion coefficient as an insulating substrate, the thermal expansion coefficient of the ceramic formed by the mixed composition can be increased.
[0033]
As a result, it is possible to approximate the thermal expansion difference between the wiring board and the motherboard using an insulating material containing an epoxy resin or the like as an insulating board. Therefore, when the wiring board is surface-mounted on the motherboard surface, the temperature change is severe. Even in the environment, since the generation of internal stress in the porcelain due to the difference in thermal expansion is suppressed, the mounting reliability of the wiring board on the mother board can be improved.
[0034]
【Example】
Of 99.9% purity as a raw material, SiO 2, 98.9% or more Al 2 O 3, and B 2 O 3, with an alkali earth carbonate (MgCO 3, CaCO 3, BaCO 3, SrCO 3) Then, alkali metal carbonates (Li 2 CO 3 , Na 2 CO 3 , K 2 CO 3 ) were weighed so as to have the ratios shown in Table 1, and dry mixed for 1 hour.
[0035]
Next, this mixture was melted at 1400 ° C. in a continuous melting furnace, and then a ribbon-like molded body having a thickness of about 0.5 mm was obtained by roll-out. The ribbon-shaped molded body was dry-pulverized to 100 mesh or less with a ball mill, and then pulverized with a ZrO 2 ball mill to an average particle size of 1.5 μm while performing air classification.
[0036]
The roll-out ribbon-shaped glass molded body was used to measure the thermal expansion coefficient by thermomechanical analysis at 30 to 300 ° C., and the glass softening point was measured by DTA using glass powder.
[0037]
[Table 1]
Figure 0004868663
[0038]
Specimen No. Each of Nos. 1 to 18 had properties of a softening point of 600 ° C. or less and a thermal expansion coefficient of 80 to 150 × 10 −7 / ° C., and had glass properties suitable as a glass for low-temperature fired substrate addition.
[0039]
On the other hand, specimen No. 6, 12, 23 to 25 all had a softening point exceeding 600 ° C., and the intended characteristics were not obtained.
( Example )
MgTiO 3 , SrTiO 3 , CaTiO 3 , Mg 2 SiO 4 , BaTi 4 O 9 , Al 2 O 3 , TiO 2 , SiO 2 , ZrO 2 , and (Mg, Ti) 2 (BO) with a purity of 99% or more as raw materials 4 ) The O composite and the glass frit shown in Table 1 were weighed so as to have the ratio shown in Table 2, and wet-mixed for 20 hours in a ball mill using ZrO 2 balls, using pure water as a medium, and after pulverization The average particle size was set to 2.0 μm or less.
[0040]
Next, this mixture was dried and dehydrated, and calcined at 800 ° C. for 1 hour. This calcined product is pulverized so that the pulverized particle size is 1.4 μm or less, and is press-molded at a pressure of 1 ton / cm 2 into a cylindrical shape having a diameter of 60 mm and a height of 2 mm as a sample for dielectric property evaluation. It fired at 910-1050 degreeC for 2 hours, and obtained the column-shaped porcelain of diameter 50mm and height 1mm.
[0041]
For the obtained porcelain, the water absorption was measured by Archimedes method, and the thermal expansion coefficient was measured by thermomechanical analysis at 30 to 300 ° C. The dielectric properties of the porcelain were evaluated by measuring the relative dielectric constant and Q value at a frequency of 2 GHz by the dielectric cylindrical resonator method using the above-described sample.
[0042]
[Table 2]
Figure 0004868663
[0043]
Specimen No. 1 to 9, even if the glass amount is 20% by weight or less, all are densified to a water absorption of 0.1% or less at a firing temperature of 1050 ° C. or less, and the relative dielectric constant is 6.0 to 120. It had excellent dielectric characteristics with a Q value of 2000 or more.
[0044]
On the other hand, Sample No. with a softening point higher than 600 ° C. When 6, 12, 24, and 25 glasses were used, a dense porcelain with a water absorption of 0.1% or less could not be obtained when the glass amount was 20% by weight, and the Q value was small.
[0045]
On the other hand, Sample No. with a softening point higher than 600 ° C. When 6, 12, 24, and 25 glasses were used, a dense porcelain with a water absorption of 0.1% or less could not be obtained when the glass amount was 20% by weight, and the Q value was small.

Claims (2)

MgTiO、SrTiO、CaTiO、MgSiO、BaTi、Al、TiO、SiO、(Mg,Ti)(BO)O、ZrOの群から選ばれる少なくとも1種のセラミックス粉末100重量部に対して、SiOを10〜30重量%、MgO、CaO、BaO、及びSrOの群から選ばれる少なくとも1種を10〜60重量%、AlおよびBのうちの少なくとも1種を20〜50重量%、LiO、NaO及びKOの群から選ばれる少なくとも1種を0〜30重量%の割合で含み、上記成分の合計量が95重量%以上であり、かつ軟化点が600℃以下である低軟化点ガラスを1〜20重量部含有することを特徴とする低温焼成磁器組成物。At least selected from the group consisting of MgTiO 3 , SrTiO 3 , CaTiO 3 , Mg 2 SiO 4 , BaTi 4 O 9 , Al 2 O 3 , TiO 2 , SiO 2 , (Mg, Ti) 2 (BO 4 ) O, ZrO 2 10 to 30 wt% of SiO 2 , 10 to 60 wt% of at least one selected from the group of MgO, CaO, BaO, and SrO, Al 2 O 3 and B with respect to 100 parts by weight of one kind of ceramic powder 2 at least one of 2 O 3 is contained in a proportion of 20 to 50% by weight and at least one selected from the group of Li 2 O, Na 2 O and K 2 O in a proportion of 0 to 30% by weight, and the total of the above components A low-temperature fired ceramic composition comprising 1 to 20 parts by weight of a low softening point glass having an amount of 95% by weight or more and a softening point of 600 ° C. or less. 30〜300℃の熱膨張係数(α)が80〜150×10−7/℃であることを特徴とする請求項記載の低温焼成磁器組成物。The low-temperature fired porcelain composition according to claim 2, wherein the coefficient of thermal expansion (α) at 30 to 300 ° C is 80 to 150 × 10 -7 / ° C.
JP2001188241A 2001-06-21 2001-06-21 Low temperature fired porcelain composition Expired - Fee Related JP4868663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001188241A JP4868663B2 (en) 2001-06-21 2001-06-21 Low temperature fired porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001188241A JP4868663B2 (en) 2001-06-21 2001-06-21 Low temperature fired porcelain composition

Publications (2)

Publication Number Publication Date
JP2003002682A JP2003002682A (en) 2003-01-08
JP4868663B2 true JP4868663B2 (en) 2012-02-01

Family

ID=19027379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001188241A Expired - Fee Related JP4868663B2 (en) 2001-06-21 2001-06-21 Low temperature fired porcelain composition

Country Status (1)

Country Link
JP (1) JP4868663B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021107501A1 (en) 2020-03-25 2021-09-30 Tdk Corporation DIELECTRIC CERAMIC COMPOSITION AND ELECTRONIC COMPONENT

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100522134B1 (en) * 2003-04-02 2005-10-18 한국과학기술연구원 Low-fire high-permittivity dielectric compositions
JP2004339049A (en) * 2003-04-21 2004-12-02 Asahi Glass Co Ltd Lead-free glass for forming dielectric, glass ceramic composition for forming dielectric, dielectric and method of producing laminated dielectric
CN100368340C (en) * 2003-04-21 2008-02-13 旭硝子株式会社 Non-lead glass for forming dielectric, glass ceramic composition for forming dielectric, dielectric, and process for producing laminated dielectric
US7368408B2 (en) 2004-03-01 2008-05-06 Murata Manufacturing Co., Ltd. Glass-ceramic composition, glass-ceramic sintered body, and monolithic ceramic electronic component
US7439202B2 (en) 2004-03-01 2008-10-21 Murata Manufacturing Co., Ltd. Glass ceramic composition, glass-ceramic sintered body, and monolithic ceramic electronic component
US7417001B2 (en) 2004-03-01 2008-08-26 Murata Manufacturing Co., Ltd Glass ceramic composition, glass-ceramic sintered body, and monolithic ceramic electronic component
CN1826299B (en) 2004-03-01 2010-06-16 株式会社村田制作所 Insulating ceramic composition, insulating ceramic sintered body, and multilayer ceramic electronic component
JP4578134B2 (en) * 2004-03-29 2010-11-10 京セラ株式会社 Glass ceramic multilayer wiring board with built-in capacitor
JP2006265003A (en) * 2005-03-22 2006-10-05 Nippon Chem Ind Co Ltd Composition for forming dielectric ceramic and dielectric ceramic material
JP2008069056A (en) * 2006-09-15 2008-03-27 Toko Inc Dielectric porcelain composition
JP4618383B2 (en) * 2008-05-12 2011-01-26 Tdk株式会社 Dielectric ceramic composition, multilayer composite electronic component, multilayer common mode filter, multilayer ceramic coil and multilayer ceramic capacitor
KR100993010B1 (en) * 2008-06-26 2010-11-09 한국과학기술연구원 Low Fired Dielectric Ceramic Composition
JP2010228936A (en) * 2009-03-26 2010-10-14 Kyocera Corp Magnetic sintered body, composite sintered body of magnetic body and dielectric body, method for manufacturing them and electronic components using them
JP5570205B2 (en) * 2009-03-26 2014-08-13 京セラ株式会社 Magnetic sintered body, composite sintered body of magnetic body and dielectric, manufacturing method thereof, and electronic component using the same
JP5332807B2 (en) * 2009-03-30 2013-11-06 Tdk株式会社 Dielectric porcelain composition
JP5504703B2 (en) * 2009-06-16 2014-05-28 三菱電機株式会社 Ceramic powder for green sheet, green sheet and ceramic substrate
JP5422329B2 (en) * 2009-10-09 2014-02-19 東光株式会社 Dielectric porcelain composition
JP5786878B2 (en) * 2013-02-06 2015-09-30 Tdk株式会社 Dielectric porcelain composition, electronic component and composite electronic component
JP6529800B2 (en) * 2015-03-23 2019-06-12 日本山村硝子株式会社 Method of producing high filling powder
JP6701566B2 (en) 2016-04-05 2020-05-27 日本電気硝子株式会社 Composite powder, green sheet, light-reflecting substrate, and light-emitting device using these
CN109160725B (en) * 2018-09-25 2021-09-28 东南大学 Glass matrix material, fiber-reinforced glass matrix material and preparation method thereof
CN114804858B (en) * 2021-01-28 2023-07-04 山东国瓷功能材料股份有限公司 Low-temperature co-fired ceramic material for filter and preparation method and application thereof
CN114804857B (en) * 2021-01-28 2023-03-14 山东国瓷功能材料股份有限公司 Low-temperature co-fired ceramic material and preparation method thereof
CN112939596B (en) * 2021-04-06 2023-03-17 无锡市高宇晟新材料科技有限公司 Microwave dielectric ceramic and preparation method thereof
CN113354399A (en) * 2021-07-13 2021-09-07 宜宾红星电子有限公司 Low-temperature co-fired composite ceramic material and preparation method thereof
CN114988865B (en) * 2022-06-10 2023-03-21 深圳顺络电子股份有限公司 Low-temperature co-fired ceramic material and preparation method thereof
WO2024043071A1 (en) * 2022-08-25 2024-02-29 株式会社村田製作所 Glass-ceramic composition, glass-ceramic sintered body, and electronic component

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021107501A1 (en) 2020-03-25 2021-09-30 Tdk Corporation DIELECTRIC CERAMIC COMPOSITION AND ELECTRONIC COMPONENT
US11565975B2 (en) 2020-03-25 2023-01-31 Tdk Corporation Dielectric ceramic composition and electronic component

Also Published As

Publication number Publication date
JP2003002682A (en) 2003-01-08

Similar Documents

Publication Publication Date Title
JP4868663B2 (en) Low temperature fired porcelain composition
US6897172B2 (en) Dielectric ceramic composition and dielectric ceramics
WO2004094338A1 (en) Lead-free glass for forming dielectric, glass ceramics composition for forming dielectric, dielectric and method for producing laminated dielectric
JP2002193662A (en) Dielectric ceramic and its manufacturing method
JP3737774B2 (en) Dielectric ceramic composition
CN100424038C (en) Low temperature sintered high frequency heat stable dielectric ceramic and its prepn process
JP5454833B2 (en) Ceramic substrate and manufacturing method thereof
KR100557853B1 (en) Phosphate Ceramic Compositions with Low Dielectric Constant
US7592886B2 (en) Dielectric porcelain composition and high frequency device using the same
KR20020038329A (en) Dielectric Ceramic Compositions and Manufacturing Process the same
KR100401943B1 (en) Dielectric Ceramic Compositions and Manufacturing Method using the same compositions
JP4166012B2 (en) Composition for high dielectric constant material
JP4325920B2 (en) Dielectric porcelain composition and method for producing dielectric porcelain
KR100478127B1 (en) Dielectric Ceramic Composition
JP5354320B2 (en) Ceramic substrate and manufacturing method thereof
JP3754827B2 (en) High frequency dielectric ceramic composition and laminate
JP4442077B2 (en) Porcelain composition for high frequency components
JP3793550B2 (en) Dielectric porcelain and laminate
JP4534413B2 (en) Method for producing low dielectric constant porcelain composition for high frequency component
JP3631607B2 (en) High frequency dielectric ceramics and laminates
JP3631589B2 (en) Dielectric porcelain composition and laminate
JP2005089297A (en) High frequency dielectric ceramic and laminate
KR100373694B1 (en) Dielectric Ceramic Compositions
JP4618856B2 (en) Low temperature fired porcelain
JP2005170756A (en) Dielectric ceramic composition for high frequency and electronic component using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111115

R150 Certificate of patent or registration of utility model

Ref document number: 4868663

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees