JP4534413B2 - Method for producing low dielectric constant porcelain composition for high frequency component - Google Patents

Method for producing low dielectric constant porcelain composition for high frequency component Download PDF

Info

Publication number
JP4534413B2
JP4534413B2 JP2002272874A JP2002272874A JP4534413B2 JP 4534413 B2 JP4534413 B2 JP 4534413B2 JP 2002272874 A JP2002272874 A JP 2002272874A JP 2002272874 A JP2002272874 A JP 2002272874A JP 4534413 B2 JP4534413 B2 JP 4534413B2
Authority
JP
Japan
Prior art keywords
temperature
dielectric constant
firing
mol
high frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002272874A
Other languages
Japanese (ja)
Other versions
JP2004107149A (en
Inventor
隆裕 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2002272874A priority Critical patent/JP4534413B2/en
Publication of JP2004107149A publication Critical patent/JP2004107149A/en
Application granted granted Critical
Publication of JP4534413B2 publication Critical patent/JP4534413B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明が属する技術分野】
本発明は、数GHzから数十GHzの高周波領域で使用する電子部品やモジュールに好適な誘電体の磁器組成物の製造方法に関する。
【0002】
【従来の技術】
近年、情報の高速大量伝達通信および移動体通信の発達にともない、基板上の集積回路においては、小型化、高密度化ばかりでなく、取り扱われる信号に数GHzさらにはそれ以上の帯域の周波数の利用が検討されており、基板として使用する誘電体の磁器組成物に対しても、このような高周波帯域に適合した材料が要望されている。この磁器組成物に要求される性能は、十分な強度を有し、高周波帯域において比誘電率εが低いこと、誘電損失tanδが小さいこと、さらには比誘電率の温度変化もしくは共振周波数の温度変化が小さいことなどである。
【0003】
一般に、基板の比誘電率が低いほど回路中の信号伝搬速度は速くなるので、高周波帯域の用途には比誘電率εはできるだけ低いことが望ましい。そして信号伝達の上で損失は少なければ少ないほどよいので、誘電損失は小さくすなわちQ値はできるだけ高くする必要がある。また、誘電体としての機能はたとえばフィルタや共振器などに利用されるが、その際に温度変化に対して安定な作動をさせるためには、共振周波数の温度係数τの絶対値はできるだけ小さいこと、すなわち温度依存性の少ないことも重要である。
【0004】
従来、集積回路用の磁器組成物多層基板としては、耐熱性や絶縁特性にすぐれ、耐電圧が高く誘電率が小さいアルミナが多く用いられ、回路の高密度化に伴い、グリーンシートに導体ペーストを印刷し、これを積層し一括して焼成する方法が発達してきた。アルミナの焼結温度は1500〜1600℃と高いので、多層基板内部の回路形成用導電材料としては、この温度にて焼結できるWやMo等の高融点金属が使用されている。
【0005】
しかしながら、回路に使用される周波数が高くなってくると、基板材料はアルミナよりも比誘電率の低いことが要望され、回路が微細化してくるにしたがい、用いられる導体も導電損失を小さくするため、より電気抵抗の低いものが必要となってくる。電気抵抗の低い金属導体はAg、Au、Cuであるが、これらはいずれもWやMoに比して融点が低く、同時焼成により多層基板を製造しようとすれば、磁器組成物はこれらの金属の融点より低い1000℃以下で焼成できるものでなければならない。
【0006】
このような目的に対し、融点の低いガラスにアルミナなどの酸化物系耐火物をフィラーとして混入させた、低温焼結型磁器組成物が種々開発されている。通常ガラスはアルミナなど酸化物系耐火物に比べて誘電率が低い。したがってガラスを積層して多層基板とすることも考えられるが、ガラスは一般に誘電損失が大きく、焼成時軟化による形状変化が大で回路の所要寸法精度を得ることが困難であり、強度的にも不十分である。
【0007】
これに対し、ガラスにフィラーを混在させると、形状変化が小さく低い温度で緻密な組織と十分な強度のすぐれた磁器組成物が得られ、フィラーに誘電損失の小さいものを選べば、特性の良好な低温焼結型磁器組成物とすることができる。
【0008】
たとえば特公平3−53269号公報には、CaO−SiO−Al−B系のガラスにフィラーとしてAlを50〜35質量%混入した800〜1000℃で焼成する低温焼成磁器組成物基板の発明が開示されている。ただし、この発明では1MHzにおける損失しか示されておらず、数GHzを超える高周波域における特性はあきらかでない。
【0009】
また、米国特許No.6147019号には、50〜75質量%のAl耐火物と、モル%でB:50〜67%、CaO:20〜50%、Ln(Lnは希土類元素):2〜15%、MO(Mはアルカリ金属元素):0〜6%、Al:0〜10%のガラスとを混合した、内部導体にAgを同時焼成して使用することのできる磁器組成物の発明が開示されている。
【0010】
しかしながら、基板あるいはモジュールや電子部品用の磁器組成物としては、採用される周波数帯域においてよりすぐれた性能のものが常に要求されており、とくに高周波帯域にて高性能の材料が要望されている。また、回路の精細化に伴い、基板としては平坦度がよく、高い寸法精度が要求され、これに対しては圧力を加えるか拘束しつつ焼成する方法が開発されているが、このような焼成方法にも適した磁器組成物であることが望ましい。
【0011】
【発明が解決しようとする課題】
本発明の目的は、Ag、Au、Cuなどの電気伝導度が高い導体を同時焼成できる低温焼結が可能な、比誘電率が低く高周波帯域での損失が小さく、かつ温度依存性の小さい低誘電率磁器組成物の製造方法の提供にある。
【0012】
【課題を解決するための手段】
本発明者らは、焼成温度が1000℃以下の、内部導体にAg、AuまたはCuを用いて同時焼成により多層基板が製造可能な、数GHzまたはそれ以上の高周波帯域で使用される低温焼結磁器組成物の性能を改善すべく種々検討をおこなった。
【0013】
低温焼結可能な基板用磁器組成物としては、アルミナ、チタニア、ジルコニアなどの耐火物をフィラーとし、これに軟化点の低いガラス組成物を混合したガラスセラミックスがある。この場合、ガラスの原料を高温加熱して溶融し、急冷してガラス粉末を作り、これとフィラーとなるアルミナなど耐火物粉末とを混合し仮焼粉砕後、所定形状に成形後焼成するので、原料からは複数回の高温加熱を必要とする。これに対し、通常のセラミックス合成方法、すなわち所要原料を混合し、仮焼後粉砕して成形し焼成して所要の磁器組成物とすることができれば、工程が簡略化され、所要エネルギーを少なくでき、製造コストの低減が可能と思われた。
【0014】
また、積層基板は回路の高密度化により、導体配線やスルーホールの微細化および高精度化要求が厳しくなっており平坦性も追求される。これに対し、グリーンシートの積層体に圧力をかけて拘束しながら焼成し、焼成による収縮を厚さ方向のみとして、回路形状の高精度化と、平坦性向上を図る方法があるが、このような焼成方法にも適したものでなければならない。
【0015】
高周波域での適用に要求される特性としては、誘電率が低いこと、誘電損失が小さいこと、および誘電率の温度依存性が小さいことなどである。これらの誘電特性は、円柱状試験片による両端短絡形誘電体共振法(ハッキー・コールマン法)により測定した。
【0016】
まず、基板としての強度を保持し、緻密な磁器組成物を得るために、Alを主成分とし、これにガラス形成成分のSiO、B、CaO、等を混合して、通常のセラミックス合成方法にて焼成温度が1000℃以下の低温焼結が可能かどうかの検討をおこなった。その結果、高周波における誘電特性が良好となり、しかも焼結温度が低くなる組成範囲を大略あきらかにすることができたが、目的とする低温域での焼成では、必ずしも十分緻密な磁器組成物が得られなかった。
【0017】
そこでさらに、酸化物系添加物について種々調査の結果、ZnO、MnO、あるいはRO(R:Li、NaおよびKのアルカリ金属元素)の少量添加が、特性を損なうことなく焼結温度を低下できることがわかった。また、希土類元素の酸化物Ln(Ln:Y、La、Nd等の希土類元素)を、焼結温度が上がらない範囲で添加するとにより、fQ値を向上させる効果のあることも見出された。
【0018】
このように、通常のセラミックス合成方法にて1000℃以下の低温焼結は可能であることはわかったが、電気伝導率にすぐれたAgを導体に用いるとき、焼成温度はAgの融点961℃を下回っている必要がある。これに対しては、Alを除く他の原料について混合溶融急冷してしてガラスを作り、これを粉末化してからAl粉末と混合し混錬して成形後焼成することにより、より低い焼成温度で、同じ組成を有しかつ同様な高周波域の誘電性能を有する磁器組成物が得られることが確認できた。
【0019】
焼成して得られた、上記の高周波特性にすぐれた磁器組成物の組織を調べてみると、LnBO、ZnSiO 、CaAl等の結晶とガラスの混合した相によりAlの結晶粒子が結合された状態になっており、このような結晶とガラスとが混合した状態がすぐれた高周波域での誘電特性をもたらしていると考えられる。
【0020】
以上のような検討結果に基づき、焼成温度、Q値、誘電率、温度特性等にそれぞれ目標限界を設定し、それらのいずれも満足する組成や条件範囲をあきらかにして本発明を完成させた。本発明の要旨は次のとおりである。
【0023】
(1) Al23、SiO2、B23、Caの炭酸塩、Caの炭酸水素塩、ZnO、MnO、R(RはLi、NaまたはKを示す)の炭酸塩、およびRの炭酸水素塩の1つ以上を含む原料の粉末を混合し、混合物を仮焼後粉砕して粉末とし、この粉末にバインダーを加え混錬して所要形状に成形後、800〜1000℃にて焼成し、酸化物として表示される成分がモル%にて、実質的にAl23:40〜65%、SiO2およびB23のいずれか一方または両方を合計量として15〜35%、CaO:10〜20%、ZnO:0.1〜14%、MnO:0〜2%(但し、0を含む)およびR2O(RはLi、NaおよびKの中の一種以上):0〜2%(但し、0を含む)からなる高周波部品用低誘電率磁器組成物を製造することを特徴とする高周波部品用低誘電率磁器組成物の製造方法。
(2) Al23、SiO2、B23、Caの炭酸塩、Caの炭酸水素塩、ZnO、MnO、R(RはLi、NaまたはKを示す)の炭酸塩、Rの炭酸水素塩およびLn23(LnはY、LaまたはNdを示す)の1つ以上を含む原料の粉末を混合し、混合物を仮焼後粉砕して粉末とし、この粉末にバインダーを加え混錬して所要形状に成形後、800〜1000℃にて焼成し、酸化物として表示される成分がモル%にて、実質的にAl23:40〜65%、SiO2およびB23のいずれか一方または両方を合計量として15〜35%、CaO:10〜20%、ZnO:0.1〜14%、MnO:0〜2%(但し、0を含む)、R2O(RはLi、Naおよびの中の一種以上):0〜2%(但し、0を含む)、およびLn23(LnはY、LaおよびNdの希土類元素の一種以上):0.1〜2%からなる高周波部品用低誘電率磁器組成物を製造することを特徴とする高周波部品用低誘電率磁器組成物の製造方法。
【0025】
【発明の実施の形態】
本発明の磁器組成物は、各成分を酸化物の形で示すとき、次のような組成になっている。
【0026】
Al:40〜65モル%
Alは磁器組成物の強度を保持するために必要である。40モル%未満では磁器組成物の抗折力が低下し、焼成時の形状維持も困難となる。しかし、65モル%を超える含有は、目的とする低温度での焼結ができなくなる。したがって40〜65モル%とするが、より好ましくは55〜60モル%である。
【0027】
SiOおよびBのいずれか一方または両方を合計量として15〜35モル%
SiOおよびBはガラスを形成し、磁器組成物の焼結温度低下に大きく寄与する。また高周波域でのQ値のすぐれた結晶相の形成にも必要である。いずれか一方、または両方の合計が15モル%を下回るとき、1000℃以下の低温焼結が困難となり、35モル%を超えるときはQ値が低下してくる。より好ましいのは25〜30モル%である。
【0028】
CaO:10〜20モル%
CaOは1000℃以下での焼成温度にてSiO、BおよびAlとともにガラスと結晶相を形成する。また、誘電率の温度依存性を小さくする効果がある。10モル%未満では1000℃以下での焼結が困難になり、20モル%を超える含有は誘電率の温度変化率が大きくなってしまう。より好ましいのは12.5〜17モル%の範囲である。
【0029】
ZnO:0.1〜14モル%
ZnOは焼結温度を低下させる作用があり、Q値を高める効果もある。このような効果を得るためには、0.1モル%以上の含有が必要である。しかし、多すぎる含有はかえってQを低下させてしまうので、14モル%までとする。より好ましいのは0.1〜5モル%である。
【0030】
MnO:0〜2モル%
MnOは、含有させなくてもよいが、含有させるとZnOと同様焼結温度を低下させ、Q値を高める効果がある。その効果を得るためには、0.1モル%以上の含有が望ましいが、多すぎるとQ値を低下させるので、2モル%以下とするのがよい。
【0031】
O(RはLi、NaおよびKの中の一種以上):0〜2モル%
アルカリ金属元素Li、NaおよびKの酸化物ROは、ガラスを形成させる作用があり、焼結温度の低下に大きな効果がある。これらは含有させなくてもよいが、その効果を得るため含有させる場合は0.1モル%以上が好ましい。しかし、多すぎると大幅にQ値を低下させるので2モル%までとするが、望ましいのは0.5モル%以下である。
【0032】
Ln(LnはY、LaおよびNdなどの希土類元素の一種以上):0〜2モル%
Lnは添加しなくてもよいが高周波域でのQ値を向上させる効果があり、とくにQ値を向上させたいときに含有させるとよい。この効果を得るためには、0.1モル%以上の含有が好ましい。ただし、多く含有させすぎると低温での焼結困難、誘電率の温度変化率増大を来すので、2モル%以下とする。この希土類元素酸化物は、単独で添加すると低温焼成の場合その含有効果が十分発揮されないことがあるので、あらかじめLn:45〜50モル%およびB:50〜55モル%の混合物を焼結などにより合成しておき、これの粉末の形で添加するとよい。なお、このときに添加されるBの量は、SiOおよびBの合計量が15〜35モル%となる範囲内になければならない。
【0033】
磁器組成物の製造方法は、通常のセラミックス合成方法を適用する。すなわち原料となる酸化物などの粉末それぞれを、所要量混合し、たとえば、まず700〜800℃程度の温度で1〜5時間仮焼し、この仮焼物を湿式粉砕し乾燥後、バインダーを加えて混錬し所要基板形状などに成形、すなわちグリ−ンシートとし導体の回路印刷などおこなってから積層し、1000℃以下の温度で焼成する。なお、焼成温度の下限値は十分な焼結がおこなわれるならとくに限定するものではないが、本発明の組成範囲では800℃を下回る温度では焼結が困難である。
【0034】
導電体にAgを用いる場合など焼成温度をとくに低くしたいとき、所要組成の中のAlを除いた組成物を、1200〜1500℃にて溶融して急冷しガラス粉末としてから、このガラス粉末とAlの粉末とをバインダーを加えて混錬してグリーンシートとすればよい。このようにすれば、焼成温度は920℃以下で焼結が可能となる。
【0035】
また、各素材原料には不純物が含まれるが、その含有量は5質量%以下であれば単一の化合物として取り扱っても効果は変わらない。原料素材としては、たとえばCaO、ROなど単独の酸化物の形では大気中にて不安定な場合は、炭酸塩や炭酸水素塩などを用い、Bに対しBNを用いるなど、混合開始時には別の形の素材としてもよい。
【0036】
磁器組成物の焼成は、導電体にCuを用いる基板の場合、不活性雰囲気中での焼成が必要であるが、AgやAuが導電体の場合は大気中でよい。さらに、基板または積層基板にて厳しい平坦度や高精度の回路パターンを要求されることがあり、この場合、拘束焼成法や加圧焼成法といわれる焼成方法が採用されるが、本発明の組成物はこのような焼成方法にも適している。
【0037】
この拘束焼成法は、たとえば積層体の上下面にその目的物の焼成温度では焼結しないグリーンシートを圧着しておくことにより、焼成時の面方向の収縮を抑止する方法である。さらに応力を印加しながら焼成をおこなう方法を加圧焼成法と呼び、加圧力を調整することにより、面方向の収縮をより0に近くした焼結ができる。本発明の磁器組成物の場合、積層体の上下面にたとえばアルミナのグリ−ンシートを設置し、加圧しながら焼成すれば、焼成温度ではアルミナは焼結しないので、焼成後これらは完全に除去され、平坦度のすぐれた高精度の積層基板を得ることができる。
【0038】
【実施例】
〔実施例1〕
酸化物の形として表1および表2に示す組成となる、Al23、SiO23、CaO、ZnO、MnO、R2O(RはLi、NaまたはKを示す)、Ln23(LnはY、LaまたはNdを示す)の原料を、水を加えてジルコニアボールを用いたボールミルにて20時間湿式混合した後乾燥し、750℃にて3時間仮焼した。なお、COおよびR2の各原料として、Caの炭酸塩およびRの炭酸塩用いた。
【0039】
仮焼物はX線回折法にて焼成反応が起きていることを確認し、粉砕後バインダーとして10質量%のPVA水溶液を添加して混錬造粒し、金型を用い98MPaの圧力にて焼成後の寸法が直径15mm、高さ7,5mmの円柱状となる試片を成形した。
【0040】
これら成形品は大気中で焼成をおこなって特性測定用試片とした。各試料のこれら成形品の一部の試片を用い、あらかじめ800〜1200℃の温度範囲で試験的に焼成して、十分な緻密化に必要な温度を見出し、その温度を焼成温度として該当試料の全試片の焼成をおこなった。焼成時間はいずれも2時間である。
【0041】
焼成後の円柱状焼結体は、底面を研磨し平滑にしてから両端短絡形誘電体共振器法により比誘電率εおよびQ(または誘電損失tanδ:Q=1/tanδ)を測定した。共振周波数の温度係数τは、25℃における共振周波数fを基準として、温度を変えたときの変化率から求めた。これらの測定結果を併せて表1および表2に示す。
【0042】
【表1】

Figure 0004534413
【0043】
【表2】
Figure 0004534413
【0044】
表1および表2の結果からわかるように、本発明で定める組成範囲の磁器組成物は、1000℃以下の焼成温度で焼結が可能であり、比誘電率が低く、しかもQ値が高くfQ値にして20000以上とすぐれたものであり、その上、温度係数τ値も±50%以内と安定している。焼成温度を低くするだけであれば、CaO、ZnO、MnOあるいはROの比率を増せばよいが、比誘電率や高周波域におけるQ値など誘電特性をすぐれてものにするには、さらにこれら組成の組み合わせや、Lnの適量含有など、十分配慮しなければならないことがわかる。
【0045】
参考例1
表3に示す組成範囲の磁器組成物を、Al23を除く他の成分は1400℃にて溶融し水冷してガラス化した後、このガラス粉末とAl23を粉末とを10質量%のPVA水溶液バインダーを添加して混錬造粒した。この混錬物を実施例1と同様にして、円柱状試験片を作製し、焼成に必要な温度を調査し、焼結後誘電特性を測定した。
【0046】
【表3】
Figure 0004534413
【0047】
結果を表3に合わせて示すが、焼成に必要な温度は900℃以下で、実施例1における本発明例のほとんどのものを下回っており、Agを導電体に用いて十分同時焼成が可能なものとなっている。また誘電特性も実施例1における本発明例の場合と同等のものが得られている。
【0048】
【発明の効果】
本発明の磁器組成物は、比誘電率が低く高周波帯域における損失が小さく、温度依存性が小さい。また低い焼成温度でその特性を得ることができ、内部導体や電極としてAg、Au、Cuなど比抵抗は低いが融点の低い金属を使用することができる。このように、すぐれた高周波性能と相俟って、電子回路の高周波化、小型化、高密度化のための基板用等の用途に好適である。[0001]
[Technical field to which the invention belongs]
The present invention relates to a method for producing a dielectric porcelain composition suitable for electronic parts and modules used in a high frequency range of several GHz to several tens of GHz.
[0002]
[Prior art]
In recent years, with the development of high-speed mass communication and mobile communication of information, in the integrated circuit on the substrate, not only miniaturization and high density, but also the signal to be handled has a frequency of several GHz or more. Utilization has been studied, and a material suitable for such a high frequency band is also demanded for a dielectric ceramic composition used as a substrate. The performance required for this porcelain composition has sufficient strength, low dielectric constant ε r in the high frequency band, small dielectric loss tan δ, temperature change of dielectric constant or temperature of resonance frequency. The change is small.
[0003]
In general, the lower the relative dielectric constant of the substrate, the higher the signal propagation speed in the circuit. Therefore, it is desirable that the relative dielectric constant ε r be as low as possible for high frequency band applications. The smaller the loss in signal transmission, the better. Therefore, the dielectric loss is small, that is, the Q value needs to be as high as possible. In addition, the function as a dielectric is used for, for example, a filter or a resonator. In this case, the absolute value of the temperature coefficient τ f of the resonance frequency is as small as possible in order to perform a stable operation against a temperature change. It is also important that the temperature dependency is small.
[0004]
Conventionally, as a porcelain composition multilayer substrate for an integrated circuit, alumina having excellent heat resistance and insulating properties, high withstand voltage and low dielectric constant has been used, and with increasing circuit density, a conductive paste is applied to a green sheet. A method has been developed for printing, laminating them and firing them together. Since the sintering temperature of alumina is as high as 1500-1600 ° C., a refractory metal such as W or Mo that can be sintered at this temperature is used as the conductive material for circuit formation inside the multilayer substrate.
[0005]
However, as the frequency used in the circuit increases, the substrate material is required to have a lower relative dielectric constant than alumina, and the conductor used also reduces the conductive loss as the circuit becomes finer. Something with lower electrical resistance is needed. The metal conductors with low electrical resistance are Ag, Au, and Cu, but they all have a lower melting point than W or Mo. If a multi-layer substrate is to be manufactured by simultaneous firing, the porcelain composition can be made of these metals. It must be able to be fired at 1000 ° C. or lower, which is lower than the melting point.
[0006]
For this purpose, various low-temperature sintered porcelain compositions have been developed in which an oxide refractory such as alumina is mixed as a filler in glass having a low melting point. Usually, glass has a lower dielectric constant than oxide refractories such as alumina. Therefore, it is conceivable to make a multilayer substrate by laminating glass, but glass generally has a large dielectric loss, a large shape change due to softening during firing, and it is difficult to obtain the required dimensional accuracy of the circuit. It is insufficient.
[0007]
On the other hand, when a filler is mixed in glass, a porcelain composition having a fine structure and excellent strength can be obtained at a low temperature with a small change in shape. Good characteristics can be obtained by selecting a filler with a low dielectric loss. And a low-temperature sintered porcelain composition.
[0008]
For example, Japanese Examined Patent Publication No. 3-53269 discloses that CaO—SiO 2 —Al 2 O 3 —B 2 O 3 glass is baked at 800 to 1000 ° C. in which 50 to 35 mass% of Al 2 O 3 is mixed as a filler. An invention of a low-temperature fired porcelain composition substrate is disclosed. However, in the present invention, only a loss at 1 MHz is shown, and characteristics in a high frequency region exceeding several GHz are not clear.
[0009]
In addition, US Pat. No. 6147019 discloses 50 to 75% by mass of an Al 2 O 3 refractory, B 2 O 3 : 50 to 67%, CaO: 20 to 50%, Ln 2 O 3 ( Ln is a rare earth element): 2 to 15%, M 2 O (M is an alkali metal element): 0 to 6%, Al 2 O 3 : 0 to 10% glass mixed, Ag is co-fired on the inner conductor An invention of a porcelain composition that can be used as a method is disclosed.
[0010]
However, as a porcelain composition for a substrate or a module or an electronic component, a material having better performance in the adopted frequency band is always required, and in particular, a high-performance material is required in the high frequency band. In addition, along with the refinement of the circuit, the substrate has good flatness and high dimensional accuracy is required. For this, a method of firing while applying or restraining pressure has been developed. A porcelain composition suitable for the method is desirable.
[0011]
[Problems to be solved by the invention]
The object of the present invention is to enable low-temperature sintering capable of simultaneously firing conductors with high electrical conductivity such as Ag, Au, Cu, etc., low relative permittivity, low loss in the high frequency band, and low temperature dependence. It is in the provision of the manufacturing method of a dielectric constant ceramic composition.
[0012]
[Means for Solving the Problems]
The inventors of the present invention have a low temperature sintering used in a high frequency band of several GHz or more, in which a multilayer substrate can be manufactured by simultaneous firing using Ag, Au or Cu as an inner conductor with a firing temperature of 1000 ° C. or less. Various studies were conducted to improve the performance of the porcelain composition.
[0013]
Examples of the ceramic composition for a substrate that can be sintered at low temperature include glass ceramics in which a refractory such as alumina, titania, zirconia, or the like is used as a filler and a glass composition having a low softening point is mixed therewith. In this case, the glass raw material is heated and melted at a high temperature, rapidly cooled to make a glass powder, and this is mixed with a refractory powder such as alumina as a filler, calcined and pulverized, and then molded into a predetermined shape and fired. The raw material requires multiple high-temperature heating. On the other hand, if the usual ceramic synthesis method, that is, the required raw materials are mixed, calcined, pulverized, shaped and fired to obtain the required porcelain composition, the process can be simplified and the required energy can be reduced. It seemed possible to reduce the manufacturing cost.
[0014]
In addition, the demand for miniaturization and high accuracy of conductor wiring and through-holes has become strict due to the increase in circuit density of laminated substrates, and flatness is also pursued. On the other hand, there is a method to increase the accuracy of the circuit shape and improve the flatness by firing the green sheet laminate while constraining it with pressure, and limiting the shrinkage due to the firing only in the thickness direction. It must also be suitable for any firing method.
[0015]
Characteristics required for application in a high frequency range include a low dielectric constant, a small dielectric loss, and a small temperature dependence of the dielectric constant. These dielectric characteristics were measured by a double-end short-circuited dielectric resonance method (Hacky-Coleman method) using a cylindrical test piece.
[0016]
First, in order to maintain the strength as a substrate and obtain a dense porcelain composition, Al 2 O 3 is the main component, and glass forming components SiO 2 , B 2 O 3 , CaO, and the like are mixed into this. Then, it was examined whether low-temperature sintering with a firing temperature of 1000 ° C. or lower was possible by a normal ceramic synthesis method. As a result, the dielectric properties at high frequencies were improved and the composition range in which the sintering temperature was lowered could be clarified. However, a sufficiently dense porcelain composition was not always obtained by firing in the intended low temperature range. I couldn't.
[0017]
Therefore, as a result of various investigations on oxide-based additives, addition of a small amount of ZnO, MnO, or R 2 O (R: alkali metal elements of Li, Na and K) reduces the sintering temperature without impairing the characteristics. I knew it was possible. It was also found that the addition of a rare earth oxide Ln 2 O 3 (Ln: rare earth elements such as Y, La, Nd, etc.) within the range where the sintering temperature does not increase has the effect of improving the fQ value. It was done.
[0018]
As described above, it was found that low temperature sintering of 1000 ° C. or lower is possible by the usual ceramic synthesis method. However, when Ag having excellent electrical conductivity is used for the conductor, the firing temperature is 961 ° C., the melting point of Ag. It must be below. For this, other raw materials other than Al 2 O 3 are mixed, melted and rapidly cooled to make a glass, which is then pulverized, mixed with Al 2 O 3 powder, kneaded and fired after molding. Thus, it was confirmed that a porcelain composition having the same composition and having the same dielectric performance in a high frequency region can be obtained at a lower firing temperature.
[0019]
Examination of the structure of the above-described porcelain composition having excellent high-frequency characteristics obtained by firing reveals that a mixed phase of crystal and glass such as LnBO 3 , Zn 2 SiO 4 , and CaAl 2 B 2 O 7 Al 2 O 3 crystal particles are in a combined state, and it is considered that such a mixed state of crystal and glass brings about excellent dielectric properties in a high frequency range.
[0020]
Based on the above examination results, target limits were set for the firing temperature, Q value, dielectric constant, temperature characteristics, etc., respectively, and the present invention was completed by clarifying the composition and condition range that satisfy them. The gist of the present invention is as follows.
[0023]
(1) Al 2 O 3, SiO 2, B 2 O 3, C a carbonate, bicarbonate of Ca, ZnO, MnO, carbonates R (R represents a Li, Na or K), and R mixing the raw material powder comprising one or more bicarbonate, the mixture was ground after calcined powder, after molding to the required shape by kneading a binder was added to the powder at 800 to 1000 ° C. calcined at component mole% displayed as oxides, substantially Al 2 O 3: 40~65%, 15~35% of either or both of SiO 2 and B 2 O 3 the total amount , CaO: 10 to 20%, ZnO: 0.1 to 14%, MnO: 0 to 2% (provided that 0 is included) and R 2 O (R is one or more of Li, Na and K): 0 Japanese to produce 2% high-frequency device for low dielectric ceramic composition consisting of (including 0) Method for producing a high-frequency component for the low dielectric constant ceramic composition according to.
(2) Al 2 O 3, SiO 2, B 2 O 3, C a carbonate, bicarbonate of Ca, ZnO, MnO, carbonates R (R represents a Li, Na or K), the R bicarbonate, and Ln 2 O 3 (Ln is Y, shows the La or Nd) were mixed raw material powder comprising one or more, the mixture to a powder and pulverized calcined, a binder was added to this powder After kneading and forming into a required shape, it is fired at 800 to 1000 ° C., and the component displayed as an oxide is mol%, substantially Al 2 O 3 : 40 to 65%, SiO 2 and B 2. One or both of O 3 in a total amount of 15 to 35%, CaO: 10 to 20%, ZnO: 0.1 to 14%, MnO: 0 to 2% (provided that 0 is included) , R 2 O (R is one or more of Li, Na and K): 0 to 2% (including 0) , and Ln 2 Low dielectric constant porcelain for high frequency components, characterized in that a low dielectric constant porcelain composition for high frequency components comprising O 3 (Ln is one or more rare earth elements of Y, La and Nd): 0.1 to 2% A method for producing the composition.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
The porcelain composition of the present invention has the following composition when each component is shown in the form of an oxide.
[0026]
Al 2 O 3 : 40 to 65 mol%
Al 2 O 3 is necessary to maintain the strength of the porcelain composition. If it is less than 40 mol%, the bending strength of the porcelain composition is lowered, and it becomes difficult to maintain the shape during firing. However, if the content exceeds 65 mol%, sintering at the intended low temperature cannot be performed. Accordingly, the content is 40 to 65 mol%, more preferably 55 to 60 mol%.
[0027]
15 to 35 mol% of one or both of SiO 2 and B 2 O 3 as a total amount
SiO 2 and B 2 O 3 form glass and greatly contribute to lowering the sintering temperature of the porcelain composition. It is also necessary to form a crystal phase with an excellent Q value in a high frequency range. When the sum of either one or both is less than 15 mol%, low-temperature sintering at 1000 ° C. or less becomes difficult, and when it exceeds 35 mol%, the Q value decreases. More preferred is 25 to 30 mol%.
[0028]
CaO: 10 to 20 mol%
CaO forms a crystalline phase with glass together with SiO 2 , B 2 O 3 and Al 2 O 3 at a firing temperature of 1000 ° C. or less. In addition, there is an effect of reducing the temperature dependence of the dielectric constant. If it is less than 10 mol%, sintering at 1000 ° C. or less becomes difficult, and if it exceeds 20 mol%, the temperature change rate of the dielectric constant becomes large. A more preferred range is 12.5 to 17 mol%.
[0029]
ZnO: 0.1-14 mol%
ZnO has the effect of lowering the sintering temperature and also has the effect of increasing the Q value. In order to obtain such an effect, it is necessary to contain 0.1 mol% or more. However, too much content lowers Q instead, so it is limited to 14 mol%. More preferred is 0.1 to 5 mol%.
[0030]
MnO: 0 to 2 mol%
MnO does not have to be contained, but when it is contained, there is an effect of lowering the sintering temperature and increasing the Q value as with ZnO. In order to acquire the effect, containing 0.1 mol% or more is desirable, but if it is too much, the Q value is lowered, so it is preferable to make it 2 mol% or less.
[0031]
R 2 O (R is one or more of Li, Na and K): 0 to 2 mol%
Alkali metal elements Li, Na, and K oxides R 2 O have the effect of forming glass and have a great effect on lowering the sintering temperature. These may not be contained, but in order to obtain the effect, 0.1 mol% or more is preferable. However, if the amount is too large, the Q value is greatly reduced. Therefore, the amount is limited to 2 mol%, but preferably 0.5 mol% or less.
[0032]
Ln 2 O 3 (Ln is one or more rare earth elements such as Y, La and Nd): 0 to 2 mol%
Ln 2 O 3 does not need to be added, but has the effect of improving the Q value in the high frequency range, and is particularly preferably contained when it is desired to improve the Q value. In order to acquire this effect, 0.1 mol% or more containing is preferable. However, if too much is included, sintering at low temperatures becomes difficult and the temperature change rate of the dielectric constant increases, so the content is made 2 mol% or less. If this rare earth element oxide is added alone, its inclusion effect may not be sufficiently exhibited in the case of low-temperature firing. Therefore, Ln 2 O 3 : 45 to 50 mol% and B 2 O 3 : 50 to 55 mol% in advance. The mixture may be synthesized by sintering or the like and added in the form of powder. The amount of B 2 O 3 that is added at this time must be within a range that the total amount of SiO 2 and B 2 O 3 is 15 to 35 mol%.
[0033]
As a method for producing the porcelain composition, an ordinary ceramic synthesis method is applied. That is, the required amount of each powder such as oxide as raw material is mixed, for example, first calcined at a temperature of about 700 to 800 ° C. for 1 to 5 hours, this calcined product is wet-ground and dried, and then a binder is added. Kneading and forming into the required substrate shape, that is, forming a green sheet and printing the conductor circuit, etc., laminating and firing at a temperature of 1000 ° C. or less. The lower limit of the firing temperature is not particularly limited as long as sufficient sintering is performed, but sintering is difficult at temperatures below 800 ° C. within the composition range of the present invention.
[0034]
When the firing temperature is particularly low, such as when Ag is used for the conductor, the composition excluding Al 2 O 3 in the required composition is melted at 1200-1500 ° C. and rapidly cooled to form a glass powder. The powder and the Al 2 O 3 powder may be kneaded by adding a binder to obtain a green sheet. In this way, sintering is possible at a firing temperature of 920 ° C. or lower.
[0035]
Each raw material contains impurities, but if the content is 5% by mass or less, the effect is not changed even if it is handled as a single compound. As a raw material, for example, when it is unstable in the atmosphere in the form of a single oxide such as CaO and R 2 O, carbonate or hydrogen carbonate is used, BN is used for B 2 O 3 , etc. Another material may be used at the start of mixing.
[0036]
The firing of the porcelain composition requires firing in an inert atmosphere in the case of a substrate using Cu as the conductor, but may be in the air if Ag or Au is a conductor. In addition, severe flatness and high-precision circuit patterns may be required on a substrate or a laminated substrate. In this case, a firing method called a restraint firing method or a pressure firing method is adopted. The product is also suitable for such a firing method.
[0037]
This constrained firing method is a method of suppressing shrinkage in the surface direction during firing, for example, by pressing a green sheet that is not sintered at the firing temperature of the target product on the upper and lower surfaces of the laminate. Furthermore, the method of firing while applying stress is called a pressure firing method, and by adjusting the applied pressure, sintering can be performed with the shrinkage closer to 0 in the plane direction. In the case of the porcelain composition of the present invention, for example, if alumina sheets are placed on the top and bottom surfaces of the laminate and fired under pressure, alumina will not sinter at the firing temperature, so these are completely removed after firing. Thus, a highly accurate laminated substrate with excellent flatness can be obtained.
[0038]
【Example】
[Example 1]
Al 2 O 3 , SiO 2 , B 2 O 3 , CaO, ZnO, MnO, R 2 O (R represents Li, Na, or K), Ln, having the composition shown in Tables 1 and 2 as oxide forms A raw material of 2 O 3 (Ln represents Y, La or Nd) was wet-mixed for 20 hours in a ball mill using zirconia balls after adding water, and then calcined at 750 ° C. for 3 hours. As the raw material of C a O Contact and R 2 O, was used carbonates carbonates and R of Ca.
[0039]
After confirming that the calcined product has undergone a calcination reaction by X-ray diffraction, the calcined product is kneaded and granulated by adding 10% by mass PVA aqueous solution as a binder, and calcined at a pressure of 98 MPa using a mold. A specimen having a cylindrical shape having a diameter of 15 mm and a height of 7,5 mm was formed.
[0040]
These molded articles were fired in the atmosphere to obtain specimens for characteristic measurement. Using some specimens of these molded products of each sample, pre-baking in advance in the temperature range of 800-1200 ° C, finding the temperature necessary for sufficient densification, and using that temperature as the baking temperature, the corresponding sample All specimens were fired. Both firing times are 2 hours.
[0041]
After firing, the cylindrical sintered body was polished and smoothed, and then the relative permittivity ε r and Q (or dielectric loss tan δ: Q = 1 / tan δ) were measured by a double-end short-circuited dielectric resonator method. The temperature coefficient τ f of the resonance frequency was obtained from the rate of change when the temperature was changed with the resonance frequency f 0 at 25 ° C. as a reference. These measurement results are also shown in Table 1 and Table 2.
[0042]
[Table 1]
Figure 0004534413
[0043]
[Table 2]
Figure 0004534413
[0044]
As can be seen from the results in Tables 1 and 2, the ceramic composition in the composition range defined in the present invention can be sintered at a firing temperature of 1000 ° C. or less, has a low relative dielectric constant, and has a high Q value and fQ. The value is excellent at 20000 or more, and the temperature coefficient τ f value is stable within ± 50%. If the firing temperature is only lowered, the ratio of CaO, ZnO, MnO or R 2 O may be increased. However, in order to improve the dielectric properties such as the relative permittivity and the Q value in the high frequency range, these are further used. It can be seen that sufficient consideration must be given to the combination of the compositions and the appropriate amount of Ln 2 O 3 .
[0045]
[ Reference Example 1 ]
Table 3 indicates to set forming a range of ceramic compositions, after vitrifying the other components except Al 2 O 3 is water-cooled melted at 1400 ° C., the glass powder and the Al 2 O 3 powder A 10% by mass PVA aqueous solution binder was added and kneaded and granulated. A columnar test piece was produced from this kneaded material in the same manner as in Example 1, the temperature required for firing was investigated, and the dielectric properties after sintering were measured.
[0046]
[Table 3]
Figure 0004534413
[0047]
The results are shown together in Table 3. The temperature required for firing is 900 ° C. or less, which is lower than most of the examples of the present invention in Example 1, and sufficient co-firing is possible using Ag as a conductor. It has become a thing. In addition, the same dielectric characteristics as those of the example of the present invention in Example 1 are obtained.
[0048]
【The invention's effect】
The porcelain composition of the present invention has a low relative dielectric constant, a small loss in a high frequency band, and a small temperature dependency. Further, the characteristics can be obtained at a low firing temperature, and a metal having a low specific resistance but a low melting point such as Ag, Au or Cu can be used as an internal conductor or an electrode. Thus, combined with excellent high frequency performance, it is suitable for applications such as substrates for high frequency, miniaturization, and high density of electronic circuits.

Claims (2)

Al23、SiO2、B23、Caの炭酸塩、Caの炭酸水素塩、ZnO、MnO、R(RはLi、NaまたはKを示す)の炭酸塩、およびRの炭酸水素塩の1つ以上を含む原料の粉末を混合し、混合物を仮焼後粉砕して粉末とし、この粉末にバインダーを加え混錬して所要形状に成形後、800〜1000℃にて焼成し、酸化物として表示される成分がモル%にて、実質的にAl23:40〜65%、SiO2およびB23のいずれか一方または両方を合計量として15〜35%、CaO:10〜20%、ZnO:0.1〜14%、MnO:0〜2%(但し、0を含む)およびR2O(RはLi、NaおよびKの中の一種以上):0〜2%(但し、0を含む)からなる高周波部品用低誘電率磁器組成物を製造することを特徴とする高周波部品用低誘電率磁器組成物の製造方法。 Al 2 O 3, SiO 2, B 2 O 3, C a carbonate, bicarbonate of Ca, ZnO, MnO, R (R is Li, Na or an K) carbonates and R bicarbonate, Mixing raw material powder containing one or more salts, calcination and pulverizing the mixture, adding a binder to this powder, kneading and shaping to the required shape, firing at 800-1000 ° C, The component displayed as an oxide is mol%, substantially Al 2 O 3 : 40 to 65%, and one or both of SiO 2 and B 2 O 3 as a total amount of 15 to 35%, CaO: 10 to 20%, ZnO: 0.1 to 14%, MnO: 0 to 2% (including 0) and R 2 O (R is one or more of Li, Na and K): 0 to 2% (including 0) to, characterized in that to produce the high-frequency component for the low dielectric constant ceramic composition consisting of Method for producing a high-frequency component for the low dielectric constant ceramic composition. Al23、SiO2、B23、Caの炭酸塩、Caの炭酸水素塩、ZnO、MnO、R(RはLi、NaまたはKを示す)の炭酸塩、Rの炭酸水素塩およびLn23(LnはY、LaまたはNdを示す)の1つ以上を含む原料の粉末を混合し、混合物を仮焼後粉砕して粉末とし、この粉末にバインダーを加え混錬して所要形状に成形後、800〜1000℃にて焼成し、酸化物として表示される成分がモル%にて、実質的にAl23:40〜65%、SiO2およびB23のいずれか一方または両方を合計量として15〜35%、CaO:10〜20%、ZnO:0.1〜14%、MnO:0〜2%(但し、0を含む)、R2O(RはLi、Naおよびの中の一種以上):0〜2%(但し、0を含む)、およびLn23(LnはY、LaおよびNdの希土類元素の一種以上):0.1〜2%からなる高周波部品用低誘電率磁器組成物を製造することを特徴とする高周波部品用低誘電率磁器組成物の製造方法。 Al 2 O 3, SiO 2, B 2 O 3, C a carbonate, bicarbonate of Ca, ZnO, MnO, R (R is Li, shows the Na or K) carbonates, bicarbonates R , And Ln 2 O 3 (Ln represents Y, La or Nd), and a raw material powder is mixed. The mixture is calcined and pulverized to form a powder, and a binder is added to the powder and kneaded. After forming into the required shape, it is fired at 800 to 1000 ° C., and the component displayed as an oxide is in mol%, substantially Al 2 O 3 : 40 to 65%, SiO 2 and B 2 O 3 . 15% to 35% as a total amount of either one or both, CaO: 10 to 20%, ZnO: 0.1 to 14%, MnO: 0 to 2% (including 0) , R 2 O (R is One or more of Li, Na and K): 0 to 2% (including 0) , and Ln 2 O 3 ( Ln is a kind of rare earth element of Y, La and Nd): A low dielectric constant ceramic composition for high frequency components comprising 0.1 to 2% of a low dielectric constant ceramic composition for high frequency components Production method.
JP2002272874A 2002-09-19 2002-09-19 Method for producing low dielectric constant porcelain composition for high frequency component Expired - Lifetime JP4534413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002272874A JP4534413B2 (en) 2002-09-19 2002-09-19 Method for producing low dielectric constant porcelain composition for high frequency component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002272874A JP4534413B2 (en) 2002-09-19 2002-09-19 Method for producing low dielectric constant porcelain composition for high frequency component

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009121171A Division JP5062220B2 (en) 2009-05-19 2009-05-19 Manufacturing method of low dielectric constant porcelain substrate for high frequency components

Publications (2)

Publication Number Publication Date
JP2004107149A JP2004107149A (en) 2004-04-08
JP4534413B2 true JP4534413B2 (en) 2010-09-01

Family

ID=32269784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002272874A Expired - Lifetime JP4534413B2 (en) 2002-09-19 2002-09-19 Method for producing low dielectric constant porcelain composition for high frequency component

Country Status (1)

Country Link
JP (1) JP4534413B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106032318B (en) * 2015-03-12 2018-06-22 中国科学院上海硅酸盐研究所 A kind of low-temperature co-burning ceramic material and preparation method thereof
CN114394768A (en) * 2022-02-24 2022-04-26 中国建筑材料科学研究总院有限公司 Modified calcium-boron-lanthanum glass powder, green ceramic tape, LTCC substrate with controllable dielectric constant, packaging material and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4152282A (en) * 1976-12-27 1979-05-01 U.S. Philips Corporation Silk-screening dielectric paste for multilayer circuit fabrication comprising aluminum oxide and a borosilicate glass
JPH0333026A (en) * 1989-06-29 1991-02-13 Nippon Cement Co Ltd Composition for glass-ceramics-based wiring board
JPH0359029B2 (en) * 1985-03-29 1991-09-09 Narumi China Corp
JPH07135379A (en) * 1993-11-09 1995-05-23 Sumitomo Metal Mining Co Ltd Composition for low temperature firing glass ceramic board
JPH11100257A (en) * 1997-09-25 1999-04-13 Kyocera Corp Dielectric ceramic composition for high frequency application, dielectric resonator and dielectric waveguide
JP2000072532A (en) * 1998-08-24 2000-03-07 Nippon Electric Glass Co Ltd Glass-ceramic dielectric material
JP2001240470A (en) * 2000-02-29 2001-09-04 Kyocera Corp Porcelain composition for high-frequency use, porcelain for high-frequency use and method for producing porcelain for high-frequency use
JP2001247359A (en) * 2000-03-06 2001-09-11 Murata Mfg Co Ltd Insulator ceramic composition
JP2002029841A (en) * 2000-07-04 2002-01-29 Nippon Electric Glass Co Ltd Low temperature sintering dielectric material

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4152282A (en) * 1976-12-27 1979-05-01 U.S. Philips Corporation Silk-screening dielectric paste for multilayer circuit fabrication comprising aluminum oxide and a borosilicate glass
JPH0359029B2 (en) * 1985-03-29 1991-09-09 Narumi China Corp
JPH0333026A (en) * 1989-06-29 1991-02-13 Nippon Cement Co Ltd Composition for glass-ceramics-based wiring board
JPH07135379A (en) * 1993-11-09 1995-05-23 Sumitomo Metal Mining Co Ltd Composition for low temperature firing glass ceramic board
JPH11100257A (en) * 1997-09-25 1999-04-13 Kyocera Corp Dielectric ceramic composition for high frequency application, dielectric resonator and dielectric waveguide
JP2000072532A (en) * 1998-08-24 2000-03-07 Nippon Electric Glass Co Ltd Glass-ceramic dielectric material
JP2001240470A (en) * 2000-02-29 2001-09-04 Kyocera Corp Porcelain composition for high-frequency use, porcelain for high-frequency use and method for producing porcelain for high-frequency use
JP2001247359A (en) * 2000-03-06 2001-09-11 Murata Mfg Co Ltd Insulator ceramic composition
JP2002029841A (en) * 2000-07-04 2002-01-29 Nippon Electric Glass Co Ltd Low temperature sintering dielectric material

Also Published As

Publication number Publication date
JP2004107149A (en) 2004-04-08

Similar Documents

Publication Publication Date Title
JP4632534B2 (en) Dielectric porcelain and manufacturing method thereof
US8575052B2 (en) Dielectric ceramic, method for producing dielectric ceramic, and electronic component
JP2002104870A (en) Dielectric porcelain and laminate
JP3737774B2 (en) Dielectric ceramic composition
JP4613826B2 (en) Ceramic substrate composition, ceramic substrate, method for producing ceramic substrate, and glass composition
JP4534413B2 (en) Method for producing low dielectric constant porcelain composition for high frequency component
JP5527053B2 (en) Dielectric porcelain, dielectric porcelain manufacturing method, and electronic component
JP4337818B2 (en) Porcelain composition
JP4442077B2 (en) Porcelain composition for high frequency components
JP5062220B2 (en) Manufacturing method of low dielectric constant porcelain substrate for high frequency components
JP3909366B2 (en) Low dielectric constant porcelain composition and method for producing substrate for electronic circuit using the porcelain composition
JP2012051750A (en) Method for manufacturing dielectric ceramic composition and laminated ceramic electronic component
JP5527052B2 (en) Dielectric porcelain, dielectric porcelain manufacturing method, and electronic component
JP3793549B2 (en) Dielectric porcelain composition and laminate
KR100478127B1 (en) Dielectric Ceramic Composition
JP2004026543A (en) Dielectric porcelain composition and laminated ceramic component using the same
KR100632393B1 (en) High-permittivity dielectric ceramic compositions for low-fire ceramic multilayer packages
JP3631589B2 (en) Dielectric porcelain composition and laminate
JP3754827B2 (en) High frequency dielectric ceramic composition and laminate
JP4618856B2 (en) Low temperature fired porcelain
JP2003226572A (en) Low dielectric constant ceramic composition and production method therefor
JP2005089297A (en) High frequency dielectric ceramic and laminate
JP4594021B2 (en) Dielectric ceramic composition, method for producing the same, and wiring board
JP2004210614A (en) Dielectric ceramic composition for high frequency
JPH11278925A (en) Dielectric porcelain composition and laminate

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040105

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040412

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4534413

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

EXPY Cancellation because of completion of term