JP4865119B2 - Insulating substrate for solar cell having excellent heat resistance and method for producing the same - Google Patents

Insulating substrate for solar cell having excellent heat resistance and method for producing the same Download PDF

Info

Publication number
JP4865119B2
JP4865119B2 JP36704699A JP36704699A JP4865119B2 JP 4865119 B2 JP4865119 B2 JP 4865119B2 JP 36704699 A JP36704699 A JP 36704699A JP 36704699 A JP36704699 A JP 36704699A JP 4865119 B2 JP4865119 B2 JP 4865119B2
Authority
JP
Japan
Prior art keywords
insulating film
layer
paint
insulating
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36704699A
Other languages
Japanese (ja)
Other versions
JP2001185747A (en
Inventor
克全 阿波
智訓 牧野
淳 梶本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Nisshin Co Ltd filed Critical Nippon Steel Nisshin Co Ltd
Priority to JP36704699A priority Critical patent/JP4865119B2/en
Publication of JP2001185747A publication Critical patent/JP2001185747A/en
Application granted granted Critical
Publication of JP4865119B2 publication Critical patent/JP4865119B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、太陽電池セル形成時の高温加熱によっても良好な絶縁性が劣化しない耐熱性に優れた太陽電池用絶縁基板及びその製造方法に関する。
【0002】
【従来の技術】
太陽電池用の基板として、ガラス板,樹脂フィルム,金属板等が使用されている。なかでも、金属基板は、ガラス板に比較して可撓性に優れ、樹脂フィルムにない耐熱性をもつことが長所である。
金属基板に太陽電池セルを直接形成すると、各セルの一方の電極が金属基板を介して電気的に並列接続されるため、実用に供する電力が得られない。金属基板までをも切断してセルを分離することにより並列接続が避けられるが、これでは製造性が低下することは勿論、複数のセルを集積する際にセル間に余分な隙間ができ、太陽電池モジュールの単位面積当りの発電効率が低下する。
【0003】
そこで、金属基板の表面を絶縁処理する方法が採用されている。たとえば、スピナー,スプレー,浸漬法等で液状樹脂をステンレス鋼板の表面に塗布し、高温焼成によって膜厚2μm程度の高分子樹脂皮膜を形成する方法(特開昭59−47776号公報),スパッタリング,蒸着,イオンプレーティング,プラズマCVD,熱分解CVD等でシリカ,アルミナ,シリコンナイトライド等の無機系絶縁皮膜を形成する方法(特開昭59−47775号公報),有機シリケートに絶縁性微粒子を添加した塗料を硬化させ、シリカを主体とする無機・有機複合系絶縁皮膜を形成する方法(特開平2−18001号公報)等がある。
【0004】
また、特開平11−238891号公報では、アルミナ微粒子を添加したアルカリシリケート(ケイ酸塩)塗料をステンレス鋼板の表面に塗布して無機系絶縁皮膜を形成している。しかし、アルカリシリケート塗料は、通常、珪砂及び炭酸アルカリ又は水酸化アルカリを溶融して得たガラスを水溶化することにより得られるアルカリ性水溶液である。そのため、大半のアルカリシリケート塗料は、透水性及び通気性(透湿性)が非常に強く、防水性を示さない。これらの欠点はケイフッ化物,各種鉱酸,金属粉末,多価金属酸化物等の添加により改善され、アルミナ微粒子の添加(特開平11−238891号公報)も一つの改善手段である。
【0005】
【発明が解決しようとする課題】
従来から提案されている各種絶縁皮膜の中で、シリコーン樹脂を主成分とする絶縁皮膜は、ロールコーティング等で形成できるため製造コスト面で優れ、結合エネルギーの大きなシロキサン結合を主鎖とする樹脂骨格であることから耐熱性にも優れている。しかも、有機成分を含んでいることから、無機系絶縁皮膜に比較して太陽電池セル形成時の加熱に起因したクラックの発生も起こりにくい。しかし、有機成分は、太陽電池セル形成時の加熱によって分解・消失し、絶縁皮膜に微細なピンホールを発生させ、各太陽電池セル間を短絡させる原因となる。低温加熱によって非晶質シリコンを堆積する場合には耐熱性に優れた有機成分を選択することによりピンホールの発生を軽減できるが、より高温で非晶質シリコンを堆積させ、或いは薄膜多結晶シリコンを堆積させる場合等では有機成分の分解・消失に起因してピンホールが多発しやすい。ピンホールの発生を防止するために有機成分を減少させると、無機系絶縁皮膜と同様に太陽電池セル形成時の加熱によって微細なクラックが生じ、太陽電池セル間の短絡原因になる。
【0006】
アルカリシリケート塗料を用いた場合でも、ロールコーティング等で絶縁皮膜を形成できるため製造コスト面で優れている。また、シリカの網目構造の中にアルカリ金属が取り込まれた樹脂骨格をもつことから粘着性にも優れており、太陽電池セル形成時の加熱でも無機系絶縁皮膜にみられたようなクラックが生じがたい。
しかし、アルカリシリケート塗料が水性塗料であることから、形成された絶縁皮膜に水分が残存しやすい。皮膜形成時の加熱温度よりも太陽電池セル形成時の加熱温度が高いと残存水分が蒸発し、絶縁皮膜にフクレを発生させる。フクレが数十μm程度に成長すると、フクレの頂上部に微細なクラックが発生し、太陽電池セル間の短絡原因になる。皮膜形成時の加熱温度を高くすることによりフクレ及びフクレの成長を防止できるが、400℃を超える加熱温度では皮膜形成後にフクレが発生する。そのため、アルカリシリケート塗料で成膜される絶縁皮膜は、低温加熱で非晶質シリコンを堆積する場合には使用可能であるが、より高温で非晶質シリコンを堆積させ、或いは薄膜多結晶シリコンを堆積させる場合には太陽電池用絶縁基板として利用できない。
【0007】
【課題を解決するための手段】
本発明は、このような問題を解消すべく案出されたものであり、加熱時に発生する欠陥の形態が異なるアルカリシリケート塗料及びシリコーン塗料を組み合わせ、各絶縁皮膜の欠陥を互いの絶縁皮膜で補い合ってアルカリシリケート塗料及びシリコーン塗料それぞれの長所を活用し、高温加熱下での絶縁性を向上させた太陽電池用絶縁基板を提供することを目的とする。
本発明の太陽電池用絶縁基板は、その目的を達成するため、金属基板の表面に、アルミナ微粒子を配合したアルカリシリケート塗料からなる第1層の絶縁皮膜と、シリコーン塗料からなる第2層の絶縁皮膜が順次形成されていることを特徴とする。
【0008】
金属基板には、耐食性に優れたステンレス鋼板の使用が好ましい。第1層の絶縁皮膜は、平均粒径1μm以下のアルミナ微粒子を10〜30質量%の割合で配合したアルカリシリケート塗料を用い、単層又は複層として1μm以上の膜厚で形成することが好ましい。第2層の絶縁皮膜も、膜厚2μm以上で形成することが好ましい。
この太陽電池用絶縁基板は、アルミナ微粒子を配合したアルカリシリケート塗料を金属基板の表面に塗布し、乾燥・焼成して第1層の絶縁皮膜を形成した後、第1層の絶縁皮膜の上にシリコーン塗料を塗布し,乾燥・焼成して第2層の絶縁皮膜を形成することにより製造される。
【0009】
【作用及び実施の形態】
本発明に従った太陽電池用絶縁基板は、図1に示すように金属基板1の上に第1層の絶縁皮膜2及び第2層の絶縁皮膜3を順次積層している。第1層の絶縁皮膜2はアルミナ微粒子4を配合したアルカリシリケート塗料から成膜され、第2層の絶縁皮膜3はシリコーン塗料から成膜される。第1層の絶縁皮膜2は、図2に示すように複層構造として設けることもできる。
第1層の絶縁皮膜2は、アルカリシリケート塗料を塗布して形成した無機系絶縁皮膜であり、アルカリ金属が取り込まれた骨格構造をもつことから粘着性に優れ、太陽電池セル形成時の加熱で熱膨張係数の相違に由来する無機系絶縁皮膜特有の大きなクラックが発生しがたい。しかし、水性塗料であるため、400℃を超えるような高温でセルが形成される太陽電池用途に使用すると、残存水分の蒸発に起因して絶縁皮膜にフクレが発生する欠点がある。
【0010】
本発明者等は、アルカリシリケート塗料からなる無機系絶縁皮膜を多層に形成することにより絶縁皮膜のフクレ防止を図ることを検討した。しかし、下層側にある絶縁皮膜のフクレ発生は防止できるが、表層側の絶縁皮膜にフクレが発生するため、直下にある絶縁皮膜の発生しているフクレを抑えることができず、フクレ防止効果は小さなものであった。また、フクレを起こすほどの蒸気圧を抑えるためには、実際にフクレが発生した下層側絶縁皮膜と同じ組成の上層側絶縁皮膜では耐圧が不足する。
【0011】
そこで、アルカリシリケート塗料からなる無機系絶縁皮膜に発生しがちなフクレを上層の絶縁皮膜で抑えつけて防止するため、第2層の絶縁皮膜3をフクレの発生しない系とし、更にアルカリシリケート塗料からなる第1層の絶縁皮膜2よりも強固な骨格構造をもつ絶縁皮膜を形成することが必要であると考えた。このような前提に立って、シロキサン結合を主鎖とするシリコーン塗料を用いて第2層の絶縁皮膜3を形成するとき、強固な骨格構造をもつ絶縁皮膜3が上層に形成され、結果として第1層の絶縁皮膜2に発生するフクレが抑えられることを見出した。また、高温加熱による耐熱試験後、樹脂の分解や収縮に伴うクラックが第2層の絶縁皮膜3に検出されるものの、第1層の絶縁皮膜2を起点とするフクレの発生が観察されない。しかも、太陽電池セル形成時の加熱でシリコーン系絶縁皮膜3にピンホールが生成しても、ピンホールを介して太陽電池セルが金属基板1に導通することが第1層の絶縁皮膜2で防止される。
【0012】
第1層の絶縁皮膜2の形成に使用されるアルカリシリケート塗料としては、たとえばケイ酸ナトリウム系,ケイ酸カリウム系,ケイ酸リチウム系及びそれらの複合系等がある。第2層の絶縁皮膜3の形成に使用されるシリコーン塗料としては、たとえばメチルシリコーン,メチルフェニルシリコーン等の純シリコーンやアルキド変性、ポリエステル変性シリコーン等がある。
第1層の絶縁皮膜2には、平均粒径1μm以下のアルミナ微粒子4を10〜30質量%の割合で分散配合することが好ましい。耐水性に劣るアルカリシリケート系の皮膜を絶縁皮膜に使用する場合、皮膜に吸収された水分に起因する短絡が懸念される。この点、アルカリシリケート系皮膜にアルミナ微粒子を分散配合すると、皮膜中を水分が通ることがアルミナ微粒子で妨げられ、耐水性が改善される。
【0013】
アルミナ微粒子4の平均粒径が1μmを超えると、絶縁皮膜がRmaxで数μmオーダの表面粗さになり、1μm以下の薄膜で形成される太陽電池セルの発電層に膜切れが生じ短絡が発生しやすくなる。アルミナ微粒子4の配合量が第1層の絶縁皮膜2中の固形分比率として10質量%未満では、耐水性,耐食性,耐候性等といった耐久性が劣化しやすい。逆に30質量%を超える配合量では、アルミナ微粒子4が二次凝集しやすく,アルカリシリケート塗料の貯蔵安定性が劣化する。
第1層の絶縁皮膜2は、好ましくは1μm以上の膜厚で形成される。1μmに満たない膜厚では、金属基板1の凹凸によって第1層の絶縁皮膜2に破れ等の欠陥が発生しやすく、十分な絶縁特性が得られない。第2層の絶縁皮膜3も、第1層の絶縁皮膜2のフクレ抑制に有効な皮膜強度を付与するために1μm以上の膜厚で形成することが好ましい。
【0014】
第1層の絶縁皮膜2は、95×10-7/℃程度の熱膨張係数をもつ。熱膨張係数の相違に起因するクラックの発生を防止するためには、第1層の絶縁皮膜2に近い熱膨張係数をもつ金属基板1の使用が好ましい。この点、ステンレス鋼板は、SUS430で約104×10-7/℃であり、太陽電池用基板材料として好適である。また、第1層の絶縁皮膜2を複層構成で設けるとき、熱膨張係数差に起因するクラックの発生が緩和されると共に、絶縁安定性も向上する。
【0015】
【実施例】
成 膜 法
成膜例1(本発明例):
第1層の絶縁皮膜2形成用アルカリシリケート塗料として、皮膜中の固形分比率がケイ酸ナトリウム(SiO2:58〜61質量%,Na2O:19〜21質量%)50質量%,ケイ酸カリウム(SiO2:19〜21質量%,K2O:8〜10質量%)35重量%となるように調合し、平均粒径0.2μmのアルミナ微粒子を15質量%の割合で配合した。
第2層の絶縁皮膜3のシリコーン塗料には、耐熱塗料パイロサーム#0400P(日本グレーベカシュー株式会社製)を使用した。この塗料は、Si−Oの側鎖にメチル基等が付加されたシリコーン樹脂からなり、顔料として金属酸化物を含んでいる。
金属基板1として、アルカリ脱脂した板厚0.15mm,板幅300mmのSUS430ステンレス鋼板を使用した。アルカリシリケート塗料をステンレス鋼帯にロールコータで塗布した後、300℃×1分で焼き付け、膜厚4μmの第1層の絶縁皮膜2を形成した。更に、第1層の絶縁皮膜2の上にシリコーン塗料を塗布し、350℃×2分で焼き付け、膜厚15μmの第2層の絶縁皮膜3を形成した。
【0016】
成膜例2(本発明例):
耐熱塗料オキツモ6831(オキツモ株式会社製:成膜例1と同様なシリコーン塗料)をシリコーン塗料に使用する以外は、成膜例1と同様に絶縁皮膜を形成した。得られた絶縁皮膜の膜厚は、第1層の絶縁皮膜2が6μm,第2層の絶縁皮膜3が14μmであった。
成膜例3(本発明例):
アルカリシリケート塗料に添加するアルミナ微粒子の平均粒径を1μmとする以外は、成膜例1と同様に絶縁皮膜を形成した。得られた絶縁皮膜の膜厚は、第1層の絶縁皮膜2が5μm,第2層の絶縁皮膜3が13μmであった。
【0017】
成膜例4(本発明例):
アルカリシリケート塗料に添加するアルミナ微粒子の濃度を第1層の絶縁皮膜2中の固形分比率として10質量%とする以外は、成膜例1と同様に絶縁皮膜を形成した。得られた絶縁皮膜の膜厚は、第1層の絶縁皮膜2が5μm,第2層の絶縁皮膜3が15μmであった。
成膜例5(本発明例):
アルカリシリケート塗料に添加するアルミナ微粒子の濃度を第1層の絶縁皮膜2中の固形分比率として30質量%とする以外は、成膜例1と同様に絶縁皮膜を形成した。得られた絶縁皮膜の膜厚は、第1層の絶縁皮膜2が6μm,第2層の絶縁皮膜3が14μmであった。
成膜例6(本発明例):
第1層の絶縁皮膜2用のアルカリシリケート塗料をロールコートする際にアプリケータロールの周速を遅くする以外は、成膜例1と同様に絶縁皮膜を形成した。得られた絶縁皮膜の膜厚は、第1層の絶縁皮膜2が1μm,第2層の絶縁皮膜3が13μmであった。
【0018】
成膜例7(本発明例):
第2層の絶縁皮膜3用のシリコーン塗料をロールコートする際にアプリケータロールの周速を遅くする以外は、成膜例1と同様に絶縁皮膜を形成した。得られた絶縁皮膜の膜厚は、第1層の絶縁皮膜2が5μm,第2層の絶縁皮膜3が1μmであった。
成膜例8(本発明例):
アルカリシリケート塗料からなる第1層の絶縁皮膜2とシリコーン塗料からなる第2層の絶縁皮膜3との間に、中間層として第1層と同じ条件で絶縁皮膜を形成する以外は、成膜例1と同様に絶縁皮膜を形成した。得られた絶縁皮膜の膜厚は、第1層の絶縁皮膜2が5μm,中間層の絶縁皮膜が5μm,第2層の絶縁皮膜3が10μmであった。
【0019】
成膜例9(比較例):
成膜例1と同じ条件下で膜厚6μmの第1層の絶縁皮膜2のみを形成した。
成膜例10(比較例):
成膜例1と同じ条件下で膜厚16μmの第2層の絶縁皮膜3のみを形成した。
成膜例11(比較例):
成膜例2と同じ条件下で膜厚15μmの第2層の絶縁皮膜3のみを形成した。
成膜例12(比較例):
アルカリシリケート塗料に平均粒径5μmのアルミナ微粒子を添加する以外は,成膜例1と同様に絶縁皮膜を形成した。得られた絶縁皮膜の膜厚は、第1層の絶縁皮膜2が6μm,第2層の絶縁皮膜3が15μmであった。
【0020】
成膜例13(比較例):
皮膜中の固形分比率として70質量%のアルミナ微粒子をアルカリシリケート塗料に配合する以外は、成膜例1と同様に絶縁皮膜を形成した。得られた絶縁皮膜の膜厚は,第1層の絶縁皮膜2が6μm,第2層の絶縁皮膜3が15μmであった。
【0021】
塗 膜 性 能 評 価
耐熱性試験:
絶縁皮膜が形成された各ステンレス鋼板から300mm×300mmの試験片を切り出し、耐熱試験に供した。耐熱試験では、絶縁皮膜側に直径50mmのAl電極を幅方向及び長手方向共に60mm間隔で合計25個形成し、真空焼鈍炉(到達真空度:1〜3×10-2Pa)に装入して500℃に90分間保持した後、電極表面と試験片裏面との間に1Vの電圧を印加し、面積抵抗が1MΩ・cm2以上となる電極の個数をカウントした。1MΩ・cm2以上の電極の個数が25個であるサンプルを◎,23個以上を○,22個以下を×として耐熱性を評価した。
塗料安定性:
成膜例1〜13で調製した各塗料を40℃に1ヶ月放置した後、塗料中の微粒子の平均粒径を粒度分布計で測定し、二次凝集の度合いを調査した。平均粒径が1μm以下を◎,2μm以下を○,2μmを超えるものを×として塗料安定性を評価した。
【0022】
表1の調査結果にみられるように、成膜例1〜8(本発明例)の絶縁皮膜は、何れも優れた耐熱性を呈し、太陽電池セル形成時の加熱雰囲気に曝されてもピンホール等の欠陥の発生がないことが判る。使用した塗料も貯蔵安定性に優れ、長期にわたって品質が安定した絶縁皮膜の形成に使用される。これに対し、アルカリシリケート塗料又はシリコーン塗料からなる絶縁皮膜のみを形成した成膜例9〜11では。塗料安定性に優れるものの、耐熱性に劣っていた。複層構造の塗膜を形成した場合でも、第1層の絶縁皮膜2に平均粒径の大きなアルミナ微粒子4を分散させた成膜例では、耐熱性に優れるものの塗料安定性に劣っていた。第1層の絶縁皮膜2に過剰のアルミナ微粒子4を分散させた成膜例13では、耐熱性及び塗料安定性共に劣っていた。この対比から明らかなように、アルミナ微粒子4を分散させたアルカリシリケート系絶縁皮膜2の上にシリコーン系絶縁皮膜3を形成するとき、耐熱性に優れた絶縁皮膜が得られ、太陽電池セル形成時の加熱によっても短絡原因になるピンホール等の欠陥発生のない耐熱性に優れた太陽電池用絶縁基板が提供される。
【0023】
【表1】

Figure 0004865119
【0024】
【発明の効果】
以上に説明したように、本発明の太陽電池用絶縁基板は、金属基板の上にアルミナ微粒子を分散させたアルカリシリケート系絶縁皮膜及びシリコーン系絶縁皮膜を順次形成しているので、各皮膜の欠陥が他方の皮膜で互いに補われ、太陽電池セル形成時に高温加熱されても絶縁性が低下することがない。しかも、アルカリシリケート塗料に配合するアルミナ微粒子の粒径及び分散量を調整するとき、耐熱性,耐久性及び塗料安定性が向上し,高品質の太陽電池用絶縁基板が得られる。
【図面の簡単な説明】
【図1】 金属基板表面にアルミナ微粒子分散アルカリシリケート系絶縁皮膜(第1層)及びシリコーン系絶縁皮膜(第2層)を順次積層した太陽電池用絶縁基板の断面図
【図2】 第1層を複層とし、その上にシリコーン系絶縁皮膜(第2層)を形成した太陽電池用絶縁基板の断面図[0001]
[Industrial application fields]
The present invention relates to an insulating substrate for a solar cell that is excellent in heat resistance and does not deteriorate even when heated at a high temperature during solar cell formation, and a method for manufacturing the same.
[0002]
[Prior art]
As a substrate for a solar cell, a glass plate, a resin film, a metal plate, or the like is used. Among them, the metal substrate is superior in flexibility as compared with a glass plate and has heat resistance that is not found in a resin film.
When solar cells are directly formed on a metal substrate, one electrode of each cell is electrically connected in parallel via the metal substrate, so that electric power for practical use cannot be obtained. Although parallel connection can be avoided by cutting the metal substrate and separating the cells, this will not only reduce manufacturability, but also create an extra gap between the cells when integrating multiple cells. The power generation efficiency per unit area of the battery module is reduced.
[0003]
Therefore, a method of insulating the surface of the metal substrate is employed. For example, a method in which a liquid resin is applied to the surface of a stainless steel plate by a spinner, spray, dipping method, etc., and a polymer resin film having a film thickness of about 2 μm is formed by high-temperature firing (JP 59-47776 A), sputtering, A method of forming an inorganic insulating film such as silica, alumina, silicon nitride, etc. by vapor deposition, ion plating, plasma CVD, pyrolysis CVD, etc. (JP-A-59-47775), adding insulating fine particles to organic silicate For example, there is a method of curing an applied paint to form an inorganic / organic composite insulating film mainly composed of silica (JP-A-2-18001).
[0004]
Further, in JP-A 11-238891, JP-alkali silicate with added alumina fine particles (silicates) paint the applied to the surface of the stainless steel plate to form an inorganic insulating film. However, the alkali silicate cases DOO paint are usually alkaline aqueous solution obtained by water-solubilizing the glass obtained by melting quartz sand and alkali carbonate or alkali hydroxide. Therefore, most of the alkali silicate cases DOO paint is water permeability and air permeability (moisture permeability) is very strong, do not exhibit waterproofness. These disadvantages are improved by adding silicofluoride, various mineral acids, metal powders, polyvalent metal oxides, and the like, and addition of alumina fine particles (Japanese Patent Laid-Open No. 11-238891) is one improvement means.
[0005]
[Problems to be solved by the invention]
Among the various insulating coatings that have been proposed in the past, insulating coatings based on silicone resins can be formed by roll coating, etc., so they are excellent in manufacturing cost and have a skeleton with a large siloxane bond as the main chain. Therefore, it has excellent heat resistance. In addition, since it contains an organic component, cracks caused by heating during the formation of solar cells are less likely to occur compared to inorganic insulating films. However, the organic component is decomposed / disappeared by heating at the time of forming the solar battery cell, causing a fine pinhole in the insulating film and causing a short circuit between the solar battery cells. When amorphous silicon is deposited by low-temperature heating, the generation of pinholes can be reduced by selecting an organic component with excellent heat resistance. However, amorphous silicon is deposited at a higher temperature, or thin-film polycrystalline silicon. In the case of depositing, etc., pinholes are likely to occur frequently due to decomposition and disappearance of organic components. If the organic component is reduced to prevent the generation of pinholes, fine cracks are generated by heating during the formation of solar cells, as in the case of the inorganic insulating film, causing short circuits between the solar cells.
[0006]
Even with alkali silicate cable preparative paint, it is excellent in production cost because it can form an insulating film in a roll coating or the like. In addition, since it has a resin skeleton in which alkali metal is incorporated in the silica network structure, it has excellent adhesiveness, and even when heated during the formation of solar cells, cracks such as those seen in inorganic insulating films occur. It ’s hard.
However, since the alkali silicate cases preparative paint is water-based paint, water tends to remain in the formed insulating film. If the heating temperature at the time of solar cell formation is higher than the heating temperature at the time of film formation, the residual moisture evaporates, causing swelling in the insulating film. When the bulge grows to about several tens of μm, a fine crack is generated at the top of the bulge, causing a short circuit between the solar cells. Although it is possible to prevent swelling and swelling growth by increasing the heating temperature at the time of film formation, swelling occurs at a heating temperature exceeding 400 ° C. after the film formation. Therefore, the insulating coating is a film forming an alkali silicate cases preparative paint, but can be used in the case of depositing the amorphous silicon at low temperature heating, is more depositing amorphous silicon at a high temperature, or a thin film multi When crystalline silicon is deposited, it cannot be used as an insulating substrate for solar cells.
[0007]
[Means for Solving the Problems]
The present invention has been devised to solve such a problem, a combination of alkali silicate cable preparative paint form different defects and silicone emission paint generated during heating, the defect of the insulating film to each other of complemented each with an insulating film utilizing the alkali silicate cable preparative paint and silicone emission paint their advantages, and an object thereof is to provide an insulating substrate for a solar cell with improved insulating property under high temperature heating.
An insulating substrate for a solar cell of the present invention in order to achieve the purpose, the surface of the metal substrate, an insulating film of the first layer consisting of alkali silicate cases preparative paint blended with alumina particulate, consisting silicone down paint The insulating film of the second layer is formed sequentially.
[0008]
The metal substrate is preferably a stainless steel plate having excellent corrosion resistance. Insulating film of the first layer, using the mean particle size alkaline silicate cases preparative paint to 1μm below alumina particles were blended at a ratio of 10 to 30 mass%, it is formed in a thickness of more than 1μm as a single layer or multiple layers It is preferable. The second layer insulating film is also preferably formed with a thickness of 2 μm or more.
The solar cell insulating substrate, after the alkali silicate cable preparative paint blended with the alumina particles is applied to the surface of the metal substrate, an insulating film of the first layer by drying and baking, an insulating film of the first layer applying a silicone down paint over, it is prepared by forming an insulating film of the second layer by drying and baking.
[0009]
[Operation and embodiment]
The insulating substrate for a solar cell according to the present invention has a first insulating film 2 and a second insulating film 3 sequentially laminated on a metal substrate 1 as shown in FIG. Insulating film 2 of the first layer is deposited from an alkaline silicate cases preparative paint blended with the alumina particles 4, the insulating film 3 of the second layer is deposited from a silicone down paint. The insulating film 2 of the first layer can be provided as a multilayer structure as shown in FIG.
Insulating film 2 of the first layer is an inorganic insulating film formed by coating the alkali silicate cable preparative paint, excellent adhesiveness because of its skeletal structure in which an alkali metal is incorporated, when the solar cell formation It is difficult to generate large cracks peculiar to the inorganic insulating film due to the difference in thermal expansion coefficient due to the heating. However, since it is a water-based paint, when it is used for a solar battery application in which cells are formed at a high temperature exceeding 400 ° C., there is a drawback that swelling occurs in the insulating film due to evaporation of residual moisture.
[0010]
The present inventors have examined possible to blister prevention insulating film by forming an inorganic insulating film comprising an alkali silicate cases preparative paint multilayer. However, the occurrence of blistering on the insulating film on the lower layer side can be prevented, but the blistering on the insulating film on the surface layer side can be prevented. It was a small one. Moreover, in order to suppress the vapor pressure to the extent that blisters occur, the upper-layer insulating film having the same composition as the lower-layer insulating film in which the blisters are actually generated has insufficient pressure resistance.
[0011]
In order to prevent prone blistering occurs inorganic insulating film comprising an alkali silicate cases preparative paint and held down by the upper insulating film, the insulating film 3 of the second layer and that does not cause system blistering, further alkali than Shirike preparative paint insulating film 2 of the first layer of thought that it is necessary to form an insulating film with a strong skeleton structure. Standing on such assumption, when the insulating film 3 of the second layer is formed by using a silicone emission paint having a siloxane bond as the main chain, an insulating film 3 with a strong skeleton structure formed in an upper layer, the result As a result, it was found that the swelling generated in the insulating film 2 of the first layer can be suppressed. In addition, after the heat resistance test by high-temperature heating, cracks due to the decomposition and shrinkage of the resin are detected in the insulating film 3 of the second layer, but the occurrence of blisters starting from the insulating film 2 of the first layer is not observed. Moreover, even if pinholes are generated in the silicone insulating film 3 due to heating during the formation of the solar cells, the first insulating film 2 prevents the solar cells from conducting to the metal substrate 1 through the pinholes. Is done.
[0012]
The alkali silicate cases preparative paint used for forming the insulating film 2 of the first layer, for example, sodium silicate based, potassium silicate based, lithium silicate-based, and a composite system, etc. thereof. The silicone emission paint used for forming the insulating film 3 of the second layer, for example, a methyl silicone, pure silicone N'ya alkyd modified and methyl phenyl silicone, polyester-modified silicone or the like.
It is preferable to disperse and mix the alumina fine particles 4 having an average particle diameter of 1 μm or less in the first layer insulating film 2 at a ratio of 10 to 30% by mass. When an alkali silicate film having poor water resistance is used as an insulating film, there is a concern that a short circuit may be caused by moisture absorbed in the film. In this regard, when alumina fine particles are dispersed and blended in the alkali silicate-based film, the water content is prevented by the alumina fine particles from passing through the film, thereby improving the water resistance.
[0013]
If the average particle diameter of the alumina fine particles 4 exceeds 1 μm, the insulating film will have a surface roughness of Rμ order on the order of several μm, and the power generation layer of the solar cell formed with a thin film of 1 μm or less will be cut and a short circuit will occur It becomes easy to do. When the blending amount of the alumina fine particles 4 is less than 10% by mass as the solid content ratio in the insulating film 2 of the first layer, durability such as water resistance, corrosion resistance, and weather resistance is likely to deteriorate. The amount of reverse it exceeds 30 mass%, alumina fine particles 4 secondary aggregation easily, the storage stability of the alkali silicate cases preparative paint is deteriorated.
The insulating film 2 of the first layer is preferably formed with a film thickness of 1 μm or more. When the film thickness is less than 1 μm, the insulating film 2 of the first layer is likely to be broken due to the unevenness of the metal substrate 1, and sufficient insulating properties cannot be obtained. The second insulating film 3 is also preferably formed with a film thickness of 1 μm or more in order to provide film strength effective for suppressing swelling of the first insulating film 2.
[0014]
The insulating film 2 of the first layer has a thermal expansion coefficient of about 95 × 10 −7 / ° C. In order to prevent the occurrence of cracks due to the difference in thermal expansion coefficient, it is preferable to use the metal substrate 1 having a thermal expansion coefficient close to that of the first insulating film 2. In this respect, the stainless steel plate has a SUS430 value of about 104 × 10 −7 / ° C. and is suitable as a substrate material for solar cells. In addition, when the first-layer insulating coating 2 is provided in a multilayer structure, the generation of cracks due to the difference in thermal expansion coefficient is alleviated and the insulation stability is also improved.
[0015]
【Example】
Film formation method Film formation example 1 (example of the present invention):
As the insulating film 2 for forming an alkali silicate cable preparative paint of the first layer, the solid content ratio of sodium silicate in the coating (SiO 2: 58-61 wt%, Na 2 O: 19 to 21 wt%) 50 wt% , Potassium silicate (SiO 2 : 19 to 21% by mass, K 2 O: 8 to 10% by mass) is prepared to be 35% by weight, and alumina fine particles having an average particle size of 0.2 μm are mixed at a ratio of 15% by mass Blended.
The silicone down paint insulating film 3 of the second layer, using the heat-resistant paint Pairosamu # 0400P (manufactured by Nippon gray Beka shoe Ltd.). This paint is made of a silicone resin in which a methyl group or the like is added to the side chain of Si—O, and contains a metal oxide as a pigment.
As the metal substrate 1, a SUS430 stainless steel plate having an alkali degreased thickness of 0.15 mm and a plate width of 300 mm was used. After a roll coater alkali silicate cable preparative paint to a stainless steel strip, baked at 300 ° C. × 1 minute, to form an insulating film 2 of the first layer having a thickness of 4 [mu] m. Further, on the insulating film 2 of the first layer was coated a silicone emission paint, baked at 350 ° C. × 2 minutes to form an insulating film 3 of the second layer having a thickness of 15 [mu] m.
[0016]
Film formation example 2 (example of the present invention):
Heat paint Okitsumo 6831: but using (OKITSUMO Ltd. Film Formation Example 1 with silicone emission paint similar) to silicone emission paint was formed in the same manner as the insulating film and Film Formation Example 1. The thickness of the obtained insulating film was 6 μm for the first insulating film 2 and 14 μm for the second insulating film 3.
Film formation example 3 (example of the present invention):
Except that the 1μm average particle size of alumina particles added to the alkali silicate cable DOO paint was formed in the same manner as the insulating film and Film Formation Example 1. The film thickness of the obtained insulating film was 5 μm for the first insulating film 2 and 13 μm for the second insulating film 3.
[0017]
Film formation example 4 (example of the present invention):
Except that the 10 wt% concentration of alumina fine particles to be added to the alkali silicate cable preparative paint as solid content in the insulation film 2 of the first layer was formed in the same manner as the insulating film and Film Formation Example 1. The thickness of the insulating film obtained was 5 μm for the first insulating film 2 and 15 μm for the second insulating film 3.
Film formation example 5 (example of the present invention):
Except that the 30 wt% concentration of alumina fine particles to be added to the alkali silicate cable preparative paint as solid content in the insulation film 2 of the first layer was formed in the same manner as the insulating film and Film Formation Example 1. The thickness of the obtained insulating film was 6 μm for the first insulating film 2 and 14 μm for the second insulating film 3.
Film formation example 6 (example of the present invention):
Except that slow the peripheral speed of the applicator roll during the roll coating the alkali silicate cable preparative paint for insulation coating 2 of the first layer was formed in the same manner as the insulating film and Film Formation Example 1. The thickness of the insulating film obtained was 1 μm for the first insulating film 2 and 13 μm for the second insulating film 3.
[0018]
Film formation example 7 (example of the present invention):
Except that slow the peripheral speed of the applicator roll during the roll coating the silicone down paint for insulation coating 3 of the second layer was formed in the same manner as the insulating film and Film Formation Example 1. The film thickness of the obtained insulating film was 5 μm for the first insulating film 2 and 1 μm for the second insulating film 3.
Film formation example 8 (example of the present invention):
Between the alkali silicate cable insulating coating of the first layer of preparative paint 2 and silicone of the second layer of down paint insulating film 3, except that an insulating film under the same conditions as the first layer as an intermediate layer In the same manner as in Film Formation Example 1, an insulating film was formed. The film thickness of the obtained insulating film was 5 μm for the first insulating film 2, 5 μm for the intermediate insulating film, and 10 μm for the second insulating film 3.
[0019]
Film formation example 9 (comparative example):
Only the first-layer insulating film 2 having a film thickness of 6 μm was formed under the same conditions as in the film formation example 1.
Film formation example 10 (comparative example):
Only the second-layer insulating film 3 having a film thickness of 16 μm was formed under the same conditions as in the first film formation example.
Film formation example 11 (comparative example):
Only the second-layer insulating film 3 having a film thickness of 15 μm was formed under the same conditions as in the film formation example 2.
Film formation example 12 (comparative example):
Except that the addition of alumina fine particles having an average particle size of 5μm to alkali silicate cable DOO paint was formed in the same manner as the insulating film and Film Formation Example 1. The thickness of the insulating film obtained was 6 μm for the first insulating film 2 and 15 μm for the second insulating film 3.
[0020]
Film formation example 13 (comparative example):
Except that 70 wt% of alumina particles as solid content in the coating is blended into alkaline silicate cable DOO paint was formed in the same manner as the insulating film and Film Formation Example 1. The thickness of the insulating film obtained was 6 μm for the first insulating film 2 and 15 μm for the second insulating film 3.
[0021]
Coating Film Performance Evaluation Evaluation Heat Resistance Test:
A test piece of 300 mm × 300 mm was cut out from each stainless steel plate on which the insulating film was formed and subjected to a heat resistance test. In the heat resistance test, a total of 25 Al electrodes with a diameter of 50 mm were formed on the insulating film side at 60 mm intervals both in the width direction and in the longitudinal direction, and charged in a vacuum annealing furnace (degree of ultimate vacuum: 1-3 × 10 −2 Pa). After maintaining at 500 ° C. for 90 minutes, a voltage of 1 V was applied between the electrode surface and the back surface of the test piece, and the number of electrodes having an area resistance of 1 MΩ · cm 2 or more was counted. A sample having 25 electrodes of 1 MΩ · cm 2 or more was evaluated as ◎, 23 or more as ◯, and 22 or less as x.
Paint stability:
Each coating material prepared in the film formation examples 1 to 13 was allowed to stand at 40 ° C. for 1 month, and then the average particle size of the fine particles in the coating material was measured with a particle size distribution meter to investigate the degree of secondary aggregation. The coating stability was evaluated with an average particle size of 1 μm or less as ◎, 2 μm or less as ○, and those with a particle size exceeding 2 μm as x.
[0022]
As can be seen from the investigation results in Table 1, all of the insulating films of the film formation examples 1 to 8 (examples of the present invention) exhibit excellent heat resistance, and even when exposed to the heating atmosphere during the formation of solar cells, It can be seen that there are no defects such as holes. The paint used is also excellent in storage stability and used to form an insulating film with stable quality over a long period of time. In contrast, in Film Formation Example 9-11 to form only the insulating film consisting of alkali silicate cases preparative paint or silicone down paint. Although it was excellent in paint stability, it was inferior in heat resistance. Even when a coating film having a multilayer structure was formed, the film formation example in which the alumina fine particles 4 having a large average particle diameter were dispersed in the first insulating film 2 was excellent in heat resistance but poor in paint stability. In the film-forming example 13 in which excess alumina fine particles 4 were dispersed in the first insulating film 2, both the heat resistance and the paint stability were inferior. As is clear from this comparison, when the silicone insulating film 3 is formed on the alkali silicate insulating film 2 in which the alumina fine particles 4 are dispersed, an insulating film having excellent heat resistance is obtained, and when the solar battery cell is formed. An insulating substrate for solar cells is provided that is free from defects such as pinholes that can cause a short circuit even when heated.
[0023]
[Table 1]
Figure 0004865119
[0024]
【Effect of the invention】
As described above, the insulating substrate for solar cells of the present invention is formed by sequentially forming an alkali silicate insulating film and a silicone insulating film in which alumina fine particles are dispersed on a metal substrate. However, the other film is supplemented to each other, and even when heated at the time of solar cell formation, the insulating property does not deteriorate. Moreover, when adjusting the particle size and dispersion amount of the alumina fine particles blended in the alkali silicate paint, the heat resistance, durability and paint stability are improved, and a high-quality insulating substrate for a solar cell can be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an insulating substrate for a solar cell in which an alumina fine particle dispersed alkali silicate insulating film (first layer) and a silicone insulating film (second layer) are sequentially laminated on a metal substrate surface. Sectional view of an insulating substrate for solar cells in which a silicon-based insulating film (second layer) is formed on the substrate

Claims (7)

金属基板の表面に、平均粒径1μm以下のアルミナ微粒子を固形分比率として10〜30質量%の割合で配合したアルカリシリケート塗料からなる第1層の絶縁皮膜と、シリコーン塗料からなる第2層の絶縁皮膜が順次形成されている耐熱性に優れた太陽電池用絶縁基板。On the surface of the metal substrate, an insulating film of the first layer made of the average particle diameter 1μm or less of the alumina particles in proportions of 10 to 30 mass% as a solid content of alkaline silicate cases preparative paint, from silicone down paint An insulating substrate for solar cells excellent in heat resistance, in which an insulating film of the second layer is sequentially formed. 前記第1層の絶縁皮膜に平均粒径0.2〜1μmのアルミナ微粒子を配合した、請求項1記載の太陽電池用絶縁基板。 The insulating substrate for solar cells according to claim 1 , wherein alumina fine particles having an average particle diameter of 0.2 to 1 μm are blended in the insulating film of the first layer . アルカリシリケート塗料からなる第1層の絶縁皮膜とシリコーン塗料からなる第2層の絶縁皮膜との間に、さらにアルカリシリケート塗料からなる中間層の絶縁皮膜が形成されている請求項1又は2に記載の太陽電池用絶縁基板。Between the insulating film of the second layer of insulating coating and the silicone down paint the first layer of alkali silicate cases preparative paint, is insulated coating of the intermediate layer is formed consisting of further alkali silicate cases preparative paint The insulating substrate for solar cells according to claim 1 or 2. ステンレス鋼板を金属基板として使用する請求項1〜3のいずれか1項に記載の太陽電池用絶縁基板。  The insulating substrate for solar cells according to any one of claims 1 to 3, wherein a stainless steel plate is used as the metal substrate. 平均粒径1μm以下のアルミナ微粒子を固形分比率として10〜30質量%の割合で配合したアルカリシリケート塗料を金属基板の表面に塗布し、乾燥・焼成して第1層の絶縁皮膜を形成した後、第1層の絶縁皮膜の上にシリコーン塗料を塗布し,乾燥・焼成して第2層の絶縁皮膜を形成することを特徴とする太陽電池用絶縁基板の製造方法。Coated alkali silicate cases preparative paint blended in a proportion of 10 to 30% by weight or less of alumina fine average particle size 1μm as solid content of the surface of the metal substrate, an insulating film of the first layer by drying and baking after formation, coated with silicone down paint on the insulating film of the first layer, the method for manufacturing the solar cell insulating substrate, which comprises forming an insulating film of the second layer by drying and baking. 前記第1層の絶縁皮膜に平均粒径0.2〜1μmのアルミナ微粒子を配合した、請求項5記載の太陽電池用絶縁基板の製造方法。The manufacturing method of the insulating substrate for solar cells of Claim 5 which mix | blended the alumina fine particle with an average particle diameter of 0.2-1 micrometer with the insulating film of the said 1st layer . アルカリシリケート塗料からなる第1層の絶縁皮膜とシリコーン塗料からなる第2層の絶縁皮膜との間に、さらにアルカリシリケート塗料からなる中間層の絶縁皮膜を形成することを特徴とする、請求項5又は6に記載の太陽電池用絶縁基板の製造方法。Between the insulating film of the second layer of insulating coating and the silicone down paint the first layer of alkali silicate cases preparative paint, further forming an insulating film of the intermediate layer consisting of alkali silicate cases preparative paint The manufacturing method of the insulating substrate for solar cells of Claim 5 or 6 characterized by these.
JP36704699A 1999-12-24 1999-12-24 Insulating substrate for solar cell having excellent heat resistance and method for producing the same Expired - Fee Related JP4865119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36704699A JP4865119B2 (en) 1999-12-24 1999-12-24 Insulating substrate for solar cell having excellent heat resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36704699A JP4865119B2 (en) 1999-12-24 1999-12-24 Insulating substrate for solar cell having excellent heat resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001185747A JP2001185747A (en) 2001-07-06
JP4865119B2 true JP4865119B2 (en) 2012-02-01

Family

ID=18488333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36704699A Expired - Fee Related JP4865119B2 (en) 1999-12-24 1999-12-24 Insulating substrate for solar cell having excellent heat resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP4865119B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4658407B2 (en) 2001-08-27 2011-03-23 三菱重工業株式会社 Insulation type rotor coupling
SE525704C2 (en) * 2003-08-12 2005-04-05 Sandvik Ab Coated steel product of metal strip material comprising an electrically insulating layer doped with one or more alkali metals
JP5219332B2 (en) * 2005-09-20 2013-06-26 新日鉄住金マテリアルズ株式会社 Coated stainless steel foil and thin film solar cell
JP2011108883A (en) * 2009-11-18 2011-06-02 Mitsubishi Chemicals Corp Solar cell
JP6203531B2 (en) * 2013-04-26 2017-09-27 株式会社五合 Rare earth magnet and manufacturing method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58176977A (en) * 1982-04-09 1983-10-17 Kanegafuchi Chem Ind Co Ltd Flexible thin film photovoltaic apparatus
JPS63168056A (en) * 1986-12-29 1988-07-12 Taiyo Yuden Co Ltd Amorphous semiconductor solar battery
JP2620884B2 (en) * 1989-06-30 1997-06-18 太陽誘電株式会社 Amorphous semiconductor photovoltaic device
JPH11121773A (en) * 1997-10-08 1999-04-30 Nisshin Steel Co Ltd Insulating substrate for solar cells and manufacture thereof
JPH11238891A (en) * 1998-02-20 1999-08-31 Nisshin Steel Co Ltd Insulating substrate for solar cell
JPH11261090A (en) * 1998-03-09 1999-09-24 Nisshin Steel Co Ltd Solar battery substrate and its manufacture

Also Published As

Publication number Publication date
JP2001185747A (en) 2001-07-06

Similar Documents

Publication Publication Date Title
JP5307795B2 (en) SEALING MATERIAL, DEVICE USING SUCH MATERIAL, AND METHOD FOR PRODUCING SUCH DEVICE
TW201124494A (en) Aluminum pastes and use thereof in the production of passivated emitter and rear contact silicon solar cells
Herz et al. Dielectric barriers for flexible CIGS solar modules
CN100550431C (en) Composite cream and used its solar battery element
CN107673623B (en) Glass powder for double-sided PERC aluminum paste and preparation method thereof
TW201007773A (en) Glass compositions used in conductors for photovoltaic cells
TW201202366A (en) Electronic component, conductive paste, and method for manufacturing an electronic component
KR20110090780A (en) Composition for forming p-type diffusion layer, method for forming p-type diffusion layer, and method for producing photovoltaic cell
JP4865119B2 (en) Insulating substrate for solar cell having excellent heat resistance and method for producing the same
CN103964690B (en) Composition used as enamel material and application thereof
WO2014178419A1 (en) Solar cell and paste composition for forming aluminum electrode for solar cell
JP6517103B2 (en) Heat dissipation substrate, device and method of manufacturing heat dissipation substrate
WO2016001971A1 (en) Metal substrate for manufacturing electronic devices, and panel
JP4526198B2 (en) Manufacturing method of insulating substrate for thin film polycrystalline silicon solar cell having excellent heat resistance
JP4526197B2 (en) Method for manufacturing insulating substrate for thin film polycrystalline silicon solar cell
JP6348276B2 (en) Coating liquid for forming antireflection film, substrate with antireflection film, production method thereof, and use thereof
JP6246544B2 (en) Insulating substrate for CIGS solar cell and CIGS solar cell
US20180112081A1 (en) Composite thermoelectric material and its manufacturing method
CN115279942B (en) dielectric coating
JPH11238891A (en) Insulating substrate for solar cell
KR100482279B1 (en) Preparation method of boron nitride thick film with binder
JPH0768065B2 (en) Glass-coated aluminum nitride sintered body and method for producing the same
Ullrich et al. Surface characterization of new and aged semiconducting glazes
JP4174260B2 (en) Photoelectric conversion device and manufacturing method thereof
JP2003303979A (en) Insulating substrate for thin-film polycrystalline silicon solar battery, and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060808

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070409

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees