JP4862196B2 - 金属セラミックス回路基板の製造方法 - Google Patents

金属セラミックス回路基板の製造方法 Download PDF

Info

Publication number
JP4862196B2
JP4862196B2 JP2008182447A JP2008182447A JP4862196B2 JP 4862196 B2 JP4862196 B2 JP 4862196B2 JP 2008182447 A JP2008182447 A JP 2008182447A JP 2008182447 A JP2008182447 A JP 2008182447A JP 4862196 B2 JP4862196 B2 JP 4862196B2
Authority
JP
Japan
Prior art keywords
aluminum
base plate
ceramic
ceramic substrate
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2008182447A
Other languages
English (en)
Other versions
JP2008283210A (ja
Inventor
英世 小山内
正博 風呂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metaltech Co Ltd
Original Assignee
Dowa Metaltech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metaltech Co Ltd filed Critical Dowa Metaltech Co Ltd
Priority to JP2008182447A priority Critical patent/JP4862196B2/ja
Publication of JP2008283210A publication Critical patent/JP2008283210A/ja
Application granted granted Critical
Publication of JP4862196B2 publication Critical patent/JP4862196B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Insulated Metal Substrates For Printed Circuits (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

本発明は、優れた金属セラミックス回路基板及びその製造方法、特に、パワーモジュール等の大電力電子部品の実装に好適な耐ヒートサイクル性に優れた金属セラミックス回路基板及びその製造方法に関するものである。
近年、電気自動車、電車、工作機械などの大電流制御に、パワーモジュールが用いられている。パワーモジュールには主に複数の半導体チップが搭載され、その表面および裏面から大電流を取り出すため、半導体チップを固定する基板には高い電気的絶縁性が求められる。また、大電流を制御するために、実動時の半導体チップは発熱により温度が上昇する。このため、この半導体チップを固定している基材およびその周辺材を含む基板全体には高い放熱性が要求される。
従来のパワーモジュールの断面構造を図5に示す。従来のパワーモジュールでは、半導体チップ1が絶縁性基材としてのセラミックス基板2上の金属層3に半田4で固定され、更にこのセラミックス基板2が他方の金属層5を介して半田6により金属ベース板7に固定される。なお、8は金属層3と5及び金属ベース板7に形成したメッキ層である。また、図5においては、チップ間等の配線の表示は省略している。
アルミニウムのセラミックス基板へのろう材接合方法には先行技術として、実開平1−118588号や実開平2−68448号に示されたものがあり、これらは、窒化アルミニウム基板やアルミナ基板にアルミニウムをAl−Si系やAl−Ge系ろう材を用いて接合するものである。これには、さらに先行技術として1976年の米国特許第3994430号のアルミニウム結合助剤としてのシリコン使用がある。
しかし、このような従来のパワーモジュールにあっては、セラミックス基板2が金属層5と半田6を介して金属ベース板7に固定されているために、以下に示す問題点がある。
(1)セラミックス基板2と金属ベース板7間が、セラミックス基板2−金属層5、−メッキ層8−半田6−メッキ層8−金属ベース板7のような複雑な構造になっており、チップ1に通電、通電停止を繰り返した場合、各材料は冷熱を繰り返すことになり、このときの各材料の熱膨張収縮の差から各材料の接合面にクラックが生じる等の問題が生じやすい。
(2)セラミックス基板2と金属ベース板7間に半田6が存在することにより熱伝導率が下がり、放熱性が低下する。
(3)近年、電気メーカーが極力、使用を減少させようとしている鉛半田を使用している場合が多い。
(4)セラミックス基板2と金属ベース板7間を半田6で接着するため、半田濡れ性改善のためのメッキ等の表面処理や半田付け等の行程が多く必要でコスト高である。
(5)従来用いられている金属ベース板としての銅ベース板はセラミックスに対し熱膨張係数が大きく、冷熱を繰り返したときに銅ベース板との接合面でセラミックスにクラックが生じやすく、信頼性に欠け、銅・モリブデン合金、アルミ・炭化珪素複合材などのベース板は熱伝導率が低く、価格が高いなど問題がある。
従って、本発明の目的は、上述の問題点を解決することにあり、具体的には、本発明は直接アルミニウムあるいはアルミニウム製のベース板をセラミックス基材に接合した形状の優れた特性を有する多種多様な形状のセラミックス−金属複合部材及びこれを低コストで量産する方法を得ることを目的としている。
本発明者等は鋭意研究したところ、ベース板としての材料にアルミニウムあるいはアルミニウム合金を用い、これを鋳型内で溶湯の状態からセラミックスに接触させ冷却することで、その耐力が所定値以下であり、厚さが所定値以上のアルミニウムあるいはアルミニウム合金とセラミックスとを接合すれば、上記の課題を解決出来ることを見いだした。
即ち、ベース板にセラミックスを接合する際に接合温度の低い半田付け法を用いずに、ベース板として硬い金属を用いたり、ベース板とセラミックスの接合にろう付けをおこなうとセラミックスが割れたり、ベース板が大きく反ってしまう不具合が起きる。それに対し、本発明者等が鋭意研究したところ、特に耐力が小さいアルミニウムやアルミニウム合金をろう材を介さないでセラミックスと直接接合することによって、上記不具合を防ぐことができることを見いだした。このメカニズムの詳細は不明であるが、耐力が低いアルミニウムやアルミニウム合金が、セラミックスとの熱膨張係数の差から生じる接合時の残留応力を、自身の塑性変形等により緩和していると本発明者らは推察している。
本発明はかかる知見をもとになされたものである。
本発明の金属セラミックス回路基板の製造方法は、アルミニウムまたはアルミニウム合金をるつぼ内に配置する工程と、上記るつぼの下部にセラミックス基板を配置する工程と、上記るつぼ内を真空または不活性ガス雰囲気にする工程と、上記アルミニウムまたはアルミニウム合金を溶解して溶融体を得る工程と、上記溶融体を細管を介して上記セラミックス基板上に流し込み、上記セラミックス基板の一面と接触させる工程と、上記溶融体と上記セラミックス基板とを冷却して上記セラミックス基板の上記一面に直接接合されたアルミニウムまたはアルミニウム合金のベース板を形成する工程を有することを特徴とする。
また、本発明の金属セラミックス回路基板の製造方法は、電子回路用金属導電体を上記セラミックス基板の他面にろう材を用いて接合する工程を有することを特徴とする。
上記金属導電体は銅、銅合金、アルミニウム、アルミニウム合金のうち少なくとも一種以上から選ばれることを特徴とする。ベース板としてはアルミニウムまたはアルミニウム合金を使用することができるが、アルミは熱伝導率が高く、耐ヒートサイクル性も良好であり、さらに融点が低く、製造しやすいため特に優れている。
各金属の選択理由は、特に高い導電性を必要とする、あるいはヒートサイクル耐量が1000回以下で十分な場合には銅および銅合金が適している。
3000回以上のヒートサイクル耐量が必要な場合はアルミニウムおよびアルミニウム合金が適している。
また、これらの上に半田濡れ性や耐食性を向上させるためにAuメッキ、Niメッキ等を行うことができる。
上記セラミックス基板は、アルミナ、窒化アルミニウム、窒化珪素から選ばれる一種であることを特徴とする。
セラミックスのなかでも特にアルミナは絶縁性が高く安価であり、銅の回路を直接接合で製作できるなど汎用性が高く、窒化アルミは熱伝導率が高いことで放熱性に優れ、大電流コントロール用のチップを搭載することができ、窒化珪素は強度が高いので耐ヒートサイクル性が高くエンジンルームなどの厳しい環境での対応性に優れている。
なお、上記ベース板はモジュールの機械的強度補強と放熱を目的としたものである。また、直接接合するとはろう材等の接合助剤を介在せしめることなく必要に応じた強度を有した接合状態にすることを意味する。
本発明によれば、以下のような利点が得られる。
(1)セラミックス基板とベース板間が、セラミックス−ベース板の単純構造になり、冷熱を繰り返したときの信頼性が飛躍的に向上する。これは特にベース板の素材としてアルミニウムまたはアルミニウム合金を選択し、さらにこれを直接接合したことで、アルミニウム自身の柔らかさが冷熱時のセラミックスとの熱膨張収縮のイレギュラーをうち消し、接合界面におけるクラックの発生を防止するためである。
(2)セラミックス基板とベース板間が、セラミックス−ベース板の単純構造になり、熱伝導率の低い半田層を無くすことができるので、高い熱伝導率が得られる。
(3)セラミックス基板とベース板間が、セラミックス−ベース板の単純構造になり、半田による接合が必要なくなるため、半田付け性改善のためのメッキ等の表面処理や半田付け等の行程がなくなり、コストが低下する。
(4)ベース板として従来用いられている銅は安価であるがセラミックスに対し熱膨張係数が大きく、冷熱を繰り返したときにセラミックスとの接合面にクラックが生じやすく、信頼性に欠ける。銅・モリブデン合金,アルミ・炭化珪素複合材などは熱伝導率が低く、価格が高い。これらに対し、アルミニウムは安値であり、銅より熱膨張係数が高いが耐力が極めて小さいために冷熱を繰り返してもセラミックスとの界面にクラックが生じにくく、信頼性の高いものを製造できる。
(5)ベース板としてアルミニウムやアルミニウム合金、銅、銅・モリブデン合金、アルミ・炭化珪素複合材等をろう材を用いてセラミックスにろう接する回路基板の製造方法が考えられるが、回路側の金属の厚みに対しベース板の厚みが非常に厚いこと、ろう材により柔軟性の低い接着層がベース板とセラミックスの間に生成してしまうことなどから、接合後の金属およびセラミックスの熱収縮の差異により、基板が大きくそり、セラミックスにクラックが入りやすい。これに対し、本発明のベース板としてアルミニウムまたはアルミニウム合金を直接接合する方法では、接合部分がアルミニウムで非常に柔軟性が高く、ベース板の耐力が320(MPa)以下であり、かつ厚さが1mm以上としたので従来の欠点を一掃できる。
(6)従来の基板を用いては得られにくかった信頼性に富み、製造歩留まりが高く、コストメリットも高いから、電気自動車や電車のように大電力パワーモジュール基板として特に好ましい。
(7)熱処理を真空または不活性ガス中で行なったので材料の酸化が防がれ接合が良好となる。なお、上記炉内温度は550℃〜850℃としても良い。
以下図面を参照して本発明の金属セラミックス基板及びその製造方法の実施例を詳細に説明する。
図1は本発明の金属セラミックス回路基板を製造するための設備の原理図である。本発明においては、純度99.9%のアルミニウムをるつぼ9の上部にセットし、接合する窒化アルミニウムのセラミックス基板2をるつぼ9の下部にセットする。るつぼ9にピストン10で蓋をして、るつぼ9の内部に窒素ガスを充填する。次いで、るつぼ9をヒーター11で750℃に加熱し、アルミニウムを溶化してから、ピストン10によりるつぼ9の中央の細管12を介してアルミニウム溶融体13を押し出し、押し出したアルミニウム溶融体13をセラミックス基板2上に流し込み、所定の高さまで充填し、これを徐冷してアルミニウム溶融体13をセラミックス基板2に接着固化し、アルミニウム製のベース板7の一面に複数の窒化アルミニウムのセラミックス基板2を直接接合したものを得た。ここで、得たアルミニウム製のベース板の厚さは5mm、アルミニウムの耐力は40MPaであった。なお、この耐力はJISのZ2201番で試験片を作成し、JISのZ2241に則って測定したものである。
次に、上記窒化アルミニウムのセラミックス基板2上に回路部を形成するため、スクリーン印刷機を用いてAl87.5wt%・Si12.5%の組成のろう材を所望のパターン形状に印刷し、80℃で乾燥後、その上に金属層3として所望のパターン形状のアルミニウム圧延板をのせ、真空炉にて575℃で加熱し、次いで無電解ニッケルメッキを施し、この金属層3上にろう材である半田4を介して半導体チップ1を固定し、図2に示すモジュールを構成せしめた。
このモジュールのヒートサイクル耐量を調べたところ、ヒートサイクル4000回でもセラミックス−ベース板界面に何ら変化は認められなかった。
上記アルミニウム製のベース板7の厚さを5mmから1mmに変えた他は実施例1と同様の手段で図2に示す形の金属セラミックス回路基板を有するパワーモジュールを形成した。また、ヒートサイクル耐量を調べたところ、実施例1同様ヒートサイクル4000回でもセラミックス−ベース板界面に何ら変化は認められなかった。
上記アルミニウム製のベース板7の厚みを5mmから10mmに変えた他は実施例1と同様の手段で図2に示す形の金属セラミックス回路基板を有するパワーモジュールを形成した。また、ヒートサイクル耐量を調べたところ、実施例1同様ヒートサイクル3000回でもセラミックス−ベース板界面に何ら変化は認められなかった。
上記アルミニウム製のベース板7の厚みを5mmから30mmに変えた他は実施例1と同様の手段で図2に示す形の金属セラミックス回路基板を有するパワーモジュールを形成した。また、ヒートサイクル耐量を調べたところ、実施例1同様ヒートサイクル3000回でもセラミックス−ベース板界面に何ら変化は認められなかった。
上記ベース板7の材質を純度99.99%のアルミニウムからAl95.5%・Cu4.5%のアルミニウム合金に代えた他は実施例1と同様の手段で図2に示す形の金属セラミックス回路基板を有するパワーモジュールを形成した。ここで、ベース板7の厚さは5mm、耐力は95MPaであった。また、ヒートサイクル耐量を調べたところ、実施例1同様ヒートサイクル3000回でもセラミックス−ベース板界面に何ら変化は認められなかった。
上記ベース板7の材質を純度99.99%のアルミニウムからAl87.5%・Si12.5%のアルミニウム合金に代えた他は実施例1と同様の手段で図2に示す形の金属セラミックス回路基板を有するパワーモジュールを形成した。ここで、ベース板7の厚さは5mm、耐力は320MPaであった。また、ヒートサイクル耐量を調べたところ、実施例1同様ヒートサイクル3000回でもセラミックス−ベース板界面に何ら変化は認められなかった。
上記セラミックス基板2として窒化アルミニウムに替えて窒化珪素を用いた他は実施例1と同様の手段で図2に示す形のベース一体型セラミックス基板を有するパワーモジュールを形成した。また、ヒートサイクル耐量を調べたところ、実施例1同様ヒートサイクル4000回でもセラミックス−ベース板界面に何ら変化は認められなかった。
上記ベース板7の形状を厚さ5mmの板状から、この板に加え放熱性向上の目的でフィンを取り付けた他は実施例1と同様の手段で図2に示す形の金属セラミックス回路基板を有するパワーモジュールを形成した。また、ヒートサイクル耐量を調べたところ、実施例1同様ヒートサイクル4000回でもセラミックス−ベース板界面に何ら変化は認められなかった。
窒化アルミニウムのセラミックス基板2に回路部を形成するため、スクリーン印刷機を用いてAg90wt%・Ti5%・Cu5%の組成の活性金属ろう材を印刷し、80℃で乾燥後、その上に金属層3として銅圧延板をのせ、真空炉にて800℃で加熱し、セラミックス基板2に接合した。次に、この銅の部分にエッチングレジストをスクリーン印刷機で印刷し、UV乾燥後、塩化第二鉄溶液でエッチングを行い所望のパターン14を形成し、次いで、これを図3に示すようにるつぼ9の下部にセラミックス基板2の下面が上になるようにセットし、純度99.9%のアルミニウムをるつぼ9の上部にセットし、るつぼ9にピストン10で蓋をして、るつぼ9の内部に窒素ガスを充填する。次いで、るつぼ9をヒーター11で750℃に加熱し、アルミニウムを溶化してから、ピストン10によりるつぼ9の中央の細管12を介してアルミニウム溶融体13を押し出し、押し出したアルミニウム溶融体13をセラミックス基板2上に流し込み、所定の高さまで充填し、これを徐冷してアルミニウム溶融体13をセラミックス基板2に接着固化してベース板7を形成し、上記金属層3上に半田4を介して半導体チップ1を固定し、図2に示すモジュールを構成せしめた。ここで、得たアルミニウム製のベース板の厚さは5mm、アルミニウムの耐力は40MPaであった。
このベース一体型セラミックス基板のヒートサイクル耐量を調べたところ、実施例1同様ヒートサイクル4000回でもセラミックス−ベース板界面に何ら変化は認められなかった。
実施例1と同様の手段でアルミニウム製のベース板7に複数の窒化アルミニウムのセラミックス基板2を直接接合した後、図4に示すようにるつぼ15を用い、純度99.9%のアルミニウムをるつぼ15の上部にセットし、上記ベース板7に直接接合した窒化アルミニウムのセラミックス基板2を上側、アルミニウム製のベース板7を下側にしてるつぼ15の下部にセットする。さらに、窒化アルミニウムのセラミックス基板2上に所望の回路パターン形状をくり抜いた型18を置く。るつぼ15にピストン10で蓋をして、るつぼ15の内部に窒素ガスを充填する。次いで、るつぼ15をヒーター11で750℃に加熱し、アルミニウムを溶化してから、ピストン10によりるつぼ15の中央の細管16から各パターンの型18上に夫々細管17a〜17cを介してアルミニウム溶融体13を押し出す。このとき、ベース板7を熱から守るために、ベース板7の下側にはヒートシンク19を配置して冷却せしめる。押し出したアルミニウム溶融体13は窒化アルミニウムのセラミックス基板2上の型18に流し込み、所定の高さまで充填し、これを徐冷することでアルミニウム溶融体13がセラミックス基板2に接着しつつ、固化する。以上の方法により、セラミックス基板2上に金属層3を形成し、この金属層3上に半田4を介して半導体チップ1を固定し、図2に示すパワーモジュールを構成せしめた。ここで、得たアルミニウム製のベース板の厚さは5mm、アルミニウムの耐力は40MPaであった。
このパワーモジュールのヒートサイクル耐量を調べたところ、実施例1同様ヒートサイクル4000回でもセラミックス−ベース板界面に何ら変化は認められなかった。
(比較例1)
比較の目的で以下のサンプルを作成した。まず窒化アルミニウムのセラミックス基板の片側に回路部を形成するために、スクリーン印刷機を用いてAl87.5wt%・Si12.5%の組成のろう材を所望のパターン形状に印刷し、80℃で乾燥後、その上に所望のパターン形状のアルミニウム圧延板をのせ、もう一方の側に同じろう材をべた面で印刷し、同じくべた面のアルミニウム圧延板をのせ、真空炉にて575℃で加熱した。次にこの基板に無電解ニッケルメッキを施し、さらにここで得た基板3枚を無電解ニッケルメッキを施したアルミニウム製ベース板上に半田付けして固定した。更にこの上に半導体チップを設けて図5に示す形のモジュールを構成せしめた。実施例同様ヒートサイクル耐量を調べたところ、ヒートサイクル1000回でセラミックス−ベース板界面の半田層に一部クラックが認められた。
(比較例2)
比較の目的で以下のサンプルを作成した。アルミニウム製ベース板の替わりに厚さ5mmの銅・モリブデン合金をベース板に用い、後は比較例1と同様な方法で図5に示す形のモジュールを構成せしめた。実施例同様ヒートサイクル耐量を調べたところ、ヒートサイクル3000回でセラミックス−ベース板界面の半田層に一部クラックが認められた。
(比較例3)
比較の目的で以下のサンプルを作成した。窒化アルミニウムのセラミックス基板の両面に実施例1で示したようなアルミニウムの溶湯を直接接触させ、冷却固化させる方式でべた面のアルミニウム層を形成させた。次に、この片面に回路部を形成するためにエッチングレジストをスクリーン印刷機で印刷し、UV乾燥後、塩化第二鉄溶液でエッチングを行い所望のパターンの回路を形成した。次にこの基板に無電解ニッケルメッキを施し、さらにここで得た基板3枚を無電解ニッケルメッキを施した厚さ5mm、純度99.99%のアルミニウム製ベース板上に半田付けして固定した。更にこの上に半導体チップを設けて図5に示す形のモジュールを構成せしめた。実施例同様ヒートサイクル耐量を調べたところ、ヒートサイクル3000回でセラミックス−ベース板界面の半田層に一部クラックが認められた。
(比較例4)
比較の目的で以下のサンプルを作成した。厚さ5mm、純度99.99%のアルミニウム製ベース板上に3枚の窒化アルミニウムのセラミックス基板を接合するために、ベース板上にスクリーン印刷機を用いてAl87.5wt%・Si12.5%の組成のろう材を印刷し、80℃で乾燥後、その上に窒化アルミニウムのセラミックス基板をのせ、真空炉にて575℃で加熱した。さらに、この後に同様のろう接法でベース板と反対側に回路を形成させることを試みようとしたが、ベース板と接合を行った時点で、セラミック基板がそろってすべて割れてしまった。
(比較例5)
比較の目的で以下のサンプルを作成した。実施例1におけるアルミニウム製のベース板7の厚みを5mmから0.5mmに変えた他は実施例1と同様の手段で図2に示す形の金属セラミックス回路基板を有するパワーモジュールを形成することを試みた。しかし、ベース板の強度が不足しており、ベース板が容易に変形してしまった。
(比較例6)
比較の目的で以下のサンプルを作成した。実施例1におけるベース板7の材質を純度99.99%のアルミニウムから、Al88%・Cu2%・Mg3%・Zn7%のアルミニウム合金に変えた他は実施例1と同様の手段で図2に示す形の金属セラミックス回路基板を有するモジュールを形成することを試みた。ここで、ベース板7の厚さは5mm、耐力は540MPaであった。しかし、ベース板と接合を行った時点で、セラミック基板がそってすべて割れてしまった。
以上の結果を表1に示す。
Figure 0004862196
本発明方法を実施するために用いるベース板とセラミックス板の接合装置の原理図である。 本発明方法にによって得たパワーモジュールの縦断面図である。 本発明方法により、ベース板にセラミックス板の接合したものに対し、回路部分を形成させるための装置の他の実施例説明図である。 本発明方法を実施するために用いるベース板とセラミックス板の接合装置の更に他の実施例説明図である。 従来のパワーモジュールの縦断面図である。
符号の説明
1 半導体チップ
2 セラミックス基板
3 金属層
4 半田
5 金属層
6 半田
7 ベース板
8 メッキ層
9 るつぼ
10 ピストン
11 ヒーター
12 細管
13 アルミニウム溶融体
14 パターン
15 るつぼ
16 細管
17a 細管
17b 細管
17c 細管
18 型
19 ヒートシンク

Claims (4)

  1. アルミニウムまたはアルミニウム合金をるつぼ内に配置する工程と、
    上記るつぼの下部にセラミックス基板を配置する工程と、
    上記るつぼ内を真空または不活性ガス雰囲気にする工程と、
    上記アルミニウムまたはアルミニウム合金を溶解して溶融体を得る工程と、
    上記溶融体を細管を介して上記セラミックス基板上に流し込み、上記セラミックス基板の一面と接触させる工程と、上記溶融体と上記セラミックス基板とを冷却して上記セラミックス基板の上記一面に直接接合されたアルミニウムまたはアルミニウム合金のベース板を形成する工程を有することを特徴とする金属セラミックス回路基板の製造方法。
  2. 電子回路用金属導電体を上記セラミックス基板の他面にろう材を用いて接合する工程を有することを特徴とする請求項1記載の金属セラミックス回路基板の製造方法。
  3. 上記セラミックス基板が、アルミナ、窒化アルミニウム、窒化珪素から選ばれる一種であることを特徴とする請求項1または2記載の金属セラミックス回路基板の製造方法。
  4. 上記金属導電体が銅、銅合金、アルミニウム、アルミニウム合金のうち少なくとも一種以上から選ばれることを特徴とする請求項2または3記載の金属セラミックス回路基板の製造方法。
JP2008182447A 2008-07-14 2008-07-14 金属セラミックス回路基板の製造方法 Expired - Lifetime JP4862196B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008182447A JP4862196B2 (ja) 2008-07-14 2008-07-14 金属セラミックス回路基板の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008182447A JP4862196B2 (ja) 2008-07-14 2008-07-14 金属セラミックス回路基板の製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000267206A Division JP4756200B2 (ja) 2000-09-04 2000-09-04 金属セラミックス回路基板

Publications (2)

Publication Number Publication Date
JP2008283210A JP2008283210A (ja) 2008-11-20
JP4862196B2 true JP4862196B2 (ja) 2012-01-25

Family

ID=40143705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008182447A Expired - Lifetime JP4862196B2 (ja) 2008-07-14 2008-07-14 金属セラミックス回路基板の製造方法

Country Status (1)

Country Link
JP (1) JP4862196B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5463280B2 (ja) 2010-12-28 2014-04-09 株式会社日立製作所 半導体モジュール用回路基板

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2642574B2 (ja) * 1992-12-17 1997-08-20 同和鉱業株式会社 セラミックス電子回路基板の製造方法
JP2918191B2 (ja) * 1994-04-11 1999-07-12 同和鉱業株式会社 金属−セラミックス複合部材の製造方法
JP3383892B2 (ja) * 1995-03-17 2003-03-10 同和鉱業株式会社 半導体実装構造体の製造方法
JP3550212B2 (ja) * 1995-03-22 2004-08-04 同和鉱業株式会社 セラミックス電子回路基板の製造方法
JP3392594B2 (ja) * 1995-06-15 2003-03-31 同和鉱業株式会社 アルミニウム−セラミックス複合基板のエッチング処理方法およびエッチング液
JP3700151B2 (ja) * 1995-11-29 2005-09-28 同和鉱業株式会社 金属−セラミックス複合部材の製造装置
JPH09234826A (ja) * 1995-12-28 1997-09-09 Dowa Mining Co Ltd 金属−セラミックス複合基板及びその製造法
JPH09286681A (ja) * 1996-04-23 1997-11-04 Dowa Mining Co Ltd 金属−セラミックス複合基板
JPH09315874A (ja) * 1996-05-28 1997-12-09 Dowa Mining Co Ltd Al−セラミックス複合基板
JP4124497B2 (ja) * 1996-05-29 2008-07-23 Dowaホールディングス株式会社 金属−セラミックス複合基板及びその製造法

Also Published As

Publication number Publication date
JP2008283210A (ja) 2008-11-20

Similar Documents

Publication Publication Date Title
JP4756200B2 (ja) 金属セラミックス回路基板
JP4133170B2 (ja) アルミニウム−セラミックス接合体
JP4793622B2 (ja) セラミックス回路基板およびパワーモジュール並びにパワーモジュールの製造方法
JP5829403B2 (ja) 放熱用絶縁基板及びその製造方法
JP2003163315A (ja) モジュール
JP3012835B2 (ja) 基板とその製造法、基板に好適な金属接合体
KR100374379B1 (ko) 기판
TW201841310A (zh) 附有散熱片絕緣電路基板之製造方法
JP5467407B2 (ja) アルミニウム−セラミックス接合体
JP5987418B2 (ja) ヒートシンク付パワーモジュール用基板の製造方法
JP5069485B2 (ja) 金属ベース回路基板
JP4862196B2 (ja) 金属セラミックス回路基板の製造方法
JPH07193358A (ja) セラミックス電子回路基板の製造方法
JP4124497B2 (ja) 金属−セラミックス複合基板及びその製造法
JPH09234826A (ja) 金属−セラミックス複合基板及びその製造法
JP2001203299A (ja) アルミニウム板とそれを用いたセラミックス回路基板
JP5812882B2 (ja) 配線基板および電子装置
JP3933287B2 (ja) ヒートシンク付き回路基板
JP2004055576A (ja) 回路基板及びそれを用いたパワーモジュール
JP2016048789A (ja) アルミニウム−セラミックス接合体の製造方法
JP4121827B2 (ja) モジュール構造体の製造方法
JP2001144224A (ja) 金属−セラミックス複合基板
JP4692908B2 (ja) モジュール構造体
JP2011073194A (ja) 金属−セラミックス接合基板およびその製造方法
JP2010118533A (ja) 半導体装置およびその製造方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20111020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111020

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4862196

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term