JP4853590B2 - Metal thin film manufacturing method and metal thin film - Google Patents

Metal thin film manufacturing method and metal thin film Download PDF

Info

Publication number
JP4853590B2
JP4853590B2 JP2010512865A JP2010512865A JP4853590B2 JP 4853590 B2 JP4853590 B2 JP 4853590B2 JP 2010512865 A JP2010512865 A JP 2010512865A JP 2010512865 A JP2010512865 A JP 2010512865A JP 4853590 B2 JP4853590 B2 JP 4853590B2
Authority
JP
Japan
Prior art keywords
metal
fine particles
thin film
metal thin
superheated steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010512865A
Other languages
Japanese (ja)
Other versions
JPWO2010095672A1 (en
Inventor
剛志 八塚
佳孝 鮎澤
博俊 木津本
浩二 小木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2010512865A priority Critical patent/JP4853590B2/en
Application granted granted Critical
Publication of JP4853590B2 publication Critical patent/JP4853590B2/en
Publication of JPWO2010095672A1 publication Critical patent/JPWO2010095672A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/102Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by bonding of conductive powder, i.e. metallic powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1283After-treatment of the printed patterns, e.g. sintering or curing methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1105Heating or thermal processing not related to soldering, firing, curing or laminating, e.g. for shaping the substrate or during finish plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1157Using means for chemical reduction

Description

本発明は、金属微粒子分散体から導電性に優れる低体積抵抗率の金属薄膜を製造する方法およびこの方法により製造された金属薄膜に関するものである。   The present invention relates to a method for producing a metal thin film having a low volume resistivity excellent in conductivity from a metal fine particle dispersion, and a metal thin film produced by this method.

導電回路の形成のために導電粒子を用いた導電性ペーストがスクリーン印刷やディスペンサーで用いられている。使用する導電粒子としては粒径が数μm以上のフレーク状金属粉等が用いられ、回路の厚みを10μm以上にして導電性を確保している。導電回路は近年、急速に高密度化が進んでいる。より高密度な回路の形成を可能にするため、より微細な金属微粒子の開発がなされている。   In order to form a conductive circuit, a conductive paste using conductive particles is used in screen printing or a dispenser. As the conductive particles used, flaky metal powder having a particle size of several μm or more is used, and the thickness of the circuit is set to 10 μm or more to ensure conductivity. In recent years, the density of conductive circuits has been rapidly increasing. In order to enable the formation of higher density circuits, finer metal fine particles have been developed.

微粒子の製造方法は、生成される相によって、固相法、気相法、液相法に分類される。固相法の粉砕によるプロセスでは粒径は0.1μm程度が限界である。ナノ粒子と呼ばれる粒径が数十nm以下の粒子の製造では、ビルドアッププロセスである気相法と液相法が適している。気相法の例としては、高温蒸気の冷却による物理的凝縮法および気相化学反応による粒子生成法が挙げられる。特許文献1には、気相法により粒径数nm〜数十nmの金属微粒子が得られたことが開示されている。   The method for producing fine particles is classified into a solid phase method, a gas phase method, and a liquid phase method depending on the phase to be generated. In the process by solid phase pulverization, the particle size is limited to about 0.1 μm. For the production of particles called nano-particles with a particle size of several tens of nanometers or less, the gas phase method and the liquid phase method which are build-up processes are suitable. Examples of the gas phase method include a physical condensation method by cooling a high temperature steam and a particle generation method by a gas phase chemical reaction. Patent Document 1 discloses that metal fine particles having a particle diameter of several nanometers to several tens of nanometers were obtained by a vapor phase method.

一方、液相法は一般的に気相法に比べ安価に製造できることだけではなく、粒子の構成成分が単一の場合だけでなく、多成分系にも適応できること、製造工程を多様化できること、粒径の制御が比較的容易であること、粒子の表面修飾が簡単に行えること等の利点を有し、種々の方法が検討されている。液相法には、共沈法、ゾル−ゲル法、ゲル−ゾル法、逆ミセル法、ホットソープ法、噴霧熱分解法などが提案されている。金属微粒子についても保護ポリマーの存在下で金属塩を溶液中で還元する方法によりコロイド状態で合成されている。特許文献2には液相法により20〜41nmの銅微粒子が得られたことが開示されている。特許文献3には液相法により粒径20nmの酸化第一銅微粒子が得られたことが開示されている。特許文献4には、金属化合物から液相中でポリオールを還元剤として金属微粒子を製造する方法が開示されている。   On the other hand, the liquid phase method is generally not only cheaper to manufacture than the gas phase method, but also can be applied not only to a single component of the particle but also to a multi-component system, and the manufacturing process can be diversified. Various methods have been studied with advantages such as relatively easy control of particle size and easy surface modification of particles. Coprecipitation methods, sol-gel methods, gel-sol methods, reverse micelle methods, hot soap methods, spray pyrolysis methods, and the like have been proposed as liquid phase methods. Metal fine particles are also synthesized in a colloidal state by a method of reducing a metal salt in a solution in the presence of a protective polymer. Patent Document 2 discloses that 20-41 nm copper fine particles were obtained by a liquid phase method. Patent Document 3 discloses that cuprous oxide fine particles having a particle diameter of 20 nm were obtained by a liquid phase method. Patent Document 4 discloses a method for producing metal fine particles from a metal compound in a liquid phase using a polyol as a reducing agent.

金属微粒子の粒径を低減することによって、金属微粒子間の焼成温度を大幅に下げることができることが知られている。例えば、特許文献1には、粒径100nm以下の金属微粒子を分散した分散体を用いて金属ペーストを調製し、金属ペースト塗膜を焼結して金属薄膜を形成する方法が開示されており、この方法により電気回路や配線を形成できる。また特許文献2、3においても、銅ペースト塗膜に窒素雰囲気下で300℃または350℃で1時間の加熱処理を行うことによって導電性に優れる薄膜が得られたことが開示されている。しかし、ナノ粒子に代表される微粒子は、表面積が非常に大きいため、極めて凝集し易く分散困難であり、実用上は分散体の保存安定性の確保が非常に重要であり、特許文献1〜3に開示されている導電ペーストにおいてはこの点がいまだ不十分である。また、ナノ粒子に代表される微粒子は、表面活性が高くなり表面に酸化物被膜が形成されやすくなる点も問題である。   It is known that the firing temperature between the metal fine particles can be greatly lowered by reducing the particle size of the metal fine particles. For example, Patent Document 1 discloses a method of forming a metal thin film by preparing a metal paste using a dispersion in which metal fine particles having a particle size of 100 nm or less are dispersed, and sintering a metal paste coating film, An electric circuit or wiring can be formed by this method. Patent Documents 2 and 3 also disclose that a thin film having excellent conductivity was obtained by subjecting a copper paste coating to a heat treatment at 300 ° C. or 350 ° C. for 1 hour in a nitrogen atmosphere. However, fine particles typified by nanoparticles are extremely large in surface area, so are easily aggregated and difficult to disperse. In practical use, it is very important to ensure the storage stability of the dispersion. This point is still insufficient in the conductive paste disclosed in the above. In addition, fine particles typified by nanoparticles have a problem in that the surface activity is high and an oxide film is easily formed on the surface.

金属微粒子の分散性は、バインダー樹脂や分散剤を金属微粒子に吸着させることによって改善することができ、微粒子の凝集を防止して保存安定性を高め、分散体の流動性を確保するとの効果が期待できる。しかしながら、金属微粒子が微細化するほど、多量のバインダー樹脂や分散剤が必要になり、バインダー樹脂や分散剤が金属微粒子相互の接触を妨げ、導電性の向上を阻害する傾向となる。このような場合、バインダー樹脂や分散剤を昇華あるいは分解蒸発等により除く操作が必要になることがある。また、焼成によりフィルムやガラス等の基材との接着性が悪化することが起こりやすい。   The dispersibility of the metal fine particles can be improved by adsorbing the binder resin or dispersant to the metal fine particles, and the effect of preventing the aggregation of the fine particles to increase the storage stability and ensuring the fluidity of the dispersion. I can expect. However, as the metal fine particles become finer, a larger amount of binder resin or dispersant is required, and the binder resin or dispersant tends to prevent the metal fine particles from contacting each other and hinder the improvement in conductivity. In such a case, it may be necessary to remove the binder resin or the dispersant by sublimation or decomposition evaporation. In addition, the adhesiveness with a substrate such as a film or glass tends to deteriorate due to firing.

金属微粒子表面の酸化物被膜が形成されると、導電性の低下や焼成に必要な温度の上昇が生じ、有機物等の比較的耐熱性の低い基板上に体積抵抗率の低い金属薄膜を形成することが困難である。特に銅微粒子では酸化による弊害が起こりやすく、空気中、150℃以上の温度では短時間で微粒子表面に酸化物被膜が形成され、また150℃未満の温度においても速度こそ遅いもののやはり酸化物被膜が形成され、導電性の低下を起こす。このため、銅微粒子の表面には通常酸化物被膜が形成されており、低体積抵抗率の金属薄膜を得るには高温かつ長時間の不活性ガス雰囲気下での加熱処理が必要であり、樹脂フィルム等を基板とした金属薄膜を得ることは困難であるとの問題があった。またセラミックス等の耐熱性に優れる基板を用いる場合であっても、生産性が悪くかつエネルギー消費が大きく、問題であった。   When the oxide film on the surface of the metal fine particles is formed, the conductivity decreases and the temperature required for firing increases, and a metal thin film having a low volume resistivity is formed on a substrate having a relatively low heat resistance such as an organic substance. Is difficult. In particular, copper fine particles are liable to be adversely affected by oxidation, and an oxide film is formed on the surface of the fine particles in a short time at a temperature of 150 ° C. or higher in the air. Formed, causing a decrease in conductivity. For this reason, an oxide film is usually formed on the surface of the copper fine particles, and heat treatment in an inert gas atmosphere at a high temperature for a long time is required to obtain a metal thin film having a low volume resistivity. There was a problem that it was difficult to obtain a metal thin film using a film or the like as a substrate. Even when a substrate having excellent heat resistance such as ceramics is used, the productivity is low and the energy consumption is large, which is a problem.

金属微粒子表面の酸化物被膜の影響を避ける方策として、特許文献5では、エチレングリコールを含有する酸化第二銅分散体を用いて250℃の水素ガスにより、導電性に優れる銅薄膜を得ている。しかしながら、爆発性の高い水素ガス中での高温処理は生産性の高い方法とは言いがたい。   As a measure to avoid the influence of the oxide film on the surface of the metal fine particles, in Patent Document 5, a copper thin film having excellent conductivity is obtained with hydrogen gas at 250 ° C. using a cupric oxide dispersion containing ethylene glycol. . However, high temperature treatment in highly explosive hydrogen gas is not a highly productive method.

特許第2561537号公報Japanese Patent No. 2561537 特開2008−31491号公報JP 2008-31491 A 特開2006−228879号公報JP 2006-228879 A 特公平4−24402号公報Japanese Patent Publication No. 4-24402 国際公開第2003/051562号International Publication No. 2003/051562

本発明の課題は、金属の微粒子の分散体を用いて絶縁基板上に低体積抵抗率の導電層を得ることができる、金属薄膜の形成方法を提供することである。本発明の好ましい実施態様においては、金属酸化物の微粒子や金属酸化物皮膜を有する金属微粒子をも前記金属微粒子として用いることができる。また、本発明の好ましい実施態様においては、多量の樹脂バインダーや分散剤を含有する金属微粒子分散体から形成された塗膜についても導電性に優れる金属薄膜を得ることができる。さらに、本発明の好ましい実施態様においては、加熱処理温度を従来よりも低くすることが可能であり、樹脂フィルム等を絶縁基板として用いることが可能となる。   The subject of this invention is providing the formation method of a metal thin film which can obtain the conductive layer of a low volume resistivity on an insulated substrate using the dispersion of a metal microparticle. In a preferred embodiment of the present invention, metal oxide fine particles and metal fine particles having a metal oxide film can also be used as the metal fine particles. Moreover, in the preferable embodiment of this invention, the metal thin film excellent in electroconductivity can be obtained also about the coating film formed from the metal fine particle dispersion containing a lot of resin binders and a dispersing agent. Furthermore, in a preferred embodiment of the present invention, the heat treatment temperature can be made lower than before, and a resin film or the like can be used as an insulating substrate.

本発明者は、上記の課題を解決するために鋭意検討を進めた結果、本発明を完成するに至った。すなわち、本発明は、
(1) 金属微粒子分散体を含有する塗膜に過熱水蒸気による加熱処理を施す工程を含む、金属薄膜の製造方法。
(2) 前記金属微粒子分散体が還元剤を含有する金属微粒子分散体である(1)に記載の金属薄膜の製造方法。
(3) 前記過熱水蒸気がアルコール化合物を含有する過熱水蒸気である(1)に記載の金属薄膜の製造方法。
(4) 前記塗膜が金属微粒子分散体を塗布または印刷したものである(1)に記載の金属薄膜の製造方法。
(5) 前記金属微粒子の平均粒径が500nm以下である(1)に記載の金属薄膜の製造方法。
(6) 前記金属微粒子が銅、銅酸化物、銀、銀酸化物のいずれかひとつ以上からなる(1)に記載の金属薄膜の製造方法。
(7) (1)〜(6)のいずれかの製造方法で製造された金属薄膜。
As a result of intensive studies to solve the above problems, the present inventor has completed the present invention. That is, the present invention
(1) The manufacturing method of a metal thin film including the process of heat-processing with superheated steam to the coating film containing a metal microparticle dispersion.
(2) The method for producing a metal thin film according to (1), wherein the metal fine particle dispersion is a metal fine particle dispersion containing a reducing agent.
(3) The method for producing a metal thin film according to (1), wherein the superheated steam is superheated steam containing an alcohol compound.
(4) The method for producing a metal thin film according to (1), wherein the coating film is obtained by applying or printing a metal fine particle dispersion.
(5) The method for producing a metal thin film according to (1), wherein the metal fine particles have an average particle size of 500 nm or less.
(6) The method for producing a metal thin film according to (1), wherein the metal fine particles are made of one or more of copper, copper oxide, silver, and silver oxide.
(7) The metal thin film manufactured with the manufacturing method in any one of (1)-(6).

本発明の金属薄膜の形成方法は金属微粒子分散体を含有する塗膜を過熱水蒸気により加熱処理する工程を含む。過熱水蒸気によって熱処理することにより処理雰囲気は無酸素状態または低酸素状態となり、銅微粒子のように空気中で酸化が起こりやすい金属微粒子であっても熱処理工程で酸化されることを抑制することができる。その結果、酸化による導電性の悪化が起こり難い。さらに、金属の種類や処理条件によっては微粒子表面の酸化物層の還元が起こり、導電性の向上が見られる場合がある。また、前記塗膜が金属微粒子分散体の塗布または印刷によって形成されたものである場合、過熱水蒸気を用いることにより、金属微粒子に吸着した有機物の脱着を促し、その結果、金属微粒子同士の接触機会を増加させる場合があり、更に導電性が向上する。また、過熱水蒸気は加熱効率が加熱空気や加熱窒素ガスよりも高いため、焼成を短時間および/又は低温で起こさせることができる場合がある。さらに、加熱処理温度を従来よりも低くすることができる場合には、耐熱性に劣る樹脂フィルム等を絶縁基板として用いることが可能となる場合がある。これらの効果により、本発明の方法で形成された金属薄膜は電気抵抗値の低い金属薄膜になり、金属/樹脂積層体、めっき用導電材料、金属配線材料、導電回路材料等に用いることができる。   The method for forming a metal thin film of the present invention includes a step of heat-treating a coating film containing a metal fine particle dispersion with superheated steam. By heat-treating with superheated steam, the treatment atmosphere becomes oxygen-free or low-oxygen, and even metal fine particles that easily oxidize in the air, such as copper fine particles, can be prevented from being oxidized in the heat treatment step. . As a result, the deterioration of conductivity due to oxidation hardly occurs. Furthermore, depending on the type of metal and the processing conditions, the oxide layer on the surface of the fine particles may be reduced, and the conductivity may be improved. In addition, when the coating film is formed by applying or printing a metal fine particle dispersion, the superheated steam is used to promote desorption of organic substances adsorbed on the metal fine particles, and as a result, the opportunity for contact between the metal fine particles May be increased, and the conductivity is further improved. In addition, since superheated steam has higher heating efficiency than heated air or heated nitrogen gas, firing may occur in a short time and / or at a low temperature. Furthermore, in the case where the heat treatment temperature can be lowered than before, it may be possible to use a resin film or the like having poor heat resistance as an insulating substrate. Due to these effects, the metal thin film formed by the method of the present invention becomes a metal thin film having a low electric resistance value, and can be used for a metal / resin laminate, a conductive material for plating, a metal wiring material, a conductive circuit material and the like. .

本発明の好ましい実施態様は、還元剤を含む金属微粒子分散体よりなる塗膜を絶縁基板上に形成し、さらに過熱水蒸気により加熱処理する工程を含む。過熱水蒸気を用いることにより、金属微粒子に吸着した有機物の脱着を促して金属微粒子同士の接触機会を増加させ、その結果導電性が向上させる場合がある。また、過熱水蒸気は加熱効率が加熱空気や加熱窒素ガスよりも高いので、アルコールやポリエーテル等の還元力の比較的弱い化合物によっても金属微粒子表面の酸化物被膜の還元が起こり、導電性の向上が生じる場合がある。また、過熱水蒸気によって熱処理することにより、還元剤の分解残渣や未反応物を蒸発揮散が生じ、その結果として導電性の向上が得られる場合がある。本発明の金属薄膜の形成方法により、これらの作用の一つまたは複数が生じることにより、体積抵抗率の低い金属薄膜を得る、過熱水蒸気処理温度を低下させる、過熱水蒸気処理時間を短縮する、といった効果の一つまたは複数が発揮される。また、過熱水蒸気処理温度を低下させる、過熱水蒸気処理時間を短縮する、との効果が発揮される場合には、金属薄膜の基材として樹脂フィルム等の耐熱性に劣る基板を用いることが可能となる場合がある。   A preferred embodiment of the present invention includes a step of forming a coating film comprising a metal fine particle dispersion containing a reducing agent on an insulating substrate, and further heat-treating with superheated steam. By using superheated steam, desorption of organic substances adsorbed on the metal fine particles is promoted to increase the chance of contact between the metal fine particles, and as a result, the conductivity may be improved. In addition, superheated steam has higher heating efficiency than heated air and heated nitrogen gas, so that the oxide film on the surface of metal fine particles can be reduced even by compounds with relatively weak reducing power such as alcohol and polyether, improving conductivity. May occur. In addition, heat treatment with superheated steam may cause evaporation of the reducing agent decomposition residue and unreacted substances, resulting in improved conductivity. According to the method for forming a metal thin film of the present invention, one or more of these actions occur, thereby obtaining a metal thin film having a low volume resistivity, reducing the superheated steam treatment temperature, shortening the superheated steam treatment time, etc. One or more of the effects are exhibited. Further, when the effect of lowering the superheated steam treatment temperature and shortening the superheated steam treatment time is exhibited, it is possible to use a substrate having poor heat resistance such as a resin film as the base material of the metal thin film. There is a case.

本発明の好ましい実施態様は、金属微粒子分散体からなる塗膜を絶縁基板上に形成し、さらにアルコール化合物を含有する過熱水蒸気により加熱処理する工程を含む。過熱水蒸気処理は金属微粒子に吸着した有機物の脱着や金属の種類によっては還元作用を示す場合があるが、過熱水蒸気にアルコール化合物を含有させることにより、これらの過熱水蒸気の働きが高まり、金属微粒子に吸着した有機物の脱着が促進されたり、金属微粒子の表面酸化被膜の還元が促進され金属微粒子同士の接触が増えたりする場合がある。本発明の金属薄膜の製造方法により、これらの作用の一つまたは複数が生じ、体積抵抗率の低い金属薄膜を得る、過熱水蒸気処理温度を低下させる、過熱水蒸気処理時間を短縮する、といった効果の一つまたは複数が発揮される。また、過熱水蒸気処理温度を低下させる、過熱水蒸気処理時間を短縮する、との効果が発揮される場合には、金属薄膜の基材として樹脂フィルム等の耐熱性に劣る基板を用いることが可能となる場合がある。   A preferred embodiment of the present invention includes a step of forming a coating film comprising a metal fine particle dispersion on an insulating substrate, and further heat-treating with superheated steam containing an alcohol compound. Superheated steam treatment may show desorption of organic substances adsorbed on metal fine particles and depending on the type of metal. However, by adding an alcohol compound to superheated steam, the function of these superheated steam is increased, and the metal fine particles are treated. There are cases where the desorption of the adsorbed organic matter is promoted, or the reduction of the surface oxide film of the metal fine particles is promoted to increase the contact between the metal fine particles. One or more of these actions are produced by the method for producing a metal thin film of the present invention, and a metal thin film having a low volume resistivity is obtained, the superheated steam treatment temperature is lowered, and the superheated steam treatment time is shortened. One or more are demonstrated. Further, when the effect of lowering the superheated steam treatment temperature and shortening the superheated steam treatment time is exhibited, it is possible to use a substrate having poor heat resistance such as a resin film as the base material of the metal thin film. There is a case.

本発明においては、金属微粒子分散体を含有する塗膜に過熱水蒸気による加熱処理を施すことによって、金属薄膜を製造する。前記塗膜は金属微粒子分散体を絶縁性基板に塗布または印刷したものであることが好ましい。   In the present invention, a metal thin film is produced by subjecting a coating film containing a metal fine particle dispersion to a heat treatment with superheated steam. The coating film is preferably one obtained by applying or printing a metal fine particle dispersion on an insulating substrate.

本発明の金属微粒子分散体は、金属微粒子を分散質とし、分散媒中に分散させたものであり、必要により金属微粒子に吸着能力のあるバインダー樹脂を含んでもよい。   The metal fine particle dispersion of the present invention is obtained by dispersing metal fine particles as a dispersoid in a dispersion medium, and may contain a binder resin capable of adsorbing the metal fine particles as necessary.

本発明に用いられる金属微粒子の平均粒径は0.5μm以下であることが好ましく、より好ましくは0.25μm以下、さらに好ましくは0.1μm以下、特に好ましくは0.08μm以下である。平均粒径の測定は、透過電子顕微鏡、電界放射型透過電子顕微鏡、電界放射型走査電子顕微鏡のいずれかにより粒子100個の粒子径を測定して平均値をもとめる方法による。   The average particle size of the metal fine particles used in the present invention is preferably 0.5 μm or less, more preferably 0.25 μm or less, still more preferably 0.1 μm or less, and particularly preferably 0.08 μm or less. The average particle diameter is measured by measuring the particle diameter of 100 particles using any one of a transmission electron microscope, a field emission transmission electron microscope, and a field emission scanning electron microscope to obtain an average value.

金属微粒子の平均粒径が0.5μmより大きいと、分散体での金属微粒子の沈降を生じたり、微細回路の印刷適性が劣ったりする。平均粒径の下限は特に限定されないが、0.01μm以上であることが好ましい。0.01μm未満では金属微粒子の経済性の制限や、安定な分散物を得るためには多量の分散媒を必要とするため、高導電性の金属薄膜を得ることが困難になる場合がある。本発明で用いる金属微粒子は粒径が0.5μm以下であれば、異なる粒径の物を混合して使用してもかまわない。   When the average particle diameter of the metal fine particles is larger than 0.5 μm, the metal fine particles are precipitated in the dispersion, or the printability of the fine circuit is deteriorated. Although the minimum of an average particle diameter is not specifically limited, It is preferable that it is 0.01 micrometer or more. If it is less than 0.01 μm, it may be difficult to obtain a highly conductive metal thin film because a large amount of a dispersion medium is required in order to limit the economical efficiency of metal fine particles and to obtain a stable dispersion. As long as the metal fine particles used in the present invention have a particle diameter of 0.5 μm or less, they may be used by mixing different particle diameters.

本発明で使用する金属微粒子としては、加熱処理によって微粒子間が融着するものでも、融着しないものでも使用可能である。金属の種類としては、銅、ニッケル、コバルト、銀、白金、金、モリブデン、チタン等が挙げられ、特に銀、銅が好ましい。これらの金属微粒子は、市販品を用いてもよいし、公知の方法を用いて調製することも可能である。また、異種の金属を積層した構造のもの、有機物あるいは無機物に金属めっきを施したものでもかまわない。また、本発明で使用する金属微粒子は、特に断らない限り、表面を酸化物で覆われた金属微粒子および金属酸化物の微粒子をも含む。   As the metal fine particles used in the present invention, either fine particles fused by heat treatment or those not fused can be used. Examples of the metal include copper, nickel, cobalt, silver, platinum, gold, molybdenum, and titanium, and silver and copper are particularly preferable. These metal fine particles may be a commercially available product or can be prepared using a known method. In addition, a structure in which different kinds of metals are stacked, or an organic or inorganic material plated with metal may be used. The metal fine particles used in the present invention also include metal fine particles whose surfaces are covered with an oxide and metal oxide fine particles, unless otherwise specified.

本発明で使用する金属微粒子分散体には還元剤を含有させることができる。還元剤とは金属の酸化物、水酸化物、または塩等の金属化合物を金属に還元する能力を有するものを言う。還元剤としては、例えば、水素化ホウ素ナトリウム、水素化ホウ素リチウム、ヒドラジン類、ホルマリンやアセトアルデヒド等のアルデヒド類、亜硫酸塩類、蟻酸、蓚酸、コハク酸、アスコルビン酸等のカルボン酸類あるいはラクトン類、エタノール、ブタノール、オクタノール等の脂肪族モノアルコール類、ターピネオール等の脂環族モノアルコール類等のモノアルコール類、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、グリセリン、トリメチロールプロパン等の多価アルコール類、ポリエチレングリコール、ポリプロピレングリコール等のポリエーテル類、ジエタノールアミンやモノエタノールアミン等のアルカノールアミン類、ハイドロキノン、レゾルシノール、ブドウ糖、あるいはクエン酸ナトリウム等が挙げられる。還元剤あるいは還元剤分解物の金属薄層への残留は、得られた金属薄層の導電性や絶縁基板との接着性等の特性の悪化を生じることがある。そのため、還元剤は過熱水蒸気処理により蒸発揮散するものが望ましい。また、金属微粒子分散体の塗布層を過熱水蒸気処理する際、還元剤が塗布層に残留していることが望ましい。そのため、還元剤が液状揮発性物質の場合は沸点が150℃以上であることが望ましい。本発明の還元剤としてはアルコール類や多価アルコール類が望ましい。本発明の還元剤は具体的な好ましい例としては、ターピネオール、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、アスコルビン酸、レゾルシノール等を挙げることができる。   The metal fine particle dispersion used in the present invention may contain a reducing agent. A reducing agent means what has the capability to reduce | restore metal compounds, such as a metal oxide, a hydroxide, or a salt, to a metal. Examples of the reducing agent include sodium borohydride, lithium borohydride, hydrazines, aldehydes such as formalin and acetaldehyde, sulfites, formic acid, succinic acid, carboxylic acids such as succinic acid and ascorbic acid, or lactones, ethanol, Aliphatic monoalcohols such as butanol and octanol, monoalcohols such as alicyclic monoalcohols such as terpineol, polyhydric alcohols such as ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, glycerin and trimethylolpropane, Polyethers such as polyethylene glycol and polypropylene glycol, alkanolamines such as diethanolamine and monoethanolamine, hydroquinone, resorcinol, glucose, or Sodium citrate, and the like. Residue of the reducing agent or the reducing agent decomposition product on the metal thin layer may cause deterioration of properties such as conductivity of the obtained metal thin layer and adhesion to the insulating substrate. Therefore, it is desirable that the reducing agent is evaporated by superheated steam treatment. In addition, when the coating layer of the metal fine particle dispersion is subjected to the superheated steam treatment, it is desirable that the reducing agent remains in the coating layer. Therefore, when the reducing agent is a liquid volatile substance, the boiling point is desirably 150 ° C. or higher. As the reducing agent of the present invention, alcohols and polyhydric alcohols are desirable. Specific preferred examples of the reducing agent of the present invention include terpineol, ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, ascorbic acid, resorcinol and the like.

本発明で使用される金属微粒子分散体に使用される分散媒は、分散安定化の働きをするバインダー樹脂を用いる場合には、その樹脂を溶解するものから選ばれ、有機化合物であっても水であってもよい。分散媒は、分散体中で金属微粒子を分散させる役割に加えて、分散体の粘度を調整する役割がある。分散媒として好適に用いられる有機溶媒の例として、アルコール、エーテル、ケトン、エステル、芳香族炭化水素、アミド等が挙げられる。   The dispersion medium used in the metal fine particle dispersion used in the present invention is selected from those that dissolve the resin when a binder resin that functions to stabilize the dispersion is used. It may be. The dispersion medium has a role of adjusting the viscosity of the dispersion in addition to the role of dispersing the metal fine particles in the dispersion. Examples of organic solvents that are suitably used as the dispersion medium include alcohols, ethers, ketones, esters, aromatic hydrocarbons, amides, and the like.

本発明で使用される金属微粒子分散体に必要により使用されるバインダー樹脂としては、ポリエステル、ポリウレタン、ポリカーボネート、ポリエーテル、ポリアミド、ポリアミドイミド、ポリイミドあるいはアクリル等が挙げられる。樹脂中にエステル結合、ウレタン結合、アミド結合、エーテル結合、イミド結合等を有するものが、金属微粒子分散体の安定性から、好ましい。   Examples of the binder resin used as necessary for the metal fine particle dispersion used in the present invention include polyester, polyurethane, polycarbonate, polyether, polyamide, polyamideimide, polyimide, and acrylic. A resin having an ester bond, a urethane bond, an amide bond, an ether bond, an imide bond or the like is preferable from the viewpoint of the stability of the metal fine particle dispersion.

本発明で用いる金属微粒子分散体は通常、金属微粒子、溶剤、バインダー樹脂から成る。各成分の割合は金属微粒子100重量部に対し、溶剤20〜400重量部、バインダー樹脂5〜20重量部の範囲が好ましい。各成分の割合は金属微粒子100重量部に対し、溶剤60〜180重量部、バインダー樹脂8〜14重量部の範囲がより好ましく、溶剤80〜120重量部、バインダー樹脂9〜12重量部の範囲がさらに好ましい。また、金属微粒子の平均粒径が10nm以下ではブラウン運動により溶液中で安定して存在するため、バインダー樹脂を必ずしも必要としない。   The fine metal particle dispersion used in the present invention is usually composed of fine metal particles, a solvent, and a binder resin. The proportion of each component is preferably in the range of 20 to 400 parts by weight of solvent and 5 to 20 parts by weight of binder resin with respect to 100 parts by weight of metal fine particles. The proportion of each component is more preferably in the range of 60 to 180 parts by weight of solvent and 8 to 14 parts by weight of binder resin, and in the range of 80 to 120 parts by weight of solvent and 9 to 12 parts by weight of binder resin with respect to 100 parts by weight of metal fine particles. Further preferred. Further, when the average particle diameter of the metal fine particles is 10 nm or less, the binder resin is not necessarily required because the metal fine particles exist stably in the solution due to Brownian motion.

本発明で用いられる金属微粒子分散体には、必要に応じ、硬化剤を配合しても良い。本発明に使用できる硬化剤としてはフェノール樹脂、アミノ樹脂、イソシアネート化合物、エポキシ樹脂等が挙げられる。硬化剤の使用量はバインダー樹脂の1〜50重量%の範囲が好ましく、3〜28重量%の範囲がより好ましく、6〜18重量%の範囲がさらに好ましい。硬化剤の使用により、塗膜の密着性や表面硬度を向上させる効果が発揮される場合がある。   A curing agent may be blended in the metal fine particle dispersion used in the present invention, if necessary. Examples of the curing agent that can be used in the present invention include phenol resins, amino resins, isocyanate compounds, and epoxy resins. The amount of the curing agent used is preferably in the range of 1 to 50% by weight of the binder resin, more preferably in the range of 3 to 28% by weight, and still more preferably in the range of 6 to 18% by weight. By using a curing agent, the effect of improving the adhesion and surface hardness of the coating film may be exhibited.

本発明で用いる金属微粒子分散体は、スルフォン酸塩基やカルボン酸塩基等の金属への吸着能力のある官能基を含有するポリマーを含んでいることが好ましい。さらに分散剤を配合してもかまわない。分散剤としてはステアリン酸、オレイン酸、ミリスチン酸等の高級脂肪酸、脂肪酸アミド、脂肪酸金属塩、燐酸エステル、スルフォン酸エステル等が挙げられる。分散剤の使用量はバインダー樹脂の0.1〜10重量%の範囲が好ましく、0.3〜6重量%の範囲がより好ましく、0.6〜3重量%の範囲がさらに好ましい。分散剤の使用により、金属微粒子の分散性や分散体の保存安定性を向上させる効果が発揮される場合がある。   The fine metal particle dispersion used in the present invention preferably contains a polymer containing a functional group capable of adsorbing to a metal such as a sulfonate group or a carboxylate group. Furthermore, you may mix | blend a dispersing agent. Examples of the dispersant include higher fatty acids such as stearic acid, oleic acid, and myristic acid, fatty acid amides, fatty acid metal salts, phosphoric acid esters, and sulfonic acid esters. The amount of the dispersant used is preferably in the range of 0.1 to 10% by weight of the binder resin, more preferably in the range of 0.3 to 6% by weight, and still more preferably in the range of 0.6 to 3% by weight. Use of the dispersant may exhibit an effect of improving the dispersibility of the metal fine particles and the storage stability of the dispersion.

金属微粒子分散体を得る方法としては、粉体を液体に分散させる一般的な方法を用いることができる。例えば、金属微粒子とバインダー樹脂溶液、必要により追加の溶媒からなる混合物を混合した後、超音波法、ミキサー法、3本ロール法、ボールミル法等で分散を施せばよい。これらの分散手段のうち、複数を組み合わせて分散を行うことも可能である。これらの分散処理は室温で行ってもよく、分散体の粘度を下げるために、加熱して行ってもよい。   As a method for obtaining the metal fine particle dispersion, a general method for dispersing powder in a liquid can be used. For example, after mixing a mixture of metal fine particles and a binder resin solution and, if necessary, an additional solvent, dispersion may be performed by an ultrasonic method, a mixer method, a three-roll method, a ball mill method, or the like. Of these dispersing means, a plurality of dispersing means can be combined for dispersion. These dispersion treatments may be performed at room temperature, or may be performed by heating in order to reduce the viscosity of the dispersion.

金属微粒子分散体を含有する塗膜を形成するには、分散体を基材に塗布あるいは印刷する場合に用いられる一般的な方法を用いることができる。例えばスクリーン印刷法、ディップコーティング法、スプレー塗布法、スピンコーティング法、ロールコート法、ダイコート法、インクジェット法、凸版印刷法、凹版印刷法等の方法によって金属微粒子分散体を塗布または印刷し、次いで風乾、加熱あるいは減圧等により分散媒の少なくとも一部を蒸発させることにより、塗膜を形成することができる。塗膜は絶縁基板上に全面に設けられたものでも部分的に設けられたものでもよく、また導電回路等のパターン形成物でもかまわない。   In order to form a coating film containing the metal fine particle dispersion, a general method used when the dispersion is applied or printed on a substrate can be used. For example, the metal fine particle dispersion is applied or printed by a method such as a screen printing method, a dip coating method, a spray coating method, a spin coating method, a roll coating method, a die coating method, an ink jet method, a relief printing method, an intaglio printing method, and then air-dried. The coating film can be formed by evaporating at least a part of the dispersion medium by heating or decompression. The coating film may be provided on the entire surface of the insulating substrate or may be provided partially, or may be a pattern formed product such as a conductive circuit.

本発明の金属薄膜の厚みは、電気抵抗や接着性等の必要特性にあわせて適宜設定することができ、特に限定されない。分散体組成や塗布または印刷の方法により、形成可能な金属薄膜の厚みの範囲は異なるが、0.05〜30μmが好ましく、より好ましくは0.1〜20μm、さらに好ましくは0.2〜10μmである。厚い金属薄膜を得るためには塗膜を厚くする必要があり、溶剤の残留による弊害や塗膜形成速度を低速化する必要が生じる等の経済性の悪化が起こりやすい。一方、塗膜が薄すぎると、ピンホールの発生が顕著になる傾向がある。   The thickness of the metal thin film of the present invention can be appropriately set according to necessary characteristics such as electric resistance and adhesiveness, and is not particularly limited. Although the range of the thickness of the metal thin film that can be formed varies depending on the dispersion composition and the method of coating or printing, it is preferably 0.05 to 30 μm, more preferably 0.1 to 20 μm, still more preferably 0.2 to 10 μm. is there. In order to obtain a thick metal thin film, it is necessary to increase the thickness of the coating film, which is likely to cause economic deterioration such as an adverse effect due to residual solvent and a need to reduce the coating film forming speed. On the other hand, if the coating film is too thin, the occurrence of pinholes tends to be significant.

本発明の金属薄膜の形成に際し、重ね刷りや多層印刷を行なうことが可能である。ここで、重ね刷りとは、同じパターンを多数回重ねて印刷することを指し、これにより金属薄膜の厚さを増すことができ、あるいはアスペクト比(膜圧と線幅の比率)の高い金属薄膜を得ることができる。また、多層印刷とは、異なるパターンを重ねて印刷することを指し、これにより層ごとに異なる機能を発揮させることができる。部分的に重ね刷りおよび/または多層印刷を行なうこと、また重ね刷りと多層印刷を複合的に行うことも差し支えない。また、本発明の金属薄膜とは異なる薄膜、例えば絶縁層との多層印刷を行うことも可能である。   When forming the metal thin film of the present invention, it is possible to perform overprinting or multilayer printing. Here, overprinting refers to printing the same pattern a number of times, thereby increasing the thickness of the metal thin film, or a metal thin film having a high aspect ratio (ratio of film pressure to line width). Can be obtained. Multi-layer printing refers to printing different patterns in a superimposed manner, whereby different functions can be exhibited for each layer. Partial overprinting and / or multilayer printing may be performed, and overprinting and multilayer printing may be performed in combination. It is also possible to perform multilayer printing with a thin film different from the metal thin film of the present invention, such as an insulating layer.

絶縁基板がポリイミド系樹脂からなるものである場合には、ポリイミド前駆体溶液の一次乾燥品やポリイミド溶液やポリアミドイミド溶液の一次乾燥品に金属微粒子分散体の塗膜を形成し、次いで過熱水蒸気による加熱処理を行う方法をとることが好ましい。ポリイミド系前駆体溶液やポリイミド系溶液の一次乾燥品に10〜30重量%の溶剤を残留させた状態のままで、引き続いてその上に、金属微粒子分散体を塗布・乾燥して塗膜を形成し、引き続いて過熱水蒸気による加熱処理を行うことにより、ポリイミド系樹脂層と塗膜との接着が強固になる傾向にある。   When the insulating substrate is made of a polyimide resin, a coating film of the metal fine particle dispersion is formed on the primary dried product of the polyimide precursor solution or the primary dried product of the polyimide solution or the polyamideimide solution, and then by superheated steam. It is preferable to take a method of performing heat treatment. A coating film is formed by applying and drying a metal fine particle dispersion on the polyimide precursor solution and the primary dry product of the polyimide solution with the solvent remaining at 10 to 30% by weight. Then, the subsequent heat treatment with superheated steam tends to strengthen the adhesion between the polyimide resin layer and the coating film.

金属微粒子分散体から形成された塗膜は、乾燥処理を行った後に過熱水蒸気による加熱処理を行なうことが好ましい。塗布後、乾燥工程無しで過熱水蒸気処理を行うと、突沸が起こり塗膜の均質性が悪化する場合がある。乾燥処理と過熱蒸気処理は連続して行っても、間に他の処理を挟んで行ってもよい。乾燥処理と過熱水蒸気処理の間に挟む処理としては、例えば塗膜に還元剤を付与する処理を挙げることができる。この場合、塗膜には予め還元剤が含有されていても含有されていなくてもよく、含有されている場合には同種のもの、異種のものおよび同種のものと異種のものの混合物のいずれとすることも可能である。塗膜に還元剤を付与する処理により、塗膜の体積抵抗率の低下、過熱処理温度の低下、過熱処理時間の短縮、といった効果が発揮される場合がある。また、乾燥処理と過熱水蒸気処理の間に挟む処理としては、カレンダー処理を挙げることができる。カレンダー処理を行うことにより、塗膜の体積抵抗率の低下が可能になる場合がある。   The coating film formed from the metal fine particle dispersion is preferably subjected to a heat treatment with superheated steam after a drying treatment. When the superheated steam treatment is performed without applying a drying step after coating, bumping may occur and the uniformity of the coating film may deteriorate. The drying process and the superheated steam process may be performed continuously or may be performed with another process interposed therebetween. Examples of the process sandwiched between the drying process and the superheated steam process include a process of applying a reducing agent to the coating film. In this case, the coating film may or may not contain a reducing agent in advance, and if it is contained, any of the same type, different type, and a mixture of the same type and different type It is also possible to do. By the treatment of applying a reducing agent to the coating film, effects such as a decrease in volume resistivity of the coating film, a decrease in overheat treatment temperature, and a decrease in overheat treatment time may be exhibited. Moreover, a calendar process can be mentioned as a process pinched | interposed between a drying process and a superheated steam process. By performing the calendar process, it may be possible to reduce the volume resistivity of the coating film.

金属微粒子分散体を含有する塗膜を形成した後、塗膜が破壊しない範囲で加圧処理(カレンダー処理)をすることが好ましい。カレンダー処理により導電性が向上する傾向がある。カレンダー処理は一般的には金属ロールと弾性ロールの間で材料に応じた線圧、たとえば1〜100kg/cmの加圧処理を行うことである。カレンダー処理は、金属微粒子分散体にバインダー樹脂を用いている場合には、バインダー樹脂のガラス転移温度以上の温度に加熱して行うことが特に好ましい。カレンダー処理は金属微粒子分散体の塗膜に他の層を積層した状態で行っても良い。   After forming the coating film containing the metal fine particle dispersion, it is preferable to perform pressure treatment (calendar treatment) within a range where the coating film is not destroyed. There exists a tendency for electroconductivity to improve by a calendar process. In general, the calender treatment is to perform a linear treatment according to the material between the metal roll and the elastic roll, for example, a pressure treatment of 1 to 100 kg / cm. When the binder resin is used for the metal fine particle dispersion, the calendar treatment is particularly preferably performed by heating to a temperature equal to or higher than the glass transition temperature of the binder resin. The calendar treatment may be performed in a state where another layer is laminated on the coating film of the metal fine particle dispersion.

金属微粒子分散体を含有する塗膜に過熱水蒸気による加熱処理を行うことによって、本発明の金属薄膜を得ることができる。過熱水蒸気とは、圧力を上げずにさらに飽和水蒸気を加熱して温度を上げた水蒸気のことをいう。過熱水蒸気は温度が150℃以上では放射熱エネルギーが通常の加熱空気と比較して著しく大きくなるため、短時間で物質を加熱することができる。   The metal thin film of the present invention can be obtained by subjecting the coating film containing the metal fine particle dispersion to a heat treatment with superheated steam. Superheated steam refers to steam that has been heated by heating saturated steam without increasing the pressure. Superheated steam can heat a substance in a short time because the radiant heat energy becomes remarkably larger than that of ordinary heated air at a temperature of 150 ° C. or higher.

本発明において、過熱水蒸気としてアルコール化合物を含有する過熱水蒸気を用いることができる。過熱水蒸気に含有させるアルコール化合物はメタノール、エタノール、1−プロパノール、2−プロパノール等の脂肪族モノアルコール、エチレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル等の脂肪族ジオールのモノアルキルエーテル、シクロヘキサノール、テルピネオール等の脂環族モノアルコール等のモノアルコール化合物、エチレングリコール、プロピレングリコール、ジエチレングリコール、ブタンジオール等の脂肪族ジオール、シクロヘキサンジメタノール等の脂環族ジオール、グリセリン、トリメチロールプロパン、ペンタエリスリトール等の多価アルコール化合物、あるいは酒石酸、ヒドロキシ酪酸、リンゴ酸等のヒドロキシカルボン酸が挙げられる。これらのうち、メタノール、エタノール、エチレングリコール、プロピレングリコールが好ましい。   In the present invention, superheated steam containing an alcohol compound can be used as superheated steam. Alcohol compounds to be included in superheated steam are aliphatic monoalcohols such as methanol, ethanol, 1-propanol and 2-propanol, monoalkyls of aliphatic diols such as ethylene glycol monoethyl ether, ethylene glycol monoethyl ether and propylene glycol monomethyl ether Monoalcohol compounds such as ether, cyclohexanol, terpineol, and other alicyclic monoalcohols, aliphatic diols such as ethylene glycol, propylene glycol, diethylene glycol, and butanediol, alicyclic diols such as cyclohexanedimethanol, glycerin, and trimethylolpropane And polyhydric alcohol compounds such as pentaerythritol, and hydroxycarboxylic acids such as tartaric acid, hydroxybutyric acid and malic acid. Of these, methanol, ethanol, ethylene glycol, and propylene glycol are preferred.

アルコール化合物を含有する過熱水蒸気を作る方法としては、例えば、水にアルコール化合物を溶解させた溶液の飽和蒸気を加熱する方法、アルコール化合物と水の夫々の飽和蒸気を混合加熱する方法が挙げられる。過熱水蒸気中のアルコール化合物の含有率は化合物の種類により最適範囲は異なるが、0.01〜20重量%の範囲で用いることが好ましい。アルコール化合物の含有率が0.01重量%未満では導電性改善効果が見られず、20重量%を超えるとバインダー樹脂の溶解や分解が顕著に起こることがある。より好ましい範囲は0.1〜5重量%である。   Examples of a method for producing superheated steam containing an alcohol compound include a method of heating saturated steam of a solution in which an alcohol compound is dissolved in water, and a method of mixing and heating each saturated steam of an alcohol compound and water. The content of the alcohol compound in the superheated steam is preferably in the range of 0.01 to 20% by weight, although the optimum range varies depending on the type of compound. When the content of the alcohol compound is less than 0.01% by weight, the effect of improving the conductivity is not observed, and when it exceeds 20% by weight, the binder resin may be significantly dissolved or decomposed. A more preferable range is 0.1 to 5% by weight.

過熱水蒸気処理は金属微粒子分散体を含有する塗膜の焼成処理として施されることが好ましい。焼成処理は金属微粒子の粒径が100nm以下の場合に特に高い効果を発揮する傾向にある。金属微粒子の結晶化度や酸化度等の表面状態により異なるが、いわゆるナノ粒子では表面活性が大きく、一般に知られているバルクの融点よりもはるかに低い温度で融着を始める。なお、本発明において焼成処理とは、金属微粒子の少なくとも一部に融着を生じる加熱処理を指し、バインダー樹脂および分散剤の分解や揮散は必ずしも要しないものとする。   The superheated steam treatment is preferably performed as a baking treatment of the coating film containing the metal fine particle dispersion. The firing treatment tends to exhibit a particularly high effect when the particle size of the metal fine particles is 100 nm or less. Although it varies depending on the surface state such as crystallinity and oxidation degree of the metal fine particles, so-called nanoparticles have a large surface activity and start to be fused at a temperature much lower than the generally known melting point of the bulk. In the present invention, the firing treatment refers to a heat treatment in which at least a part of the metal fine particles is fused, and it is not necessarily required to decompose or volatilize the binder resin and the dispersant.

本発明で用いる過熱水蒸気の温度は150℃以上、特に200℃以上が好ましく、温度の上限は500℃以下が好ましい。温度の上限は、用いる絶縁基板やバインダー樹脂の耐熱特性によっても制限されるが、バインダー樹脂を用いる場合400℃以下がより好ましく、350℃以下であることがさらに好ましい。加熱時間も被処理物の量や特性から選ばれるが、10秒〜30分間が好ましい。過熱水蒸気の温度が低すぎると、低体積抵抗率の導電層を得ることができない。過熱水蒸気の温度が高すぎると、バインダー樹脂の大半または全てが除去され、金属薄膜と基板の密着性が損なわれることがあり、また、基板の劣化が生じる場合があり、特に有機材料からなる絶縁基板を用いる場合には注意が必要である。   The temperature of the superheated steam used in the present invention is 150 ° C or higher, particularly 200 ° C or higher, and the upper limit of the temperature is preferably 500 ° C or lower. The upper limit of the temperature is also limited by the heat resistance characteristics of the insulating substrate and binder resin to be used, but when the binder resin is used, it is more preferably 400 ° C. or lower, and further preferably 350 ° C. or lower. The heating time is also selected from the amount and characteristics of the object to be processed, but is preferably 10 seconds to 30 minutes. When the temperature of the superheated steam is too low, a conductive layer having a low volume resistivity cannot be obtained. If the temperature of the superheated steam is too high, most or all of the binder resin is removed, the adhesion between the metal thin film and the substrate may be impaired, and the substrate may be deteriorated. Care must be taken when using a substrate.

過熱水蒸気による加熱処理操作は熱風乾燥における加熱空気による加熱処理操作と同様に取り扱うことができる。空気を過熱水蒸気で完全に置換すると不活性ガスと同様の無酸素状態が得られ、酸化反応を防止できる。金属の種類によっては、微粒子化することによる表面活性の向上により還元反応が起こり、導電性が飛躍的に向上する場合がある。特に銅微粒子では、顕著な導電性の向上が認められ、銅微粒子表面に形成された酸化層の還元が生じているものと考えられる。この還元によると考えられる導電性の向上効果は粒子径の減少により大きくなる傾向がある。銅微粒子等の酸化被膜が形成されやすい金属の微粒子の場合には、過熱水蒸気で処理する部分と処理しない部分をパターン化することにより、導電性部分と絶縁性部分を同一面上にパターン形成できる。   The heat treatment operation with superheated steam can be handled in the same manner as the heat treatment operation with heated air in hot air drying. When air is completely replaced with superheated steam, an oxygen-free state similar to that of an inert gas is obtained, and an oxidation reaction can be prevented. Depending on the type of metal, the reduction of the surface activity due to the formation of fine particles may cause a reduction reaction, and the conductivity may be dramatically improved. In particular, in the case of copper fine particles, a remarkable improvement in conductivity is recognized, and it is considered that reduction of the oxide layer formed on the surface of the copper fine particles occurs. The effect of improving the conductivity considered to be due to this reduction tends to increase as the particle diameter decreases. In the case of metal fine particles, such as copper fine particles, where the oxide film is easily formed, the conductive portion and the insulating portion can be patterned on the same surface by patterning the portion to be treated with superheated steam and the portion not to be treated. .

本発明で得られた金属薄膜は、過熱水蒸気による熱処理工程を経た後、ベンゾトリアゾール系化合物やクロメート化合物等の防錆剤により表面処理を行ってもかまわない。   The metal thin film obtained in the present invention may be subjected to a surface treatment with a rust inhibitor such as a benzotriazole compound or a chromate compound after undergoing a heat treatment step with superheated steam.

本発明で用いる絶縁基板は有機材料および無機材料のいずれのものであっても良い。絶縁基板に用いられる材料としては、ガラス、セラミックス、ポリイミド系樹脂、四フッ化エチレン樹脂等がある。また電気配線回路基板に通常用いられる、ガラスエポキシ基板、紙エポキシ基板、紙フェノール基板等の複合品も挙げられる。本発明では過熱水蒸気による加熱処理を行うのでこれに耐える耐熱性を有することが必須であり、このため耐熱性に優れるポリイミド系樹脂からなるフィルムあるいはシートやセラミックを絶縁基板として用いることが好ましい。   The insulating substrate used in the present invention may be either an organic material or an inorganic material. Examples of the material used for the insulating substrate include glass, ceramics, polyimide resin, and tetrafluoroethylene resin. Moreover, composite articles, such as a glass epoxy board | substrate, a paper epoxy board | substrate, and a paper phenol board | substrate which are normally used for an electrical wiring circuit board, are also mentioned. In the present invention, since heat treatment with superheated steam is performed, it is essential to have heat resistance that can withstand this. For this reason, it is preferable to use a film, sheet, or ceramic made of a polyimide resin having excellent heat resistance as an insulating substrate.

ポリイミド系樹脂としては、ポリイミド前駆体樹脂、溶剤可溶ポリイミド樹脂、ポリアミドイミド樹脂等が挙げられる。ポリイミド系樹脂は通常の方法で重合することができる。例えば、テトラカルボン酸二無水物とジアミンを低温で溶液中にて反応させ、ポリイミド前躯体溶液を得る方法、テトラカルボン酸二無水物とジアミンを高温の溶液中で反応させ溶剤可溶性のポリイミド溶液を得る方法、原料としてイソシアネートを用いる方法、原料として酸クロリドを用いる方法などがある。   Examples of the polyimide resin include a polyimide precursor resin, a solvent-soluble polyimide resin, and a polyamideimide resin. The polyimide resin can be polymerized by a usual method. For example, tetracarboxylic dianhydride and diamine are reacted in a solution at a low temperature to obtain a polyimide precursor solution, and tetracarboxylic dianhydride and diamine are reacted in a high temperature solution to obtain a solvent-soluble polyimide solution. And a method using isocyanate as a raw material and a method using acid chloride as a raw material.

ポリイミド前駆体樹脂や溶剤可溶ポリイミド樹脂に用いる原料としては、以下に示すような物がある。酸成分としてはピロメリット酸、ベンゾフェノン−3,3’,4,4’−テトラカルボン酸、ビフェニル−3,3’,4,4’−テトラカルボン酸、ジフェニルスルフォン−3,3’,4,4’−テトラカルボン酸、ジフェニルエーテル−3,3’,4,4’−テトラカルボン酸、ナフタレン−2,3,6,7−テトラカルボン酸、ナフタレン−1,2,4,5−テトラカルボン酸、ナフタレン−1,4,5,8−テトラカルボン酸、水素添加ピロメリット酸、水素添加ビフェニル−3,3’,4,4’−テトラカルボン酸等の一無水物、二無水物、エステル化物などを単独、あるいは2種以上の混合物として用いることができる。また、アミン成分としてはp−フェニレンジアミン、m−フェニレンジアミン、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルスルフォン、3,3’−ジアミノジフェニルスルフォン、3,4’−ジアミノビフェニル、3,3’−ジアミノビフェニル、3,3’−ジアミノベンズアニリド、4,4’−ジアミノベンズアニリド、4,4’−ジアミノベンゾフェノン、3,3’−ジアミノベンゾフェノン、3,4’−ジアミノベンゾフェノン、2,6−トリレンジアミン、2,4−トリレンジアミン、4,4’−ジアミノジフェニルスルフィド、3,3’−ジアミノジフェニルスルフィド、4,4’−ジアミノジフェニルプロパン、3,3’−ジアミノジフェニルプロパン、4,4’−ジアミノジフェニルヘキサフルオロプロパン、3,3’−ジアミノジフェニルヘキサフルオロプロパン、4,4’−ジアミノジフェニルメタン、3,3’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルヘキサフルオロイソプロピリデン、p−キシレンジアミン、m−キシレンジアミン、1,4−ナフタレンジアミン、1,5−ナフタレンジアミン、2,6−ナフタレンジアミン、2,7−ナフタレンジアミン、o−トリジン、2,2’−ビス(4−アミノフェニル)プロパン、2,2’−ビス(4−アミノフェニル)ヘキサフルオロプロパン、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、ビス[4−(4−アミノフェノキシ)フェニル]スルフォン、ビス[4−(3−アミノフェノキシ)フェニル]プロパン、ビス[4−(3−アミノフェノキシ)フェニル]スルフォン、ビス[4−(3−アミノフェノキシ)フェニル]ヘキサフロロプロパン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、4,4’−ビス(3−アミノフェノキシ)ビフェニル、2,2−ビス[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン、シクロヘキシル−1,4−ジアミン、イソフォロンジアミン、水素添加4,4’−ジアミノジフェニルメタン、あるいはこれらに対応するジイソシアネート化合物等の単独あるいは2種以上の混合物を用いることができる。また、これら酸成分、アミン成分の組み合わせで別途重合した樹脂を混合して使用することもできる。   The raw materials used for the polyimide precursor resin and the solvent-soluble polyimide resin include the following materials. As the acid component, pyromellitic acid, benzophenone-3,3 ′, 4,4′-tetracarboxylic acid, biphenyl-3,3 ′, 4,4′-tetracarboxylic acid, diphenylsulfone-3,3 ′, 4, 4'-tetracarboxylic acid, diphenyl ether-3,3 ', 4,4'-tetracarboxylic acid, naphthalene-2,3,6,7-tetracarboxylic acid, naphthalene-1,2,4,5-tetracarboxylic acid , Monoanhydrides, dianhydrides, esterified products such as naphthalene-1,4,5,8-tetracarboxylic acid, hydrogenated pyromellitic acid, hydrogenated biphenyl-3,3 ′, 4,4′-tetracarboxylic acid Etc. can be used alone or as a mixture of two or more. Examples of the amine component include p-phenylenediamine, m-phenylenediamine, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 3,4′-diaminobiphenyl, 3,3′-diaminobiphenyl, 3,3′-diaminobenzanilide, 4,4′-diaminobenzanilide, 4,4′-diaminobenzophenone, 3,3′-diaminobenzophenone, 3,4'-diaminobenzophenone, 2,6-tolylenediamine, 2,4-tolylenediamine, 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfide, 4,4'-diaminodiphenylpropane 3,3′-diaminodiphenylpropane, , 4′-diaminodiphenylhexafluoropropane, 3,3′-diaminodiphenylhexafluoropropane, 4,4′-diaminodiphenylmethane, 3,3′-diaminodiphenylmethane, 4,4′-diaminodiphenylhexafluoroisopropylidene, p -Xylenediamine, m-xylenediamine, 1,4-naphthalenediamine, 1,5-naphthalenediamine, 2,6-naphthalenediamine, 2,7-naphthalenediamine, o-tolidine, 2,2'-bis (4- Aminophenyl) propane, 2,2′-bis (4-aminophenyl) hexafluoropropane, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,3 -Bis (4-aminophenoxy) benzene, 2,2-bis [4- 4-aminophenoxy) phenyl] propane, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] propane, bis [4- (3-aminophenoxy) phenyl] sulfone Bis [4- (3-aminophenoxy) phenyl] hexafluoropropane, 4,4′-bis (4-aminophenoxy) biphenyl, 4,4′-bis (3-aminophenoxy) biphenyl, 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, cyclohexyl-1,4-diamine, isophoronediamine, hydrogenated 4,4′-diaminodiphenylmethane, or diisocyanate compounds corresponding to these alone or in combination A mixture of the above can be used. In addition, a resin separately polymerized by a combination of these acid component and amine component can be mixed and used.

ポリアミドイミド樹脂に用いる原料としては、酸成分としてトリメリット酸無水物、ジフェニルエーテル−3,3’,4,4’−トリカルボン酸無水物、ジフェニルスルフォン−3,3’,4’−トリカルボン酸無水物、ベンゾフェノン−3,3’,4’−トリカルボン酸無水物、ナフタレン−1,2,4−トリカルボン酸無水物、水素添加トリメリット酸無水物等のトリカルボン酸無水物類が単独あるいは混合物として挙げられる。アミン成分としてはポリイミド樹脂であげたジアミン、あるいはジイソシアネートの単独あるいは混合物が挙げられる。また、これら酸成分、アミン成分の組み合わせで別途重合した樹脂を混合して使用することもできる。   As raw materials used for polyamideimide resin, trimellitic anhydride, diphenyl ether-3,3 ′, 4,4′-tricarboxylic acid anhydride, diphenylsulfone-3,3 ′, 4′-tricarboxylic acid anhydride are used as acid components. , Benzophenone-3,3 ′, 4′-tricarboxylic acid anhydride, naphthalene-1,2,4-tricarboxylic acid anhydride, hydrogenated trimellitic acid anhydride and the like tricarboxylic acid anhydrides may be used alone or as a mixture. . Examples of the amine component include diamines mentioned for polyimide resins, or diisocyanates alone or as a mixture. In addition, a resin separately polymerized by a combination of these acid component and amine component can be mixed and used.

本発明で用いるポリイミド系樹脂溶液の溶媒としては、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、1,3−ジメチル−2−イミダゾリジノン、テトラメチルウレア、スルフォラン、ジメチルスルフォキシド、γ-ブチロラクトン、シクロヘキサノン、シクロペンタノンを挙げることができる。これらのなかでN−メチル−2−ピロリドン、N,N−ジメチルアセトアミドが好ましい。また、トルエン、キシレン、ジグライム、テトラヒドロフラン、メチルエチルケトン等の溶剤を、溶解性を阻害しない範囲で加えてもかまわない。   As a solvent for the polyimide resin solution used in the present invention, N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, 1,3-dimethyl-2-imidazolidinone, tetramethylurea , Sulfolane, dimethyl sulfoxide, γ-butyrolactone, cyclohexanone, and cyclopentanone. Of these, N-methyl-2-pyrrolidone and N, N-dimethylacetamide are preferred. Further, a solvent such as toluene, xylene, diglyme, tetrahydrofuran, methyl ethyl ketone, etc. may be added as long as the solubility is not inhibited.

本発明をさらに詳細に説明するために以下に実施例を挙げるが、本発明は実施例になんら限定されるものではない。なお、実施例に記載された測定値は以下の方法によって測定したものである。   In order to describe the present invention in more detail, examples are given below, but the present invention is not limited to the examples. In addition, the measured value described in the Example is measured by the following method.

電気抵抗:横河M&C社製直流精密測定器ダブルブリッジ2769−10を用いて測定した。電気抵抗は体積抵抗率で表示した。   Electrical resistance: Measured using a DC precision measuring instrument double bridge 2769-10 manufactured by Yokogawa M & C. The electrical resistance was expressed as volume resistivity.

用いた金属微粒子
銅微粒子(1):水中にて、硫酸銅(II)、アンモニア、硫酸アンモニウム、及び金属銅を用い、pH調節により生成した銅(I)イオンを、銅(II)イオン、および銅に不均化分解反応により得た金属銅微粒子。透過型電子顕微鏡により観察したところ、平均粒径80nmの球状の粒子である。
銅微粒子(2):真空雰囲気中でのガス中蒸発法にて生成させた銅微粒子。銅微粒子製造時、坩堝で発生させた銅蒸気とα−テルピネオールの蒸気を混合し銅粒子の凝集やチェーン化を防止した。透過型電子顕微鏡により観察したところ、平均粒径20nmの球状の粒子である。
銅微粒子(3):水酸化銅(II)をエチレングリコール中に懸濁させ、加熱還流させることにより得た金属銅微粒子。透過型電子顕微鏡により観察したところ、平均粒径300nmの球状の粒子である。
銅微粒子(4)日本アトマイズ加工社製純銅粉「HXR−Cu」。平均粒径1μmの球状粒子。
銅微粒子(5):還流装置つきフラスコに、水酸化銅(II)、エチレングリコールを懸濁状態で加熱し、撹拌下、2時間煮沸状態を保った。得られた銅微粒子を遠心分離し、アルコールで洗浄した。透過型電子顕微鏡により観察したところ、平均粒径0.2μmの球状の粒子であった。
銅微粒子(6):還流装置つきフラスコ中で、水酸化銅(II)とメチルアルコールからなる懸濁液に撹拌下、ヒドラジン水溶液を加え加熱し30分間煮沸状態を保った。得られた銅微粒子を遠心分離し、アセトンで洗浄した。透過型電子顕微鏡により観察したところ、平均粒径0.1μmの球状の粒子であった。
銅微粒子(7):三井金属鉱業社製銅粉「1020Y」。平均粒径360nmの湿式銅粉。
銀微粒子(1):硝酸銀をアスコルビン酸とドデシルアミンによりヘキサン中で還元することにより得た。洗浄、乾燥後、透過型電子顕微鏡により観察したところ、平均粒径60nmの球状の粒子であった。
銀微粒子(2):硝酸銀を水素化ホウ素ナトリウムとドデシルアミンによりヘキサン中で還元することにより得た。洗浄、乾燥後、透過型電子顕微鏡により観察したところ、平均粒径830nmの球状の粒子であった。
銀微粒子(3):硝酸銀をアスコルビン酸とドデシルアミンによりヘキサン中で還元することにより得た。洗浄、乾燥後、透過型電子顕微鏡により観察したところ、平均粒径50nmの球状の粒子であった。
銀微粒子(4):硝酸銀を水素化ホウ素ナトリウムとドデシルアミンによりヘキサン中で還元することにより得た。洗浄、乾燥後、透過型電子顕微鏡により観察したところ、平均粒径1.1μmの球状の粒子であった。
銀微粒子(5):硝酸銀をアスコルビン酸とドデシルアミンによりヘキサン中で還元することにより得た。洗浄、乾燥後、透過型電子顕微鏡により観察したところ、平均粒径40nmの球状の粒子であった。
銀微粒子(6):硝酸銀を水素化ホウ素ナトリウムとドデシルアミンによりヘキサン中で還元することにより得た。洗浄、乾燥後、透過型電子顕微鏡により観察したところ、平均粒径700nmの球状の粒子であった。
Metal fine particles used Copper fine particles (1): Copper (I) ions produced by adjusting the pH using copper (II) sulfate, ammonia, ammonium sulfate, and metal copper in water, copper (II) ions, and copper Metal copper fine particles obtained by disproportionation decomposition reaction. Observation with a transmission electron microscope reveals spherical particles having an average particle size of 80 nm.
Copper fine particles (2): Copper fine particles produced by gas evaporation in a vacuum atmosphere. During the production of copper fine particles, copper vapor generated in the crucible and α-terpineol vapor were mixed to prevent aggregation and chaining of the copper particles. Observation with a transmission electron microscope reveals spherical particles having an average particle diameter of 20 nm.
Copper fine particles (3): Copper metal fine particles obtained by suspending copper (II) hydroxide in ethylene glycol and heating to reflux. Observation with a transmission electron microscope reveals spherical particles having an average particle size of 300 nm.
Copper fine particles (4) Pure copper powder “HXR-Cu” manufactured by Nippon Atomizing Co., Ltd. Spherical particles with an average particle size of 1 μm.
Copper fine particle (5): Copper hydroxide (II) and ethylene glycol were heated in a suspension state in a flask equipped with a reflux apparatus, and kept in a boiling state for 2 hours with stirring. The obtained copper fine particles were centrifuged and washed with alcohol. Observation with a transmission electron microscope revealed spherical particles having an average particle diameter of 0.2 μm.
Copper fine particles (6): In a flask with a reflux apparatus, a hydrazine aqueous solution was added to a suspension composed of copper hydroxide (II) and methyl alcohol with stirring and heated to maintain the boiling state for 30 minutes. The obtained copper fine particles were centrifuged and washed with acetone. Observation with a transmission electron microscope revealed spherical particles having an average particle size of 0.1 μm.
Copper fine particles (7): Copper powder “1020Y” manufactured by Mitsui Mining & Smelting Co., Ltd. Wet copper powder with an average particle size of 360 nm.
Silver fine particles (1): obtained by reducing silver nitrate in hexane with ascorbic acid and dodecylamine. Observation with a transmission electron microscope after washing and drying revealed spherical particles having an average particle diameter of 60 nm.
Silver fine particles (2): Obtained by reducing silver nitrate in hexane with sodium borohydride and dodecylamine. Observation with a transmission electron microscope after washing and drying revealed spherical particles with an average particle diameter of 830 nm.
Silver fine particles (3): obtained by reducing silver nitrate in hexane with ascorbic acid and dodecylamine. Observation with a transmission electron microscope after washing and drying revealed spherical particles having an average particle diameter of 50 nm.
Silver fine particles (4): obtained by reducing silver nitrate in hexane with sodium borohydride and dodecylamine. Observation with a transmission electron microscope after washing and drying revealed spherical particles having an average particle diameter of 1.1 μm.
Silver fine particles (5): obtained by reducing silver nitrate in hexane with ascorbic acid and dodecylamine. Observation with a transmission electron microscope after washing and drying revealed spherical particles with an average particle diameter of 40 nm.
Silver fine particles (6): Obtained by reducing silver nitrate in hexane with sodium borohydride and dodecylamine. Observation with a transmission electron microscope after washing and drying revealed spherical particles having an average particle diameter of 700 nm.

実験番号Cu−1(実施例Cu−1)
下記の配合割合の組成物をサンドミルにいれ、800rpmで、2時間分散した。メディアは半径1mmのジルコニアビーズを用いた。得られた銅微粒子分散体をアプリケーターによりポリイミドフィルム上に乾燥後の厚みが2μmになるように塗布し、100℃で5分熱風乾燥後、塗膜加熱処理として300℃で5分間の過熱水蒸気処理を行った。過熱水蒸気の発生装置として蒸気過熱装置(第一高周波工業株式会社製「DHF Super−Hi 10」)を用い、10kg/時間の過熱水蒸気を供給する熱処理炉で行った。得られた金属薄膜の電気抵抗を表1に示す。
バインダー樹脂の溶液 2.5部
トルエン/シクロヘキサノン=1/1(重量比)の40重量%溶液
バインダー樹脂:共重合ポリエステル、東洋紡積社製バイロン300
銅微粒子(1)(平均粒径80nm) 9部
γ−ブチロラクトン(希釈溶剤) 3.5部
メチルエチルケトン(希釈溶剤) 5部
Experiment number Cu-1 (Example Cu-1)
A composition having the following blending ratio was placed in a sand mill and dispersed at 800 rpm for 2 hours. As media, zirconia beads having a radius of 1 mm were used. The obtained copper fine particle dispersion was applied on a polyimide film with an applicator so that the thickness after drying was 2 μm, dried with hot air at 100 ° C. for 5 minutes, and then heated at 300 ° C. for 5 minutes as a coating film heat treatment. Went. A steam superheater (“DHF Super-Hi 10” manufactured by Daiichi High Frequency Industrial Co., Ltd.) was used as a superheated steam generator, and was performed in a heat treatment furnace that supplied superheated steam at 10 kg / hour. Table 1 shows the electric resistance of the obtained metal thin film.
Binder resin solution 2.5 parts Toluene / cyclohexanone = 40% by weight solution of 1/1 (weight ratio) Binder resin: Copolyester, Byron 300 manufactured by Toyobo Co., Ltd.
Copper fine particles (1) (average particle size 80 nm) 9 parts γ-butyrolactone (diluted solvent) 3.5 parts methyl ethyl ketone (diluted solvent) 5 parts

実験番号Cu−2〜14(実施例Cu−2〜7、比較例Cu−1〜7、実施例Ag−1〜3、比較例Ag−1〜2)
実験番号Cu−1と同様にして、ただし、金属微粒子と塗膜加熱処理条件だけを表1〜3に記載した条件に変更して金属微粒子分散体を調製し、次いで実験番号Cu−1と同様にして金属薄膜を作成し、得られた金属薄膜の電気抵抗を評価した。銅微粒子に関する結果を表1、2に、銀微粒子に関する結果を表3に示す。
Experiment number Cu-2-14 (Example Cu-2-7, Comparative example Cu-1-7, Example Ag-1-3, Comparative example Ag-1-2)
Similar to Experiment No. Cu-1, except that only the metal fine particles and coating film heat treatment conditions were changed to the conditions described in Tables 1-3 to prepare metal fine particle dispersions, and then the same as Experiment No. Cu-1 A metal thin film was prepared, and the electrical resistance of the obtained metal thin film was evaluated. The results regarding the copper fine particles are shown in Tables 1 and 2, and the results regarding the silver fine particles are shown in Table 3.

Figure 0004853590
Figure 0004853590

Figure 0004853590
Figure 0004853590

Figure 0004853590
Figure 0004853590

実験番号Cu−15(実施例Cu−8)
下記の配合割合の組成物をサンドミルにいれ、800rpmで、2時間分散した。メディアは半径1mmのジルコニアビーズを用いた。
バインダー樹脂の溶液 3部
トルエン/メチルエチルケトン=1/1(重量比)の30重量%溶液
バインダー樹脂:共重合ポリウレタン樹脂、東洋紡積社製UR8300
銅微粒子(1)(平均粒径60nm) 9部
トルエン/シクロヘキサノン=1/1(重量比)(希釈溶剤) 6部
ジプロピレングリコール(還元剤) 1部
得られた銅微粒子分散体をアプリケーターによりポリイミドフィルム上に乾燥後の厚みが2μmになるように塗布し、100℃で5分熱風乾燥後、塗膜加熱処理として300℃で5分間の過熱水蒸気処理を行った。過熱水蒸気処理前の塗布層には塗布液中のジプロピレングリコールの50重量%が残留していた。過熱水蒸気の発生装置として蒸気過熱装置(第一高周波工業株式会社製「DHF Super−Hi 10」)を用い、10kg/時間の過熱水蒸気を供給する熱処理炉で行った。得られた金属薄膜の電気抵抗を表4に示す。
Experiment number Cu-15 (Example Cu-8)
A composition having the following blending ratio was placed in a sand mill and dispersed at 800 rpm for 2 hours. As media, zirconia beads having a radius of 1 mm were used.
Binder resin solution 3 parts Toluene / methyl ethyl ketone = 30% by weight solution of 1/1 (weight ratio) Binder resin: Copolymer polyurethane resin, UR8300 manufactured by Toyobo Co., Ltd.
Copper fine particles (1) (average particle size 60 nm) 9 parts Toluene / cyclohexanone = 1/1 (weight ratio) (diluting solvent) 6 parts Dipropylene glycol (reducing agent) 1 part The obtained copper fine particle dispersion is polyimide with an applicator It applied so that the thickness after drying might be set to 2 micrometers on a film, and after carrying out hot-air drying at 100 degreeC for 5 minutes, the superheated steam process for 5 minutes was performed at 300 degreeC as a coating-film heat processing. In the coating layer before the superheated steam treatment, 50% by weight of dipropylene glycol in the coating solution remained. A steam superheater (“DHF Super-Hi 10” manufactured by Daiichi High Frequency Industrial Co., Ltd.) was used as a superheated steam generator, and was performed in a heat treatment furnace that supplied superheated steam at 10 kg / hour. Table 4 shows the electric resistance of the obtained metal thin film.

実験番号Cu−16〜28(実施例Cu−9〜14、比較例Cu−8〜14)、実験番号Ag−6〜14(実施例Ag−4〜8、比較例Ag−3〜6)
金属微粒子分散体の組成と塗膜加熱処理条件を表4〜7に記載した条件とし、他の条件は実験番号Cu−15と同様にして金属微粒子分散体を調製し、次いで実験番号Cu−15と同様にして金属薄膜を作成し、得られた金属薄膜の電気抵抗を評価した。銅微粒子に関する結果を表4、5に、銀微粒子に関する結果を表6、7に示す。
Experiment number Cu-16-28 (Example Cu-9-14, comparative example Cu-8-14), Experiment number Ag-6-14 (Example Ag-4-8, comparative example Ag-3-6)
The composition of the metal fine particle dispersion and the coating heat treatment conditions were the conditions described in Tables 4 to 7, and the other conditions were the same as in Experiment No. Cu-15, and the metal fine particle dispersion was prepared. A metal thin film was prepared in the same manner as described above, and the electrical resistance of the obtained metal thin film was evaluated. The results for copper fine particles are shown in Tables 4 and 5, and the results for silver fine particles are shown in Tables 6 and 7, respectively.

Figure 0004853590
UR8300:東洋紡績社製共重合ポリウレタン樹脂
バイロン300:東洋紡績社製共重合ポリエステル樹脂
コロネートHX:日本ポリウレタン社製ポリイソシアネート
Figure 0004853590
UR8300: Copolymer polyurethane resin manufactured by Toyobo Co., Ltd. Byron 300: Copolyester resin manufactured by Toyobo Co., Ltd. Coronate HX: Polyisocyanate manufactured by Nippon Polyurethane Co., Ltd.

Figure 0004853590
UR8300:東洋紡績社製共重合ポリウレタン樹脂
バイロン300:東洋紡績社製共重合ポリエステル樹脂
コロネートHX:日本ポリウレタン社製ポリイソシアネート
Figure 0004853590
UR8300: Copolymer polyurethane resin manufactured by Toyobo Co., Ltd. Byron 300: Copolyester resin manufactured by Toyobo Co., Ltd. Coronate HX: Polyisocyanate manufactured by Nippon Polyurethane Co., Ltd.

Figure 0004853590
UR8300:東洋紡績社製共重合ポリウレタン樹脂
PUI−1:ポリウレタンイミド樹脂(樹脂組成:ポリテトラメチレングリコール(分子量1000)/ジフェニルメタンジイソシアネート/ベンゾフェノンテトラカルボン酸二無水物=1/2/1.05(モル比)、数平均分子量:8600)
Figure 0004853590
UR8300: Copolyurethane resin manufactured by Toyobo Co., Ltd. PUI-1: Polyurethaneimide resin (resin composition: polytetramethylene glycol (molecular weight 1000) / diphenylmethane diisocyanate / benzophenone tetracarboxylic dianhydride = 1/2 / 1.05 (mol) Ratio), number average molecular weight: 8600)

Figure 0004853590
UR8300:東洋紡績社製共重合ポリウレタン樹脂
PUI−1:ポリウレタンイミド樹脂(樹脂組成:ポリテトラメチレングリコール(分子量1000)/ジフェニルメタンジイソシアネート/ベンゾフェノンテトラカルボン酸二無水物=1/2/1.05(モル比)、数平均分子量:8600)
Figure 0004853590
UR8300: Copolyurethane resin manufactured by Toyobo Co., Ltd. PUI-1: Polyurethaneimide resin (resin composition: polytetramethylene glycol (molecular weight 1000) / diphenylmethane diisocyanate / benzophenone tetracarboxylic dianhydride = 1/2 / 1.05 (mol) Ratio), number average molecular weight: 8600)

実験番号Cu−29(実施例Cu−15)
下記の配合割合の組成物をサンドミルにいれ、800rpmで、2時間分散した。メディアは半径1mmのジルコニアビーズを用いた。
バインダー樹脂の溶液 3部
NMP/キシレン=1/1(重量比)の30重量%溶液
バインダー樹脂:ポリアミドイミド樹脂、東洋紡積社製HR13NX
銅微粒子(1)(平均粒径80nm) 9部
γ−ブチロラクトン(希釈溶剤) 6部
得られた銅微粒子分散体に硬化剤として日本ポリウレタン社製「コロネートHX」を0.2部加えた後、アプリケーターによりポリイミドフィルム上に乾燥後の厚みが2μmになるように塗布し、100℃で10分熱風乾燥後、塗膜加熱処理として300℃で5分間の過熱水蒸気処理を行った。過熱水蒸気の発生装置として蒸気過熱装置(第一高周波工業株式会社製「DHF Super−Hi 10」)を用い、10kg/時間の過熱水蒸気を供給する熱処理炉で行った。蒸気源として1重量%エタノール水溶液を用いた。得られた金属薄膜の電気抵抗を表8に示す。
Experiment number Cu-29 (Example Cu-15)
A composition having the following blending ratio was placed in a sand mill and dispersed at 800 rpm for 2 hours. As media, zirconia beads having a radius of 1 mm were used.
Binder resin solution 3 parts NMP / xylene = 30% by weight solution of 1/1 (weight ratio) Binder resin: Polyamideimide resin, HR13NX manufactured by Toyobo Co., Ltd.
Copper fine particles (1) (average particle size 80 nm) 9 parts γ-butyrolactone (diluted solvent) 6 parts After adding 0.2 parts of “Coronate HX” manufactured by Nippon Polyurethane as a curing agent to the obtained copper fine particle dispersion, It coated so that the thickness after drying might be set to 2 micrometers with an applicator, and it dried by hot air at 100 degreeC for 10 minutes, and then performed the superheated steam process for 5 minutes at 300 degreeC as a coating-film heat processing. A steam superheater (“DHF Super-Hi 10” manufactured by Daiichi High Frequency Industrial Co., Ltd.) was used as a superheated steam generator, and was performed in a heat treatment furnace that supplied superheated steam at 10 kg / hour. A 1 wt% aqueous ethanol solution was used as a vapor source. Table 8 shows the electrical resistance of the obtained metal thin film.

実験番号Cu−30〜41(実施例Cu−16〜25、比較例Cu−15〜16)、実験番号Ag−15〜24(実施例Ag−9〜16、比較例Ag−7〜8)
金属微粒子分散体の組成と塗膜加熱処理条件を表8〜11に記載した条件とし、他の条件は実験番号Cu−29と同様にして金属微粒子分散体を調製し、次いで実験番号Cu−29と同様にして金属薄膜を作成し、得られた金属薄膜の電気抵抗を評価した。銅微粒子に関する結果を表8、9に、銀微粒子に関する結果を表10、11に示す。
Experiment number Cu-30-41 (Example Cu-16-25, comparative example Cu-15-16), Experiment number Ag-15-24 (Example Ag-9-16, comparative example Ag-7-8)
The composition of the metal fine particle dispersion and the coating heat treatment conditions were the same as those shown in Tables 8 to 11, and the other conditions were the same as the experiment number Cu-29 to prepare the metal fine particle dispersion, and then the experiment number Cu-29. A metal thin film was prepared in the same manner as described above, and the electrical resistance of the obtained metal thin film was evaluated. The results for copper fine particles are shown in Tables 8 and 9, and the results for silver fine particles are shown in Tables 10 and 11, respectively.

Figure 0004853590
HR13NX:東洋紡績社製ポリアミドイミド樹脂
バイロン300:東洋紡績社製共重合ポリエステル樹脂
PUI−1:ポリウレタンイミド樹脂(樹脂組成:ポリテトラメチレングリコール(分子量1000)/ジフェニルメタンジイソシアネート/ベンゾフェノンテトラカルボン酸二無水物=1/2/1.05(モル比)、数平均分子量:8600)
コロネートHX:日本ポリウレタン社製ポリイソシアネート
Figure 0004853590
HR13NX: Polyamideimide resin manufactured by Toyobo Co., Ltd. Byron 300: Copolyester resin manufactured by Toyobo Co., Ltd. PUI-1: Polyurethaneimide resin (resin composition: polytetramethylene glycol (molecular weight 1000) / diphenylmethane diisocyanate / benzophenone tetracarboxylic dianhydride = 1/2 / 1.05 (molar ratio), number average molecular weight: 8600)
Coronate HX: Polyisocyanate manufactured by Nippon Polyurethane

Figure 0004853590
HR13NX:東洋紡績社製ポリアミドイミド樹脂
バイロン300:東洋紡績社製共重合ポリエステル樹脂
PUI−1:ポリウレタンイミド樹脂(樹脂組成:ポリテトラメチレングリコール(分子量1000)/ジフェニルメタンジイソシアネート/ベンゾフェノンテトラカルボン酸二無水物=1/2/1.05(モル比)、数平均分子量:8600)
コロネートHX:日本ポリウレタン社製ポリイソシアネート
Figure 0004853590
HR13NX: Polyamideimide resin manufactured by Toyobo Co., Ltd. Byron 300: Copolyester resin manufactured by Toyobo Co., Ltd. PUI-1: Polyurethaneimide resin (resin composition: polytetramethylene glycol (molecular weight 1000) / diphenylmethane diisocyanate / benzophenone tetracarboxylic dianhydride = 1/2 / 1.05 (molar ratio), number average molecular weight: 8600)
Coronate HX: Polyisocyanate manufactured by Nippon Polyurethane

Figure 0004853590
HR13NX:東洋紡績社製ポリアミドイミド樹脂
Figure 0004853590
HR13NX: Polyamideimide resin manufactured by Toyobo Co., Ltd.

Figure 0004853590
HR13NX:東洋紡績社製ポリアミドイミド樹脂
Figure 0004853590
HR13NX: Polyamideimide resin manufactured by Toyobo Co., Ltd.

本発明により、微細な金属微粒子から、絶縁基材上に体積抵抗値の低い金属薄膜を形成することが可能である。本発明の金属薄膜は、金属/樹脂積層体、電磁シールド金属薄膜等の金属薄膜形成材料、めっき用導電層、金属配線材料、導電材料等として有用である。
According to the present invention, a metal thin film having a low volume resistance value can be formed on an insulating substrate from fine metal fine particles. The metal thin film of the present invention is useful as a metal thin film forming material such as a metal / resin laminate, an electromagnetic shielding metal thin film, a conductive layer for plating, a metal wiring material, a conductive material and the like.

Claims (7)

金属微粒子分散体を含有する塗膜に過熱水蒸気による加熱処理を施す工程を含む、金属薄膜の製造方法。  The manufacturing method of a metal thin film including the process of heat-processing with superheated steam to the coating film containing a metal microparticle dispersion. 前記金属微粒子分散体が還元剤を含有する金属微粒子分散体である請求項1に記載の金属薄膜の製造方法。  The method for producing a metal thin film according to claim 1, wherein the metal fine particle dispersion is a metal fine particle dispersion containing a reducing agent. 前記過熱水蒸気がアルコール化合物を含有する過熱水蒸気である請求項1に記載の金属薄膜の製造方法。  The method for producing a metal thin film according to claim 1, wherein the superheated steam is superheated steam containing an alcohol compound. 前記塗膜が金属微粒子分散体を絶縁性基板に塗布または印刷したものである請求項1に記載の金属薄膜の製造方法。  The method for producing a metal thin film according to claim 1, wherein the coating film is obtained by applying or printing a metal fine particle dispersion on an insulating substrate. 前記金属微粒子の平均粒径が0.5μm以下である請求項1に記載の金属薄膜の製造方法。  The method for producing a metal thin film according to claim 1, wherein the average particle diameter of the metal fine particles is 0.5 μm or less. 前記金属微粒子が、銅、銀またはそれらの酸化物、のいずれかひとつ以上からなる請求項1に記載の金属薄膜の製造方法。  The method for producing a metal thin film according to claim 1, wherein the metal fine particles are made of one or more of copper, silver, or oxides thereof. 請求項1〜6いずれかの製造方法で製造された金属薄膜。  The metal thin film manufactured with the manufacturing method in any one of Claims 1-6.
JP2010512865A 2009-02-18 2010-02-18 Metal thin film manufacturing method and metal thin film Expired - Fee Related JP4853590B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010512865A JP4853590B2 (en) 2009-02-18 2010-02-18 Metal thin film manufacturing method and metal thin film

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2009035053 2009-02-18
JP2009035053 2009-02-18
JP2009177704 2009-07-30
JP2009177704 2009-07-30
JP2009177703 2009-07-30
JP2009177703 2009-07-30
JP2009207808 2009-09-09
JP2009207808 2009-09-09
JP2010512865A JP4853590B2 (en) 2009-02-18 2010-02-18 Metal thin film manufacturing method and metal thin film
PCT/JP2010/052405 WO2010095672A1 (en) 2009-02-18 2010-02-18 Metal thin film production method and metal thin film

Publications (2)

Publication Number Publication Date
JP4853590B2 true JP4853590B2 (en) 2012-01-11
JPWO2010095672A1 JPWO2010095672A1 (en) 2012-08-30

Family

ID=42633952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010512865A Expired - Fee Related JP4853590B2 (en) 2009-02-18 2010-02-18 Metal thin film manufacturing method and metal thin film

Country Status (4)

Country Link
JP (1) JP4853590B2 (en)
KR (1) KR101132108B1 (en)
CN (1) CN102326213A (en)
WO (1) WO2010095672A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014132961A1 (en) * 2013-03-01 2014-09-04 戸田工業株式会社 Method of producing conductive coating film, and conductive coating film
US9221979B2 (en) 2011-05-18 2015-12-29 Toda Kogyo Corporation Copper particles, copper paste, process for producing conductive coating film, and conductive coating film

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5564866B2 (en) * 2009-09-11 2014-08-06 東洋紡株式会社 Metal thin film manufacturing method and metal thin film
JP2013175559A (en) * 2012-02-24 2013-09-05 Hitachi Chemical Co Ltd Composite layer composed of adhesive layer and wiring layer and adhesive layer forming ink for printing for forming the same
JP6186683B2 (en) * 2012-09-14 2017-08-30 信越化学工業株式会社 Manufacturing method of solar cell
JP2014199720A (en) * 2013-03-29 2014-10-23 富士フイルム株式会社 Conductive film-forming composition and method for producing conductive film using the same
JP6232904B2 (en) * 2013-10-08 2017-11-22 東洋紡株式会社 Conductive paste, conductive thin film and electric circuit
JPWO2015053160A1 (en) * 2013-10-08 2017-03-09 東洋紡株式会社 Conductive paste, conductive thin film and circuit
JP2015181160A (en) * 2014-03-05 2015-10-15 トッパン・フォームズ株式会社 Conducting pattern forming method, and conductive wiring line
WO2016009873A1 (en) * 2014-07-14 2016-01-21 戸田工業株式会社 Method for producing conductive coating film, and conductive coating film
JP6641217B2 (en) * 2016-03-30 2020-02-05 東京応化工業株式会社 Coating agent for forming metal oxide film and method for producing substrate having metal oxide film
CN106756977B (en) * 2016-12-20 2019-04-05 南京九致信息科技有限公司 Thermoelectricity metallic film and preparation method thereof
KR102501588B1 (en) * 2018-08-08 2023-02-21 미쓰이금속광업주식회사 Composition for bonding, bonding structure of conductors and manufacturing method thereof
US20210379654A1 (en) * 2018-10-12 2021-12-09 Kao Corporation Fine metal particle dispersion production method
EP3733792A1 (en) * 2019-04-30 2020-11-04 Agfa-Gevaert Nv A method of manufacturing a conductive pattern

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05166414A (en) * 1991-12-11 1993-07-02 Matsushita Electric Ind Co Ltd Transparent conductive film and forming method thereof
JP2000348549A (en) * 1999-06-04 2000-12-15 Mitsubishi Materials Corp Composition for forming sro conducting thin film and method for formation of the film
JP2004288448A (en) * 2003-03-20 2004-10-14 Kitagawa Ind Co Ltd Thin-film conductor pattern, wiring structure object, planar heater, and manufacturing method of thin-film conductor pattern
WO2008001600A1 (en) * 2006-06-30 2008-01-03 Think Laboratory Co., Ltd. Method of removing conductive paste

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE353536T1 (en) 1997-02-20 2007-02-15 Partnerships Ltd Inc LOW TEMPERATURE PROCESSES AND COMPOSITIONS FOR PRODUCING ELECTRICAL CONDUCTORS
US7557229B2 (en) * 2002-11-15 2009-07-07 President And Fellows Of Harvard College Atomic layer deposition using metal amidinates
US20050159298A1 (en) * 2004-01-16 2005-07-21 American Superconductor Corporation Oxide films with nanodot flux pinning centers
JP5072220B2 (en) * 2005-12-06 2012-11-14 キヤノン株式会社 Thin film manufacturing method and electron-emitting device manufacturing method
JP2009016782A (en) * 2007-06-04 2009-01-22 Tokyo Electron Ltd Film forming method, and film forming apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05166414A (en) * 1991-12-11 1993-07-02 Matsushita Electric Ind Co Ltd Transparent conductive film and forming method thereof
JP2000348549A (en) * 1999-06-04 2000-12-15 Mitsubishi Materials Corp Composition for forming sro conducting thin film and method for formation of the film
JP2004288448A (en) * 2003-03-20 2004-10-14 Kitagawa Ind Co Ltd Thin-film conductor pattern, wiring structure object, planar heater, and manufacturing method of thin-film conductor pattern
WO2008001600A1 (en) * 2006-06-30 2008-01-03 Think Laboratory Co., Ltd. Method of removing conductive paste

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9221979B2 (en) 2011-05-18 2015-12-29 Toda Kogyo Corporation Copper particles, copper paste, process for producing conductive coating film, and conductive coating film
WO2014132961A1 (en) * 2013-03-01 2014-09-04 戸田工業株式会社 Method of producing conductive coating film, and conductive coating film
US20150380123A1 (en) * 2013-03-01 2015-12-31 Toda Kogyo Corp. Process for producing conductive coating film, and conductive coating film
JPWO2014132961A1 (en) * 2013-03-01 2017-02-02 戸田工業株式会社 Method for producing conductive coating film and conductive coating film

Also Published As

Publication number Publication date
WO2010095672A1 (en) 2010-08-26
JPWO2010095672A1 (en) 2012-08-30
CN102326213A (en) 2012-01-18
KR20110122187A (en) 2011-11-09
KR101132108B1 (en) 2012-04-05

Similar Documents

Publication Publication Date Title
JP4853590B2 (en) Metal thin film manufacturing method and metal thin film
JP5971242B2 (en) Method for producing conductive coating film and conductive coating film
JP5962816B2 (en) Method for producing metal thin film laminate
US9221979B2 (en) Copper particles, copper paste, process for producing conductive coating film, and conductive coating film
TWI535766B (en) Method for manufacturing conductive polyimide film
TWI458855B (en) Method of forming a conductor layer, method of manufacturing a circuit board, method of manufacturing conductive fine particles, and composition for forming a conductor layer
US20150380123A1 (en) Process for producing conductive coating film, and conductive coating film
JP5564866B2 (en) Metal thin film manufacturing method and metal thin film
JP5556097B2 (en) Copper thin film manufacturing method and copper thin film
US20100178420A1 (en) Method of preparing conductive ink composition for printed circuit board and method of producing printed circuit board
JPWO2015053160A1 (en) Conductive paste, conductive thin film and circuit
JP2015065123A (en) Conductive paste, conductive thin film, and circuit
JP5453789B2 (en) Metal fine particle dispersion, method for producing metal thin film, and metal thin film
JP2011060654A (en) Manufacturing method for copper thin film, and copper thin film
JP2015059233A (en) Method for producing metallic thin film, metallic thin film resin substrate and printed circuit board
JP6232904B2 (en) Conductive paste, conductive thin film and electric circuit
JP2020035718A (en) Conductive paste, manufacturing method of conductive paste, printed circuit plate, and manufacturing method of printed circuit plate
JP6547748B2 (en) Method of manufacturing conductive coating and conductive coating
JP2019179745A (en) Method for manufacturing printed circuit board
JP6940805B2 (en) Manufacturing method of printed circuit board
JP6996101B2 (en) Conductive laminate and its manufacturing method
JP2017126473A (en) Manufacturing method of conductive coating
JP2015056214A (en) Metal thin film production method and metal thin film
JP2014207166A (en) Electroconductive paste, thin electroconductive film, and circuit

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111010

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4853590

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees