JP4852797B2 - Cooker - Google Patents

Cooker Download PDF

Info

Publication number
JP4852797B2
JP4852797B2 JP2001169228A JP2001169228A JP4852797B2 JP 4852797 B2 JP4852797 B2 JP 4852797B2 JP 2001169228 A JP2001169228 A JP 2001169228A JP 2001169228 A JP2001169228 A JP 2001169228A JP 4852797 B2 JP4852797 B2 JP 4852797B2
Authority
JP
Japan
Prior art keywords
temperature
control
pan
preheating
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001169228A
Other languages
Japanese (ja)
Other versions
JP2002367764A (en
Inventor
佳洋 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001169228A priority Critical patent/JP4852797B2/en
Publication of JP2002367764A publication Critical patent/JP2002367764A/en
Application granted granted Critical
Publication of JP4852797B2 publication Critical patent/JP4852797B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Induction Heating Cooking Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、一般家庭において使用される加熱調理器に関するものである。
【0002】
【従来の技術】
以下に従来構成の加熱調理器について図4を用いて説明する。図4は従来構成の加熱調理器のブロック図である。図4において、1は商用電源、2は鍋、3は加熱手段で、整流器31、加熱コイル32、スイッチング素子33、インバータ回路34で構成させる。4は温度センサ、5は報知手段で、発光ダイオード(LED)や液晶表示素子(LCD)で構成され視覚的に報知する表示手段51と、ブザーなどで構成され聴覚的に報知する音響手段52で構成されている。6は入力手段、7は通電制御手段で、スイッチング素子33を数十kHzでオンオフさせて加熱コイル32に高周波電流を印加し、加熱コイル32と磁気結合する鍋2を誘導加熱する。なお、通電制御手段7は、スイッチング素子33のオン時間を制御して加熱手段3の出力を制御する。
【0003】
以上のように構成された従来構成の加熱調理器について、図5および図6を用いてその動作を説明する。図5は180℃設定で予熱しているときの表示手段51での表示を示す図、図6は予熱完了前後での表示手段51と音響手段52の動作を示す図である。
【0004】
まず、通電制御手段7は、140℃〜200℃にて10℃刻みで7段階の設定温度に対応する制御温度を備えて、入力手段6より入力する信号に基づき前記7段階の制御温度の中から任意のものを選択する。なお、各設定温度での制御温度を(表1)に示す。
【0005】
【表1】

Figure 0004852797
【0006】
そして、通電制御手段7は、温度センサ4で検知する温度と選択された設定温度に対応する制御温度との関係に基づく加熱手段3の出力を決定するための手法としてファジィ制御を採用し、温度センサ4で検知する温度θと目標温度θcとの温度差Δθ(Δθ=θ−θc)、および温度センサ4で検知する温度θが単位温度(1K)だけ変化するのに要する時間ΔT(温度上昇のときはプラス、温度下降のときはマイナス)の2つを入力パラメータとして、Δθが小さい(すなわち目標温度θcよりも温度センサ4で検知する温度θが十分低い)またはΔTが小さい(すなわち温度センサ4で検知する温度θが急激に低下している)ほど加熱手段3の目標とする出力Pcが大きくなるように算出する。
【0007】
さらに加えて、通電制御手段7は、通電オフ状態から通電開始し鍋2内の油を設定温度まで上昇させる予熱動作のときと、設定温度に到達した後に鍋2内の油を設定温度に維持する安定動作のときでファジィ制御内容を区別する。
【0008】
具体的に説明すると、機器に商用電源1を印加して、加熱手段3を通電オフ状態から通電オン状態にし、入力手段6を操作して設定温度を180℃にすると、通電制御手段7は、目標温度θcを(表1)で示す180℃設定での制御温度(167℃)に対し初期補正温度(10K)だけ補正した温度とし(θc=167℃+10K=177℃)、ΔθとΔTを計算して加熱手段3の目標とする出力Pcを算出し、加熱手段3の出力がPcになるように通電制御して鍋2内の油を設定温度である180℃まで予熱する。このとき、通電制御手段7は、図5および図6に示すように、設定温度を示す「180」を点灯表示するとともに、「予熱中」を0.6秒オン/0.4秒オフにて点滅表示するように表示手段51を制御する。
【0009】
そして、通電制御手段7は、温度センサ4で検知する温度θ≧177℃(=180℃設定での制御温度+初期補正温度)を検知すると、図5に示すように、表示手段51を制御して「予熱中」を消灯するとともに、音響手段52を制御して0.5秒オン/0.5秒オフを3回繰り返すようにブザーを吹鳴させる。なお、以上のような表示手段51および音響手段52の動作を、以後、予熱完了報知と称する。
【0010】
その後は、通電制御手段7は、目標温度θcを(表1)で示す180℃設定での制御温度(167℃)とし(θc=167℃)、このときのΔθとΔTを計算して加熱手段3の目標とする出力Pcを算出し、加熱手段3の出力がPcになるように通電制御して、鍋2内の油の温度を180℃近傍にて維持する。
【0011】
ここで、予熱動作のときに目標温度θcを初期補正温度(10K)だけ高くしている理由について説明する。室温に馴染んだ油を180℃まで予熱すると、油は低温では粘性があるので、鍋2自身の温度上昇に対して油の温度上昇が遅れてしまい、図に示すように、温度センサ4で検知する温度θと鍋2内の油の温度との差は、安定動作のときに比べて相対的に小さくなってしまう。したがって、予熱動作のときの目標温度θcを、安定動作のときの目標温度θcよりも幾分高めに設定して、予熱完了する時には鍋2内の油温が設定温度に到達しているようにするためである。
【0012】
また、同じΔθとΔTでも、算出される加熱手段3の出力Pcを安定動作よりも予熱動作の方が幾分大きめになるようにして、予熱動作の時には鍋2内の油をスムーズに加熱し、かつ安定動作の時には鍋2内の油温のリップルを抑制する。
【0013】
そして、180℃設定で予熱完了した後に、入力手段6を操作して設定温度を200℃まで上昇させると、通電制御手段7は、表示手段51を制御して、設定温度を示す「200」を点灯表示し、再度「予熱中」を0.6秒オン/0.4秒オフにて点滅表示するとともに、目標温度θcを(表1)で示す200℃設定での制御温度(185℃)とし(θc=185℃)、ΔθとΔTを計算して安定動作での制御にて加熱手段3の目標とする出力Pcを算出し、加熱手段3の出力がPcになるように通電制御する。
【0014】
そして、温度センサ4で検知する温度θ≧185℃(=200℃設定での制御温度)を検知すると、前記予熱完了報知を再度行う。なお、この場合は、目標温度θcに対して、前記の初期補正温度(10K)の補正は行わない。
【0015】
【発明が解決しようとする課題】
しかしながら、前記従来構成では、予熱完了後に設定温度を1段階だけ上昇させると、温度センサ4で検知する温度θと目標温度θcとの温度差Δθが小さいので加熱手段3の目標出力Pcが大きくなる期間が短く、かつ安定動作で予熱を行うので加熱手段3の目標出力Pcは予熱動作のときよりも全体的に幾分小さくなり、目標温度θcの手前で加熱手段3の目標出力Pcを抑制して温度センサ4で検知する温度θはオーバーシュートしなくなり、目標温度θcに到達する手前で温度センサ4で検知する温度θが安定してしまって、温度センサ4で検知する温度θ≧変更後の制御温度を満足できずに予熱完了報知できない。そして、上記現象は、変更後の設定温度が高く、設定温度の上昇量が小さく、鍋2内の油量が多く、鍋2の鍋底の反り量が小さいほど前記オーバーシュートは小さくなって発生しやすいという課題があった。
【0016】
本発明は上記従来の課題を解決するもので、予熱完了報知後に設定温度を高く変更して通電を継続した場合においても、再度予熱完了報知ができるようにすることを目的とする。
【0017】
【課題を解決するための手段】
前記従来の課題を解決するために、本発明の加熱調理器は、鍋を加熱する加熱手段と、前記鍋の温度を検知する温度センサと、入力手段を使用者が操作することにより選択される信号に基づき複数の制御温度の中から所定の制御温度を選択し、前記温度センサで検知する温度と選択された前記制御温度との温度差及び前記温度センサで検知する温度が単位温度だけ変化するのに要する時間に基づきファジイ制御で前記加熱手段の出力を通電制御する通電制御手段と、前記鍋の中の液体の温度が所定の温度に到達したことを示す予熱完了報知を行う報知手段とを備え、前記通電制御手段は複数の前記制御温度と一つ以上の補正温度を有し、前記温度センサで検知する温度と前記選択された制御温度を比較し、前記加熱手段を通電オフ状態から通電開始したときは、前記温度センサで検知する温度が前記制御温度に到達すると前記報知手段を制御して前記予熱完了報知を行い、前記予熱完了報知後、前記入力手段により、前記制御温度を高く変更して通電を継続したときは、前記温度センサで検知する温度が前記変更後の制御温度から所定の前記補正温度を差し引いた温度に到達すると、前記報知手段を制御して前記予熱完了報知を再度行うようにするとともに、前記変更後の制御温度から所定の前記補正温度を差し引いた温度は、変更前の前記制御温度より高く前記ファジイ制御で安定する前記変更後の制御温度以下にしたものである。
【0018】
これにより、予熱完了報知後に制御温度を高く変更したときは、通電制御手段は、温度センサで検知する温度≧(制御温度−補正温度)にて報知手段を制御して予熱完了報知を再度行うので、温度センサで検知する温度が制御温度の手前で安定しても予熱完了報知を行うことができる。
【0019】
【発明の実施の形態】
請求項1に記載の発明は、鍋を加熱する加熱手段と、前記鍋の温度を検知する温度センサと、入力手段を使用者が操作することにより選択される信号に基づき複数の制御温度の中から所定の制御温度を選択し、前記温度センサで検知する温度と選択された前記制御温度との温度差及び前記温度センサで検知する温度が単位温度だけ変化するのに要する時間に基づきファジイ制御で前記加熱手段の出力を通電制御する通電制御手段と、前記鍋の中の液体の温度が所定の温度に到達したことを示す予熱完了報知を行う報知手段とを備え、前記通電制御手段は複数の前記制御温度と一つ以上の補正温度を有し、前記温度センサで検知する温度と前記選択された制御温度を比較し、前記加熱手段を通電オフ状態から通電開始したときは、前記温度センサで検知する温度が前記制御温度に到達すると前記報知手段を制御して前記予熱完了報知を行い、前記予熱完了報知後、前記入力手段により、前記制御温度を高く変更して通電を継続したときは、前記温度センサで検知する温度が前記変更後の制御温度から所定の前記補正温度を差し引いた温度に到達すると、前記報知手段を制御して前記予熱完了報知を再度行うようにするとともに、前記変更後の制御温度から所定の前記補正温度を差し引いた温度は、変更前の前記制御温度より高く前記ファジイ制御で安定する前記変更後の制御温度以下にしたことにより、通電制御手段は予熱完了後に制御温度を高く変更して通電を継続した場合に、温度センサで検知する温度が制御温度より低い温度で安定しても予熱完了報知を再度行うことができる。
【0020】
請求項2に記載の発明は、特に請求項1に記載の前記通電制御手段を、前記加熱手段の通電開始後、初めて行う前記予熱完了報知と、前記予熱完了報知した後、前記入力手段より入力する信号に基づき前記制御温度を高く変更した後に行う前記予熱完了報知とで、異なる報知を行う構成とすることにより、使用者に通電開始後の予熱完了報知か、制御温度を高く変更した場合の予熱完了報知かを識別させることができ、使い勝手を良くすることができる。また、初めて行う予熱完了報知を複数の報知手段で行い、制御温度を高く変更した後で行う予熱完了報知を、初めて行う予熱完了報知の報知手段の数より減じるような報知の仕方の変更を行えば、報知による使用者に与える煩わしさを減らすことができる。
【0021】
請求項3に記載の発明は、特に、請求項1に記載の前記通電制御手段は、変更後の前記制御温度が低いほど前記補正温度を小さくする構成としたことにより、制御温度の高低に対応して予熱完了報知のタイミングを鍋内の液体の温度が変更後の制御温度に到達するタイミングに近づける、すなわち、精度良い予熱完了報知ができるものである。
【0022】
請求項4に記載の発明は、特に、請求項1に記載の前記通電制御手段は、前記制御温度の変更量が大きいほど、前記補正温度を小さくする構成とすることにより、制御温度を高くする度合いに対応して、予熱完了報知のタイミングを鍋内の液体の温度が変更後の制御温度に到達するタイミングに近づける、すなわち、精度良い予熱完了報知ができるものである。
【0023】
請求項5に記載の発明は、特に、前記鍋底の反り量を検知する鍋反り量検知手段を備え、請求項1に記載の前記通電制御手段は、前記鍋反り量検知手段より入力する信号に基づく前記鍋底の反り量が大きいほど、前記制御温度を低くする構成とすることにより、鍋底の反り量が変わった場合に、予熱完了報知を行うときの鍋内の液体の温度の差を小さくすることができる。
【0024】
請求項6に記載の発明は、特に、前記鍋内の液体量を検知する液体量検知手段を備え、請求項1に記載の前記通電制御手段は、前記液体量検知手段より入力する信号に基づく前記鍋内の液体量が少ないほど、前記制御温度を低くする構成とすることにより、鍋内の液体量に対応して、予熱完了報知のタイミングを鍋内の液体の温度が変更後の制御温度に到達するタイミングに近づける、すなわち、精度良い予熱完了報知ができるものである。
【0025】
請求項7に記載の発明は、特に、前記鍋底の反り量を検知する鍋反り量検知手段を備え、請求項1に記載の前記通電制御手段は、前記鍋反り量検知手段より入力する信号に基づく前記鍋底の反り量が大きいほど、前記補正温度を小さくする構成とすることにより、鍋底の反り量に対応して、予熱完了報知のタイミングを鍋内の液体の温度が変更後の制御温度に到達するタイミングに近づける、すなわち、精度良い予熱完了報知ができるものである。
【0026】
請求項8に記載の発明は、特に、前記鍋内の液体量を検知する液体量検知手段を備え、請求項1に記載の前記通電制御手段は、前記液体量検知手段より入力する信号に基づく前記鍋内の液体量が少ないほど、前記補正温度を小さくする構成とすることにより、鍋内の液体量に対応して、予熱完了報知のタイミングを鍋内の液体の温度が変更後の制御温度に到達するタイミングに近づける、すなわち、精度良い予熱完了報知ができるものである。
【0027】
【実施例】
以下、本発明の実施例について、図面を参照しながら説明する。
【0028】
(実施例1)
図1は本発明の実施例1における加熱調理器の通電制御手段17のブロック図を示したものであり、通電制御手段17以外は、図4に示す構成と同様であるので、同様の部分は説明を省略する。図4の従来例と同一の機能を有するものには同一の符号を付与している。図1に示す構成で図4の構成と異なる点は、通電制御手段17が、比較手段17a、設定手段17b及び補正手段17cを有しており、比較手段17aからの信号に応じて設定手段17bに信号を出力する。そして、設定手段17bは入力手段6からの信号および補正手段17cからの信号に基づき比較手段17aに信号を出力するという点にある。
【0029】
以下図1及び図4を参照して説明する。通電制御手段17が、動作モードとして、加熱手段3の出力Pc=0として加熱手段3を通電オフする初期モードと、140℃〜200℃にて10℃刻みで7段階の設定温度に対応する制御温度を備えて温度センサ4で検知する温度θと選択された制御温度に関連づけた目標温度θcとの関係に基づき加熱手段3の出力Pcを算出し加熱手段3を通電制御する揚げ物モードの2種類のモードを備え、動作モード=初期モードのときに入力手段6より加熱開始を示す信号を入力すると動作モードを揚げ物モードの180℃設定に変更し、動作モード=揚げ物モードのときに入力手段6より設定温度の変更を示す信号を入力すると7段階の設定温度から任意のものを選択し、入力手段6より加熱停止を示す信号を入力すると動作モードを初期モードに変更する。
【0030】
そして、通電制御手段17において、動作モードが初期モードから揚げ物モードに移行したときは、比較手段17aは予熱完了報知を行うための温度に対して補正を行う旨の信号を出力せず、補正手段17cは予熱報知補正温度θhを出力せず、設定手段17bは目標温度θcをそのまま比較手段17aに出力し、比較手段17aは温度センサ4で検知する温度θ≧目標温度θcを検知し表示手段51および音響手段52を制御して予熱完了報知を行う。
【0031】
また、通電制御手段17において、一度予熱完了報知を行った後に入力手段6より入力する信号に基づき設定温度を上昇させたときは、比較手段17aは予熱完了報知を行うための温度に対して補正を行う旨の信号を出力し、補正手段17cは比較手段17aより信号を入力して予熱報知補正温度θhを出力し、設定手段17bは目標温度θcから予熱報知補正温度θhを差し引いた温度を比較手段17aに出力し、比較手段17aは温度センサ4で検知する温度θ≧(目標温度θc−予熱報知補正温度θh)にて表示手段51を制御して予熱完了報知を行うようにしたことである。
【0032】
以上のように構成された加熱調理器について、図2を用いてその動作を説明する。図2は、予熱完了後の設定温度上昇による表示手段51と音響手段52の動作を示す図である。
【0033】
さて、機器に商用電源1を印加すると、通電制御手段17は、動作モード=初期モードとして動作を開始する。そして、入力手段6より加熱開始を示す信号を入力すると、通電制御手段17は、図2の(a)に示すように、動作モードを揚げ物モードの180℃設定に変更し、目標温度θcを(表1)に示す180℃設定での制御温度(167℃)に対し初期補正温度(10K)だけ補正した温度とし(θc=167℃+10K=177℃)、ΔθとΔTを計算して加熱手段3の目標とする出力Pcを算出し、加熱手段3の出力がPcになるように通電制御して鍋2内の油を設定温度である180℃になるまで予熱する。このとき、通電制御手段7は、図2の(a)および図5に示すように、「予熱中」を0.6秒オン/0.4秒オフにて点滅表示するように表示手段51を制御する。
【0034】
そして、通電制御手段17は、設定手段17bにて目標温度θcを比較手段17aに出力し、比較手段17aにて温度センサ4で検知する温度θ≧177℃(=θc)を検知すると、図2の(b)に示すように、表示手段51を制御して点滅中だった「予熱中」を消灯するとともに、音響手段52を制御して0.5秒オン/0.5秒オフを3回繰り返すようにブザーを吹鳴させる予熱完了報知を行う。
【0035】
その後は、通電制御手段17は、図2の(b)に示すように、目標温度θcを(表1)に示す180℃設定での制御温度(167℃)とし(θc=167℃)、このときのΔθとΔTを計算して加熱手段3の目標とする出力Pcを算出し、加熱手段3の出力がPcになるように通電制御して、鍋2内の油の温度を180℃近傍にて維持する。
【0036】
そして、180℃設定で予熱完了した後に、入力手段6を操作して設定温度を190℃に上昇させると、通電制御手段17は、図2の(c)および図に示すように、表示手段51を制御して再度「予熱中」を0.6秒オン/0.4秒オフにて点滅表示するとともに、目標温度θcを(表1)に示す190℃設定での制御温度(176℃)とし(θc=176℃)、ΔθとΔTを計算して加熱手段3の目標とする出力Pcを算出し、加熱手段3の出力がPcになるように通電制御して鍋2内の油を変更後の設定温度である190℃になるように加熱する。
【0037】
その後、通電制御手段17は、補正手段17cにて予熱報知補正温度θh=2Kを出力し、設定手段17bにて目標温度θcから予熱報知補正温度θhを差し引いた温度を比較手段17aに出力し、比較手段17aにて温度センサ4で検知する温度θ≧174℃(=θc−θh)を検知すると、図2の(d)に示すように、表示手段51を制御して点滅中だった「予熱中」を消灯し予熱完了報知を行う。なお、このときは、音響手段52の駆動は行わない。
【0038】
以上の構成により、鍋底が平坦な鍋2内に多量の油を入れた状態で予熱開始し、やがて予熱完了報知を行った後に、設定温度を1段階だけ上昇して温度センサ4で検知する温度θが目標温度θcの手前で安定しても、通電制御手段17は再度予熱完了報知を行うことができる。
【0039】
また、通電制御手段17は、初期モードから揚げ物モードに変更してから初めて予熱完了するときは表示手段51と音響手段52をともに駆動して予熱完了報知を行うので、機器から離れたところでの報知性能を高めて、機器を使用する者が予熱に比較的時間を要するので機器から離れていても、予熱が完了したことを認識することができる。
【0040】
また、機器を使用する者が調理の途中で入力手段6を操作し設定温度を変更しても、通電制御手段17は、一度予熱完了報知を行った後に設定温度を変更して再度予熱完了するときは表示手段51のみ駆動して予熱完了報知を行うので、機器を使用する者は変更後の設定温度に基づく予熱が完了したことを表示手段51にて確認できるとともに、変更した設定温度に基づく予熱が完了する度に音響手段52が駆動されることによる煩わしさを解消することができる。
【0041】
ところで、(鍋2+鍋2内の油)への加熱量である、通電制御手段17が算出する加熱手段3の目標出力Pcは、目標温度θcと温度センサ4で検知する温度θの温度差Δθと、温度センサ4で検知する温度θの上昇勾配ΔTが同一であれば、設定温度によらず同一の値になるが、(鍋2+鍋2内の油)の放熱量は、設定温度が高いほど大きい。したがって、一度予熱完了報知を行った後に設定温度を上昇すると、変更後の設定温度が高いほど、変更後の設定温度に対応する目標温度θcの手前で温度センサ4で検知する温度θが安定しまう傾向になる。
【0042】
以上のことより、補正手段17cは、設定手段17bより入力する信号に基づき、設定温度=140℃〜160℃ではθh=0K、設定温度=170℃〜180℃ではθh=1K、設定温度=190℃〜200℃ではθh=2Kを出力するようにして、一度予熱完了報知を行った後に設定温度を変更しても再度予熱完了報知を確実に行えるようにするとともに、変更後の設定温度が比較的低いときは、θhを小さくして予熱完了報知を行うときの鍋2内の油温を設定温度に更に近づけることができる。
【0043】
また、一度予熱完了報知した後に同じ設定温度まで上昇する場合でも、140℃設定から190℃設定といった5段階だけ上昇したときよりも、180℃設定から190℃設定といった1段階だけ上昇したときの方が、目標温度θcと温度センサ4で検知する温度θの温度差Δθが小さいので通電制御手段7が算出する加熱手段3の目標出力Pcが小さくなり、変更後の設定温度に対応する目標温度θcの手前で温度センサ4で検知する温度θが安定してしまう傾向になる。
【0044】
以上のことより、設定手段17bは、予熱完了報知を行ったときの設定温度に対して、1〜3段階だけ設定温度を上昇したときはθh=θhのままとし、4〜6段階だけ設定温度を上昇したときはθh=θh−1K(但し、結果としてθh=0K−1K=−1Kのときは、θh=0Kとする)として、一度予熱完了報知を行った後に設定温度を変更しても再度予熱完了報知を確実に行えるようにするとともに、設定温度の上昇量が比較的大きいときは、θhを小さくして予熱完了報知を行うときの鍋2内の油温を設定温度に更に近づけることができる。
【0045】
(実施例2)
図3は本発明の実施例2における加熱調理器のブロック図を示したものである。
【0046】
本実施例の特徴的構成は、まず、通電制御手段27が動作モードを初期モードから揚げ物モードに変更し加熱手段3を通電開始した直後に、温度センサ4で検知する温度θの上昇勾配に基づき鍋2の鍋底の反り量(sori)を3段階にて検知する鍋反り量検知手段8と、鍋反り量検知手段8にて反り量(sori)を検知後に、鍋反り量検知手段8より入力する反り量(sori)と、温度センサ4で検知する温度θの上昇勾配に基づき鍋2内の油量(oil)を3段階にて検知する液体量検知手段9を新たに備える。
【0047】
そして、通電制御手段27が、鍋反り量検知手段8より入力する反り量(sori)と液体量検知手段9より入力する油量(oil)に基づき、揚げ物モードにおける7段階の設定温度に対応する制御温度、初期補正温度、および予熱報知補正温度θhを変更するようにしたことである。
【0048】
さて、実施例1において、鍋2と温度センサ4の間に例えばセラミック製のトッププレートといった介在物が存在し、温度センサ4にて鍋2内の油温を間接的に検知する構成では、鍋2の鍋底の反り量が大きいほど、鍋2の鍋底とトッププレートの空間が大きくなり、鍋2の温度に対する温度センサ4で検知する温度θの感度および追随性が悪くなって、温度センサ4で検知する温度θと鍋2内の油温との差が大きくなり、また、予熱完了報知を行った後に設定温度を上昇すると温度センサ4で検知する温度θのオーバーシュートが大きくなる。
【0049】
また、鍋2内の油量が少なくなると、短時間で鍋2内の油が対流して温度上昇するので、温度センサ4で検知する温度θが同じ温度の場合は、油量が多いときに比べて相対的に鍋2の油温は高くなり、また、予熱完了報知を行った後に設定温度を上昇すると(鍋2+鍋2内の油)の熱容量が小さくなる分、温度センサ4で検知する温度θの上昇勾配が大きくなってオーバーシュートも大きくなるという特徴がある。
【0050】
本実施例は上記特徴を有効活用するもので、以上のように構成された加熱調理器について、以下にその動作を説明する。
【0051】
機器に商用電源1を印加すると、通電制御手段27は、動作モード=初期モードとして動作を開始する。そして、入力手段6より加熱開始を示す信号を入力すると、通電制御手段27は、動作モードを揚げ物モードの180℃設定に変更し、図5に示すように、「予熱中」を0.6秒オン/0.4秒オフにて点滅表示するように表示手段51を制御するとともに、以下の動作を行う。
【0052】
まず、通電制御手段27は、加熱手段3の目標出力Pc=1000Wとして加熱手段3を通電制御する。そして、鍋反り量検知手段8は、通電制御手段27より入力する信号に基づき、動作モードが初期モードから揚げ物モードに変更されて加熱手段3の通電を開始したことを検知すると、加熱手段3の通電開始から10秒毎の温度センサ4で検知する温度θをそれぞれθ0、θ1、θ2、θ3、θ4にて測定し、d2θ=(θ4−θ3)−(θ1−θ0)を算出して、d2θに基づき鍋2の鍋底の反り量であるsoriを、sori=1〜3の3段階にて検知し、通電制御手段27および液体量検知手段9に出力する。なお、鍋底の反り量が大きいほどd2θは小さな値となる。また、鍋底の反り量とsoriの値との関係を(表2)に示す。
【0053】
【表2】
Figure 0004852797
【0054】
そして、加熱手段3の目標出力Pc=1000Wにて通電開始し40秒経過すると、通電制御手段27は、鍋反り量検知手段8よりsoriの値を入力して鍋反り量検知が終了したことを検知し、加熱手段3の目標出力Pc=1200Wに変更して通電制御を行うとともに、液体量検知手段9は、鍋反り量検知手段8より入力するsoriの値と、温度センサ4で検知する温度θの上昇勾配に基づき鍋2内の油量であるoilを、oil=1〜3の3段階にて検知し、通電制御手段27に出力する。なお、鍋2内の油量とoilの値との関係を(表3)に示す。
【0055】
【表3】
Figure 0004852797
【0056】
そして、通電制御手段27は、液体量検知手段9よりoilの値を入力して鍋2内の油量検知が終了したことを検知すると、選択された設定温度である180℃設定での、soriおよびoilに基づく制御温度および初期補正温度を求めて目標温度θc=制御温度+初期補正温度とし、ΔθとΔTを計算して加熱手段3の目標とする出力Pcを算出し、加熱手段3の出力がPcになるように通電制御して鍋2内の油を設定温度である180℃になるまで予熱する。
【0057】
つまり、通電制御手段27は、soriの値が大きく、oilの値が小さいほど、制御温度が小さくなるように設定する。なお、各設定温度でのsoriおよびoilに基づく具体的な制御温度を(表4)に示す。
【0058】
【表4】
Figure 0004852797
【0059】
また、soriおよびoilに基づく初期補正温度については、sori=1かつoil=3のときは初期補正温度=10K、sori=1かつoil=2のときは初期補正温度=5K、その他すなわちsori=2、3またはoil=1のときは初期補正温度=0Kとする。
【0060】
さらに、予熱完了報知を行った後に設定温度を上昇すると、soriの値が大きく、oilの値が小さいほど、温度センサ4で検知する温度θのオーバーシュートは大きくなるので、通電制御手段27は、soriの値が大きく、oilの値が小さいほど、予熱報知補正温度θhが小さくなるように設定する。なお、各設定温度でのsoriおよびoilに基づく具体的な予熱報知補正温度θhを(表5)に示す。
【0061】
【表5】
Figure 0004852797
【0062】
具体的に説明すると、鍋底が1.0mmだけ反った鍋2に油量500gを入れて180℃設定にて予熱を開始した場合は、鍋反り量検知手段8にてsori=2、液体量検知手段9にてoil=2と検知し、通電制御手段27は、(表4)に示す180℃設定、sori=2、oil=2での制御温度(135℃)と、初期補正温度(0K)より、目標温
度θc=制御温度+初期補正温度=135℃+0K=135℃と設定する。
【0063】
そして、温度センサ4で検知する温度θ≧135℃(=θc)を検知すると、表示手段51を制御して点滅中だった「予熱中」を消灯するとともに、音響手段52を制御して0.5秒オン/0.5秒オフを3回繰り返すようにブザーを吹鳴させる予熱完了報知を行う。
【0064】
その後は、通電制御手段27は、目標温度θcを(表4)に示す180℃設定、sori=2、oil=2での制御温度(135℃)とし(θc=135℃)、このときのΔθとΔTを計算して加熱手段3の目標とする出力Pcを算出し、加熱手段3の出力がPcになるように通電制御して、鍋2内の油の温度を180℃近傍にて維持する。
【0065】
以上の構成により、一度予熱完了報知を行った後に設定温度を変更しても再度予熱完了報知を確実に行えるようにするとともに、鍋底の反り量が大きい、または鍋2内の油量が少ないときは制御温度を比較的小さくして、予熱完了報知を行うときの鍋2内の油温を設定温度に更に近づけることができる。
【0066】
そして、180℃設定で予熱完了した後に、入力手段6を操作して設定温度を190℃に上昇させると、通電制御手段27は、表示手段51を制御して再度「予熱中」を0.6秒オン/0.4秒オフにて点滅表示するとともに、目標温度θcを(表4)に示す190℃設定、sori=2、oil=2での制御温度(144℃)とし(θc=144℃)、ΔθとΔTを計算して加熱手段3の目標とする出力Pcを算出し、加熱手段3の出力がPcになるように通電制御して鍋2内の油を変更後の設定温度である190℃になるまで加熱する。
【0067】
その後、通電制御手段27は、予熱報知補正温度θhを(表5)に示す190℃設定、sori=2、oil=2での予熱報知補正温度(1K)とし、(θh=1K)、温度センサ4で検知する温度θ≧143℃(=θc−θh)を検知すると、表示手段51を制御して点滅中だった「予熱中」を消灯し予熱完了報知を行う。なお、このときは、音響手段52の駆動は行わない。
【0068】
以上の構成により、一度予熱完了報知を行った後に設定温度を変更しても再度予熱完了報知を確実に行えるようにするとともに、鍋底の反り量が大きい、または鍋2内の油量が少ないときは予熱報知補正温度θhの値を比較的小さくして、予熱完了報知を行うときの鍋2内の油温を設定温度に更に近づけることができる。
【0069】
なお、実施例2において、鍋反り量検知手段8は、温度センサ4で検知する温度θに基づき鍋2の鍋底の反り量を検知し、液体量検知手段9は、鍋反り量検知手段8より入力する信号および温度センサ4で検知する温度θの上昇勾配に基づき鍋2内の油量を検知する構成であるが、他の手段・方法にて鍋底の反り量または鍋2内の油量を検知する構成としても同様の効果を得ることができる。
【0070】
また、実施例1および2において、表示手段51はLCDで構成されて「予熱中」を点滅から消灯に変更することにより予熱完了報知を行っているが、「180」を点滅から点灯に変更する、7段階の設定温度に対応するLEDをそれぞれ備えて選択されている設定温度に対応するLEDを点滅から点灯に変更するなど、他の構成要素・動作内容にて予熱完了報知を行うようにしても同様の効果を得ることができる。
【0071】
【発明の効果】
以上のように、請求項1〜8に記載の発明によれば、予熱完了報知した後に設定温度を
高く変更して通電を継続させても、通電制御手段は精度良く再度予熱完了報知を行うことができる。
【図面の簡単な説明】
【図1】 本発明の実施例1における加熱調理器の通電制御手段のブロック図
【図2】 本発明の実施例1における加熱調理器の予熱完了前後の表示手段と音響手段の動作を示す図
【図3】 本発明の実施例2における加熱調理器のブロック図
【図4】 従来の加熱調理器のブロック図
【図5】 従来の加熱調理器の表示手段による温度設定表示を示す図
【図6】 従来の加熱調理器の予熱完了前後での表示手段と音響手段の動作を示す図
【符号の説明】
2 鍋
3 加熱手段
4 温度センサ
5 報知手段
6 入力手段
7、17、27 通電制御手段
8 鍋反り量検知手段
9 液体量検知手段[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heating cooker used in general households.
[0002]
[Prior art]
A conventional cooking device will be described below with reference to FIG. FIG. 4 is a block diagram of a conventional cooking device. In FIG. 4, 1 is a commercial power source, 2 is a pan, 3 is a heating means, and includes a rectifier 31, a heating coil 32, a switching element 33, and an inverter circuit 34. 4 is a temperature sensor, 5 is a notification means, and includes a display means 51 configured by a light emitting diode (LED) or a liquid crystal display element (LCD) for visual notification, and an acoustic means 52 configured by a buzzer or the like and audibly notified. It is configured. 6 is an input means, and 7 is an energization control means. The switching element 33 is turned on and off at several tens of kHz, a high frequency current is applied to the heating coil 32, and the pot 2 magnetically coupled to the heating coil 32 is induction heated. The energization control means 7 controls the output of the heating means 3 by controlling the ON time of the switching element 33.
[0003]
The operation of the conventional cooking device configured as described above will be described with reference to FIGS. 5 and 6. FIG. 5 is a diagram showing the display on the display means 51 when preheating is performed at 180 ° C., and FIG. 6 is a diagram showing the operations of the display means 51 and the acoustic means 52 before and after the completion of preheating.
[0004]
First, the energization control means 7 has a control temperature corresponding to seven set temperatures in increments of 10 ° C. from 140 ° C. to 200 ° C., and based on a signal input from the input means 6, Choose any from. The control temperature at each set temperature is shown in (Table 1).
[0005]
[Table 1]
Figure 0004852797
[0006]
The energization control means 7 employs fuzzy control as a method for determining the output of the heating means 3 based on the relationship between the temperature detected by the temperature sensor 4 and the control temperature corresponding to the selected set temperature. The temperature difference Δθ (Δθ = θ−θc) between the temperature θ detected by the sensor 4 and the target temperature θc, and the time ΔT (temperature rise) required for the temperature θ detected by the temperature sensor 4 to change by the unit temperature (1K) 2 is an input parameter, and Δθ is small (that is, temperature θ detected by temperature sensor 4 is sufficiently lower than target temperature θc) or ΔT is small (that is, temperature sensor). The target output Pc of the heating unit 3 is calculated to increase as the temperature θ detected at 4 decreases sharply).
[0007]
In addition, the energization control means 7 keeps the oil in the pan 2 at the set temperature during the preheating operation that starts energization from the energized off state and raises the oil in the pan 2 to the set temperature, and after reaching the set temperature. The contents of fuzzy control are distinguished in the stable operation.
[0008]
More specifically, when the commercial power source 1 is applied to the device, the heating unit 3 is switched from the energization off state to the energization on state, and the input unit 6 is operated to set the set temperature to 180 ° C., the energization control unit 7 The target temperature θc is set to a temperature corrected by the initial correction temperature (10K) with respect to the control temperature (167 ° C) at the setting of 180 ° C shown in (Table 1) (θc = 167 ° C + 10K = 177 ° C), and Δθ and ΔT are calculated. Then, the target output Pc of the heating means 3 is calculated, the energization control is performed so that the output of the heating means 3 becomes Pc, and the oil in the pan 2 is preheated to a set temperature of 180 ° C. At this time, as shown in FIG. 5 and FIG. 6, the energization control means 7 lights “180” indicating the set temperature, and “preheating” is 0.6 seconds on / 0.4 seconds off. The display means 51 is controlled so as to blink.
[0009]
When the energization control means 7 detects the temperature θ ≧ 177 ° C. detected by the temperature sensor 4 (= control temperature at initial setting of 180 ° C. + initial correction temperature), the energization control means 7 controls the display means 51 as shown in FIG. The “preheating” is turned off, and the buzzer is sounded so as to repeat the 0.5 second on / 0.5 second off three times by controlling the sound means 52. The operation of the display means 51 and the sound means 52 as described above is hereinafter referred to as preheating completion notification.
[0010]
Thereafter, the energization control means 7 sets the target temperature θc to the control temperature (167 ° C.) at the setting of 180 ° C. shown in (Table 1) (θc = 167 ° C.), calculates Δθ and ΔT at this time, and calculates the heating means The target output Pc of 3 is calculated, and energization control is performed so that the output of the heating means 3 becomes Pc, and the temperature of the oil in the pan 2 is maintained at around 180 ° C.
[0011]
Here, the reason why the target temperature θc is increased by the initial correction temperature (10K) during the preheating operation will be described. When oil that has been adapted to room temperature is preheated to 180 ° C, the oil is viscous at low temperatures, so the temperature rise of the oil is delayed with respect to the temperature rise of the pan 2 itself. 6 As shown in FIG. 2, the difference between the temperature θ detected by the temperature sensor 4 and the temperature of the oil in the pan 2 is relatively small as compared with the stable operation. Therefore, the target temperature θc during the preheating operation is set to be slightly higher than the target temperature θc during the stable operation, and the oil temperature in the pan 2 reaches the set temperature when the preheating is completed. It is to do.
[0012]
Further, even with the same Δθ and ΔT, the calculated output Pc of the heating means 3 is set to be somewhat larger in the preheating operation than in the stable operation, and the oil in the pan 2 is smoothly heated during the preheating operation. And at the time of stable operation | movement, the ripple of the oil temperature in the pan 2 is suppressed.
[0013]
Then, after the preheating is completed at 180 ° C. setting, when the input means 6 is operated to raise the set temperature to 200 ° C., the energization control means 7 controls the display means 51 to display “200” indicating the set temperature. Lights up and flashes again during preheating for 0.6 seconds on / 0.4 seconds off, and the target temperature θc is set to the control temperature (185 ° C) at the 200 ° C setting shown in (Table 1). (Θc = 185 ° C.), Δθ and ΔT are calculated, the target output Pc of the heating means 3 is calculated by control in a stable operation, and energization control is performed so that the output of the heating means 3 becomes Pc.
[0014]
When the temperature detected by the temperature sensor 4 is detected as θ ≧ 185 ° C. (= control temperature at 200 ° C. setting), the preheating completion notification is performed again. In this case, the initial correction temperature (10K) is not corrected for the target temperature θc.
[0015]
[Problems to be solved by the invention]
However, in the conventional configuration, when the set temperature is increased by one step after completion of preheating, the temperature difference Δθ between the temperature θ detected by the temperature sensor 4 and the target temperature θc is small, so that the target output Pc of the heating means 3 increases. Since the period is short and preheating is performed in a stable operation, the target output Pc of the heating means 3 is somewhat smaller overall than in the preheating operation, and the target output Pc of the heating means 3 is suppressed before the target temperature θc. Therefore, the temperature θ detected by the temperature sensor 4 does not overshoot, the temperature θ detected by the temperature sensor 4 becomes stable before reaching the target temperature θc, and the temperature θ detected by the temperature sensor 4 ≧ the changed value Cannot notify the completion of preheating without satisfying the control temperature. The above phenomenon occurs when the set temperature after change is high, the amount of increase in the set temperature is small, the amount of oil in the pan 2 is large, and the amount of warping of the pan bottom of the pan 2 is small and the overshoot becomes small. There was a problem that it was easy.
[0016]
SUMMARY OF THE INVENTION The present invention solves the above-described conventional problems, and an object of the present invention is to make it possible to notify the completion of preheating again even when energization is continued by changing the set temperature to a high level after notifying completion of preheating.
[0017]
[Means for Solving the Problems]
In order to solve the conventional problems, the cooking device of the present invention is selected by a user operating a heating means for heating a pan, a temperature sensor for detecting the temperature of the pan, and an input means. A predetermined control temperature is selected from a plurality of control temperatures based on the signal, and the temperature difference between the temperature detected by the temperature sensor and the selected control temperature and the temperature detected by the temperature sensor change by a unit temperature. Energization control means for energizing and controlling the output of the heating means by fuzzy control based on the time required for the operation, and notification means for performing preheating completion notification indicating that the temperature of the liquid in the pan has reached a predetermined temperature. The energization control means has a plurality of the control temperatures and one or more correction temperatures, compares the temperature detected by the temperature sensor with the selected control temperature, and passes the heating means from the energization off state. When starting, when the temperature detected by the temperature sensor reaches the control temperature, the notification means is controlled to notify the completion of the preheating, and after the completion of the preheating notification, the control means changes the control temperature to be high. When the energization is continued, when the temperature detected by the temperature sensor reaches a temperature obtained by subtracting the predetermined correction temperature from the changed control temperature, the notification means is controlled to notify the preheating completion notification again. To do In addition, the temperature obtained by subtracting the predetermined correction temperature from the control temperature after the change is lower than the control temperature after the change, which is higher than the control temperature before the change and is stabilized by the fuzzy control. It is what.
[0018]
As a result, when the control temperature is changed to a high value after the preheating completion notification, the energization control means performs the preheating completion notification again by controlling the notification means at the temperature detected by the temperature sensor ≧ (control temperature−correction temperature). Even if the temperature detected by the temperature sensor is stabilized before the control temperature, it is possible to notify the completion of preheating.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
The invention according to claim 1 includes a heating means for heating the pan, a temperature sensor for detecting the temperature of the pan, and a plurality of control temperatures based on a signal selected by the user operating the input means. A predetermined control temperature is selected, and fuzzy control is performed based on the temperature difference between the temperature detected by the temperature sensor and the selected control temperature and the time required for the temperature detected by the temperature sensor to change by a unit temperature. An energization control means for energizing and controlling the output of the heating means; and an informing means for informing the completion of preheating indicating that the temperature of the liquid in the pan has reached a predetermined temperature. The control temperature has at least one correction temperature, and the temperature detected by the temperature sensor is compared with the selected control temperature. When the detected temperature reaches the control temperature, the notification means is controlled to notify the preheating completion, and after the preheating completion notification, the input means changes the control temperature to a high level and continues energization. When the temperature detected by the temperature sensor reaches a temperature obtained by subtracting the predetermined correction temperature from the changed control temperature, the notification means is controlled to perform the preheating completion notification again. In addition, the temperature obtained by subtracting the predetermined correction temperature from the control temperature after the change is set to be lower than the control temperature after the change, which is higher than the control temperature before the change and stable by the fuzzy control. Thus, when the energization control means changes the control temperature higher after completion of preheating and continues energization, even if the temperature detected by the temperature sensor is stabilized at a temperature lower than the control temperature, the preheating completion notification can be performed again. .
[0020]
The invention described in claim 2 is particularly described in claim 1. Said Energization control means Said Performed for the first time after the heating means is energized Said Preheating completion notification and Said After notifying completion of preheating, Said Based on the signal input from the input means Said After changing the control temperature higher Said By adopting a configuration that performs different notifications with the preheating completion notification, the user can be identified whether the preheating completion notification after the start of energization or the preheating completion notification when the control temperature is changed to a high value, which improves usability. can do. In addition, the first preheating completion notification is performed by a plurality of notification means, and the notification method is changed so that the preheating completion notification performed after the control temperature is changed to be higher than the number of the first preheating completion notification notification units. For example, the troublesomeness given to the user by notification can be reduced.
[0021]
The invention described in claim 3 is particularly characterized in that it is described in claim 1. Said The energization control means is Said The lower the control temperature, Said By adopting a configuration to reduce the correction temperature, the timing of the preheating completion notification is made closer to the timing when the temperature of the liquid in the pan reaches the control temperature after the change in response to the control temperature level, that is, the accurate preheating is completed. Information can be provided.
[0022]
In particular, the invention described in claim 4 is described in claim 1. Said The energization control means is Said The greater the control temperature change amount, Said By adopting a configuration in which the correction temperature is reduced, the timing of the preheating completion notification is made closer to the timing at which the temperature of the liquid in the pan reaches the control temperature after the change, corresponding to the degree to which the control temperature is increased. Good preheating completion notification is possible.
[0023]
The invention according to claim 5 is, in particular, A pan warp amount detecting means for detecting the amount of warp of the pan bottom; Claim 1 Said The energization control means is Said The greater the amount of warp at the bottom of the pan based on the signal input from the pan warp amount detection means, Said By setting it as the structure which makes control temperature low, when the curvature amount of a pan bottom changes, the difference in the temperature of the liquid in a pan when performing a preheating completion alert | report can be made small.
[0024]
The invention according to claim 6 is, in particular, A liquid amount detection means for detecting the amount of liquid in the pan, Claim 1 Said The energization control means is Said The smaller the amount of liquid in the pan based on the signal input from the liquid amount detection means, Said By adopting a configuration in which the control temperature is lowered, the preheating completion notification timing is made closer to the timing at which the temperature of the liquid in the pan reaches the control temperature after the change in correspondence with the amount of liquid in the pan. Preheating completion notification can be made.
[0025]
The invention according to claim 7 is, in particular, A pan warp amount detecting means for detecting the amount of warp of the pan bottom; Claim 1 Said The energization control means is Said The greater the amount of warp at the bottom of the pan based on the signal input from the pan warp amount detection means, Said By configuring the correction temperature to be small, the preheating completion notification timing is made closer to the timing at which the liquid temperature in the pan reaches the control temperature after the change, corresponding to the amount of warpage of the pan bottom, that is, accurate preheating. Completion notification is possible.
[0026]
The invention according to claim 8 is, in particular, A liquid amount detection means for detecting the amount of liquid in the pan, Claim 1 Said The energization control means is Said The smaller the amount of liquid in the pan based on the signal input from the liquid amount detection means, Said By adopting a configuration in which the correction temperature is reduced, the preheating completion notification timing is made closer to the timing at which the temperature of the liquid in the pan reaches the control temperature after the change in correspondence with the amount of liquid in the pan. Preheating completion notification can be made.
[0027]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0028]
Example 1
FIG. 1 shows a block diagram of the energization control means 17 of the heating cooker according to the first embodiment of the present invention. Except for the energization control means 17, the configuration is the same as that shown in FIG. Description is omitted. Components having the same functions as those of the conventional example of FIG. 4 are given the same reference numerals. The configuration shown in FIG. 1 is different from the configuration shown in FIG. 4 in that the energization control unit 17 includes a comparison unit 17a, a setting unit 17b, and a correction unit 17c, and the setting unit 17b according to a signal from the comparison unit 17a. To output a signal. The setting means 17b outputs a signal to the comparison means 17a based on the signal from the input means 6 and the signal from the correction means 17c.
[0029]
This will be described below with reference to FIGS. The energization control means 17 has an initial mode in which the heating means 3 is energized off with the output Pc = 0 of the heating means 3 as the operation mode, and a control corresponding to seven set temperatures in increments of 10 ° C. from 140 ° C. to 200 ° C. Two types of fried food modes in which the output Pc of the heating means 3 is calculated based on the relationship between the temperature θ detected by the temperature sensor 4 and the target temperature θc related to the selected control temperature, and the heating means 3 is energized and controlled. When the signal indicating the start of heating is input from the input means 6 when the operation mode is the initial mode, the operation mode is changed to the 180 ° C. setting of the frying mode. When the operation mode is the frying mode, the input means 6 is selected. When a signal indicating a change in set temperature is input, an arbitrary one is selected from seven set temperatures, and when a signal indicating a heating stop is input from the input means 6, the operation mode is set to the initial mode. Change to
[0030]
Then, in the energization control means 17, when the operation mode shifts from the initial mode to the deep-fried food mode, the comparison means 17a does not output a signal to correct the temperature for performing the preheating completion notification, and the correction means 17c does not output the preheat notification correction temperature θh, the setting means 17b outputs the target temperature θc as it is to the comparison means 17a, and the comparison means 17a detects the temperature θ detected by the temperature sensor 4 ≧ the target temperature θc and displays the display means 51. And the sound means 52 is controlled to notify the completion of preheating.
[0031]
Further, when the energization control unit 17 raises the set temperature based on a signal input from the input unit 6 after performing the preheating completion notification once, the comparison unit 17a corrects the temperature for performing the preheating completion notification. The correction means 17c inputs the signal from the comparison means 17a and outputs the preheating notification correction temperature θh, and the setting means 17b compares the temperature obtained by subtracting the preheating notification correction temperature θh from the target temperature θc. This is output to the means 17a, and the comparison means 17a performs the preheating completion notification by controlling the display means 51 at the temperature θ detected by the temperature sensor 4 ≧ (target temperature θc−preheating notification correction temperature θh). .
[0032]
About the cooking-by-heating machine comprised as mentioned above, the operation | movement is demonstrated using FIG. FIG. 2 is a diagram illustrating operations of the display unit 51 and the acoustic unit 52 due to the set temperature increase after completion of preheating.
[0033]
Now, when the commercial power supply 1 is applied to the device, the energization control means 17 starts operation with the operation mode = initial mode. And when the signal which shows a heating start is input from the input means 6, as shown to (a) of FIG. 2, the electricity supply control means 17 will change an operation mode into the 180 degreeC setting of the deep-fried food mode, and set target temperature (theta) c to ( The control temperature (167 ° C.) shown in Table 1) is corrected to the initial correction temperature (10K) with respect to the control temperature (167 ° C.) (θc = 167 ° C. + 10K = 177 ° C.), Δθ and ΔT are calculated, and the heating means 3 The target output Pc is calculated, energization control is performed so that the output of the heating means 3 becomes Pc, and the oil in the pan 2 is preheated until the set temperature reaches 180 ° C. At this time, as shown in FIG. 2A and FIG. 5, the energization control unit 7 displays the display unit 51 so as to blink “preheating” with 0.6 seconds on / 0.4 seconds off. Control.
[0034]
The energization control unit 17 outputs the target temperature θc to the comparison unit 17a by the setting unit 17b, and detects the temperature θ ≧ 177 ° C. (= θc) detected by the temperature sensor 4 by the comparison unit 17a. As shown in (b), the display means 51 is controlled to turn off the “pre-heating” which was blinking, and the sound means 52 is controlled to control 0.5 second on / 0.5 second off three times. A preheat completion notification is made to sound the buzzer repeatedly.
[0035]
Thereafter, as shown in FIG. 2B, the energization control means 17 sets the target temperature θc to the control temperature (167 ° C.) at the 180 ° C. setting shown in (Table 1) (θc = 167 ° C.). Δθ and ΔT at the time are calculated to calculate the target output Pc of the heating means 3, and energization control is performed so that the output of the heating means 3 becomes Pc, so that the temperature of the oil in the pan 2 is close to 180 ° C. And maintain.
[0036]
Then, after the preheating is completed at the setting of 180 ° C., when the input means 6 is operated to increase the set temperature to 190 ° C., the energization control means 17 is changed to (c) and FIG. 5 As shown in FIG. 4, the display means 51 is controlled to flash “Preheating” again for 0.6 seconds on / 0.4 seconds off, and the target temperature θc is set to 190 ° C. shown in (Table 1). Control temperature (176 ° C.) (θc = 176 ° C.), Δθ and ΔT are calculated to calculate the target output Pc of the heating means 3, and energization control is performed so that the output of the heating means 3 becomes Pc. The oil in the pan 2 is heated to 190 ° C., which is the set temperature after the change.
[0037]
Thereafter, the energization control means 17 outputs the preheating notification correction temperature θh = 2K in the correction means 17c, and outputs the temperature obtained by subtracting the preheating notification correction temperature θh from the target temperature θc in the setting means 17b to the comparison means 17a. When the comparison unit 17a detects the temperature θ ≧ 174 ° C. (= θc−θh) detected by the temperature sensor 4, as shown in (d) of FIG. Turn off “Middle” and notify the completion of preheating. At this time, the acoustic means 52 is not driven.
[0038]
With the above configuration, after preheating is started in a state where a large amount of oil is put in the pan 2 having a flat pan bottom, the preheating is notified in advance, and then the temperature detected by the temperature sensor 4 by increasing the set temperature by one step. Even if θ is stabilized before the target temperature θc, the energization control means 17 can notify the completion of preheating again.
[0039]
Further, when the preheating is completed for the first time after the change from the initial mode to the deep-fried food mode, the energization control means 17 drives both the display means 51 and the acoustic means 52 to notify the completion of the preheating. It is possible to recognize that the preheating has been completed even if the person who uses the device increases the performance and takes a relatively long time for the preheating so that the person who uses the device is away from the device.
[0040]
Moreover, even if the person who uses an apparatus operates the input means 6 in the middle of cooking and changes preset temperature, the electricity supply control means 17 will change preset temperature once after preheating completion notification once, and will complete preheating again. At that time, only the display means 51 is driven to notify the completion of the preheating, so that the person who uses the apparatus can confirm that the preheating based on the changed set temperature is completed on the display means 51 and based on the changed set temperature. The troublesomeness caused by driving the acoustic means 52 each time preheating is completed can be eliminated.
[0041]
By the way, the target output Pc of the heating means 3 calculated by the energization control means 17, which is the heating amount to (the pot 2 + the oil in the pot 2), is the temperature difference Δθ between the target temperature θc and the temperature θ detected by the temperature sensor 4. If the rising gradient ΔT of the temperature θ detected by the temperature sensor 4 is the same, the same value is obtained regardless of the set temperature, but the heat release amount of (the oil in the pan 2 + the pan 2) is high. It is so big. Accordingly, when the set temperature is increased after the preheating completion notification is once performed, the temperature θ detected by the temperature sensor 4 becomes more stable before the target temperature θc corresponding to the changed set temperature as the changed set temperature is higher. Become a trend.
[0042]
As described above, the correcting means 17c is based on the signal input from the setting means 17b, θh = 0K when the setting temperature = 140 ° C. to 160 ° C., θh = 1K when the setting temperature = 170 ° C. to 180 ° C., and the setting temperature = 190. From ℃ to 200 ℃, θh = 2K is output so that even if the preset temperature is changed after the preheat completion notification is made once, the preheat completion notification can be surely performed again, and the changed set temperature is compared. When the target temperature is low, the oil temperature in the pan 2 when the preheating completion notification is performed by reducing θh can be made closer to the set temperature.
[0043]
In addition, even when the temperature rises to the same set temperature once the preheating completion notification is given, the case where the temperature rises by one step such as the setting from 180 ° C. to 190 ° C. is higher than the case where the temperature rises by five steps such as the setting from 140 ° C. to 190 ° C. However, since the temperature difference Δθ between the target temperature θc and the temperature θ detected by the temperature sensor 4 is small, the target output Pc of the heating means 3 calculated by the energization control means 7 becomes small, and the target temperature θc corresponding to the changed set temperature. In this case, the temperature θ detected by the temperature sensor 4 tends to be stabilized.
[0044]
From the above, the setting means 17b keeps θh = θh when the set temperature is raised by 1 to 3 steps with respect to the set temperature when the preheating completion notification is performed, and keeps the set temperature by 4 to 6 steps. Even if the set temperature is changed after the preheating completion notification is once performed, it is assumed that θh = θh−1K (when θh = 0K-1K = −1K as a result, θh = 0K). In addition to ensuring that the preheating completion notification can be performed again, when the amount of increase in the set temperature is relatively large, the oil temperature in the pan 2 when the preheating completion notification is performed by decreasing θh is made closer to the set temperature. Can do.
[0045]
(Example 2)
FIG. 3 shows a block diagram of the heating cooker in the second embodiment of the present invention.
[0046]
The characteristic configuration of this embodiment is based on the rising gradient of the temperature θ detected by the temperature sensor 4 immediately after the energization control unit 27 changes the operation mode from the initial mode to the deep-fried food mode and starts energizing the heating unit 3. The pot warp amount detection means 8 for detecting the warp amount (sori) of the pan bottom of the pot 2 in three steps, and the warp amount (sori) detected by the pot warp amount detection means 8 are input from the pot warp amount detection means 8. A liquid amount detecting means 9 is newly provided for detecting the amount of oil (oil) in the pan 2 in three stages based on the amount of warpage (sori) to be performed and the rising gradient of the temperature θ detected by the temperature sensor 4.
[0047]
And the electricity supply control means 27 respond | corresponds to 7 steps | paragraphs of set temperature in deep-fried food mode based on the curvature amount (sori) input from the pan curvature amount detection means 8, and the oil amount (oil) input from the liquid amount detection means 9. That is, the control temperature, the initial correction temperature, and the preheat notification correction temperature θh are changed.
[0048]
In the first embodiment, there is an inclusion such as a ceramic top plate between the pan 2 and the temperature sensor 4, and the temperature sensor 4 indirectly detects the oil temperature in the pan 2. The larger the warp amount of the pan bottom of 2, the larger the space between the pan bottom and the top plate of the pan 2, and the sensitivity and followability of the temperature θ detected by the temperature sensor 4 with respect to the temperature of the pan 2 deteriorates. The difference between the temperature θ to be detected and the oil temperature in the pan 2 becomes large, and when the set temperature is raised after the preheating completion notification is made, the overshoot of the temperature θ detected by the temperature sensor 4 becomes large.
[0049]
Moreover, when the oil amount in the pan 2 decreases, the oil in the pan 2 convects in a short time and the temperature rises. Therefore, when the temperature θ detected by the temperature sensor 4 is the same temperature, the oil amount is large. In comparison, the oil temperature of the pan 2 is relatively high, and when the set temperature is raised after the preheating completion notification is made, the temperature sensor 4 detects that the heat capacity of the (pan 2 + oil in the pan 2) becomes small. There is a feature that the rising gradient of the temperature θ increases and the overshoot also increases.
[0050]
The present embodiment effectively utilizes the above-described features, and the operation of the cooking device configured as described above will be described below.
[0051]
When the commercial power source 1 is applied to the device, the energization control means 27 starts operation with the operation mode = initial mode. And when the signal which shows a heating start is input from the input means 6, the electricity supply control means 27 will change an operation mode to the 180 degreeC setting of fried food mode, and as shown in FIG. The display means 51 is controlled to blink on / off for 0.4 seconds, and the following operation is performed.
[0052]
First, the energization control unit 27 controls the energization of the heating unit 3 with the target output Pc = 1000 W of the heating unit 3. Then, when the pan warp amount detection means 8 detects that the operation mode has been changed from the initial mode to the deep-fried food mode based on the signal input from the energization control means 27, the energization of the heating means 3 is started. The temperature θ detected by the temperature sensor 4 every 10 seconds from the start of energization is measured at θ0, θ1, θ2, θ3, θ4, respectively, and d2θ = (θ4-θ3) − (θ1-θ0) is calculated, and d2θ Based on the above, sori, which is the amount of warp of the pan bottom of the pan 2, is detected in three stages of sori = 1 to 3, and is output to the energization control means 27 and the liquid amount detection means 9. In addition, d2 (theta) becomes a small value, so that the curvature amount of a pan bottom is large. The relationship between the amount of warp at the bottom of the pan and the value of sori is shown in (Table 2).
[0053]
[Table 2]
Figure 0004852797
[0054]
Then, when energization starts at the target output Pc = 1000 W of the heating unit 3 and 40 seconds have elapsed, the energization control unit 27 inputs the value of sori from the pan warp amount detection unit 8 to confirm that the pan warp amount detection has been completed. Detecting and changing the target output Pc of the heating means 3 to 1200 W and performing energization control, the liquid amount detecting means 9 is the value of sori input from the pan warp amount detecting means 8 and the temperature detected by the temperature sensor 4. Oil, which is the amount of oil in the pan 2, is detected in three stages of oil = 1 to 3 based on the rising gradient of θ and output to the energization control means 27. The relationship between the amount of oil in the pan 2 and the value of oil is shown in (Table 3).
[0055]
[Table 3]
Figure 0004852797
[0056]
And when the energization control means 27 inputs the value of oil from the liquid amount detection means 9 and detects that the detection of the oil amount in the pan 2 has been completed, the sori at the selected set temperature of 180 ° C. And the control temperature and the initial correction temperature based on oil and the target temperature θc = control temperature + initial correction temperature, Δθ and ΔT are calculated to calculate the target output Pc of the heating unit 3, and the output of the heating unit 3 Is preheated until the oil in the pan 2 reaches a preset temperature of 180 ° C.
[0057]
That is, the energization control means 27 is set so that the control temperature decreases as the value of sori increases and the value of oil decreases. Specific control temperatures based on sori and oil at each set temperature are shown in Table 4.
[0058]
[Table 4]
Figure 0004852797
[0059]
As for the initial correction temperature based on sori and oil, the initial correction temperature = 10K when sori = 1 and oil = 3, the initial correction temperature = 5K when sori = 1 and oil = 2, and so on, that is, sori = 2. When 3 or oil = 1, the initial correction temperature = 0K.
[0060]
Furthermore, when the set temperature is increased after the preheating completion notification is made, the overshoot of the temperature θ detected by the temperature sensor 4 increases as the value of sori increases and the value of oil decreases. The preheat notification correction temperature θh is set to be smaller as the value of sori is larger and the value of oil is smaller. The specific preheating notification correction temperature θh based on sori and oil at each set temperature is shown in (Table 5).
[0061]
[Table 5]
Figure 0004852797
[0062]
More specifically, when 500 g of oil is put into the pan 2 whose bottom is warped by 1.0 mm and preheating is started at a setting of 180 ° C., the pan warp amount detecting means 8 has sori = 2 and the liquid amount is detected. The means 9 detects oil = 2, and the energization control means 27 determines the control temperature (135 ° C.) at the 180 ° C. setting, sori = 2, oil = 2 shown in (Table 4), and the initial correction temperature (0K). More target temperature
Degree θc = control temperature + initial correction temperature = 135 ° C. + 0K = 135 ° C.
[0063]
When detecting the temperature θ ≧ 135 ° C. (= θc) detected by the temperature sensor 4, the display unit 51 is controlled to turn off the “pre-heating” that was blinking, and the acoustic unit 52 is controlled to 0. A preheat completion notification is made to sound a buzzer so that 5 seconds on / 0.5 seconds off is repeated three times.
[0064]
Thereafter, the energization control unit 27 sets the target temperature θc to the control temperature (135 ° C.) at the setting of 180 ° C. shown in (Table 4), sori = 2, oil = 2 (θc = 135 ° C.), and Δθ at this time And ΔT are calculated, the target output Pc of the heating means 3 is calculated, the energization control is performed so that the output of the heating means 3 becomes Pc, and the temperature of the oil in the pan 2 is maintained at around 180 ° C. .
[0065]
With the above configuration, when the preheating completion notification is once performed and the set temperature is changed, the preheating completion notification can be surely performed again, and the warping amount of the pan bottom is large or the amount of oil in the pan 2 is small. The control temperature can be made relatively low, and the oil temperature in the pan 2 when performing the preheating completion notification can be made closer to the set temperature.
[0066]
Then, after completing the preheating at the 180 ° C. setting, when the input means 6 is operated to raise the set temperature to 190 ° C., the energization control means 27 controls the display means 51 to again set “preheating” to 0.6. In addition to blinking when seconds are on / 0.4 seconds off, the target temperature θc is set to 190 ° C. shown in (Table 4), the control temperature (144 ° C.) at sori = 2 and oil = 2 (θc = 144 ° C.) ), Δθ and ΔT are calculated, the target output Pc of the heating means 3 is calculated, the energization control is performed so that the output of the heating means 3 becomes Pc, and the oil in the pan 2 is the set temperature after changing. Heat to 190 ° C.
[0067]
Thereafter, the energization control means 27 sets the preheating notification correction temperature θh to 190 ° C. shown in (Table 5), preheating notification correction temperature (1K) at sori = 2, oil = 2, (θh = 1K), temperature sensor When the detected temperature θ ≧ 143 ° C. (= θc−θh) is detected, the display means 51 is controlled to turn off the “preheating” that was blinking and notify the completion of the preheating. At this time, the acoustic means 52 is not driven.
[0068]
With the above configuration, when the preheating completion notification is once performed and the set temperature is changed, the preheating completion notification can be surely performed again, and the warping amount of the pan bottom is large or the amount of oil in the pan 2 is small. Can make the value of the preheating notification correction temperature θh relatively small so that the oil temperature in the pan 2 when the preheating completion notification is performed can be made closer to the set temperature.
[0069]
In the second embodiment, the pan warp amount detecting means 8 detects the warp amount of the pan bottom of the pan 2 based on the temperature θ detected by the temperature sensor 4, and the liquid amount detecting means 9 is more than the pan warp amount detecting means 8. The oil amount in the pan 2 is detected based on the input signal and the rising gradient of the temperature θ detected by the temperature sensor 4, but the amount of warp in the pan bottom or the oil amount in the pan 2 is determined by other means / methods. The same effect can be obtained as a detection configuration.
[0070]
Further, in the first and second embodiments, the display unit 51 is configured by an LCD and notifies the completion of preheating by changing “preheating” from blinking to turning off, but changes “180” from blinking to lighting. In addition, the LED corresponding to the set temperature of 7 stages is provided, and the LED corresponding to the selected set temperature is changed from blinking to lighting, etc., so that the preheating completion notification is performed with other components / operation contents. The same effect can be obtained.
[0071]
【The invention's effect】
As described above, according to the first to eighth aspects of the present invention, the preset temperature is set after the completion of the preheating notification.
Even if energization is continued by changing the value higher, the energization control means can perform preheating completion notification again with high accuracy.
[Brief description of the drawings]
FIG. 1 is a block diagram of energization control means of a heating cooker in Embodiment 1 of the present invention.
FIG. 2 is a view showing the operation of the display means and the sound means before and after the completion of preheating of the heating cooker in Embodiment 1 of the present invention.
FIG. 3 is a block diagram of a heating cooker in Embodiment 2 of the present invention.
FIG. 4 is a block diagram of a conventional cooking device
FIG. 5 is a view showing a temperature setting display by a display means of a conventional cooking device.
FIG. 6 is a view showing the operation of the display means and the sound means before and after the completion of preheating of the conventional cooking device.
[Explanation of symbols]
2 hot pot
3 Heating means
4 Temperature sensor
5 Notification means
6 Input means
7, 17, 27 Energization control means
8 Pan warpage detection means
9 Liquid level detection means

Claims (8)

鍋を加熱する加熱手段と、前記鍋の温度を検知する温度センサと、入力手段を使用者が操作することにより選択される信号に基づき複数の制御温度の中から所定の制御温度を選択し、前記温度センサで検知する温度と選択された前記制御温度との温度差及び前記温度センサで検知する温度が単位温度だけ変化するのに要する時間に基づくファジイ制御で前記加熱手段の出力を通電制御する通電制御手段と、前記鍋の中の液体の温度が所定の温度に到達したことを示す予熱完了報知を行う報知手段とを備え、前記通電制御手段は複数の前記制御温度と一つ以上の補正温度を有し、前記温度センサで検知する温度と前記選択された制御温度を比較し、前記加熱手段を通電オフ状態から通電開始したときは、前記温度センサで検知する温度が前記制御温度に到達すると前記報知手段を制御して前記予熱完了報知を行い、前記予熱完了報知後、前記入力手段により、前記制御温度を高く変更して通電を継続したときは、前記温度センサで検知する温度が前記変更後の制御温度から所定の前記補正温度を差し引いた温度に到達すると、前記報知手段を制御して前記予熱完了報知を再度行うようにするとともに、前記変更後の制御温度から所定の前記補正温度を差し引いた温度は、変更前の前記制御温度より高く前記ファジイ制御で安定する前記変更後の制御温度以下にした加熱調理器。A heating means for heating the pan, a temperature sensor for detecting the temperature of the pan, and a predetermined control temperature is selected from a plurality of control temperatures based on a signal selected by the user operating the input means, The output of the heating means is energized and controlled by fuzzy control based on the temperature difference between the temperature detected by the temperature sensor and the selected control temperature and the time required for the temperature detected by the temperature sensor to change by a unit temperature. An energization control means, and an informing means for informing completion of preheating indicating that the temperature of the liquid in the pan has reached a predetermined temperature, wherein the energization control means includes a plurality of the control temperatures and one or more corrections. The temperature detected by the temperature sensor is compared with the selected control temperature, and the temperature detected by the temperature sensor is controlled when the heating means is energized from the energized off state. When the temperature is reached, the notification means is controlled to notify the completion of the preheating. After the notification of the completion of the preheating, when the energization is continued by changing the control temperature to be high by the input means, the temperature sensor detects it. When the temperature reaches a temperature obtained by subtracting the predetermined correction temperature from the changed control temperature, the notification means is controlled to perform the preheating completion notification again , and the predetermined control temperature is changed from the changed control temperature. The cooker cooked by subtracting the correction temperature to be lower than the control temperature after the change, which is higher than the control temperature before the change and stabilized by the fuzzy control . 前記通電制御手段は、前記加熱手段の通電開始後、初めて行う前記予熱完了報知と、前記予熱完了報知した後、前記入力手段より入力する信号に基づき前記制御温度を高く変更した後に行う前記予熱完了報知とで、異なる報知を行う構成とした請求項1記載の加熱調理器。 Said energization control means after the start of energization the heating means, the preheating completion notification performed for the first time, after the completion of preheating notification, the completion of preheating performed after the control temperature raised modified based on a signal input from said input means the heating cooker as claimed in claim 1, in a broadcast, and configured to perform different notification. 変更後の前記制御温度が低いほど、前記補正温度を小さくする構成とした請求項1記載の加熱調理器。As the control temperature of the changed low, the heating cooker according to claim 1 which is configured to reduce the correction temperature. 前記制御温度の変更量が大きいほど、前記補正温度を小さくする構成とした請求項1記載の加熱調理器。As change amount of the control temperature is large, the heating cooker according to claim 1 which is configured to reduce the correction temperature. 前記鍋底の反り量を検知する鍋反り量検知手段を備え、前記通電制御手段が前記鍋反り量検知手段より入力する信号に基づく前記鍋底の反り量が大きいほど、前記制御温度を低くする構成とした請求項1記載の加熱調理器。Comprising a pan warp amount detection means for detecting the amount of warpage of the pan bottom, as the energization control means is large warpage of the pan bottom based on the input signal from the pan warpage amount detecting means, and configured to lower the control temperature The cooker according to claim 1. 前記鍋内の液体量を検知する液体量検知手段を備え、前記通電制御手段は、前記液体量検知手段より入力する信号に基づく前記鍋内の液体量が少ないほど、前記制御温度を低くする構成とした請求項1記載の加熱調理器。Comprising a liquid amount sensing means for sensing the amount of liquid in the pan, the energization control means, as the quantity of liquid in said pot based on a signal input from said liquid amount detecting means is small, to lower the control temperature structure The heating cooker according to claim 1. 前記鍋底の反り量を検知する鍋反り量検知手段を備え、前記通電制御手
段が前記鍋反り量検知手段より入力する信号に基づく前記鍋底の反り量が大きいほど、前記補正温度を小さくする構成とした請求項1記載の加熱調理器。
Comprising a pan warp amount detection means for detecting the amount of warpage of the pan bottom, as the energization control means is large warpage of the pan bottom based on the input signal from the pan warpage amount detecting means, and configured to reduce the correction temperature The cooker according to claim 1.
前記鍋内の液体量を検知する液体量検知手段を備え、前記通電制御手段が前記液体量検知手段より入力する信号に基づく前記鍋内の液体量が少ないほど、前記補正温度を小さくする構成とした請求項1記載の加熱調理器。Comprising a liquid amount sensing means for sensing the amount of liquid in the pot, as the energization control means the amount of liquid is small in the pot based on a signal input from said liquid amount detecting means, and configured to reduce the correction temperature The cooker according to claim 1.
JP2001169228A 2001-06-05 2001-06-05 Cooker Expired - Fee Related JP4852797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001169228A JP4852797B2 (en) 2001-06-05 2001-06-05 Cooker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001169228A JP4852797B2 (en) 2001-06-05 2001-06-05 Cooker

Publications (2)

Publication Number Publication Date
JP2002367764A JP2002367764A (en) 2002-12-20
JP4852797B2 true JP4852797B2 (en) 2012-01-11

Family

ID=19011329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001169228A Expired - Fee Related JP4852797B2 (en) 2001-06-05 2001-06-05 Cooker

Country Status (1)

Country Link
JP (1) JP4852797B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6953919B2 (en) 2003-01-30 2005-10-11 Thermal Solutions, Inc. RFID-controlled smart range and method of cooking and heating
JP5378573B2 (en) * 2012-06-11 2013-12-25 日立アプライアンス株式会社 Induction heating cooker

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0665144B2 (en) * 1988-02-19 1994-08-22 三洋電機株式会社 Induction heating cooker
JPH0513161A (en) * 1991-07-03 1993-01-22 Matsushita Electric Ind Co Ltd Temperature control device for electric cooker
JP2721605B2 (en) * 1991-09-26 1998-03-04 シャープ株式会社 Cooking device
JP3254964B2 (en) * 1995-05-23 2002-02-12 松下電器産業株式会社 Induction heating cooker
JPH1187043A (en) * 1997-09-12 1999-03-30 Toshiba Corp Electromagnetic cooking device
JP2001143858A (en) * 1999-11-15 2001-05-25 Matsushita Electric Ind Co Ltd Induction heating cooker
JP4284809B2 (en) * 2000-02-16 2009-06-24 パナソニック株式会社 Induction heating cooker

Also Published As

Publication number Publication date
JP2002367764A (en) 2002-12-20

Similar Documents

Publication Publication Date Title
JP2007329057A (en) Cooking device
JP4852797B2 (en) Cooker
JP2003319875A (en) Electromagnetic induction heating cooker and control method for cooking rice using it
JP4792663B2 (en) Cooker
JP3758483B2 (en) Induction heating cooker
JP4972611B2 (en) Induction heating cooker
JP2009043587A (en) Induction heating cooker
JP4102258B2 (en) Induction heating cooker
JP3997845B2 (en) Cooker
JP3777509B2 (en) Induction heating cooker
JP3719082B2 (en) Cooker
JP6830078B2 (en) Induction heating cooker
JP3978650B2 (en) Induction heating cooker
JP3834753B2 (en) Induction heating cooker
JP5285891B2 (en) Induction heating cooker
JP2006286499A (en) Induction heating device
JP5979990B2 (en) Induction heating cooker
JP3055224B2 (en) Rice cooker control circuit
JP3671812B2 (en) Induction heating cooker
JP4241298B2 (en) Induction heating cooker
JP3706000B2 (en) Cooker
JP2004146275A (en) Electromagnetic cooking device
JP2011003389A (en) Induction heating cooker
JP2006019149A (en) Induction heating cooking device
JP5633243B2 (en) Induction heating cooker

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080604

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080714

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111010

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4852797

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees