JP4792663B2 - Cooker - Google Patents

Cooker Download PDF

Info

Publication number
JP4792663B2
JP4792663B2 JP2001169229A JP2001169229A JP4792663B2 JP 4792663 B2 JP4792663 B2 JP 4792663B2 JP 2001169229 A JP2001169229 A JP 2001169229A JP 2001169229 A JP2001169229 A JP 2001169229A JP 4792663 B2 JP4792663 B2 JP 4792663B2
Authority
JP
Japan
Prior art keywords
temperature
control
pan
target
heating means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001169229A
Other languages
Japanese (ja)
Other versions
JP2002367765A (en
Inventor
佳洋 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001169229A priority Critical patent/JP4792663B2/en
Publication of JP2002367765A publication Critical patent/JP2002367765A/en
Application granted granted Critical
Publication of JP4792663B2 publication Critical patent/JP4792663B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Induction Heating Cooking Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、一般家庭において使用される加熱調理器に関するものである。
【0002】
【従来の技術】
以下に従来構成の加熱調理器について図7を用いて説明する。図7は従来構成の加熱調理器のブロック図である。図7において、1は商用電源、2は鍋、3は加熱手段で、整流器31、加熱コイル32、スイッチング素子33、インバータ回路34で構成させる。4は温度センサ、5は報知手段で、発光ダイオード(LED)や液晶表示素子(LCD)で構成され視覚的に報知する表示手段51と、ブザーなどで構成され聴覚的に報知する音響手段52で構成されている。6は入力手段、7は通電制御手段で、スイッチング素子33を数十kHzでオンオフさせて加熱コイル32に高周波電流を印加し加熱コイル32と磁気結合する鍋2を誘導加熱する。なお、通電制御手段7は、スイッチング素子33のオン時間を制御して加熱手段3の出力を制御する。
【0003】
また、通電制御手段7は、140℃〜200℃で10℃刻みで7段階の設定温度を備えて入力手段6より入力する信号に基づき前記7段階の設定温度の中から任意のものを選択する。そして、通電制御手段7は、選択された設定温度に対応する制御温度を目標温度θcとし、温度センサ4で検知する温度θと目標温度θcとの関係に基づき加熱手段3を通電制御して、鍋2内の油の温度が前記選択された設定温度で安定するように制御する。
【0004】
なお、各設定温度での制御温度を(表1)に示す。
【0005】
【表1】
【0006】
【発明が解決しようとする課題】
しかしながら、前記従来の構成では、例えば、鍋2内の油の温度が室温に馴染んだ状態で200℃設定にて鍋2内の油を予熱開始する、あるいは140℃設定にて予熱完了した後に設定温度を200℃設定まで大幅に上昇させるような場合、通電制御手段7は、温度センサ4で検知する温度<<185℃(=200℃設定での制御温度)となるので、加熱手段3を高出力で通電制御する。この場合、鍋底の反った鍋2を使用したり、鍋2内の油量が少ない状態では、鍋2内の油の温度上昇に対して温度センサ4で検知する温度θの上昇が時間的に遅れてしまい、温度センサ4で検知する温度θと鍋2内の油の温度との差が大きくなって、温度センサ4で検知する温度θが185℃(=200℃設定での制御温度)に到達し予熱完了する頃には鍋2内の油の温度が過度に高くなってしまうという課題があった。
【0007】
本発明は、上記従来の課題を解決するもので、温度センサで検知する温度が制御温度に到達するまでは温度センサで検知する温度と鍋内の油の温度との差を抑制するように加熱手段を通電制御して鍋内の油の温度が過度に上昇するのを防ぎ、温度センサで検知する温度が制御温度に到達後は鍋内の油の温度が所定温度を維持するように加熱手段を通電制御して鍋内の油の温度変動を抑制しかつ調理性能を確保することを目的とする。
【0008】
【課題を解決するための手段】
前記従来の課題を解決するために、本発明の加熱調理器は、鍋を加熱する加熱手段と、前記鍋の温度を検知する温度センサと、設定温度を選択する入力手段と、目標温度と前記温度センサの検知温度を比較して加熱手段の出力通電制御する通電制御手段とを備え、前記通電制御手段は、前記加熱手段に通電開始すると、前記設定温度に関連付けた制御温度を設定し、記検知温度が前記制御温度に到達するまでは、前記制御温度よりも低い過渡的な前記目標温度を設定し、シフト時間が経過する度に前記目標温度をシフト温度だけ高くし、前記目標温度が前記制御温度に近くなるほど前記シフト温度が小さく、かつ前記シフト時間が長くなるようにしながら記検知温度と前記目標温度との関係に基づき前記検知温度を前記目標温度に近づけるべく前記加熱手段の出力通電御する過渡温調動作を行い、前記検知温度が前記制御温度に到達した後は、前記目標温度を前記制御温度とする安定温調動作を行い、前記安定温調動作中に前記入力手段より入力する信号に基づき前記設定温度を高く変更すると、変更後の制御温度が所定温度未満のときは前記安定温調動作のままで前記加熱手段の出力を通電制御し、前記変更後の制御温度が前記所定温度以上のときは記検知温度が、前記変更後の制御温度に到達するまでは前記過渡温調動作を再度行い、前記検知温度が前記変更後の制御温度に到達後は前記安定温調動作に移行するようにしたものである。
【0009】
これにより、通電制御手段は、加熱手段に通電開始してから温度センサで検知する温度が制御温度に到達するまでは過渡温調動作を行って温度センサで検知する温度と鍋内の液体の温度との差を抑制するように加熱手段を通電制御し、前記制御温度に到達後は安定温調動作を行って鍋内の液体の温度が所定温度を維持するように加熱手段を通電制御し、前記制御温度に到達した後に安定温調動作中に制御温度を上昇すると、変更後の制御温度が所定温度未満のときは安定温調動作のままで加熱手段を通電制御し、前記変更後の制御温度が前記所定温度以上のときは前記温度センサで検知する温度が前記変更後の制御温度に到達するまでは過渡温調動作を再度行い、前記温度センサで検知する温度が前記変更後の制御温度に到達した後は前記安定温調動作に移行するようにして、変更後の制御温度が比較的低いときは安定温調動作のまま加熱手段を通電制御するので、加熱手段を比較的高出力にて通電制御し鍋内の液体を迅速に加熱できるとともに、変更後の制御温度が比較的高いときは過渡温調動作にて加熱手段を通電制御するので、温度センサで検知する温度と鍋内の液体温度の差を抑たまま鍋内の液体を加熱し、制御温度に到達したときに鍋内の液体の温度が過度に高くなるのを防ぐことができる。
【0010】
【発明の実施の形態】
請求項1に記載の発明は、鍋を加熱する加熱手段と、前記鍋の温度を検知する温度センサと、設定温度を選択する入力手段と、目標温度と前記温度センサの検知温度を比較して前記加熱手段の出力通電制御する通電制御手段とを備え、前記通電制御手段は、前記加熱手段に通電開始すると、前記設定温度に関連付けた制御温度を設定し、前記温度センサで検知する温度が前記制御温度に到達するまでは、前記制御温度よりも低い過渡的な前記目標温度を設定し、シフト時間が経過する度に前記目標温度をシフト温度だけ高くし、前記目標温度が前記制御温度に近くなるほど前記シフト温度が小さく、かつ前記シフト時間が長くなるようにしながら記検知温度と前記目標温度との関係に基づき前記検知温度を前記目標温度に近づけるべく前記加熱手段の出力通電制御する過渡温調動作を行い、前記検知温度が前記制御温度に到達した後は、前記目標温度を前記制御温度とする安定温調動作を行い、前記安定温調動作中に前記入力手段より入力する信号に基づき前記設定温度を高く変更すると、変更後の制御温度が所定温度未満のときは前記安定温調動作のままで前記加熱手段の出力を通電制御し、前記変更後の制御温度が前記所定温度以上のときは記検知温度が、前記変更後の制御温度に到達するまでは前記過渡温調動作を再度行い、前記検知温度が前記変更後の制御温度に到達後は前記安定温調動作に移行することにより、室温に馴染んだ鍋および鍋内の液体を機器に設置して加熱手段に通電開始すると、通電制御手段は、温度センサで検知する温度が制御温度に到達するまでは、過渡温調動作にて目標温度と温度センサで検知する温度との関係に基づき加熱手段の出力を抑制しながら通電制御するので、鍋底が反った鍋を使用したり鍋内の液体量が少ない場合でも、温度センサで検知する温度と鍋内の液体の温度との差を小さくしかつ時間的なずれを防止して、制御温度に到達したときの鍋内の液体の温度を低く抑えることができる。
【0011】
また、温度センサで検知する温度が制御温度に到達した後は、通電制御手段は安定温調動作にて制御温度と温度センサで検知する温度との関係に基づき加熱手段を通電制御するので、制御温度に到達した後そのまま放置する間は、通電制御手段は温度センサで検知する温度≒制御温度より加熱手段の出力を抑制して、鍋内の液体の温度変動を抑制し一定温度を維持するとともに、鍋内の液体に調理物を投入し温度センサで検知する温度が低下すると、通電制御手段は温度センサで検知する温度が制御温度より非常に低くなるので、加熱手段の出力を大きくして、高火力にて調理を行うことができる。
【0012】
さらに、温度センサで検知する温度が制御温度に到達した後に安定温調動作中に制御温度を上昇すると、変更後の制御温度が所定温度未満のときは安定温調動作のままで加熱手段を通電制御し、前記変更後の制御温度が前記所定温度以上のときは前記温度センサで検知する温度が前記変更後の制御温度に到達するまでは過渡温調動作を再度行い、前記温度センサで検知する温度が前記変更後の制御温度に到達した後は前記安定温調動作に移行するようにして、変更後の制御温度が比較的低いときは安定温調動作のまま加熱手段を通電制御するので、加熱手段を比較的高出力にて通電制御し鍋内の液体を迅速に加熱できるとともに、変更後の制御温度が比較的高いときは過渡温調動作にて加熱手段を通電制御するので、温度センサで検知する温度と鍋内の液体温度の差を抑たまま鍋内の液体を加熱し、制御温度に到達したときに鍋内の液体の温度が過度に高くなるのを防ぐことができる。
【0013】
請求項2に記載の発明は、特に、請求項1に記載の通電制御手段は、目標温度が制御温度に近くなるほど前記加熱手段の出力が小さくなるように通電制御する過渡温調動作を行うようにして、変更後の制御温度が比較的低いときは安定温調動作のまま加熱手段を通電制御するので、加熱手段を比較的高出力にて通電制御し鍋内の液体を迅速に加熱できるとともに、変更後の制御温度が比較的高いときは過渡温調動作にて加熱手段を通電制御するので、温度センサで検知する温度と鍋内の液体温度の差を抑たまま鍋内の液体を加熱し、制御温度に到達したときに鍋内の液体の温度が過度に高くなるのを防ぐことができる。
【0014】
請求項に記載の発明は、鍋を加熱する加熱手段と、前記鍋の温度を検知する温度センサと、設定温度を選択する入力手段と、前記加熱手段に通電開始した直後に鍋底の反り量を検知する鍋反り量検知手段と、目標度と前記温度センサの検知温度を比較して前記加熱手段の出力を通電制御する通電制御手段とを備え、前記通電制御手段前記加熱手段に通電開始すると、前記設定温度に関連付けた制御温度を設定し、前記検知温度が前記制御温度に到達するまでは、前記制御温度よりも低い過渡的な前記目標温度を設定し、シフト時間が経過する度に前記目標温度をシフト温度だけ高くし、前記目標温度が前記制御温度に近くなるほど前記シフト温度が小さく、かつ前記シフト時間が長くなるようにしながら前記検知温度と前記目標温度との関係に基づき前記検知温度を前記目標温度に近づけるべく前記加熱手段の出力を通電制御する過渡温調動作を行い、前記温度センサで検知する温度が前記制御温度に到達した後は、前記目標温度を前記制御温度とする安定温調動作を行い、前記安定温調動作中に前記入力手段より入力する信号に基づき前記設定温度を高く変更すると前記鍋底の反り量に基づき鍋底が平坦な鍋と検知すると前記安定温調動作のままで前記加熱手段の出力を通電制御し、前記鍋底の反り量に基づき鍋底が反った鍋と検知すると前記検知温度が前記変更後の制御温度に到達するまでは前記過渡温調動作を再度行い、前記検知温度が前記変更後の制御温度に到達した後は前記安定温調動作に移行するようにして、温度センサで検知する温度が制御温度に到達した後に制御温度を上昇した場合に、鍋底の平坦な鍋を使用するときは安定温調動作のまま加熱手段を通電制御するので、加熱手段を比較的高出力にて通電制御し鍋内の液体を迅速に加熱できるとともに、鍋底の反った鍋を使用するときは過渡温調動作にて加熱手段を通電制御するので、温度センサで検知する温度と鍋内の液体温度の差を抑たまま鍋内の液体を加熱し、制御温度に到達したときに鍋内の液体の温度が過度に高くなるのを防ぐことができる。
【0015】
請求項に記載の発明は、鍋を加熱する加熱手段と、前記鍋の温度を検知する温度センサと、設定温度を選択する入力手段と、前記加熱手段に通電開始して所定温度に到達するまでに鍋内の液体量を検知する液体量検知手段と、目標度と前記温度センサの検知温度を比較して前記加熱手段の出力を通電制御する通電制御手段とを備え、前記通電制御手段前記加熱手段に通電開始すると、前記設定温度に関連付けた制御温度を設定し、前記温度センサで検知する温度が前記制御温度に到達するまでは、前記制御温度よりも低い過渡的な前記目標温度を設定し、シフト時間が経過する度に前記目標温度をシフト温度だけ高くし、前記目標温度が前記制御温度に近くなるほど前記シフト温度が小さく、かつ前記シフト時間が長くなるようにしながら前記検知温度と前記目標温度との関係に基づき前記検知温度を前記目標温度に近づけるべく前記加熱手段の出力を通電制御する過渡温調動作を行い、前記検知温度が前記制御温度に到達した後は、前記目標温度を前記制御温度とする安定温調動作を行い、前記安定温調動作中に前記入力手段より入力する信号に基づき前記設定温度を高く変更すると、前記鍋内の液体量に基づき鍋内の液体量が多いと検知すると前記安定温調動作のままで加熱手段を通電制御し、前記鍋内の液体量に基づき鍋内の液体が少ないと検知すると前記検知温度が前記変更後の制御温度に到達するまでは前記過渡温調動作を再度行い、前記検知温度が前記変更後の制御温度に到達した後は前記安定温調動作に移行するようにして、温度センサで検知する温度が制御温度に到達した後に制御温度を上昇した場合に、鍋内の液体量が多いときは安定温調動作のまま加熱手段を通電制御するので、加熱手段を比較的高出力にて通電制御し鍋内の液体を迅速に加熱できるとともに、鍋内の液体量が少ないときは過渡温調動作にて加熱手段を通電制御するので、温度センサで検知する温度と鍋内の液体温度の差を抑たまま鍋内の液体を加熱し、制御温度に到達したときに鍋内の液体の温度が過度に高くなるのを防ぐことができる。
【0016】
【実施例】
以下、本発明の実施例について、図面を参照しながら説明する。
【0017】
参考例1)
図1は本発明の参考例1における加熱調理器の通電制御手段17のブロック図を示したものであり、通電制御手段17以外は、図7に示す構成と同様であるので、同様の部分は説明を省略する。図7の従来例と同一の機能を有するものには同一の符号を付与している。図1に示す構成で図7の構成と異なる点は、通電制御手段17が、目標温度設定手段17bを有しており、目標温度設定手段17bは入力手段6からの信号および比較手段17aからの信号に基づき目標温度を設定して比較手段17aに信号を出力するという点にある。
【0018】
以下図1および図7を参照して説明する。通電制御手段17は、動作モードとして、加熱手段3を通電オフする初期モードと、140℃〜200℃にて10℃刻みで7通りの設定温度を備えて入力手段6より入力する信号に基づき前記7通りの設定温度の中から任意のものを選択し、温度センサ4で検知する温度θと選択された設定温度に関連づけた目標温度θcとの関係に基づき加熱手段3を通電制御する揚げ物モードの2種類を備えて、入力手段6より入力する信号に基づき前記2種類のモードを切り替える。そして、通電制御手段17は、動作モード=揚げ物モードのときに加熱手段3を通電制御する制御方法として、目標温度設定手段17bにて過渡的な目標温度θkを設けてこれを目標温度θcとして比較手段17aに出力し、かつ過渡的な目標温度θkを選択された設定温度に対応する制御温度に向けて段階的に上昇させる過渡温調動作と、目標温度設定手段17bにて設定温度に対応する制御温度を目標温度θcとして比較手段17aに出力する安定温調動作の2通りを備える。
【0019】
そして、通電制御手段17は、入力手段6より入力する信号に基づき動作モードを初期モードから揚げ物モードに変更してから、比較手段17aにて温度センサ4で検知する温度θが選択された設定温度に対応する制御温度に到達するのを検知し鍋2内の油の温度が選択された設定温度に到達するまでの予熱期間中は、目標温度設定手段17bから前記過渡温調動作で設定された目標温度を入力して比較手段17aにて加熱手段3を通電制御し、比較手段17aにて前記予熱の完了を検知した後は、目標温度設定手段17bから前記安定温調動作で設定された目標温度を入力して比較手段17aにて加熱手段3を通電制御し、前記予熱の完了を検知した後に入力手段6より入力する信号に基づき設定温度を上昇すると、比較手段17aにて温度センサ4で検知する温度θが変更後の設定温度に対応する制御温度に到達するのを検知するまでは、目標温度設定手段17bから前記過渡温調動作で設定された目標温度を入力して比較手段17aにて加熱手段3を通電制御し、比較手段17aにて温度センサ4で検知する温度θが変更後の設定温度での制御温度に到達するのを検知すると、目標温度設定手段17bにて前記安定温調動作に移行するようにしたことである。
【0020】
以上のように構成された加熱調理器について、図2〜3を用いてその動作を説明する。図2は鍋底の反った鍋2にて180℃設定で予熱したときの動作を示す図、図3は鍋底の反った鍋2にて予熱完了後に設定温度を上昇したときの動作を示す図である。
【0021】
まず、機器、鍋2、および鍋2内の油が室温に馴染んだ状態での予熱動作について説明する。
【0022】
機器に商用電源1を印加すると、通電制御手段17は動作モード=初期モードとして加熱手段3を通電オフする。そして、入力手段6より入力する信号に基づき、通電制御手段17が動作モードを初期モードから揚げ物モードの180℃設定に変更すると、温度センサ4で検知する温度θ≧167℃(=180℃設定での制御温度)になるまで過渡温調動作にて加熱手段3を通電制御し、鍋2内の油を予熱する。
【0023】
ここで、過渡温調動作について、図2を参照してさらに詳しく説明する。通電制御手段17は、過渡温調動作を開始すると、まず、目標温度設定手段17bにて目標温度θc=過渡的な目標温度θk=140℃とし、比較手段17aにて温度センサ4で検知する温度θと目標温度θcとの関係に基づき、温度センサ4で検知する温度θが140℃近くになるまでは、ほぼ最大出力にて加熱手段3を通電制御する(図2の(a))。
【0024】
そして、通電制御手段17は、比較手段17aにて温度センサ4で検知する温度θ≧140℃を検知(図2のA点)すると、目標温度設定手段17bにて過渡的な目標温度θk=過渡的な目標温度θk+シフト温度とした後に目標温度θc=過渡的な目標温度θkを行って目標温度θcをシフト温度だけ高く設定し、目標温度θcが選択された設定温度に対応する制御温度に到達するまで、シフト時間だけ時間経過する毎にこの動作を繰り返し行う(図2の(b))。
【0025】
以上の構成により、温度センサ4で検知する温度θが所定温度以上では比較的時間をかけて段階的にゆっくり温度上昇させるので、鍋底の反った鍋2を使用したり鍋2内の油が少ない状態でも、温度センサ4で検知する温度θと鍋2内の油温との差を小さく抑えかつ時間的なずれを防止して鍋2内の油温が過度に上昇するのを防ぐことができる。
【0026】
なお、シフト温度およびシフト時間は、過渡的な目標温度θkが167℃(=180℃設定での制御温度)に近くなるほどに、シフト温度が小さく、かつシフト時間が長くなるようにして、温度センサ4で検知する温度θが選択された設定温度に対応する制御温度に到達した直後に鍋2内の油温がオーバーシュートするのを抑制している。
【0027】
そして、通電制御手段17は、比較手段17aにて温度センサ4で検知する温度θ≧167℃(=180℃設定での制御温度)を検知(図2のB点)すると、報知手段5である表示手段51および音響手段52を駆動して機器を使用する者に鍋2内の油が設定温度に到達した旨の予熱完了報知を行うとともに、目標温度設定手段17bにて安定温調動作に移行して目標温度θc=167℃とし、比較手段17aにて温度センサ4で検知する温度θ≒167℃を検知して比較的小さな出力にて加熱手段3を通電制御し、鍋2内の油を設定温度近傍に維持する(図2の(c))。
【0028】
また、鍋2内へ調理物を投入すると、鍋2内の油の温度が低下し、温度センサ4で検知する温度θも低下するので、通電制御手段17は、比較手段17aにて温度センサ4で検知する温度θ<<167℃を検知して、比較的大きな出力にて加熱手段3を通電制御する。
【0029】
以上の構成により、予熱完了報知後は鍋2内の油の温度を設定温度近傍にて安定させるとともに、鍋2内へ調理物を投入すると、高火力で調理を行うことができる。
【0030】
次に、予熱完了後に設定温度を上昇したときの動作の一例として、140℃設定で一旦予熱を完了した後に設定温度を180℃まで上昇する場合について、図3を参照して説明する。
【0031】
従来構成では、設定温度を上昇しても安定温調動作のままなので、目標温度θcを130℃(=140℃設定での制御温度)から167℃(=180℃設定での制御温度)にすぐ切り替え(図3のA点)、温度センサ4で検知する温度θ<<167℃(=目標温度θc)より比較的大きな出力にて加熱手段3を通電制御してしまい、鍋底の反った鍋2を使用したり鍋2内の油量が少ない状態では、温度センサ4で検知する温度θが167℃に到達(図3のB点)する頃には鍋2内の油温が過度に上昇してしまう(図3の(1))。
【0032】
参考例では、予熱完了後に設定温度を上昇すると、目標温度設定手段17bにて目標温度θc=過渡的な目標温度θk=温度センサ4で検知する温度θ+10Kに設定し再度過渡温調動作に戻す(図3のA点)。
【0033】
そして、通電制御手段17は、比較手段17aにて温度センサ4で検知する温度θ≧167℃を検知(図3のC点)すると、報知手段5である表示手段51を駆動して機器を使用する者に鍋2内の油が設定温度に到達した旨の予熱完了報知を行うとともに、目標温度設定手段17bにて安定温調動作に移行する(図3の(2))。
【0034】
以上の構成により、予熱完了後に設定温度を上昇しても、前記で示した室温状態からの予熱のときと同様に、鍋底の反った鍋2を使用したり鍋2内の油量が少ない状態でも、温度センサ4で検知する温度θと鍋2内の油温との差を小さく抑えかつ時間的なずれを防止して鍋2内の油温が過度に上昇するのを防ぎ、変更後の設定温度に到達した後は鍋2内の油の温度を変更後の設定温度近傍にて安定させるとともに、鍋2内へ調理物を投入した場合は高火力で調理を行うことができる。
【0035】
なお、再度過渡温調動作に戻すときに、過渡的な目標温度θk=温度センサ4で検知する温度θ+10Kと10Kだけ高めに補正し初期設定しているのは、設定温度を変更した直後では加熱手段3の出力を比較的大きくして温度センサ4で検知する温度θが上昇基調になるようにし、スムーズに過渡温調動作が行えるようにするためであるが、前記補正値を小さくする、あるいは0Kとしても同様の効果を得ることができる。
【0036】
なお、鍋の温度は、直接測定してもよいし、セラミックプレートなどの上に鍋を載置して加熱する場合にはセラミックプレートの裏面を測定する等間接的に測定してもよい。セラミックプレートの裏面を測定して鍋の温度を測定する場合には、本実施例の効果がより大きくなる。
【0037】
(実施例
図1は本発明の実施例における加熱調理器のブロック図を示したものであり、参考例1と同一の構成要素である。
【0038】
本実施例の参考例1と異なる点は、通電制御手段17が、温度センサ4で検知する温度θが設定温度に対応する制御温度に到達した後に入力手段6より入力する信号に基づき設定温度を上昇した場合に、変更後の設定温度が140℃〜170℃のときは目標温度設定手段17bは安定温調動作のままで比較手段17aにて加熱手段3を通電制御し、変更後の設定温度が180℃〜200℃のときは、比較手段17aにて温度センサ4で検知する温度θが変更後の設定温度に対応する制御温度に到達するのを検知するまでは目標温度設定手段17bは過渡温調動作を再度行い、比較手段17aにて温度センサ4で検知する温度θが変更後の設定温度に対応する制御温度に到達するのを検知した後は目標温度設定手段17bは安定温調動作に移行するようにしたことである。
【0039】
以上のように構成された加熱調理器について、図3を用いてその動作を説明する。
【0040】
例えば、140℃設定で一旦予熱を完了した後に設定温度を160℃まで上昇する場合では、温度センサ4で検知する温度θが変更後の設定温度である160℃に対応する制御温度の149℃に到達するときの鍋2内の油の温度は過度に高くならないので、通電制御手段17は、図3の(1)で示した動作と同様に、目標温度設定手段17bにて安定温調動作のままで目標温度θcを130℃(=140℃設定での制御温度)から149℃(=160℃設定での制御温度)にすぐ切り替え、比較手段17aにて温度センサ4で検知する温度θ≧149℃を検知すると、報知手段5である表示手段51を駆動して機器を使用する者に鍋2内の油が設定温度に到達した旨の予熱完了報知を行う。
【0041】
また、例えば、140℃設定で一旦予熱を完了した後に設定温度を200℃まで上昇する場合では、通電制御手段17は、図3の(2)で示した動作と同様に、目標温度設定手段17bにて目標温度θc=過渡的な目標温度θk=温度センサ4で検知する温度θ+10Kとして再度過渡温調動作に戻し、比較手段17aにて温度センサ4で検知する温度θ≧185℃(=200℃設定での制御温度)を検知すると、報知手段5である表示手段51を駆動して機器を使用する者に鍋2内の油が設定温度に到達した旨の予熱完了報知を行うとともに、安定温調動作に移行する。
【0042】
以上の構成により、予熱完了後に設定温度を上昇したときに、変更後の設定温度が比較的低いときは、安定温調動作のままで加熱手段3を通電制御するので、鍋2内の油温が過度に高くならない状態を実現しつつ、設定温度を上昇してから温度センサ4で検知する温度θが変更後の設定温度に対応する制御温度に到達するまでの時間を短くできる。
【0043】
また、変更後の設定温度が比較的高いときは、再度過渡温調動作に戻して加熱手段3を通電制御し、温度センサ4で検知する温度θが変更後の設定温度に対応する制御温度に到達すると安定温調動作に移行するので、参考例1と同様に、温度センサ4で検知する温度θが設定温度に対応する制御温度に到達したときの鍋2内の油温が過度に上昇するのを防ぐことができる。
【0044】
なお、本実施例では、予熱完了後に設定温度を上昇したときの動作において、安定温調動作/過渡温調動作に切り替える温度を170℃/180℃としている。これは、鍋底の反った鍋2を使用したり鍋2内の油量が少ない状態において、140℃設定から設定温度を上昇し安定温調動作にて加熱手段3を通電制御して、温度センサ4で検知する温度θが設定温度に対応する制御温度に到達した後の鍋2内の油のピーク温度が、140℃設定から200設定に設定温度を上昇し過渡温調動作にて加熱手段3を通電制御して、温度センサ4で検知する温度θが200℃設定に対応する制御温度に到達したときの鍋2内の油の温度を越えないよう決定している。
【0045】
参考
図1は本発明の参考における加熱調理器のブロック図を示したものであり、参考例1と同一の構成要素である。
【0046】
参考例の参考例1と異なる点は、通電制御手段17が、温度センサ4で検知する温度θが設定温度に対応する制御温度に到達した後に入力手段6より入力する信号に基づき設定温度を上昇した場合に、設定温度を1段階だけ上昇したときは目標温度設定手段17bは安定温調動作のままで比較手段17aにて加熱手段3を通電制御し、設定温度を2段階以上上昇したときは、比較手段17aにて温度センサ4で検知する温度θが変更後の設定温度に対応する制御温度に到達するのを検知するまでは目標温度設定手段17bは過渡温調動作を再度行い、比較手段17aにて温度センサ4で検知する温度θが変更後の設定温度に対応する制御温度に到達するのを検知した後は目標温度設定手段17bは安定温調動作に移行するようにしたことである。
【0047】
以上のように構成された加熱調理器について、図3を用いてその動作を説明する。
【0048】
例えば、190℃設定で一旦予熱を完了した後に設定温度を200℃まで上昇する場合では、温度センサ4で検知する温度θが変更後の設定温度である200℃に対応する制御温度の185℃に到達したときの温度センサ4で検知する温度θと鍋2内の油温との差は比較的小さく、油温のピークは過度に高くならないので、通電制御手段17は、図3の(1)で示した動作と同様に、目標温度設定手段17bにて安定温調動作のままで目標温度θcを176℃(=190℃設定での制御温度)から185℃(=200℃設定での制御温度)にすぐ切り替え、比較手段17aにて温度センサ4で検知する温度θ≧185℃を検知すると、報知手段5である表示手段51を駆動して機器を使用する者に鍋2内の油が設定温度に到達した旨の予熱完了報知を行う。
【0049】
また、例えば、140℃設定で一旦予熱を完了した後に設定温度を200℃まで上昇する場合では、通電制御手段17は、図3の(2)で示した動作と同様に、目標温度設定手段17bにて目標温度θc=過渡的な目標温度θk=温度センサ4で検知する温度θ+10Kとして再度過渡温調動作に戻し、比較手段17aにて温度センサ4で検知する温度θ≧185℃(=200℃設定での制御温度)を検知すると、報知手段5である表示手段51を駆動して機器を使用する者に鍋2内の油が設定温度に到達した旨の予熱完了報知を行うとともに、安定温調動作に移行する。
【0050】
以上の構成により、予熱完了後に設定温度を上昇したときに、設定温度の上昇幅が比較的小さいときは、安定温調動作のままで加熱手段3を通電制御するので、鍋2内の油温が過度に高くならない状態を実現しつつ、設定温度を上昇してから温度センサ4で検知する温度θが変更後の設定温度に対応する制御温度に到達するまでの時間を短くできる。
【0051】
また、設定温度の上昇幅が比較的大きいときは、再度過渡温調動作に戻して加熱手段3を通電制御し、温度センサ4で検知する温度θが変更後の設定温度に対応する制御温度に到達すると安定温調動作に移行するので、実施例1と同様に、温度センサ4で検知する温度θが設定温度に対応する制御温度に到達したときの鍋2内の油温が過度に上昇するのを防ぐことができる。
【0052】
(実施例
図4は本発明の実施例における加熱調理器のブロック図を示したものである。
【0053】
本実施例の参考例1と異なる点は、まず、通電制御手段27が動作モードを初期モードから揚げ物モードに変更し加熱手段3を通電開始した直後に、温度センサ4で検知する温度θの上昇勾配に基づき鍋2の鍋底の反り量(sori)を1〜3の3段階にて検知する鍋反り量検知手段8と、鍋反り量検知手段8にて反り量(sori)を検知後に、鍋反り量検知手段8より入力する反り量(sori)と、温度センサ4で検知する温度θの上昇勾配に基づき鍋2内の油量(oil)を1〜3の3段階にて検知する液体量検知手段9を新たに備える。
【0054】
そして、通電制御手段27が、鍋反り量検知手段8より入力する反り量(sori)と液体量検知手段9より入力する油量(oil)に基づき、揚げ物モードにおける7段階の設定温度に対応する制御温度を変更する。
【0055】
また、通電制御手段27は、温度センサ4で検知する温度θ≧予熱完了温度θyにて過渡温調動作から安定温調動作に移行する。
【0056】
また、一旦予熱完了報知を行った後に設定温度を上昇すると、通電制御手段27は、sori=1かつoil=2、3のときは安定温調動作のままとし、その他すなわちsori=2、3またはoil=1のときは再度過渡温調動作に戻すよにしたことである。
【0057】
さて、鍋底の反り量および鍋2内の油量と鍋2内の油の温度との関係について説明する。鍋底の反り量が大きいほど、鍋2自身の温度に対する温度センサ4で検知する温度θの感度および追随性が悪くなって、温度センサ4で検知する温度θと鍋2内の油温との差が大きくなる傾向にある。また、鍋2内の油量が少ないほど、鍋2内の油の対流により短時間で鍋2自身の熱量が鍋2内の油に伝達されて鍋2内の油温は上昇し、結果として温度センサ4で検知する温度θと鍋2内の油温との差が大きくなる傾向にある。
【0058】
したがって、鍋底の反り量が大きく、鍋2内の油量が少ないほど、制御温度を低く設定して、鍋底の反り量や鍋2内の油量に依らず鍋2内の油の温度が設定温度近傍になるようにする。
【0059】
また、鍋底の平坦な鍋2内に多量の油を入れて使用した場合、室温に馴染んだ状態から180℃前後といった高温まで予熱すると、油は低温では粘性があるので、鍋2自身の温度上昇に対して油の温度上昇が遅れてしまい、また、温度センサ4で検知する温度θは鍋2自身の温度を感度良く検知するので、温度センサ4で検知する温度θと鍋2内の油の温度との差は、安定動作のときに比べて相対的に小さくなってしまう。
【0060】
したがって、加熱手段3を通電開始し初めて予熱完了するまでは、予熱完了温度θyを選択された設定温度に対応する制御温度よりも初期補正温度だけ幾分高めに設定して、予熱完了する時には鍋2内の油温が設定温度に到達させる。
【0061】
以上のように構成された加熱調理器について、図5〜6を参照してその動作を説明する。図5は鍋底の平坦な鍋2にて180℃設定で予熱したときの動作を示す図、図6は鍋底の平坦な鍋2にて予熱完了後に設定温度を上昇したときの動作を示す図である。
【0062】
機器に商用電源1を印加すると、通電制御手段27は、動作モード=初期モードとして動作を開始する。そして、入力手段6より加熱開始を示す信号を入力すると、通電制御手段27は、動作モードを揚げ物モードの180℃設定に変更し、以下の動作を行う。
【0063】
まず、通電制御手段27は、加熱手段3の目標出力Pc=1000Wとして加熱手段3を通電制御する(図5の(a))。そして、鍋反り量検知手段8は、通電制御手段27より入力する信号に基づき、動作モードが初期モードから揚げ物モードに変更されて加熱手段3の通電を開始したことを検知すると、加熱手段3の通電開始から10秒毎の温度センサ4で検知する温度θをそれぞれθ0、θ1、θ2、θ3、θ4にて測定し、dθ2=(θ4−θ3)−(θ1−θ0)を算出して、dθ2に基づき鍋2の鍋底の反り量であるsoriを、sori=1〜3の3段階にて検知し、通電制御手段27および液体量検知手段9に出力する。なお、鍋底の反り量が大きいほどdθ2は小さな値となる。また、鍋底の反り量とsoriの値との関係を(表2)に示す。
【0064】
【表2】
【0065】
そして、加熱手段3の目標出力Pc=1000Wにて通電開始し40秒経過すると、通電制御手段27は、鍋反り量検知手段8よりsoriの値を入力して鍋反り量検知が終了したことを検知し、加熱手段3の目標出力Pc=1200Wに変更して通電制御を行う(図5の(b))とともに、液体量検知手段9は、鍋反り量検知手段8より入力するsoriの値と、温度センサ4で検知する温度θの上昇勾配に基づき鍋2内の油量であるoilを、oil=1〜3の3段階にて検知し、通電制御手段27に出力する。なお、鍋2内の油量とoilの値との関係を(表3)に示す。
【0066】
【表3】
【0067】
そして、通電制御手段27は、液体量検知手段9よりoilの値を入力して鍋2内の油量検知が終了したことを検知(図5のA点)すると、選択された設定温度である180℃設定での、soriおよびoilに基づく制御温度および初期補正温度を求めて予熱完了温度θy=制御温度+初期補正温度とし、目標温度θc=過渡的な目標温度θk=温度センサ4で検知する温度θ+シフト温度に設定して過渡温調動作を開始する(図5の(c))。
【0068】
つまり、通電制御手段27は、soriの値が大きく、oilの値が小さいほど、制御温度が小さくなるように設定する。なお、各設定温度でのsoriおよびoilに基づく具体的な制御温度を(表4)に示す。
【0069】
【表4】
【0070】
また、soriおよびoilに基づく初期補正温度については、sori=1かつoil=3のときは初期補正温度=10K、sori=1かつoil=2のときは初期補正温度=5K、その他すなわちsori=2、3またはoil=1のときは初期補正温度=0Kとする。
【0071】
そして、通電制御手段27は、温度センサ4で検知する温度θ≧予熱完了温度θyを検知(図5のB点)すると、報知手段5である表示手段51および音響手段52を駆動して機器を使用する者に鍋2内の油が設定温度に到達した旨の予熱完了報知を行うとともに、目標温度θc=制御温度として安定温調動作に移行し、温度センサ4で検知する温度θと目標温度θcとの関係に基づき加熱手段3を通電制御する(図5の(d))。
【0072】
具体的に説明すると、例えば、鍋底が1.0mmだけ反った鍋2に油量500gを入れて180℃設定にて予熱を開始した場合は、鍋反り量検知手段8にてsori=2、液体量検知手段9にてoil=2と検知し、通電制御手段27は、(表4)に示す180℃設定、sori=2、oil=2での制御温度(135℃)と、初期補正温度(0K)より、予熱完了温度θy=制御温度+初期補正温度=135℃+0K=135℃と設定し、目標温度θc=過渡的な目標温度θk=温度センサ4で検知する温度θ+シフト温度に設定し過渡温調動作を行う。
【0073】
そして、通電制御手段27は、温度センサ4で検知する温度θ≧135℃(=θy)を検知すると、報知手段5である表示手段51および音響手段52を駆動して機器を使用する者に鍋2内の油が設定温度に到達した旨の予熱完了報知を行うとともに、目標温度θc=制御温度=135℃として安定温調動作に移行し、温度センサ4で検知する温度θと目標温度θcとの関係に基づき加熱手段3を通電制御する。
【0074】
そして、予熱完了報知後に200℃設定まで設定温度を上昇すると、通電制御手段27は、予熱完了温度θy=制御温度=153℃に設定し、図3の(2)に示す動作と同様に、目標温度θc=過渡的な目標温度θk=温度センサ4で検知する温度θ+10Kに設定して再度過渡温調動作に戻り、温度センサ4で検知する温度θ≧153℃(=θy)を検知すると、表示手段51を駆動して機器を使用する者に鍋2内の油が設定温度に到達した旨の予熱完了報知を行うとともに安定温調動作に移行する。
【0075】
また、例えば、鍋底が平坦な鍋2に油量900gを入れて180℃設定にて予熱を開始した場合は、鍋反り量検知手段8にてsori=1、液体量検知手段9にてoil=3と検知し、通電制御手段27は、(表4)に示す180℃設定、sori=1、oil=3での制御温度(167℃)と、初期補正温度(10K)より、予熱完了温度θy=制御温度+初期補正温度=167℃+10K=177℃と設定し、目標温度θc=過渡的な目標温度θk=温度センサ4で検知する温度θ+シフト温度に設定し過渡温調動作を行う(図5の(c))。
【0076】
そして、通電制御手段27は、温度センサ4で検知する温度θ≧177℃(=θy)を検知(図5のB点)すると、報知手段5である表示手段51および音響手段52を駆動して機器を使用する者に鍋2内の油が設定温度に到達した旨の予熱完了報知を行うとともに、目標温度θc=制御温度=167℃として安定温調動作に移行し、温度センサ4で検知する温度θと目標温度θcとの関係に基づき加熱手段3を通電制御する(図5の(d))。
【0077】
そして、予熱完了報知後に200℃設定まで設定温度を上昇すると、通電制御手段27は、図6に示すように、安定温調動作のまま目標温度θc=制御温度=185℃に変更し(図6のA点)、温度センサ4で検知する温度θ≧185℃(=θc)を検知(図6のB点)すると、表示手段51を駆動して機器を使用する者に鍋2内の油が設定温度に到達した旨の予熱完了報知を行う。
【0078】
以上の構成により、鍋底の反り量や鍋2内の油量に依らず鍋2内の油温を設定温度近傍
にて安定させることができる。また、一旦予熱完了した後に設定温度を上昇した場合、鍋底の平坦な鍋2を使用しかつ鍋2内の油量が多いときは、安定温調動作のまま加熱手段3を通電制御するので、加熱手段3を比較的高出力にて通電制御し鍋2内の油を比較的短時間で加熱できるとともに、鍋底の反った鍋2を使用したり鍋2内の油量が少ないときは、再度過渡温調動作にて加熱手段3を通電制御するので、温度センサ4で検知する温度θと鍋2内の油温との差を小さく抑えたまま鍋2内の油を加熱し、変更後の制御温度に到達したときの鍋2内の油温が過度に高くなるのを防ぐことができる。
【0079】
なお、実施例2において、過渡温調動作におけるシフト温度およびシフト時間について、通電制御手段27にて、soriが大きく、oilが小さいほど、シフト温度を小さく、シフト時間を長く設定すると、鍋底の平坦な鍋2を使用したり鍋2内の油量が多いときの予熱時間の短縮と、鍋底の反った鍋2を使用したり鍋2内の油量が少ないときの鍋2内の油温のオーバーシュート抑制を両立することができる。
【0080】
また、鍋反り量検知手段8は、温度センサ4で検知する温度θに基づき鍋2の鍋底の反り量を検知し、液体量検知手段9は、鍋反り量検知手段8より入力する信号および温度センサ4で検知する温度θの上昇勾配に基づき鍋2内の油量を検知する構成であるが、他の手段・方法にて鍋底の反り量または鍋2内の油量を検知する構成としても同様の効果を得ることができる。
【0081】
【発明の効果】
以上のように、請求項1〜に記載の発明によれば、鍋底の反りや、鍋内の液体量の影響を抑制し、室温に馴染んだ状態から加熱手段に通電開始し予熱しても、予熱完了したときの鍋内の液体の温度をオーバーシュートを抑制しながら設定した温度に早く到達させ、予熱完了した後そのまま放置する場合には、鍋内の液体の温度変動を抑制して一定温度を維持し、かつ鍋内の液体に調理物を投入すると高火力にてオーバーシュートを抑制しながら迅速に液体温度を回復し、予熱完了した後に制御温度を大幅に高く変更しても、変更後の制御温度に到達したときに鍋内の液体の温度が過度に高くなるのを防ぐことができる。
【図面の簡単な説明】
【図1】 本発明の参考例1、実施例1、参考例2における加熱調理器の通電制御手段のブロック図
【図2】 本発明の参考例1における加熱調理器で鍋底の反った鍋にて180℃設定で予熱したときの動作を示す図
【図3】 本発明の参考例1、実施例1、参考例2における加熱調理器で鍋底の反った鍋にて予熱完了後に設定温度を高く変更したときの動作を示す図
【図4】 本発明の実施例における加熱調理器のブロック図
【図5】 同、鍋底の平坦な鍋にて180℃設定で予熱したときの動作を示す図
【図6】 同、鍋底の平坦な鍋にて予熱完了後に設定温度を高く変更したときの動作を示す図
【図7】 従来の加熱調理器のブロック図
【符号の説明】
2 鍋
3 加熱手段
4 温度センサ
6 入力手段
7、17、27 通電制御手段
8 鍋反り量検知手段
9 液体量検知手段
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a heating cooker used in general households.
[0002]
[Prior art]
  A conventional cooking device will be described below with reference to FIG. FIG. 7 is a block diagram of a conventional cooking device. In FIG. 7, 1 is a commercial power source, 2 is a pan, 3 is a heating means, and includes a rectifier 31, a heating coil 32, a switching element 33, and an inverter circuit 34. 4 is a temperature sensor, 5 is a notification means, and includes a display means 51 configured by a light emitting diode (LED) or a liquid crystal display element (LCD) for visual notification, and an acoustic means 52 configured by a buzzer or the like and audibly notified. It is configured. 6 is an input means, and 7 is an energization control means. The switching element 33 is turned on and off at several tens of kHz, and a high frequency current is applied to the heating coil 32 to inductively heat the pan 2 that is magnetically coupled to the heating coil 32. The energization control means 7 controls the output of the heating means 3 by controlling the ON time of the switching element 33.
[0003]
  The energization control means 7 has seven set temperatures at 140 ° C. to 200 ° C. in increments of 10 ° C., and selects any one of the seven set temperatures based on a signal input from the input means 6. . The energization control means 7 sets the control temperature corresponding to the selected set temperature as the target temperature θc, and energizes the heating means 3 based on the relationship between the temperature θ detected by the temperature sensor 4 and the target temperature θc, Control is performed so that the temperature of the oil in the pan 2 is stabilized at the selected set temperature.
[0004]
  The control temperature at each set temperature is shown in (Table 1).
[0005]
[Table 1]
[0006]
[Problems to be solved by the invention]
  However, in the conventional configuration, for example, preheating of the oil in the pan 2 is started at a setting of 200 ° C. with the temperature of the oil in the pan 2 adjusted to room temperature, or after the preheating is completed at a setting of 140 ° C. When the temperature is greatly increased to the 200 ° C. setting, the energization control means 7 has a temperature detected by the temperature sensor 4 << 185 ° C. (= control temperature at the 200 ° C. setting). Energization is controlled by output. In this case, when the pan 2 with a warped pan bottom is used or the amount of oil in the pan 2 is small, the temperature θ detected by the temperature sensor 4 rises in time with respect to the temperature rise of the oil in the pan 2. The difference between the temperature θ detected by the temperature sensor 4 and the temperature of the oil in the pan 2 becomes large, and the temperature θ detected by the temperature sensor 4 becomes 185 ° C. (= control temperature at 200 ° C. setting). There was a problem that the temperature of the oil in the pan 2 would become excessively high when it reached and completed preheating.
[0007]
  The present invention solves the above-mentioned conventional problems, and heating is performed so as to suppress the difference between the temperature detected by the temperature sensor and the temperature of the oil in the pan until the temperature detected by the temperature sensor reaches the control temperature. Heating means to prevent the oil temperature in the pan from rising excessively by energizing the means, and to maintain the predetermined temperature of the oil in the pan after the temperature detected by the temperature sensor reaches the control temperature The purpose is to suppress the temperature fluctuation of the oil in the pan and to ensure the cooking performance.
[0008]
[Means for Solving the Problems]
  In order to solve the conventional problem, the cooking device of the present invention is:A heating means for heating the pan, a temperature sensor for detecting the temperature of the pan, and settingAn input means for selecting a temperature;GoalTemperature andSaidTemperature sensor detectiontemperatureCompare the heating meansoutputTheEnergizedAn energization control means for controlling, and the energization control means starts energizing the heating meansThen, the control temperature associated with the set temperature is set,in frontDetection temperatureUntil the temperature reaches the control temperature,The transient lower than the control temperatureSet the target temperatureEach time the shift time elapses, the target temperature is increased by the shift temperature, and the shift temperature becomes smaller and the shift time becomes longer as the target temperature becomes closer to the control temperature.in frontInspectionBased on the relationship between the intelligent temperature and the target temperature, the detected temperature is converted to the target temperature.Close toOf the heating meansoutputTheEnergizedSystemControlPerform a transient temperature control operation beforeDetection temperatureAfter the temperature reaches the control temperature, a stable temperature adjustment operation is performed with the target temperature as the control temperature. Based on a signal input from the input means during the stable temperature adjustment operation,SettingIf you change the temperature higher,When the control temperature after the change is lower than the predetermined temperature, the energization control is performed on the output of the heating means while maintaining the stable temperature control operation, and when the control temperature after the change is equal to or higher than the predetermined temperature.in frontInspectionThe transient temperature adjustment operation is not performed until the knowledge temperature reaches the control temperature after the change.againDoneThe detected temperature becomes the control temperature after the change.After reaching, the operation is shifted to the stable temperature control operation.
[0009]
  As a result, the energization control means performs the transient temperature control operation until the temperature detected by the temperature sensor reaches the control temperature after the heating means starts energization, and the temperature detected by the temperature sensor and the temperature of the liquid in the pan. The heating means is energized and controlled so as to suppress the difference between the heating means, and after reaching the control temperature, the heating means is energized and controlled so that the temperature of the liquid in the pan maintains a predetermined temperature by performing a stable temperature adjustment operation, After reaching the control temperatureDuring stable temperature controlIncreasing the control temperatureWhen the changed control temperature is lower than the predetermined temperature, the heating means is energized while maintaining the stable temperature control operation, and when the changed control temperature is equal to or higher than the predetermined temperature, the temperature detected by the temperature sensor is changed. After the change, the transient temperature adjustment operation is performed again until the later control temperature is reached, and after the temperature detected by the temperature sensor reaches the changed control temperature, the operation shifts to the stable temperature adjustment operation. When the control temperature of the pot is relatively low, the heating means is energized while maintaining the stable temperature control operation, so that the heating means can be energized at a relatively high output to quickly heat the liquid in the pan, and the control after the change When the temperature is relatively high, the heating means is energized and controlled with a transient temperature control operation, so the liquid in the pan is heated to the control temperature while suppressing the difference between the temperature detected by the temperature sensor and the liquid temperature in the pan. When it reaches the temperature of the liquid in the pan It can be prevented from becoming higher every time.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
  The invention according to claim 1 is a heating means for heating the pan, a temperature sensor for detecting the temperature of the pan,SettingAn input means for selecting a temperature;GoalTemperature and detection of the temperature sensortemperatureComparing the heating meansoutputTheEnergizedAn energization control means for controlling, and the energization control means starts energizing the heating meansThen, the control temperature associated with the set temperature is set,Until the temperature detected by the temperature sensor reaches the control temperature,The transient lower than the control temperatureSet the target temperatureEach time the shift time elapses, the target temperature is increased by the shift temperature, and the shift temperature becomes smaller and the shift time becomes longer as the target temperature becomes closer to the control temperature.in frontInspectionBased on the relationship between the intelligent temperature and the target temperature, the detected temperature is converted to the target temperature.Close toOf the heating meansoutputTheEnergizedcontrolDoPerform transient temperature control operation beforeDetection temperatureAfter the temperature reaches the control temperature, a stable temperature adjustment operation is performed with the target temperature as the control temperature. Based on a signal input from the input means during the stable temperature adjustment operation,SettingIf you change the temperature higher,When the control temperature after the change is lower than the predetermined temperature, the energization control is performed on the output of the heating means while maintaining the stable temperature control operation, and when the control temperature after the change is equal to or higher than the predetermined temperature.in frontInspectionThe transient temperature adjustment operation is not performed until the knowledge temperature reaches the control temperature after the change.againDoneThe detected temperature becomes the control temperature after the change.After reaching the stable temperature control operation, when the pot and the liquid in the pot that have been adapted to room temperature are installed in the equipment and the heating means is energized, the energization control means controls the temperature detected by the temperature sensor. Until the temperature is reached, current control is performed while suppressing the output of the heating means based on the relationship between the target temperature and the temperature detected by the temperature sensor in the transient temperature control operation. Even when the amount of liquid in the pan is small, the difference between the temperature detected by the temperature sensor and the temperature of the liquid in the pan is reduced and the time shift is prevented, so that the liquid in the pan when the control temperature is reached is reduced. The temperature can be kept low.
[0011]
  In addition, after the temperature detected by the temperature sensor reaches the control temperature, the energization control means controls the energization of the heating means based on the relationship between the control temperature and the temperature detected by the temperature sensor in a stable temperature control operation. While it is left as it is after the temperature has been reached, the energization control means suppresses the output of the heating means from the temperature detected by the temperature sensor ≈ the control temperature, suppresses the temperature fluctuation of the liquid in the pan, and maintains a constant temperature. When the temperature detected by the temperature sensor decreases when the food is put into the liquid in the pan and the temperature detected by the temperature sensor is much lower than the control temperature, the output of the heating means is increased, Cooking can be done with high heat.
[0012]
  Furthermore, after the temperature detected by the temperature sensor reaches the control temperatureDuring stable temperature controlIncreasing the control temperatureWhen the changed control temperature is lower than the predetermined temperature, the heating means is energized while maintaining the stable temperature control operation, and when the changed control temperature is equal to or higher than the predetermined temperature, the temperature detected by the temperature sensor is changed. After the change, the transient temperature adjustment operation is performed again until the later control temperature is reached, and after the temperature detected by the temperature sensor reaches the changed control temperature, the operation shifts to the stable temperature adjustment operation. When the control temperature of the pot is relatively low, the heating means is energized while maintaining the stable temperature control operation, so that the heating means can be energized at a relatively high output to quickly heat the liquid in the pan, and the control after the change When the temperature is relatively high, the heating means is energized and controlled with a transient temperature control operation, so the liquid in the pan is heated to the control temperature while suppressing the difference between the temperature detected by the temperature sensor and the liquid temperature in the pan. When it reaches the temperature of the liquid in the pan It can be prevented from becoming higher every time.
[0013]
  In the invention described in claim 2, in particular, the energization control means described in claim 1 includes:A transient temperature control operation is performed to control energization so that the output of the heating means decreases as the target temperature approaches the control temperature.In this way, when the control temperature after the change is relatively low, the heating means is energized while maintaining the stable temperature control operation, so that the heating means can be energized at a relatively high output to quickly heat the liquid in the pan. At the same time, when the control temperature after the change is relatively high, the heating means is energized and controlled by a transient temperature control operation, so that the liquid in the pan is controlled while suppressing the difference between the temperature detected by the temperature sensor and the liquid temperature in the pan. Heating can prevent the temperature of the liquid in the pan from becoming excessively high when the control temperature is reached.
[0014]
  Claim3The invention described inImmediately after energizing the heating means, a heating means for heating the pan, a temperature sensor for detecting the temperature of the pan, an input means for selecting a set temperature, and the heating meansPan warp amount detection means to detect the amount of warp at the bottom of the panAnd goalWarmAn energization control means for controlling energization of the output of the heating means by comparing the temperature and the temperature detected by the temperature sensor;WithSaidEnergization control meansIs,When energization of the heating means is started, a control temperature associated with the set temperature is set, and until the detected temperature reaches the control temperature, the transient target temperature lower than the control temperature is set and shifted. The detected temperature and the target temperature are increased while the target temperature is increased by the shift temperature each time, and the shift temperature is decreased and the shift time is increased as the target temperature is closer to the control temperature. Based on the relationship, a transient temperature control operation for energizing and controlling the output of the heating means to bring the detected temperature close to the target temperature, and after the temperature detected by the temperature sensor reaches the control temperature, the target temperature Is controlled with the control temperature, and during the stable temperature control operation,Based on the signal input from the input meansSettingTemperatureIf you change it higher,Warping amount of the pan bottomIf the pan bottom is detected as a flat pan based onSaidWith stable temperature controlSaidHeating meansOutputThe energization control,Warping amount of the pan bottomBased on the detection of a pan with a warped pan bottomDetection temperatureUntil the temperature reaches the control temperature after the changeSaidPerform transient temperature control again, beforeDetection temperatureWhen the temperature reaches the control temperature after the change, the process proceeds to the stable temperature control operation, and when the control temperature is increased after the temperature detected by the temperature sensor reaches the control temperature, the pan bottom is flat. When using a pan, the heating means is energized and controlled while maintaining a stable temperature control, so the heating means can be energized and controlled at a relatively high output to quickly heat the liquid in the pan and use a pan with a warped bottom. When the heating means is energized and controlled by a transient temperature control operation, the liquid in the pan is heated while the difference between the temperature detected by the temperature sensor and the liquid temperature in the pan is suppressed, and the control temperature is reached. It is possible to prevent the temperature of the liquid in the pan from becoming excessively high.
[0015]
  Claim4The invention described inA heating means for heating the pan, a temperature sensor for detecting the temperature of the pan, an input means for selecting a set temperature, and energization of the heating means until a predetermined temperature is reached.Liquid amount detection means for detecting the amount of liquid in the panAnd goalWarmAn energization control means for controlling energization of the output of the heating means by comparing the temperature and the temperature detected by the temperature sensor;WithSaidEnergization control meansIs,When energization of the heating means is started, a control temperature associated with the set temperature is set, and the transient target temperature lower than the control temperature is set until the temperature detected by the temperature sensor reaches the control temperature. The target temperature is increased by the shift temperature each time the shift time elapses, and the shift temperature is decreased and the shift time is increased as the target temperature approaches the control temperature. Based on the relationship with the target temperature, a transient temperature control operation is performed to energize and control the output of the heating means to bring the detected temperature closer to the target temperature, and after the detected temperature reaches the control temperature, the target temperature Is controlled with the control temperature, and during the stable temperature control operation,Based on the signal input from the input meansSettingIf you change the temperature higher,The amount of liquid in the panIf it detects that the amount of liquid in the pan is large based onSaidThe heating means is energized while maintaining stable temperature control,The amount of liquid in the panBefore detecting that there is less liquid in the panDetection temperatureUntil the temperature reaches the control temperature after the changeSaidPerform transient temperature control again, beforeDetection temperatureWhen the temperature reaches the control temperature after the change, the process proceeds to the stable temperature control operation, and the liquid in the pan is increased when the temperature detected by the temperature sensor increases after the temperature reaches the control temperature. When the amount is large, the heating means is energized while maintaining stable temperature control, so the heating means can be energized at a relatively high output to quickly heat the liquid in the pan and the amount of liquid in the pan is small. Since the heating means is energized and controlled by a transient temperature control operation, the liquid in the pan is heated while suppressing the difference between the temperature detected by the temperature sensor and the liquid temperature in the pan, and when the control temperature is reached, It is possible to prevent the temperature of the liquid from becoming excessively high.
[0016]
【Example】
  Embodiments of the present invention will be described below with reference to the drawings.
[0017]
  (referenceExample 1)
  FIG. 1 illustrates the present invention.referenceA block diagram of the energization control means 17 of the heating cooker in Example 1 is shown, and the configuration other than the energization control means 17 is the same as that shown in FIG. Components having the same functions as those of the conventional example of FIG. 7 are given the same reference numerals. The configuration shown in FIG. 1 differs from the configuration shown in FIG. 7 in that the energization control means 17 has a target temperature setting means 17b. The target temperature setting means 17b receives signals from the input means 6 and the comparison means 17a. The target temperature is set based on the signal and the signal is output to the comparison means 17a.
[0018]
  This will be described below with reference to FIGS. The energization control means 17 includes, as an operation mode, an initial mode in which the heating means 3 is energized and a signal input from the input means 6 with seven set temperatures in increments of 10 ° C. from 140 ° C. to 200 ° C. In the fried food mode in which any one of seven preset temperatures is selected and the heating means 3 is energized and controlled based on the relationship between the temperature θ detected by the temperature sensor 4 and the target temperature θc related to the selected preset temperature. Two types are provided, and the two types of modes are switched based on a signal input from the input means 6. The energization control means 17 provides a transient target temperature θk in the target temperature setting means 17b as a control method for energizing the heating means 3 when the operation mode = fried food mode, and compares this with the target temperature θc. A transient temperature adjustment operation that outputs to the means 17a and gradually increases the transient target temperature θk toward the control temperature corresponding to the selected set temperature, and the target temperature setting means 17b corresponds to the set temperature. There are two types of stable temperature control operations in which the control temperature is output to the comparison means 17a as the target temperature θc.
[0019]
  Then, the energization control means 17 changes the operation mode from the initial mode to the deep-fried food mode based on the signal input from the input means 6, and then the set temperature at which the temperature θ detected by the temperature sensor 4 is selected by the comparison means 17a is selected. During the preheating period until the temperature of the oil in the pan 2 is detected until reaching the selected set temperature, the target temperature setting means 17b is set by the transient temperature control operation. After the target temperature is input and the heating means 3 is energized and controlled by the comparison means 17a, and the completion of the preheating is detected by the comparison means 17a, the target set by the stable temperature adjustment operation from the target temperature setting means 17b. When the temperature is inputted and the heating means 3 is energized and controlled by the comparison means 17a, and the preset temperature is increased based on the signal inputted from the input means 6 after the completion of the preheating is detected, the temperature is compared by the comparison means 17a. Until the temperature detected by the sensor 4 reaches the control temperature corresponding to the changed set temperature, the target temperature set by the transient temperature adjustment operation is input from the target temperature setting means 17b and compared. When the heating means 3 is energized and controlled by the means 17a and the temperature θ detected by the temperature sensor 4 is detected by the comparing means 17a and reaches the control temperature at the changed set temperature, the target temperature setting means 17b This is the transition to the stable temperature control operation.
[0020]
  About the cooking-by-heating machine comprised as mentioned above, the operation | movement is demonstrated using FIGS. FIG. 2 is a diagram showing an operation when preheating is performed at 180 ° C. in a pan 2 with a warped pan bottom, and FIG. 3 is a diagram showing an operation when the set temperature is raised after completion of preheating in a pan 2 with a warped pan bottom. is there.
[0021]
  First, the preheating operation in a state in which the equipment, the pan 2 and the oil in the pan 2 are adapted to the room temperature will be described.
[0022]
  When the commercial power source 1 is applied to the device, the energization control means 17 turns off the heating means 3 with the operation mode = initial mode. When the energization control means 17 changes the operation mode from the initial mode to the 180 ° C. setting of the deep-fried food mode based on the signal input from the input means 6, the temperature θ ≧ 167 ° C. (= 180 ° C. setting detected by the temperature sensor 4). The heating means 3 is energized and controlled by transient temperature control until the oil in the pan 2 is preheated.
[0023]
  Here, the transient temperature control operation will be described in more detail with reference to FIG. When the energization control means 17 starts the transient temperature adjustment operation, first, the target temperature setting means 17b sets the target temperature θc = transient target temperature θk = 140 ° C., and the temperature detected by the temperature sensor 4 by the comparison means 17a. Based on the relationship between θ and the target temperature θc, the heating means 3 is energized and controlled at substantially maximum output until the temperature θ detected by the temperature sensor 4 approaches 140 ° C. (FIG. 2A).
[0024]
  When the energization control means 17 detects the temperature θ ≧ 140 ° C. detected by the temperature sensor 4 in the comparison means 17a (point A in FIG. 2), the target temperature setting means 17b sets the transient target temperature θk = transient. Target temperature θc = transitional target temperature θk is set after setting target temperature θk + shift temperature, target temperature θc is set higher by the shift temperature, and target temperature θc reaches the control temperature corresponding to the selected set temperature. This operation is repeated every time the shift time elapses ((b) in FIG. 2).
[0025]
  With the above configuration, when the temperature θ detected by the temperature sensor 4 is equal to or higher than the predetermined temperature, the temperature gradually rises gradually over a relatively long time, so that the pot 2 with a warped pot bottom is used or the oil in the pot 2 is small. Even in the state, the difference between the temperature θ detected by the temperature sensor 4 and the oil temperature in the pan 2 can be kept small and the time lag can be prevented to prevent the oil temperature in the pan 2 from rising excessively. .
[0026]
  Note that the shift temperature and the shift time are set so that the shift temperature becomes smaller and the shift time becomes longer as the transient target temperature θk approaches 167 ° C. (= control temperature at 180 ° C. setting). The oil temperature in the pan 2 is suppressed from overshooting immediately after the temperature θ detected at 4 reaches the control temperature corresponding to the selected set temperature.
[0027]
  The energization control means 17 is the notifying means 5 when detecting the temperature θ ≧ 167 ° C. (= control temperature at 180 ° C. setting) detected by the temperature sensor 4 in the comparison means 17a (point B in FIG. 2). The display means 51 and the sound means 52 are driven to notify the person who uses the device that the preheat has been completed to the effect that the oil in the pan 2 has reached the set temperature, and the target temperature setting means 17b shifts to a stable temperature control operation. Then, the target temperature θc = 167 ° C. is set, and the temperature θ≈167 ° C. detected by the temperature sensor 4 is detected by the comparison means 17a, and the heating means 3 is energized and controlled with a relatively small output, so that the oil in the pan 2 is It is maintained near the set temperature ((c) of FIG. 2).
[0028]
  Moreover, since the temperature of the oil in the pan 2 will fall and the temperature (theta) detected by the temperature sensor 4 will also fall if the cooked material is thrown in into the pan 2, the electricity supply control means 17 is the temperature sensor 4 in the comparison means 17a. Is detected, and the heating means 3 is energized and controlled with a relatively large output.
[0029]
  With the above configuration, after the preheating completion notification, the temperature of the oil in the pan 2 is stabilized in the vicinity of the set temperature, and when the food is put into the pan 2, cooking can be performed with high heating power.
[0030]
  Next, as an example of the operation when the set temperature is increased after completion of preheating, a case where the set temperature is increased to 180 ° C. after preheating is completed once at 140 ° C. will be described with reference to FIG.
[0031]
  In the conventional configuration, even if the set temperature is increased, the stable temperature adjustment operation is maintained, so the target temperature θc is immediately changed from 130 ° C. (= control temperature at 140 ° C. setting) to 167 ° C. (= control temperature at 180 ° C. setting). Switching (point A in FIG. 3), the heating means 3 is energized and controlled with a relatively larger output than the temperature θ << 167 ° C. (= target temperature θc) detected by the temperature sensor 4, and the pan 2 with a warped pot bottom When the temperature θ detected by the temperature sensor 4 reaches 167 ° C. (point B in FIG. 3), the oil temperature in the pan 2 rises excessively. ((1) in FIG. 3).
[0032]
  BookreferenceIn the example, when the set temperature is increased after the preheating is completed, the target temperature setting means 17b sets the target temperature θc = the transient target temperature θk = the temperature detected by the temperature sensor 4 + 10K, and returns to the transient temperature adjustment operation again (FIG. 3 point A).
[0033]
  Then, when the energization control means 17 detects the temperature θ ≧ 167 ° C. detected by the temperature sensor 4 in the comparison means 17a (point C in FIG. 3), it drives the display means 51 as the notification means 5 to use the device. In addition to notifying the operator of the completion of preheating that the oil in the pan 2 has reached the set temperature, the target temperature setting means 17b shifts to a stable temperature adjustment operation ((2) in FIG. 3).
[0034]
  With the above configuration, even when the set temperature is increased after the preheating is completed, the pan 2 with the warped pan bottom is used or the amount of oil in the pan 2 is small as in the preheating from the room temperature state described above. However, the difference between the temperature θ detected by the temperature sensor 4 and the oil temperature in the pan 2 is kept small and the time difference is prevented to prevent the oil temperature in the pan 2 from rising excessively. After reaching the set temperature, the temperature of the oil in the pan 2 is stabilized in the vicinity of the set temperature after the change, and cooking can be performed with high heating power when the food is put into the pan 2.
[0035]
  When returning to the transient temperature control operation again, the transient target temperature θk = the temperature detected by the temperature sensor 4 is corrected to be higher by + 10K and 10K, and the initial setting is performed immediately after the set temperature is changed. This is to make the output of the means 3 relatively large so that the temperature θ detected by the temperature sensor 4 is on the rise, and to enable smooth transient temperature adjustment operation. The same effect can be obtained even with 0K.
[0036]
  The temperature of the pan may be measured directly, or may be measured indirectly, for example, by measuring the back surface of the ceramic plate when the pan is placed on a ceramic plate and heated. In the case where the temperature of the pan is measured by measuring the back surface of the ceramic plate, the effect of the present embodiment becomes greater.
[0037]
  (Example1)
  FIG. 1 shows an embodiment of the present invention.1Is a block diagram of a heating cooker inreferenceThe same components as in Example 1.
[0038]
  Of this examplereferenceThe difference from Example 1 is that when the energization control means 17 increases the set temperature based on the signal input from the input means 6 after the temperature θ detected by the temperature sensor 4 reaches the control temperature corresponding to the set temperature, When the set temperature after the change is 140 ° C. to 170 ° C., the target temperature setting means 17b keeps the stable temperature control operation, and the heating means 3 is energized and controlled by the comparison means 17a, and the set temperature after the change is 180 ° C. to 200 ° C. In the case of ° C., the target temperature setting means 17b again performs the transient temperature adjustment operation until the comparison means 17a detects that the temperature θ detected by the temperature sensor 4 reaches the control temperature corresponding to the changed set temperature. Then, after detecting that the temperature θ detected by the temperature sensor 4 reaches the control temperature corresponding to the changed set temperature in the comparison unit 17a, the target temperature setting unit 17b shifts to the stable temperature adjustment operation. Octopus It is.
[0039]
  About the heating cooker comprised as mentioned above, the operation | movement is demonstrated using FIG.
[0040]
  For example, in the case where the preset temperature is increased to 160 ° C. after preheating is completed once at 140 ° C., the temperature θ detected by the temperature sensor 4 becomes the control temperature 149 ° C. corresponding to the changed preset temperature 160 ° C. Since the temperature of the oil in the pan 2 when reaching the temperature does not become excessively high, the energization control means 17 performs the stable temperature adjustment operation with the target temperature setting means 17b in the same manner as the operation shown in (1) of FIG. The target temperature θc is immediately switched from 130 ° C. (= control temperature at 140 ° C. setting) to 149 ° C. (= control temperature at 160 ° C. setting), and the temperature θ ≧ 149 detected by the temperature sensor 4 in the comparison means 17a. When the temperature is detected, the display means 51 which is the notification means 5 is driven to notify the person who uses the device that the preheating is completed to the effect that the oil in the pan 2 has reached the set temperature.
[0041]
  Further, for example, in the case where the preset temperature is increased to 200 ° C. after preheating is completed once at 140 ° C., the energization control means 17 is similar to the operation shown in (2) of FIG. The target temperature θc = transient target temperature θk = temperature θ detected by the temperature sensor 4 + 10K, and the temperature is again returned to the transient temperature adjustment operation. The temperature detected by the temperature sensor 4 by the comparison means 17a θ ≧ 185 ° C. (= 200 ° C.) When the control temperature at the setting) is detected, the display means 51 as the notification means 5 is driven to notify the person who uses the device that the oil in the pan 2 has reached the set temperature, and the stable temperature. Move to adjustment operation.
[0042]
  With the above configuration, when the set temperature is raised after completion of preheating and the set temperature after the change is relatively low, the heating means 3 is energized and controlled in a stable temperature control operation, so the oil temperature in the pan 2 While the temperature does not become excessively high, the time from when the set temperature is raised until the temperature θ detected by the temperature sensor 4 reaches the control temperature corresponding to the changed set temperature can be shortened.
[0043]
  When the set temperature after change is relatively high, the heating means 3 is energized and controlled again by returning to the transient temperature control operation, and the temperature θ detected by the temperature sensor 4 becomes the control temperature corresponding to the set temperature after change. When it reaches, it will shift to stable temperature control operation.referenceSimilarly to Example 1, it is possible to prevent the oil temperature in the pan 2 from excessively rising when the temperature θ detected by the temperature sensor 4 reaches the control temperature corresponding to the set temperature.
[0044]
  In the present embodiment, in the operation when the set temperature is increased after completion of preheating, the temperature switched to the stable temperature adjustment operation / transient temperature adjustment operation is set to 170 ° C./180° C. This is because when the pan 2 with a warped pan is used or the oil amount in the pan 2 is small, the set temperature is increased from 140 ° C. and the heating means 3 is energized and controlled by a stable temperature control operation. After the temperature θ detected at 4 reaches the control temperature corresponding to the set temperature, the peak temperature of the oil in the pan 2 rises from the 140 ° C. setting to the 200 setting, and the heating means 3 in the transient temperature control operation Is controlled so that the temperature θ detected by the temperature sensor 4 does not exceed the temperature of the oil in the pan 2 when it reaches the control temperature corresponding to the 200 ° C. setting.
[0045]
  (referenceExample2)
  FIG. 1 illustrates the present invention.referenceExample2Is a block diagram of a heating cooker inreferenceThe same components as in Example 1.
[0046]
  BookreferenceExamplereferenceThe difference from Example 1 is that when the energization control means 17 increases the set temperature based on the signal input from the input means 6 after the temperature θ detected by the temperature sensor 4 reaches the control temperature corresponding to the set temperature, When the set temperature rises by one step, the target temperature setting means 17b remains in the stable temperature control operation and the energization control is performed on the heating means 3 by the comparison means 17a. When the set temperature rises by two or more steps, the comparison means 17a Until the temperature θ detected by the temperature sensor 4 reaches the control temperature corresponding to the changed set temperature, the target temperature setting means 17b performs the transient temperature adjustment operation again, and the comparison means 17a This means that the target temperature setting means 17b shifts to the stable temperature adjustment operation after detecting that the temperature θ detected by the sensor 4 reaches the control temperature corresponding to the changed set temperature.
[0047]
  About the heating cooker comprised as mentioned above, the operation | movement is demonstrated using FIG.
[0048]
  For example, in the case where the preset temperature is increased to 200 ° C. after preheating is completed once at 190 ° C., the temperature θ detected by the temperature sensor 4 becomes 185 ° C., which is the control temperature corresponding to the changed preset temperature 200 ° C. The difference between the temperature θ detected by the temperature sensor 4 when it reaches and the oil temperature in the pan 2 is relatively small, and the oil temperature peak does not become excessively high. In the same manner as the operation shown in FIG. 5, the target temperature θc is kept at the stable temperature adjusting operation by the target temperature setting means 17b, and the target temperature θc is changed from 176 ° C. (= control temperature at 190 ° C. setting) to 185 ° C. When the temperature θ detected by the temperature sensor 4 is detected by the comparison means 17a, the display means 51 as the notification means 5 is driven to set the oil in the pan 2 to the person who uses the device. Completion of preheating to reach temperature Perform knowledge.
[0049]
  Further, for example, in the case where the preset temperature is increased to 200 ° C. after preheating is completed once at 140 ° C., the energization control means 17 is similar to the operation shown in (2) of FIG. The target temperature θc = transient target temperature θk = temperature θ detected by the temperature sensor 4 + 10K, and the temperature is again returned to the transient temperature adjustment operation. The temperature detected by the temperature sensor 4 by the comparison means 17a θ ≧ 185 ° C. (= 200 ° C.) When the control temperature at the setting) is detected, the display means 51 as the notification means 5 is driven to notify the person who uses the device that the oil in the pan 2 has reached the set temperature, and the stable temperature. Move to adjustment operation.
[0050]
  With the above configuration, when the set temperature is increased after the preheating is completed, when the increase range of the set temperature is relatively small, the heating means 3 is energized and controlled while maintaining the stable temperature control operation. While the temperature does not become excessively high, the time from when the set temperature is raised until the temperature θ detected by the temperature sensor 4 reaches the control temperature corresponding to the changed set temperature can be shortened.
[0051]
  Further, when the set temperature rise is relatively large, the heating means 3 is energized and controlled again by returning to the transient temperature control operation, and the temperature θ detected by the temperature sensor 4 becomes the control temperature corresponding to the changed set temperature. Since it will shift to stable temperature control operation when it reaches | attains, the oil temperature in the pan 2 when the temperature (theta) detected by the temperature sensor 4 reaches | attains the control temperature corresponding to setting temperature similarly to Example 1 will rise excessively. Can be prevented.
[0052]
  (Example2)
  FIG. 4 shows an embodiment of the present invention.2The block diagram of the heating cooker in is shown.
[0053]
  Of this examplereferenceThe difference from Example 1 is that, first, immediately after the energization control means 27 changes the operation mode from the initial mode to the fried food mode and starts energizing the heating means 3, the pan 2 is based on the rising gradient of the temperature θ detected by the temperature sensor 4. Pan warp amount detecting means 8 for detecting the warp amount (sori) of the bottom of the pan in three stages 1 to 3, and after detecting the warp amount (sori) by the pot warp amount detecting means 8, the pan warp amount detecting means 8 The liquid amount detection means 9 for detecting the oil amount (oil) in the pan 2 in three stages of 1 to 3 based on the warpage amount (sori) input more and the rising gradient of the temperature θ detected by the temperature sensor 4 is newly provided. Prepare for.
[0054]
  And the electricity supply control means 27 respond | corresponds to 7 steps | paragraphs of set temperature in deep-fried food mode based on the curvature amount (sori) input from the pan curvature amount detection means 8, and the oil amount (oil) input from the liquid amount detection means 9. Change the control temperature.
[0055]
  Further, the energization control means 27 shifts from the transient temperature adjustment operation to the stable temperature adjustment operation at the temperature θ detected by the temperature sensor 4 ≧ the preheating completion temperature θy.
[0056]
  Further, when the set temperature is raised after the preheating completion notification is once given, the energization control means 27 keeps the stable temperature control operation when sori = 1 and oil = 2, 3 and so on, that is, sori = 2, 3 or When oil = 1, it will return to the transient temperature control operation again.UIt is that.
[0057]
  Now, the relationship between the amount of warp at the bottom of the pan and the amount of oil in the pan 2 and the temperature of the oil in the pan 2 will be described. The greater the amount of warp of the pan bottom, the worse the sensitivity and followability of the temperature θ detected by the temperature sensor 4 with respect to the temperature of the pan 2 itself, and the difference between the temperature θ detected by the temperature sensor 4 and the oil temperature in the pan 2. Tend to be larger. In addition, as the amount of oil in the pan 2 is smaller, the amount of heat in the pan 2 is transferred to the oil in the pan 2 in a short time due to the convection of the oil in the pan 2, and the oil temperature in the pan 2 rises. The difference between the temperature θ detected by the temperature sensor 4 and the oil temperature in the pan 2 tends to increase.
[0058]
  Therefore, the greater the amount of warp at the bottom of the pan and the smaller the amount of oil in the pan 2, the lower the control temperature, and the temperature of the oil in the pan 2 is set regardless of the amount of warp at the bottom of the pan or the amount of oil in the pan 2. Keep near temperature.
[0059]
  Also, when a large amount of oil is put in the pan 2 having a flat bottom, if the oil is preheated to a high temperature such as around 180 ° C from a state that is familiar with the room temperature, the oil will become viscous at a low temperature. The temperature rise detected by the temperature sensor 4 is sensitive to the temperature of the pan 2 itself, so the temperature θ detected by the temperature sensor 4 and the oil in the pan 2 The difference from the temperature is relatively small compared to the stable operation.
[0060]
  Accordingly, until the preheating is completed for the first time after the heating means 3 is energized, the preheating completion temperature θy is set somewhat higher than the control temperature corresponding to the selected set temperature by the initial correction temperature. The oil temperature in 2 reaches the set temperature.
[0061]
  About the cooking-by-heating machine comprised as mentioned above, the operation | movement is demonstrated with reference to FIGS. FIG. 5 is a diagram showing the operation when preheating is performed at 180 ° C. in the flat pan 2 at the bottom of the pan, and FIG. 6 is a diagram showing operation when the set temperature is increased after preheating is completed in the flat pan 2 at the pan bottom. is there.
[0062]
  When the commercial power source 1 is applied to the device, the energization control means 27 starts operation with the operation mode = initial mode. And if the signal which shows a heating start is input from the input means 6, the electricity supply control means 27 will change an operation mode into 180 degreeC setting of frying mode, and will perform the following operation | movement.
[0063]
  First, the energization control unit 27 controls the energization of the heating unit 3 with the target output Pc of the heating unit 3 being 1000 W ((a) in FIG. 5). Then, when the pan warp amount detection means 8 detects that the operation mode has been changed from the initial mode to the deep-fried food mode based on the signal input from the energization control means 27, the energization of the heating means 3 is started. The temperature θ detected by the temperature sensor 4 every 10 seconds from the start of energization is measured at θ0, θ1, θ2, θ3, and θ4, respectively, and dθ2 = (θ4−θ3) − (θ1−θ0) is calculated, and dθ2 Based on the above, sori, which is the amount of warp of the pan bottom of the pan 2, is detected in three stages of sori = 1 to 3, and is output to the energization control means 27 and the liquid amount detection means 9. In addition, dθ2 becomes a smaller value as the warp amount of the pan bottom is larger. The relationship between the amount of warp at the bottom of the pan and the value of sori is shown in (Table 2).
[0064]
[Table 2]
[0065]
  Then, when energization starts at the target output Pc = 1000 W of the heating unit 3 and 40 seconds have elapsed, the energization control unit 27 inputs the value of sori from the pan warp amount detection unit 8 to confirm that the pan warp amount detection has been completed. Detecting and changing the target output Pc of the heating means 3 to 1200 W and performing energization control ((b) in FIG. 5), the liquid amount detecting means 9 is configured to determine the value of sori inputted from the pan warp amount detecting means 8 Based on the rising gradient of temperature θ detected by the temperature sensor 4, oil, which is the amount of oil in the pan 2, is detected in three stages of oil = 1 to 3 and output to the energization control means 27. The relationship between the amount of oil in the pan 2 and the value of oil is shown in (Table 3).
[0066]
[Table 3]
[0067]
  And when the energization control means 27 inputs the value of oil from the liquid amount detection means 9 and detects that the oil amount detection in the pan 2 has been completed (point A in FIG. 5), it is the selected set temperature. The control temperature based on sori and oil at the setting of 180 ° C. and the initial correction temperature are obtained and the preheating completion temperature θy = control temperature + initial correction temperature is set, and the target temperature θc = transient target temperature θk = detected by the temperature sensor 4 The temperature is set to θ + shift temperature, and the transient temperature adjustment operation is started ((c) in FIG. 5).
[0068]
  That is, the energization control means 27 is set so that the control temperature decreases as the value of sori increases and the value of oil decreases. Specific control temperatures based on sori and oil at each set temperature are shown in Table 4.
[0069]
[Table 4]
[0070]
  As for the initial correction temperature based on sori and oil, the initial correction temperature = 10K when sori = 1 and oil = 3, the initial correction temperature = 5K when sori = 1 and oil = 2, and so on, that is, sori = 2. When 3 or oil = 1, the initial correction temperature = 0K.
[0071]
  Then, when the energization control means 27 detects the temperature θ detected by the temperature sensor 4 ≧ the preheating completion temperature θy (point B in FIG. 5), it drives the display means 51 and the acoustic means 52 that are the notification means 5 to operate the device. The user is notified of the completion of preheating that the oil in the pan 2 has reached the set temperature, and the temperature shifts to a stable temperature control operation with the target temperature θc = control temperature, and the temperature θ detected by the temperature sensor 4 and the target temperature. The heating means 3 is energized and controlled based on the relationship with θc ((d) in FIG. 5).
[0072]
  Specifically, for example, when 500 g of oil is put into the pan 2 whose pan bottom is warped by 1.0 mm and preheating is started at 180 ° C., the pan warp amount detecting means 8 uses sori = 2, liquid The amount detection means 9 detects oil = 2, and the energization control means 27 determines the control temperature (135 ° C.) at the 180 ° C. setting, sori = 2, oil = 2 shown in (Table 4), and the initial correction temperature ( 0K), preheat completion temperature θy = control temperature + initial correction temperature = 135 ° C. + 0K = 135 ° C., target temperature θc = transient target temperature θk = temperature detected by temperature sensor 4 + shift temperature Perform transient temperature control.
[0073]
  Then, when the energization control means 27 detects the temperature θ ≧ 135 ° C. (= θy) detected by the temperature sensor 4, the energization control means 27 drives the display means 51 and the acoustic means 52, which are the notification means 5, to the person who uses the device. 2 is informed that the oil in 2 has reached the set temperature, and the target temperature θc = control temperature = 135 ° C. and the operation proceeds to a stable temperature control operation. The temperature θ detected by the temperature sensor 4 and the target temperature θc Based on the relationship, the heating means 3 is energized.
[0074]
  Then, when the set temperature is increased to 200 ° C. after the preheating completion notification, the energization control means 27 sets the preheating completion temperature θy = control temperature = 153 ° C., and similarly to the operation shown in (2) of FIG. Temperature θc = transient target temperature θk = temperature detected by temperature sensor 4 θ + 10K is set again to return to transient temperature adjustment operation, and when temperature detected by temperature sensor 4 θ ≧ 153 ° C. (= θy) is detected, display The means 51 is driven to notify the person who uses the equipment that preheating is completed to the effect that the oil in the pan 2 has reached the set temperature, and the operation proceeds to a stable temperature control operation.
[0075]
  Further, for example, when 900 g of oil is put into the pan 2 having a flat pan bottom and preheating is started at a setting of 180 ° C., sori = 1 in the pan warp amount detecting means 8 and oil = in the liquid amount detecting means 9. 3, the energization control means 27 determines the preheating completion temperature θy from the control temperature (167 ° C.) at 180 ° C. setting, sori = 1, oil = 3 shown in (Table 4), and the initial correction temperature (10K). = Control temperature + Initial correction temperature = 167 ° C. + 10K = 177 ° C., target temperature θc = transient target temperature θk = temperature detected by temperature sensor 4 + shift temperature is set to perform a transient temperature control operation (FIG. (C) of 5).
[0076]
  When the energization control means 27 detects the temperature θ ≧ 177 ° C. (= θy) detected by the temperature sensor 4 (point B in FIG. 5), the energization control means 27 drives the display means 51 and the acoustic means 52 as the notification means 5. A person who uses the equipment is notified of the completion of preheating that the oil in the pan 2 has reached the set temperature, and at the target temperature θc = control temperature = 167 ° C., the operation shifts to a stable temperature control operation and is detected by the temperature sensor 4. The heating means 3 is energized and controlled based on the relationship between the temperature θ and the target temperature θc ((d) in FIG. 5).
[0077]
  Then, when the set temperature is increased to 200 ° C. after the preheating completion notification, the energization control means 27 changes to the target temperature θc = control temperature = 185 ° C. while maintaining the stable temperature control operation as shown in FIG. 6 (FIG. 6). When the temperature θ detected by the temperature sensor 4 ≧ 185 ° C. (= θc) is detected (point B in FIG. 6), the oil in the pan 2 is transferred to the person who drives the display means 51 and uses the device. A preheat completion notification that the set temperature has been reached is performed.
[0078]
  With the above configuration, the oil temperature in the pan 2 is set near the set temperature regardless of the amount of warp at the bottom of the pan and the amount of oil in the pan 2.
Can be stabilized. In addition, when the set temperature is raised after preheating is completed once, when the pan 2 having a flat bottom is used and the amount of oil in the pan 2 is large, the heating means 3 is energized and controlled in a stable temperature control operation. When the heating means 3 is energized and controlled at a relatively high output to heat the oil in the pan 2 in a relatively short time, and when the pan 2 with a warped pan bottom is used or the amount of oil in the pan 2 is small, it is again Since the heating means 3 is energized and controlled by the transient temperature control operation, the oil in the pan 2 is heated while keeping the difference between the temperature θ detected by the temperature sensor 4 and the oil temperature in the pan 2 small. It is possible to prevent the oil temperature in the pan 2 from reaching excessively high when the control temperature is reached.
[0079]
  In Example 2, regarding the shift temperature and the shift time in the transient temperature control operation, the energization control means 27 sets the shift temperature to be smaller and the shift time to be longer as the sori is larger and the oil is smaller. Of the oil temperature in the pan 2 when using a hot pot 2 or when the amount of oil in the pan 2 is large, and shortening the preheating time It is possible to achieve both overshoot suppression.
[0080]
  Further, the pan warp amount detecting means 8 detects the warp amount of the pan bottom of the pan 2 based on the temperature θ detected by the temperature sensor 4, and the liquid amount detecting means 9 is a signal and temperature input from the pan warp amount detecting means 8. Although it is the structure which detects the oil quantity in the pan 2 based on the rising gradient of temperature (theta) detected with the sensor 4, as a structure which detects the curvature amount of the pan bottom or the oil quantity in the pan 2 by another means and method. Similar effects can be obtained.
[0081]
【The invention's effect】
  As described above, claims 1 to4According to the invention described in the above, the liquid in the pan when the preheating is completed even if the heating means is energized and preheated from a state familiar with the room temperature, suppressing the warping of the pan bottom and the amount of liquid in the pan. When the temperature of the liquid is allowed to reach the set temperature quickly while suppressing overshoot and is left as it is after preheating is completed, the temperature fluctuation of the liquid in the pan is suppressed to maintain a constant temperature, and the liquid in the pan is maintained. When the cooked food is put into the pot, the liquid temperature is quickly recovered while suppressing overshoot with high heating power, and even if the control temperature is changed significantly higher after completion of preheating, the pot will be used when the changed control temperature is reached. It is possible to prevent the temperature of the liquid inside from becoming excessively high.
[Brief description of the drawings]
FIG. 1 of the present inventionreferenceExample 1Example 1 and Reference Example 2Block diagram of energization control means of the cooking device in
FIG. 2 of the present inventionreferenceThe figure which shows operation | movement when it preheats by 180 degreeC setting with the cooking pot in Example 1 with the pot which the pot bottom curved.
FIG. 3 of the present inventionreferenceExample 1Example 1 and Reference Example 2The figure which shows operation when setting temperature is changed high after completion of preheating in the pan with the warped pan bottom in the heating cooker in
FIG. 4 shows an embodiment of the present invention.2Block diagram of a cooking device in
FIG. 5 shows the operation when preheating is performed at a setting of 180 ° C. in a flat pan at the bottom of the pan.
FIG. 6 is a diagram showing an operation when the set temperature is changed to high after completion of preheating in a flat pan at the bottom of the pan.
FIG. 7 is a block diagram of a conventional cooking device
[Explanation of symbols]
  2 hot pot
  3 Heating means
  4 Temperature sensor
  6 Input means
  7, 17, 27 Energization control means
  8 Pan warpage detection means
  9 Liquid level detection means

Claims (4)

鍋を加熱する加熱手段と、前記鍋の温度を検知する温度センサと、設定温度を選択する入力手段と、目標温度と前記温度センサの検知温度を比較して前記加熱手段の出力通電制御する通電制御手段とを備え、前記通電制御手段は、前記加熱手段に通電開始すると、前記設定温度に関連付けた制御温度を設定し、記検知温度が前記制御温度に到達するまでは、前記制御温度よりも低い過渡的な前記目標温度を設定し、シフト時間が経過する度に前記目標温度をシフト温度だけ高くし、前記目標温度が前記制御温度に近くなるほど前記シフト温度が小さく、かつ前記シフト時間が長くなるようにしながら記検知温度と前記目標温度との関係に基づき前記検知温度を前記目標温度に近づけるべく前記加熱手段の出力を電制御する過渡温調動作を行い、前記検知温度が前記制御温度に到達した後は、前記目標温度を前記制御温度とする安定温調動作を行い、前記安定温調動作中に前記入力手段より入力する信号に基づき前記設定温度を高く変更すると、変更後の制御温度が所定温度未満のときは前記安定温調動作のままで前記加熱手段の出力を通電制御し、前記変更後の制御温度が前記所定温度以上のときは前記検知温度が前記変更後の制御温度に到達するまでは前記過渡温調動作を再度行い、前記検知温度が前記変更後の制御温度に到達した後は前記安定温調動作に移行するようにした加熱調理器。A heating means for heating the pan, a temperature sensor for detecting the temperature of the pan, an input means for selecting a set temperature, and a target temperature and the detected temperature of the temperature sensor are compared to control the energization of the output of the heating means. and a current control means, the energization control means, the start of energization to the heating means then, set the control temperature associated with the set temperature, until before Symbol detection temperature reaches the control temperature, the control The transitional target temperature lower than the temperature is set, the target temperature is increased by the shift temperature every time the shift time elapses, the shift temperature is decreased as the target temperature becomes closer to the control temperature, and the shift is performed. transient temperature Chodo output that controls conductible of said heating means to characterizing near the detected temperature to the target temperature based on the relationship time the danger known temperature before while allowing longer and the target temperature Was carried out, after the pre-Symbol detection temperature reaches the control temperature, results in stable temperature control operation for the target temperature and the control temperature based on the signal inputted from said input means during said weak constant temperature adjusting operation higher changing the set temperature, the control temperature of the changed when less than the predetermined temperature energization control the output of the heating means remains the stable temperature control operation, the control temperature after the change of more than the predetermined temperature is until the pre-Symbol detection temperature reaches the control temperature of the changed performs the transient temperature control operation again, the weak constant temperature regulating operation after the previous SL detecting temperature reaches the control temperature of the changed time A cooker designed to shift to 通電制御手段は、目標温度が制御温度に近くなるほど加熱手段の出力が小さくなるように電制御する過渡温調動作を行うようにした請求項1に記載の加熱調理器。Energization control means, the heating cooker according to claim 1, the target temperature is the transient temperature control operation outputs that control conductible so small nearer the heating means to the control temperature in line Migihitsuji. 鍋を加熱する加熱手段と、前記鍋の温度を検知する温度センサと、設定温度を選択する入力手段と、前記加熱手段に通電開始した直後に鍋底の反り量を検知する鍋反り量検知手段と、目標温度と前記温度センサの検知温度を比較して前記加熱手段の出力通電制御する通電制御手段とを備え、前記通電制御手段は、前記加熱手段に通電開始すると、前記設定温度に関連付けた制御温度を設定し、記検知温度が前記制御温度に到達するまでは、前記制御温度よりも低い過渡的な前記目標温度を設定し、シフト時間が経過する度に前記目標温度をシフト温度だけ高くし、前記目標温度が前記制御温度に近くなるほど前記シフト温度が小さく、かつ前記シフト時間が長くなるようにしながら記検知温度と前記目標温度との関係に基づき前記検知温度を前記目標温度に近づけるべく前記加熱手段の出力を電制御する過渡温調動作を行い、前記検知温度が前記制御温度に到達した後は、前記目標温度を前記制御温度とする安定温調動作を行い、前記安定温調動作中に前記入力手段より入力する信号に基づき前記設定温度を高く変更すると、前記鍋底の反り量に基づき鍋底が平坦な鍋と検知すると前記安定温調動作のままで前記加熱手段の出力を通電制御し、前記鍋底の反り量に基づき鍋底が反った鍋と検知すると前記検知温度が前記変更後の制御温度に到達するまでは前記過渡温調動作を再度行い、前記検知温度が前記変更後の制御温度に到達した後は前記安定温調動作に移行するようにした加熱調理器。A heating means for heating the pan, a temperature sensor for detecting the temperature of the pan, an input means for selecting a set temperature, and a pan warp amount detecting means for detecting the warp amount of the pan bottom immediately after the heating means is energized. , by comparing the target temperature and the detection temperature of the temperature sensor and a current supply control means for controlling current applied to the output of said heating means, said current control means, the energization start then to the heating means is associated with said set temperature set the control temperature, the before Symbol detection temperature reaches the control temperature, set the transient the target temperature lower than the control temperature, the shift temperature the target temperature whenever the shift time has elapsed only high, the detection based on the relationship of the nearer the target temperature is the controlled temperature shift temperature is small and before while allowing the shift time increases danger known temperature and said target temperature Degrees to perform output transient temperature control operation that controls conductible of said heating means to characterizing close to the target temperature, after prior Symbol detection temperature reaches the control temperature, and the target temperature and the control temperature to perform stable temperature control operation, the high changes the set temperature based on a signal input from said input means during said weak constant temperature adjusting operation, the stable temperature and pan bottom on the basis of the amount of warp of the pan bottom senses a flat pot and energization control the output of the heating means remains adjusting operation, the pan bottom has pan and detects warped based on the amount of warpage of the pan bottom is before dangerous intellectual temperature reaches the control temperature of the changed said transient temperature adjusting operation was carried out again, before after the dangerous intellectual temperature reaches the control temperature of the changed cooking device was Unishi due to migrate to the depreciation of constant temperature adjusting operation. 鍋を加熱する加熱手段と、前記鍋の温度を検知する温度センサと、設定温度を選択する入力手段と、前記加熱手段に通電開始して所定温度に到達するまでに鍋内の液体量を検知する液体量検知手段と、目標温度と前記温度センサの検知温度を比較して前記加熱手段の出力通電制御する通電制御手段とを備え、前記通電制御手段は、前記加熱手段に通電開始すると、前記設定温度に関連付けた制御温度を設定し、記検知温度が前記制御温度に到達するまでは、前記制御温度よりも低い過渡的な前記目標温度を設定し、シフト時間が経過する度に前記目標温度をシフト温度だけ高くし、前記目標温度が前記制御温度に近くなるほど前記シフト温度が小さく、かつ前記シフト時間が長くなるようにしながら記検知温度と前記目標温度との関係に基づき前記検知温度を前記目標温度に近づけるべく前記加熱手段の出力を電制御する過渡温調動作を行い、前記検知温度が前記制御温度に到達した後は、前記目標温度を前記制御温度とする安定温調動作を行い、前記安定温調動作中に前記入力手段より入力する信号に基づき前記設定温度を高く変更すると、前記鍋内の液体量に基づき鍋内の液体量が多いと検知すると前記安定温調動作のままで前記加熱手段の出力を通電制御し、前記鍋内の液体量に基づき鍋内の液体が少ないと検知すると前記検知温度が前記変更後の制御温度に到達するまでは前記過渡温調動作を再度行い、前記温度センサの検知温度が前記変更後の制御温度に到達した後は前記安定温調動作に移行するようにした加熱調理器。A heating means for heating the pot, a temperature sensor for detecting the temperature of the pot, an input means for selecting a set temperature, and detecting the amount of liquid in the pot before starting to energize the heating means and reaching a predetermined temperature liquid amount detecting means for, by comparing the target temperature and the detection temperature of the temperature sensor and a current supply control means for controlling current applied to the output of said heating means, said current control means, the energization start then to the heating means, set the control temperature associated with the set temperature, until before Symbol detection temperature reaches the control temperature, set the transient the target temperature lower than the control temperature, the time the shift time has elapsed the higher the target temperature shifted the temperature, the target temperature is the controlled temperature nearer the shift temperature is small and the relationship of the front while allowing the shift time becomes long and dangerous knowledge temperature and the target temperature The detection temperature is performed transient temperature control operation that controls conductible the output of said heating means to characterizing close to the target temperature, after prior Symbol detection temperature reaches the control temperature based, the said target temperature When performing a stable temperature adjustment operation as a control temperature and changing the set temperature high based on a signal input from the input means during the stable temperature adjustment operation, the amount of liquid in the pan is large based on the amount of liquid in the pan wherein the output of the heating means controls energization control dangerous intellectual temperature before the liquid quantity detects less in the pot based on the liquid amount after the change in the inner bowl remains the stable temperature control operation to detect and until it reaches the temperature performs the transient temperature control operation again, the cooker was Unishi due to migrate to the weaker constant temperature adjusting operation after the detection temperature of the temperature sensor reaches the control temperature of the changed.
JP2001169229A 2001-06-05 2001-06-05 Cooker Expired - Fee Related JP4792663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001169229A JP4792663B2 (en) 2001-06-05 2001-06-05 Cooker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001169229A JP4792663B2 (en) 2001-06-05 2001-06-05 Cooker

Publications (2)

Publication Number Publication Date
JP2002367765A JP2002367765A (en) 2002-12-20
JP4792663B2 true JP4792663B2 (en) 2011-10-12

Family

ID=19011330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001169229A Expired - Fee Related JP4792663B2 (en) 2001-06-05 2001-06-05 Cooker

Country Status (1)

Country Link
JP (1) JP4792663B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5012164B2 (en) * 2007-04-19 2012-08-29 パナソニック株式会社 Induction heating cooker
JP5313175B2 (en) 2008-02-19 2013-10-09 パナソニック株式会社 Induction heating cooker
JP5320810B2 (en) * 2008-05-13 2013-10-23 パナソニック株式会社 Electric pressure cooker
JP5111468B2 (en) * 2009-08-31 2013-01-09 三菱電機株式会社 Induction heating cooker
JP5247846B2 (en) * 2011-03-28 2013-07-24 三洋電機株式会社 Cooker
JP5795931B2 (en) * 2011-10-07 2015-10-14 日立アプライアンス株式会社 Induction heating cooker

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2641436B2 (en) * 1987-01-09 1997-08-13 松下電器産業株式会社 High frequency heating equipment
JPH0210414A (en) * 1988-06-29 1990-01-16 Toshiba Corp Temperature controller
JP2721605B2 (en) * 1991-09-26 1998-03-04 シャープ株式会社 Cooking device
JP3228151B2 (en) * 1996-10-22 2001-11-12 松下電器産業株式会社 Induction heating cooker
JPH11317285A (en) * 1998-05-01 1999-11-16 Chubu Corporation:Kk Temperature controlling method of induction heating cooker

Also Published As

Publication number Publication date
JP2002367765A (en) 2002-12-20

Similar Documents

Publication Publication Date Title
WO2015159923A1 (en) Cooker
JP4910667B2 (en) Cooker
CN106895451B (en) Method for operating an induction hob
JP2007329057A (en) Cooking device
JP4792663B2 (en) Cooker
CN107949087B (en) Power control method and power control device of electromagnetic heating device and electromagnetic oven
JP2010267433A (en) Electromagnetic cooker
JP4973577B2 (en) Cooker
JP4852797B2 (en) Cooker
JP2009043587A (en) Induction heating cooker
JP2002280157A (en) Induction heating cooker
JP3997845B2 (en) Cooker
JP3834753B2 (en) Induction heating cooker
JP3978650B2 (en) Induction heating cooker
JP5979990B2 (en) Induction heating cooker
JP4496920B2 (en) Cooker
JP5285891B2 (en) Induction heating cooker
JP2008060088A5 (en)
JP3671812B2 (en) Induction heating cooker
JP5855198B2 (en) Cooking device
JP5579101B2 (en) Induction heating cooker
JP2001167866A (en) Induction heating cooker
JP5865010B2 (en) Induction heating cooker
JP6246094B2 (en) Induction heating cooker
JP2009238686A (en) Induction heating cooker

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080604

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080714

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110711

R151 Written notification of patent or utility model registration

Ref document number: 4792663

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees