JP4848061B2 - Capacitor - Google Patents

Capacitor Download PDF

Info

Publication number
JP4848061B2
JP4848061B2 JP2005090552A JP2005090552A JP4848061B2 JP 4848061 B2 JP4848061 B2 JP 4848061B2 JP 2005090552 A JP2005090552 A JP 2005090552A JP 2005090552 A JP2005090552 A JP 2005090552A JP 4848061 B2 JP4848061 B2 JP 4848061B2
Authority
JP
Japan
Prior art keywords
insulator
solder
capacitor
base ring
case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005090552A
Other languages
Japanese (ja)
Other versions
JP2006278372A (en
Inventor
重義 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Capacitor Ltd
Original Assignee
Nichicon Capacitor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Capacitor Ltd filed Critical Nichicon Capacitor Ltd
Priority to JP2005090552A priority Critical patent/JP4848061B2/en
Publication of JP2006278372A publication Critical patent/JP2006278372A/en
Application granted granted Critical
Publication of JP4848061B2 publication Critical patent/JP4848061B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ceramic Capacitors (AREA)

Description

本発明は、碍子を端子とする金属ケース入りコンデンサに関するものであり、特に環境対応および信頼性改善を図ったコンデンサに関するものである。   The present invention relates to a capacitor with a metal case having an insulator as a terminal, and more particularly to a capacitor that is environmentally friendly and has improved reliability.

従来、電力用、各種産業機器用、および車輌用等の電気回路に用いられている金属ケース入りコンデンサは、引出導体端子に碍子を用いている。
上記碍子は、磁器碍子のトップ金具との接合部、および磁器碍子のベースリングとの接合部をはんだ付けした碍子を、上記金属ケースにはんだ付け接合して密閉構造とし、内部の気密性を維持し、絶縁油またはガス漏れを防止している。
上記の各接合部のはんだ付けは、Sn−Pb合金を主体としたはんだを用いている(例えば特許文献1参照)。
実開昭52−58445号公報
2. Description of the Related Art Conventionally, a metal cased capacitor used in electric circuits for electric power, various industrial equipment, vehicles, and the like uses an insulator as a lead conductor terminal.
The above insulator is a sealed structure by soldering and joining the insulator with the top joint of the porcelain insulator and the joint with the base ring of the porcelain insulator to the above metal case to maintain the internal airtightness. Insulating oil or gas leakage is prevented.
Soldering of each of the above joints uses a solder mainly composed of a Sn—Pb alloy (see, for example, Patent Document 1).
Japanese Utility Model Publication No. 52-58445

具体的に、金属ケース入りコンデンサ用引出導体端子の碍子について説明する。
碍子は、磁器碍子を絶縁体にして、上部に導体接続用のトップ金具、および下部に金属ケース接合用のベースリングをSn−Pb系はんだ(例えばSn50wt%−Pbwt50%、その他微量の不純物含有)にてはんだ付けを行う。
上記磁器碍子は、はんだ付け部にAgを焼き付け、Cuメッキを予め施しておく。また、トップ金具とベースリングは、鋼または黄銅を加工して表面にCuメッキした後、Sn−Pb系メッキ(例えば、Pb10wt%)を施しておく。
そして、コンデンサ素子体を収納した金属ケース上蓋の碍子孔に、上記碍子のベースリングを接合し、その接合部を上記のSn−Pb系はんだにてはんだ付けを行う。
その後、絶縁油を真空含浸して、上蓋に設けられた封印栓を、上記のSn−Pb系はんだにて、はんだ付けして密閉し、コンデンサを作製する。
Specifically, the insulator of the lead conductor terminal for a capacitor with a metal case will be described.
Insulators are made of porcelain insulators, top metal fittings for conductor connection at the top, and base rings for metal case joining at the bottom, Sn-Pb solder (for example, Sn50wt% -Pbwt50%, other trace impurities) Solder with.
In the above porcelain insulator, Ag is burned onto a soldered portion and Cu plating is applied in advance. Further, the top metal fitting and the base ring are subjected to Sn—Pb plating (for example, Pb 10 wt%) after processing steel or brass and Cu plating on the surface.
And the base ring of the said insulator is joined to the insulator hole of the metal case upper cover which accommodated the capacitor | condenser element body, and the junction part is soldered with said Sn-Pb type solder.
Thereafter, the insulating oil is vacuum-impregnated, and the sealing plug provided on the upper lid is soldered and sealed with the above-described Sn—Pb solder to produce a capacitor.

しかしながら、従来用いられているはんだは、主にPb37〜60wt%を含有するSn−Pb系はんだで、環境を汚染する有害物質のPb(鉛)を多量に含んでおり、環境対策としてPbフリー化(Pbを含まないはんだで、不純物として0.1wt%以下)を図る必要がある。
これに代わるものとして、Sn−Ag−Cu系、Sn−Ag系、Sn−Zn系等のはんだが考えられるが、耐久性および内圧性能に劣るという問題があった。
上記のような問題があったため、環境対策が可能であり、かつ耐久性の改善もできるはんだを使用した碍子を端子とするコンデンサが望まれていた。
However, the solder that has been used in the past is mainly Sn-Pb solder containing Pb37-60wt%, and contains a large amount of Pb (lead), a harmful substance that pollutes the environment. (Pb-free solder, 0.1 wt% or less as an impurity) must be achieved.
As an alternative, Sn-Ag-Cu-based, Sn-Ag-based, Sn-Zn-based solders and the like can be considered, but there is a problem that durability and internal pressure performance are inferior.
Because of the above-described problems, a capacitor having an insulator as a terminal using a solder that can take environmental measures and can improve durability has been desired.

本発明は、上記課題を解決するものであり、金属ケースと、前記金属ケースに収納されたコンデンサ素子と、前記コンデンサ素子に接続される碍子とを備えたコンデンサにおいて、前記碍子は、前記コンデンサ素子のリード線と接続されるトップ金具と、前記金属ケースとはんだ接続されるベースリングと、前記トップ金具および前記ベースリングとの接合部でそれぞれ、はんだ接合される磁器碍子とを有し、前記磁器碍子のうち前記トップ金具および前記ベースリングとそれぞれ、はんだ接合されるメッキ部がCuメッキされており、前記金属ケースの材質が亜鉛メッキ鋼、ブリキ、または黄銅であり、前記トップ金具および前記ベースリングは、鋼または黄銅にCuメッキした後、Snメッキ、またはSn−Cu系メッキを施したものからなり、前記トップ金具と前記磁器碍子との接合部、前記ベースリングと前記磁器碍子との接合部および前記ベースリングと前記金属ケースとの接合部が、Cu組成が1.0〜2.5wt%であるSn−Cu系はんだではんだ接合されることを特徴とするコンデンサである。 The present invention solves the above problem, and in a capacitor comprising a metal case, a capacitor element housed in the metal case, and an insulator connected to the capacitor element, the insulator is the capacitor element A top metal fitting connected to the lead wire, a base ring solder-connected to the metal case, and a porcelain insulator soldered to each of the joints between the top metal fitting and the base ring. The plated parts to be soldered to the top metal fitting and the base ring of the insulator are plated with Cu, and the material of the metal case is galvanized steel, tinplate, or brass, and the top metal fitting and the base ring Is the steel or brass plated with Cu and then Sn plated or Sn-Cu plated? Becomes, the junction between the top bracket and the ceramic insulator, the junction of the base ring and the joint portion and the base ring and the ceramic insulator and the metal case, Cu composition 1.0 ~2.5wt% It is a capacitor | condenser characterized by being soldered by the Sn-Cu type solder which is.

本発明の碍子を端子とする金属ケース入りコンデンサは、磁器碍子とトップ金具の接合部、ベースリングとの接合部、および碍子の金属ケース上蓋への取付接合部を、PbフリーはんだであるCu0.7〜2.5wt%のSn−Cu系はんだではんだ付けしている。
また、トップ金具とベースリングのメッキとして、SnまたはSn−Cu系メッキを施している。よって、環境汚染物質のPbを含まず、耐久性に優れ、かつ、はんだ付け性が良好なコンデンサを提供することができる。
The capacitor in a metal case using the insulator of the present invention as a terminal includes a joint portion of the porcelain insulator and the top metal fitting, a joint portion of the base ring, and an attachment joint portion of the insulator to the upper cover of the metal case with Cu0. It is soldered with 7 to 2.5 wt% of Sn—Cu solder.
Further, Sn or Sn-Cu plating is applied as plating for the top metal fitting and the base ring. Therefore, it is possible to provide a capacitor that does not include the environmental pollutant Pb, has excellent durability, and good solderability.

碍子を端子とする金属ケース入りコンデンサにおいて、碍子の磁器碍子とトップ金具、ベースリングとの接合部、および碍子の金属ケース上蓋への取付接合部を、Cu0.7〜2.5wt%のSn−Cu系はんだではんだ付けし密閉する。
上記の磁器碍子は、トップ金具、ベースリングとのはんだ付け部にAgを焼き付け、Cuメッキを予め施しておく。
また、上記のトップ金具、ベースリングは、鋼板または黄銅を加工し表面にCuメッキした後、SnまたはSn−Cu系メッキを施す。磁器碍子にトップ金具、ベースリングを組合せて、Cu0.7〜2.5wt%のSn−Cu系はんだではんだ付けし碍子を作製する。
In a capacitor with a metal case that uses an insulator as a terminal, a joint portion between the insulator's porcelain insulator and the top metal fitting, the base ring, and an attachment joint portion of the insulator to the metal case upper lid are Sn 0.7-2.5 wt% Cu— Solder with Cu solder and seal.
In the above porcelain insulator, Ag is baked on a soldered portion with a top metal fitting and a base ring, and Cu plating is applied in advance.
Further, the top metal fitting and the base ring are subjected to Sn or Sn—Cu plating after processing a steel plate or brass and plating the surface with Cu. A top metal fitting and a base ring are combined with a porcelain insulator and soldered with Sn-Cu solder of 0.7 to 2.5 wt% Cu to produce an insulator.

上記金属ケースには、0.8〜3.2mm厚さの亜鉛メッキ鋼板、0.3〜0.8mm厚さのブリキ板または黄銅板が用いられる。
亜鉛メッキ鋼板は、上蓋、側面、底蓋を裁断し、側面と底蓋を組み合わせて接合部を溶接する。このケースにコンデンサ素子単体または複数の素子集合体を挿入し、上蓋を組合せ溶接したあと、上蓋の碍子孔に上記碍子を組合せ、ベースリングと上蓋をCu0.7〜2.5wt%のSn−Cu系はんだではんだ付けする。
また、ブリキ板または黄銅板は、上蓋、ケース側面、底蓋に、切断・加工し、上蓋には端子を取付ける。このケース側面と底蓋とを組合せ、巻締めを行い、巻締め部とケース側面を接合したハゼ部(つなぎ部)をはんだ付けする。
このケースにコンデンサ素子単体または複数の素子集合体を挿入し、上蓋を組合せ、巻締めを行い、巻締め部をCu0.7〜2.5%のSn−Cu系はんだではんだ付けする。
ブリキ板または黄銅管のケース接合部に用いるはんだは、Cu1.0〜2.5wt%のSn−Cu系はんだ)である。
上記のように組立てたコンデンサを、真空乾燥し、絶縁油または絶縁ガス充填して封印する。
A galvanized steel sheet having a thickness of 0.8 to 3.2 mm, a tin plate or a brass plate having a thickness of 0.3 to 0.8 mm is used for the metal case.
In the galvanized steel sheet, the top cover, the side face, and the bottom cover are cut, and the joint is welded by combining the side face and the bottom cover. A capacitor element alone or a plurality of element assemblies are inserted into this case, and the upper lid is combined and welded. Then, the insulator is combined with the insulator hole of the upper lid, and the base ring and the upper lid are Sn-Cu of 0.7 to 2.5 wt% Cu. Solder with a system solder.
The tin plate or brass plate is cut and processed on the top lid, the case side surface, and the bottom lid, and a terminal is attached to the top lid. The case side surface and the bottom lid are combined and tightened, and a goby portion (joint portion) joining the wound portion and the case side surface is soldered.
A single capacitor element or a plurality of element aggregates are inserted into this case, the upper lid is combined, tightened, and the tightened portion is soldered with Sn-Cu solder of 0.7 to 2.5% Cu.
The solder used for the case joint portion of the tin plate or brass tube is Cu 1.0 to 2.5 wt% Sn-Cu solder).
The capacitor assembled as described above is vacuum-dried, filled with insulating oil or insulating gas, and sealed.

[実施例1−〜1−6、比較例1−7、1−8、参考例1−1]コンデンサの温度サイクル試験
本発明の実施例を図1、図2において説明する。図1(a)は碍子組立前の部品であり、磁器碍子1、トップ金具2、およびベースリング3を示す。
磁器碍子1は、トップ金具2、ベースリング3とのはんだ付け部にAgを焼き付け、Cuメッキ4,5を予め施しておく。
トップ金具2は、黄銅を加工し、表面にCuメッキ(厚さ3〜8μm)した後、Sn−Cu系メッキ(厚さ7〜15μm)を施す。上記トップ金具2には予め、リード線6を接続しておく。
また、ベースリング3は、鋼板を加工し表面にCuメッキした後、Sn−Cu系(Cu0.5〜3wt%)のメッキを施す。
碍子は、磁器碍子1のメッキ部4にトップ金具2を、また、磁器碍子1のメッキ部5にベースリング3を組合せ、それぞれの接合部8、9をはんだごてにてはんだ付けし、図1(b)の碍子7を組み立てた。
はんだ付けにおいては適正なフラックスを用いた(以下同様)。なお、はんだは表1に示す、Sn−Cu系のPbフリーを使用した(以下同様)。
[Examples 1-3 to 1-6, Comparative Examples 1-7 , 1-8 , Reference Example 1-1 ] Temperature cycle test of capacitors Examples of the present invention will be described with reference to FIGS. FIG. 1A shows parts before assembling the insulator, and shows a porcelain insulator 1, a top metal fitting 2, and a base ring 3.
In the porcelain insulator 1, Ag is baked on a soldered portion between the top metal fitting 2 and the base ring 3 and Cu platings 4 and 5 are applied in advance.
The top metal fitting 2 is made of brass and Cu-plated (thickness 3 to 8 μm) on the surface, and then Sn-Cu-based plating (thickness 7 to 15 μm) is applied. A lead wire 6 is connected to the top metal fitting 2 in advance.
The base ring 3 is plated with Sn—Cu (Cu 0.5 to 3 wt%) after processing the steel plate and plating the surface with Cu.
The insulator combines the top metal fitting 2 with the plated portion 4 of the porcelain insulator 1 and the base ring 3 with the plated portion 5 of the porcelain insulator 1, and solders the joint portions 8 and 9 with a soldering iron. 1 (b) insulator 7 was assembled.
In soldering, an appropriate flux was used (the same applies hereinafter). The solder used was Sn-Cu Pb-free as shown in Table 1 (the same applies hereinafter).

コンデンサの金属ケースは、図2に示すように厚さ1mmの亜鉛メッキ鋼板を上蓋11、ケース側面12、および底蓋13に切断、加工する。上蓋には碍子孔および封印孔(いずれも図示せず)を設ける。
ケース側面12と底蓋13を組合せ、溶接した金属ケースに、コンデンサ素子単体または複数の素子集合体(図示せず)を挿入し、リード線6を接続した後、上蓋11をケース側面12に組合せて溶接する(溶接部14)。
その後、上記のとおり加工した碍子7を上蓋11の碍子孔に嵌め込み、はんだごてまたはバーナーにてはんだ付けして、コンデンサを組み立てる。また、上蓋11には油の封印栓15をはんだ付けする。
組立てたコンデンサは、真空乾燥した後絶縁油を含浸して、大気圧下で封印栓15を封印し密封して図2のコンデンサを作製した。
As shown in FIG. 2, the capacitor metal case is obtained by cutting and processing a galvanized steel sheet having a thickness of 1 mm into a top lid 11, a case side surface 12, and a bottom lid 13. An insulator hole and a sealing hole (both not shown) are provided in the upper lid.
The case side surface 12 and the bottom lid 13 are combined, and a capacitor element alone or a plurality of element aggregates (not shown) are inserted into a welded metal case, the lead wire 6 is connected, and then the upper lid 11 is combined with the case side surface 12 And welding (welded portion 14).
Thereafter, the insulator 7 processed as described above is fitted into the insulator hole of the upper lid 11 and soldered with a soldering iron or a burner to assemble the capacitor. Further, an oil sealing plug 15 is soldered to the upper lid 11.
The assembled capacitor was vacuum dried and then impregnated with insulating oil, and the sealing plug 15 was sealed and sealed under atmospheric pressure to produce the capacitor of FIG.

ここで用いたSn−Cu系はんだは、表1に示すCuの組成が0.5、0.7、1.0、1.5、2.0、2.5、および3.0wt%の7種類である(比較例1−8、参考例1−1、実施例1−〜1−6、比較例1−7)。
上記実施例に用いたコンデンサケースは、幅385mm、奥行105mm、高さ330mmのサイズである。
また、碍子は、磁器碍子の外形76mm、ケース上蓋からトップ金具までの高さが136mm、ベースリング外形65mmのものを用いた。なお、試料数は各々、n=3とした。
The Sn—Cu based solder used here has a Cu composition of 0.5, 0.7, 1.0, 1.5, 2.0, 2.5, and 3.0 wt% shown in Table 1. (Comparative Example 1-8, Reference Example 1-1, Examples 1-3 to 1-6, Comparative Example 1-7).
The capacitor case used in the above example has a width of 385 mm, a depth of 105 mm, and a height of 330 mm.
The insulator used was a porcelain insulator having an outer diameter of 76 mm, a height from the case top cover to the top metal fitting of 136 mm, and a base ring outer diameter of 65 mm. The number of samples was n = 3.

碍子のはんだ付け部の耐久性評価として、温度サイクル試験(−20℃/2h〜+90℃/2h、2回/日)を500回まで行い、はんだ付け部に膨張収縮の歪み応力が加わり、はんだにクラックが入り油洩れするかどうかを確認し、表1の結果を得た。   In order to evaluate the durability of the soldering part of the insulator, a temperature cycle test (−20 ° C./2h to + 90 ° C./2h, 2 times / day) is conducted up to 500 times. It was confirmed whether or not cracks occurred and oil leaked, and the results shown in Table 1 were obtained.

(比較例1−1〜1−6)コンデンサの温度サイクル試験
比較例として、表1に示すPbフリーはんだに、Sn−Ag−Cu系としてSn−3Ag−0.5Cu、Sn−1Ag−0.7Cu、Sn−0.3Ag−0.8Cuを、Sn−Ag系としてSn−3.5Ag、Sn−0.3Agを、Sn−Zn系としてSn−10Znを用い、上記実施例と同様に金属ケース入りコンデンサを作製し、上記温度サイクル試験(−20℃/2h〜+90℃/2h、2回/日)を500回まで行い、比較した。しかし、Sn−10Znは、はんだの流れ性が悪く、はんだ付け性に劣るため、作製を中止した。
(Comparative Examples 1-1 to 1-6) Temperature cycle test of capacitor As a comparative example, Sn-3Ag-0.5Cu, Sn-1Ag-0. 7Cu, Sn-0.3Ag-0.8Cu, Sn-3.5Ag as Sn-Ag system, Sn-0.3Ag as Sn-Zn system, Sn-10Zn as Sn-Zn system. An input capacitor was prepared, and the temperature cycle test (-20 ° C / 2h to + 90 ° C / 2h, 2 times / day) was performed up to 500 times for comparison. However, Sn-10Zn was not produced because of poor solder flowability and poor solderability.

(従来例1)コンデンサの温度サイクル試験
更に、従来のSn−Pb系はんだとして、Sn−50Pbを用い、上記実施例と同様に金属ケース入りコンデンサを作製し、上記温度サイクル試験(−20℃/2h〜+90℃/2h、2回/日)を500回まで行い、比較した。
(Conventional Example 1) Capacitor Temperature Cycle Test Further, using Sn-50Pb as a conventional Sn-Pb solder, a metal cased capacitor was prepared in the same manner as in the above example, and the temperature cycle test (-20 ° C / 2 h to + 90 ° C./2 h, 2 times / day) were performed up to 500 times for comparison.

表1(左欄)の温度サイクル試験より、従来例1によるSn−50Pbはんだは500回の耐久性があるが、Sn−Ag−Cu系、Sn−Ag系はんだは200〜320回で、いずれもトップ金具取付のはんだ部にクラックが入り、油洩れが発生し、耐久性が劣る。
一方、Sn−Cu系はんだにおいては、Cuが0.5wt%では405回、0.7wt%では440回まで油洩れせず、また1.0wt%以上では500回でも油洩れしていない。したがって、Cuが0.5〜3.0wt%では、比較例のはんだより優れた耐久性を示している。
ここで、Sn−Cu系はんだの融点は図3に示すとおり、Cuが0.7wt%(共晶)より大きくなると、液相温度が上昇し、3.0wt%では335℃となり、はんだ付け時のはんだの流れ性が劣り、また、引けすが発生するため、作業性も考慮すると、Cu2.5wt%が上限となる。
From the temperature cycle test shown in Table 1 (left column), Sn-50Pb solder according to Conventional Example 1 has a durability of 500 times, but Sn-Ag-Cu and Sn-Ag solders are 200 to 320 times. However, the soldering part of the top fitting is cracked, oil leakage occurs, and the durability is poor.
On the other hand, in the Sn-Cu solder , oil does not leak up to 405 times when Cu is 0.5 wt%, 440 times when Cu is 0.7 wt%, and does not leak even 500 times when 1.0 wt% or more. Therefore, when Cu is 0.5 to 3.0 wt%, durability superior to the solder of the comparative example is shown.
Here, as shown in FIG. 3, the melting point of the Sn—Cu solder increases as the Cu temperature exceeds 0.7 wt% (eutectic), and the liquidus temperature rises to 335 ° C. at 3.0 wt%. Since the solder flowability is inferior and shrinkage occurs, considering the workability, Cu 2.5 wt% is the upper limit.

Figure 0004848061
Figure 0004848061

フィールドでの耐久性と温度サイクル試験の加速性との関係は、次のCoffin−Manson式[数1]で推定できる。   The relationship between the durability in the field and the acceleration performance of the temperature cycle test can be estimated by the following Coffin-Manson equation [Equation 1].

Figure 0004848061
Figure 0004848061

ここで、f1=1[回/日]、f2=2[回/日]、ΔT1=25[K]、ΔT2=110[K]、T1max=343[K]、T2max=363[K]、ΔE=1.97×10−20[J]、K=1.38×10−23JK−1、m=1/3、n=2を代入すると、α≒19.3となる。
そして、耐用年数={(試験サイクル数)×α}/365の関係より、耐用年数10年は189回に相当する。
したがって、本発明のCu0.5wt%(比較例1−)の温度サイクル試験405回であっても、耐久性は20年以上の耐用年数に相当し、実用上充分な性能であることが分かる。
Here, f1 = 1 [times / day], f2 = 2 [times / day], ΔT1 = 25 [K], ΔT2 = 110 [K], T1max = 343 [K], T2max = 363 [K], ΔE = 1.97 × 10 −20 [J], K = 1.38 × 10 −23 JK −1 , m = 1/3, and n = 2, α≈19.3.
From the relationship of useful life = {(number of test cycles) × α} / 365, the useful life of 10 years corresponds to 189 times.
Therefore, even when the temperature cycle test of Cu 0.5 wt% ( Comparative Example 1-8 ) of the present invention is performed 405 times, the durability corresponds to a service life of 20 years or more, and it is understood that the performance is practically sufficient. .

[実施例2−2〜2−6、比較例2−7、2−8、参考例2−1]空ケースの水圧試験
次に、上記実施例のコンデンサにおいて、コンデンサ素子単体または複数の素子集合体を入れないケースに、実施例と同様に碍子を取り付けた空ケースを作製した。Sn−Cu系はんだも表1と同じものを使用した。
コンデンサケースの内圧性能を評価するために、上記空ケースを用い、封印栓より水による加圧を行いケースが破壊する圧力の試験(水圧試験と称す)を行い、表1の結果を得た。
[Examples 2-2 to 2-6, Comparative Examples 2-7 and 2-8 , Reference Example 2-1 ] Water Pressure Test of Empty Case Next, in the capacitor of the above example, a capacitor element alone or a plurality of element sets An empty case in which an insulator was attached to a case that did not contain a body was prepared in the same manner as in the example. The same Sn-Cu solder was used as in Table 1.
In order to evaluate the internal pressure performance of the capacitor case, the above-mentioned empty case was used, a pressure test (referred to as a water pressure test) at which the case was broken by pressurizing with water from a sealing plug, and the results shown in Table 1 were obtained.

(比較例2−1〜2−6)空ケースの水圧試験
比較例1−1〜1−6と同様の表1に示すPbフリーはんだを用い、上記実施例と同様に空ケースを作製し、上記の水圧試験を行い、表1の結果を得た。
(Comparative Examples 2-1 to 2-6) Water pressure test of empty case
Using the same Pb-free solder as shown in Table 1 as in Comparative Examples 1-1 to 1-6, an empty case was prepared in the same manner as in the above example, the above-described hydraulic pressure test was performed, and the results in Table 1 were obtained.

(従来例2)空ケースの水圧試験
更に、従来のSn−Pb系はんだとしてSn−50Pbを用い、上記実施例と同様の空ケースを作製し、上記の水圧試験を行い、表1の結果を得た。
水圧試験による破壊箇所はすべて、ケースの膨張による、ケース上蓋に取り付ける碍子のベースリングとのはんだ付け部で、はんだの剥離またはクラックによるものであった。
表1(右欄)の内圧は、従来例2によるSn−60Pbはんだは1.3〜1.8MPaに対し、Sn−Ag−Cu系、Sn−Ag系は0.5〜0.8MPaで約1/2と低い。
一方、Sn−Cu系においては、Cuが0.5wt%では0.7〜1.0MPaと従来のはんだより低いが、Cuが0.7wt%以上では1.3〜2.5MPaを有し、従来のはんだと同等以上の優れた性能がある。
(Conventional example 2) Water pressure test of empty case Further, using Sn-50Pb as a conventional Sn-Pb solder, an empty case similar to the above example was prepared, the above water pressure test was performed, and the results in Table 1 were obtained. Obtained.
All breakage points due to the water pressure test were due to solder peeling or cracks at the soldered part of the base ring of the insulator attached to the case top cover due to the expansion of the case.
The internal pressure in Table 1 (right column) is about 1.3 to 1.8 MPa for Sn-60Pb solder according to Conventional Example 2, whereas 0.5 to 0.8 MPa for Sn-Ag-Cu and Sn-Ag systems. It is as low as 1/2.
On the other hand, in the Sn-Cu system, when Cu is 0.5 wt%, it is 0.7 to 1.0 MPa, which is lower than the conventional solder, but when Cu is 0.7 wt% or more, it has 1.3 to 2.5 MPa, Excellent performance equivalent to or better than conventional solder.

上記したとおり、Sn−Cu系はんだは、Pbフリーはんだとして優れ、従来のSn−Pb系はんだと同等以上の性能があり、代替使用できる。耐久性能、水圧試験、およびはんだ付け性より、Cuは0.7〜2.5wt%が優れている。
Sn−Cu系はんだは、Pbフリーはんだとして優れ、Cu組成が0.7〜2.5wt%のものを用いると、はんだ付け性が良好で、従来のはんだと同等の耐久性、および内圧性能を有し、有害物質のPbを用いないPbフリーはんだ化により、地球環境の改善を図ることができる。
なお、このSn−Cu系はんだの不純物としては、Sb、Bi、Zn、Pb、Fe等があるが、いずれも0.1wt%以下である。
As described above, Sn—Cu solder is excellent as Pb-free solder, has performance equivalent to or better than conventional Sn—Pb solder, and can be used as an alternative. From the durability performance, the water pressure test, and the solderability, Cu is preferably 0.7 to 2.5 wt%.
Sn-Cu solder is excellent as a Pb-free solder. When a Cu composition having a Cu composition of 0.7 to 2.5 wt% is used, the solderability is good, and durability and internal pressure performance equivalent to those of conventional solders are achieved. It is possible to improve the global environment by using Pb-free solder that does not use Pb as a harmful substance.
In addition, although there exist Sb, Bi, Zn, Pb, Fe etc. as an impurity of this Sn-Cu type solder, all are 0.1 wt% or less.

また、金属ケース材料としてブリキまたは黄銅板を用いた金属ケースに、上記の碍子をはんだ付けした場合も、上記の実施例と同様の効果を得た。この金属ケースの製缶は、PbフリーはんだのSn−Cu系(Cu1.0〜2.5wt%)によるものである。
上記コンデンサに使用したコンデンサ素子は、金属化フィルム、若しくは金属化フィルムとプラスチックフィルムを巻回するか、または、プラスチックフィルムおよび/または絶縁紙を誘電体として電極箔と重ね合わせて巻回したものである。
また、実施例の油含浸ではなく、気体(ガス)でも同様の効果がある。さらに、碍子の個数は、コンデンサの設計により、1個または複数個の場合がある。
また、磁器碍子のトップ金具、ベースリング、および封印後のメッキは、Cuメッキした後、SnメッキまたはSn―Cu系メッキのいずれとしてもよい。
Further, when the above insulator was soldered to a metal case using a tin plate or a brass plate as the metal case material, the same effect as in the above example was obtained. This metal case can is made of Pb-free solder Sn—Cu (Cu 1.0 to 2.5 wt% ).
The capacitor element used for the above capacitor is a metallized film, or a metallized film and a plastic film wound, or a plastic film and / or insulating paper wound as a dielectric layer on an electrode foil. is there.
Further, the same effect can be obtained by gas (gas) instead of the oil impregnation of the embodiment. Furthermore, the number of insulators may be one or more depending on the design of the capacitor.
Further, the top metal fitting of the porcelain insulator, the base ring, and the plating after sealing may be any of Sn plating or Sn—Cu plating after Cu plating.

本発明の実施例による碍子を説明する図であり、(a)は碍子の組立図、(b)は組立後の碍子の図である。It is a figure explaining the insulator by the Example of this invention, (a) is an assembly drawing of an insulator, (b) is a figure of the insulator after an assembly. 図1の碍子を取り付けた金属ケース入コンデンサの完成図である。It is a completion figure of the capacitor | condenser with a metal case which attached the insulator of FIG. Sn−Cu系はんだにおけるCu組成と融点との関係を表す図である。It is a figure showing the relationship between Cu composition and melting | fusing point in Sn-Cu type solder.

符号の説明Explanation of symbols

1 磁器碍子
2 トップ金具
3 ベースリング
4、5 磁器表面メッキ部
6 リード線
7 碍子
8、9、10 はんだ付け部
11 上蓋
12 ケース側面
13 底蓋
14 溶接部
15 封印栓
16 金属ケース入りコンデンサ
DESCRIPTION OF SYMBOLS 1 Porcelain insulator 2 Top metal fitting 3 Base ring 4, 5 Porcelain surface plating part 6 Lead wire 7 Insulator 8, 9, 10 Soldering part 11 Top lid 12 Case side surface 13 Bottom lid 14 Welding part 15 Seal plug 16 Capacitor with metal case

Claims (1)

金属ケースと、前記金属ケースに収納されたコンデンサ素子と、前記コンデンサ素子に接続される碍子とを備えたコンデンサにおいて、
前記碍子は、前記コンデンサ素子のリード線と接続されるトップ金具と、前記金属ケースとはんだ接続されるベースリングと、前記トップ金具および前記ベースリングとの接合部でそれぞれ、はんだ接合される磁器碍子とを有し、
前記磁器碍子のうち前記トップ金具および前記ベースリングとそれぞれ、はんだ接合されるメッキ部がCuメッキされており、
前記金属ケースの材質が亜鉛メッキ鋼、ブリキ、または黄銅であり、
前記トップ金具および前記ベースリングは、鋼または黄銅にCuメッキした後、Snメッキ、またはSn−Cu系メッキを施したものからなり、
前記トップ金具と前記磁器碍子との接合部、前記ベースリングと前記磁器碍子との接合部および前記ベースリングと前記金属ケースとの接合部が、Cu組成が1.0〜2.5wt%であるSn−Cu系はんだではんだ接合されることを特徴とするコンデンサ。
In a capacitor comprising a metal case, a capacitor element housed in the metal case, and an insulator connected to the capacitor element,
The insulator is a porcelain insulator that is solder-bonded at a joint between the top metal fitting connected to the lead wire of the capacitor element, a base ring solder-connected to the metal case, and the top metal fitting and the base ring. And
Of the porcelain insulator, the top metal fitting and the base ring, respectively, the plated portion to be soldered is Cu plated,
The material of the metal case is galvanized steel, tinplate, or brass,
The top metal fitting and the base ring are made of steel or brass plated with Cu, followed by Sn plating or Sn-Cu plating.
The joint of the top metal fitting and the porcelain insulator, the joint of the base ring and the porcelain insulator, and the joint of the base ring and the metal case have a Cu composition of 1.0 to 2.5 wt%. A capacitor characterized by being solder-joined with Sn-Cu solder.
JP2005090552A 2005-03-28 2005-03-28 Capacitor Active JP4848061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005090552A JP4848061B2 (en) 2005-03-28 2005-03-28 Capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005090552A JP4848061B2 (en) 2005-03-28 2005-03-28 Capacitor

Publications (2)

Publication Number Publication Date
JP2006278372A JP2006278372A (en) 2006-10-12
JP4848061B2 true JP4848061B2 (en) 2011-12-28

Family

ID=37212867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005090552A Active JP4848061B2 (en) 2005-03-28 2005-03-28 Capacitor

Country Status (1)

Country Link
JP (1) JP4848061B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008220485A (en) * 2007-03-09 2008-09-25 Us Tekku Kk Weight balance adjusting member
JP2013076143A (en) * 2011-09-30 2013-04-25 Energy Support Corp Alloy for fixing between ceramic and metal fitting, and power distribution apparatus
JP5847520B2 (en) * 2011-09-30 2016-01-20 エナジーサポート株式会社 Alloy for fixing between porcelain and metal fittings and power distribution equipment
JP6040550B2 (en) * 2012-03-28 2016-12-07 株式会社Gsユアサ Electricity storage element
KR101331214B1 (en) * 2013-03-07 2013-11-19 주식회사 리프론 Method for making pulse transformer

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0353486Y2 (en) * 1986-04-04 1991-11-22
US4846163A (en) * 1987-08-24 1989-07-11 Cooper Industries, Inc. Method of sealing capacitor bushings
JPH0532993Y2 (en) * 1988-12-28 1993-08-23
JPH06267397A (en) * 1993-03-16 1994-09-22 Fuji Electric Co Ltd Cartridge fuse
JPH08330184A (en) * 1995-03-31 1996-12-13 Marcon Electron Co Ltd Capacitor
JP4004135B2 (en) * 1998-04-09 2007-11-07 ニチコン株式会社 Sealed container for electrical equipment
JP4560874B2 (en) * 2000-03-28 2010-10-13 株式会社村田製作所 Ceramic electronic components
WO2002024979A1 (en) * 2000-09-20 2002-03-28 Dr.-Ing. Max Schlötter Gmbh & Co. Kg Electrolyte and method for depositing tin-copper alloy layers
JP2002320368A (en) * 2001-04-20 2002-10-31 Matsushita Electric Ind Co Ltd Vibration structure
JP4023663B2 (en) * 2001-09-20 2007-12-19 日新製鋼株式会社 Stainless steel contacts
JP4109448B2 (en) * 2001-12-17 2008-07-02 ニチコン株式会社 Mounting structure for sealed insulator terminals of electrical equipment
JP4302972B2 (en) * 2002-12-18 2009-07-29 コーア株式会社 Electronic component in which conductive ball is connected to terminal and method of manufacturing the same

Also Published As

Publication number Publication date
JP2006278372A (en) 2006-10-12

Similar Documents

Publication Publication Date Title
JP5152150B2 (en) Lead-free solder alloy
JP4848061B2 (en) Capacitor
JP5045673B2 (en) Functional component lid and manufacturing method thereof
KR101231550B1 (en) Cu-p-ag-zn brazing alloy
KR20130077873A (en) Bonding method, bonding structure, electronic device, manufacturing method for electronic device, and electronic component
KR20140098815A (en) Bonding method, bond structure, and manufacturing method for same
EP1880032A4 (en) Tin alloy solder compositions
CN104023902B (en) Sn-Cu series lead-free solder alloy
JP2002018589A (en) Lead-free solder alloy
CN100464931C (en) High-strength high-toughness nickel-contained SnAgCuRE lead-free brazing filler metal and its making method
JP4401671B2 (en) High temperature lead-free solder alloys and electronic components
JP2011156558A (en) Lead-free solder alloy
JP3879582B2 (en) Solder paste, electronic component and step soldering method
JP5339968B2 (en) Mounting structure and motor
JP3878978B2 (en) Lead-free solder and lead-free fittings
JP2007075836A (en) Lead free alloy for soldering
JP5140644B2 (en) Soldering composition and electronic component
CN1730696A (en) Tin-zinc-copper-nickel lead-free solder alloy
JPH0994688A (en) Lead-free solder alloy
JP4322133B2 (en) Capacitor
JPH0994687A (en) Lead-free solder alloy
CN1555960A (en) Tin zinc copper leadless solder alloy
JP2003168857A (en) Mounting structure of circuit board and mounting method
JP4251721B2 (en) Hermetic terminal and manufacturing method thereof
JPH1052791A (en) Lead free solder alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4848061

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250