JP2007075836A - Lead free alloy for soldering - Google Patents

Lead free alloy for soldering Download PDF

Info

Publication number
JP2007075836A
JP2007075836A JP2005264107A JP2005264107A JP2007075836A JP 2007075836 A JP2007075836 A JP 2007075836A JP 2005264107 A JP2005264107 A JP 2005264107A JP 2005264107 A JP2005264107 A JP 2005264107A JP 2007075836 A JP2007075836 A JP 2007075836A
Authority
JP
Japan
Prior art keywords
lead
solder
weight
soldering
free
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005264107A
Other languages
Japanese (ja)
Inventor
Joo Dongu Lee
ジョー・ドング リー,
Kii Pyungu Namu
キー・ピュング ナム,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LT Materials Co Ltd
Original Assignee
Heesung Material Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heesung Material Ltd filed Critical Heesung Material Ltd
Priority to JP2005264107A priority Critical patent/JP2007075836A/en
Publication of JP2007075836A publication Critical patent/JP2007075836A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lead free alloy for soldering having excellent wettability and adhesion, and having excellent reliability in spite of a lead free solder constitution. <P>SOLUTION: The lead free alloy has a composition comprising, by weight, 0.05 to 1.5% copper (Cu), 0.001 to 0.5% nickel (Ni), 0.001 to 0.5% phosphorous, 0.001 to 0.5% gallium (Ga), and the balance tin (Sn), and, according to the selection of the composition, the improvement of wettability by tin, the improvement of joining strength by copper, the improvement of mechanical strength by nickel, and the prevention of oxidation by phosphor can be effectively exhibited. Thus the lead free solder having high wettability, adhesion and reliability can be produced. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、鉛を含有しない構成による半田付け用無鉛合金に関する。   The present invention relates to a lead-free alloy for soldering having a structure containing no lead.

電気機器の組み立て製造、例えば電子部品の印刷回路への搭載における電気的、機械的接合など、金属等の接合に、半田付けが広く利用されている。
この半田付けを行う半田材は、接合する金属より溶融温度が低い半田合金が用いられる。
この半田合金は、鉛の溶融温度(327℃)より低い温度で溶融可能な軟鉛と、溶融温度が450℃以上の硬鉛とに大別される。
軟鉛の成分は、通常鉛と錫であり、その含有量によって引っ張り強度と剪断強度がそれぞれ異なる性質を示す。
一方、硬鉛は、通常、粉末、バンド、ワイヤ等の形状とされ、銅(Cu)、亜鉛(Zn)、鉛(Pb)が主成分である黄銅鉛と銀(Ag)を添加して流動性を改善した銀鉛などかある。
Soldering is widely used for joining metals and the like, such as electrical and mechanical joining in assembly manufacturing of electrical equipment, for example, mounting electronic components on printed circuits.
As the solder material to be soldered, a solder alloy having a melting temperature lower than that of the metal to be joined is used.
This solder alloy is roughly classified into soft lead that can be melted at a temperature lower than the melting temperature of lead (327 ° C.) and hard lead that has a melting temperature of 450 ° C. or higher.
The components of soft lead are usually lead and tin, and exhibit different properties in tensile strength and shear strength depending on their contents.
On the other hand, hard lead is usually in the form of powder, band, wire, etc., and flows by adding brass lead and silver (Ag), which are mainly composed of copper (Cu), zinc (Zn), and lead (Pb). There is silver lead etc. which improved the property.

一般に、電子機器類は、故障などの理由で廃棄されると、焼却等の処分がされることなく、単に裁断処理され、安定型の産業廃棄物として地中に埋め立てられる。
ところが、いま、地中に埋め立て処分された電子機器類が問題となっている。
これは、化石燃料の多用から大気中に硫黄酸化物や窒化酸化物が多量発生され、酸性状態になった大気を雨が通過することによって酸性雨となり、この酸性雨が地中に浸透し、埋め立てられた電子機器類から鉛などの有害金属を湧出させる問題である。
この有害金属は、地中に浸透することによって、地下水を汚染する。この地下水を長年に渡って飲むことによって、鉛中毒を引起す恐れがある。
また、このような有鉛の半田を用いて半田付け作業を行なうと、その作業時に発生する半田溶融から発生するガスを作業者が吸引することによって人体に蓄積されると、鉛中毒という人体に致命的影響を与える。
Generally, when electronic devices are discarded due to a failure or the like, they are simply cut without being disposed of by incineration or the like, and are buried in the ground as stable industrial waste.
However, electronic equipment that has been disposed of underground has become a problem.
This is because a large amount of sulfur oxides and nitride oxides are generated in the atmosphere due to heavy use of fossil fuels, and acid rain occurs when rain passes through the acid atmosphere, and this acid rain penetrates into the ground, This is a problem of causing harmful metals such as lead from the buried electronic equipment.
This harmful metal pollutes groundwater by penetrating into the ground. Drinking this groundwater for many years can cause lead poisoning.
Also, when soldering is performed using such leaded solder, if the worker accumulates the gas generated from the melting of the solder that occurs during the operation and is accumulated in the human body, the lead poisoning may occur. It has a fatal effect.

現在まで、開発された無鉛(Lead Free)の半田は、錫(Sn)を主成分として、Cu、Ag、Bi、Zn、Ni、Pなどの金属を添加したものである(例えば特許文献1参照)。
無鉛の半田の代表組成としては、Sn-0.7重量%Cu、Sn-3.5重量%Ag、Sn-58重量%Bi、Sn-9重量%Znの2元合金以外に、用途に応じて、添加金属元素を組み合わせて3元合金、またはそれ以上として用途に応じて使用されている。
The lead-free (Lead Free) solder that has been developed so far is composed of tin (Sn) as a main component and added with metals such as Cu, Ag, Bi, Zn, Ni, and P (for example, see Patent Document 1). ).
Typical lead-free solder composition includes Sn-0.7 wt% Cu, Sn-3.5 wt% Ag, Sn-58 wt% Bi, Sn-9 wt% Zn binary alloys, depending on the application, additive metals It is used in combination as a ternary alloy or more depending on the application.

しかしこれらの無鉛半田は、それぞれの合金ごとに問題点を抱えている。
例えば、Sn-9重量%ZnなどのSn-Zn系半田は、Znが非常に酸化しやすい金属であるから、厚い酸化膜を形成しやすく、大気中の半田付けにおいては、濡れ性が悪い。
さらに、Sn-58重量%BiなどのSn-Bi系半田は、Biの特性に因り機械的な強度が弱いし、半田の接合部における信頼性の低下の恐れがある。
However, these lead-free solders have problems for each alloy.
For example, Sn—Zn-based solder such as Sn-9 wt% Zn is a metal that Zn is very easy to oxidize, so that it is easy to form a thick oxide film and has poor wettability in the soldering in the atmosphere.
Furthermore, Sn—Bi based solder such as Sn-58 wt% Bi has weak mechanical strength due to the characteristics of Bi, and there is a risk of lowering of reliability at the solder joint.

現在、無鉛半田で、最も実用的であると思われているものは、Sn-0.7重量%CuなどのSn-Cu系、Sn-3.5重量%AgなどのSn-Ag系及びSn-Ag系半田にCuを添加したSn-Ag-Cu系半田である。
しかし、Sn-0.7重量%CuのようなSn-Cu系半田は、コスト面で安価であるが、半田付け時の濡れ性に乏しい。
一方、Sn-3.5重量%AgのようなSn-Ag系及びSn-Ag系半田にCuを少量添加したSn-Ag-Cu系は濡れ性が良いが、高価であるAgを含有しているので、コストが高くなる。これに対してコストダウンのために、Agの含有量を少なくすると濡れ性と半田の合金強度が劣ってくるという問題が生じてくる。
特開2000−246483号公報
At present, the most practical lead-free solders are Sn-Cu based Sn-0.7 wt% Cu, Sn-Ag based Sn-3.5 wt% Ag and Sn-Ag based solders. Sn—Ag—Cu-based solder in which Cu is added.
However, Sn—Cu solder such as Sn—0.7 wt% Cu is inexpensive in terms of cost, but has poor wettability during soldering.
On the other hand, Sn-Ag-based solder such as Sn-3.5 wt% Ag and Sn-Ag-Cu-based solder with a small amount of Cu added to it have good wettability but contain expensive Ag. , The cost will be higher. On the other hand, in order to reduce the cost, if the Ag content is decreased, there arises a problem that the wettability and the alloy strength of the solder are deteriorated.
JP 2000-246483 A

本発明は、上述した諸問題の解決を図ることができ、無鉛半田構成とするにも拘わらず、濡れ性、接着性にすぐれ信頼性にすぐれた半田付け用無鉛合金を提供するものである。   The present invention provides a lead-free alloy for soldering that can solve the above-described problems and has excellent wettability and adhesiveness despite its lead-free solder configuration.

本発明は、錫(Sn)を基本物質として、ここに作業性と強度を改善して機械的な特性を増加させて無鉛半田付けの製造時にドロッス(Dross)される量を最小化するため、付加金属で銅(Cu)、ニッケル(Ni)、燐(P)、ガリウム(Ga)を添加した組成とするものである。   The present invention uses tin (Sn) as a basic material to improve workability and strength and increase mechanical properties to minimize the amount of dross when manufacturing lead-free soldering. A composition in which copper (Cu), nickel (Ni), phosphorus (P), and gallium (Ga) are added as an additional metal.

本発明による半田付け用無鉛合金は、銅(Cu)が0.05重量%〜1.5重量%であり、ニッケル(Ni)が0.001重量%〜0.5重量%であり、燐が0.001重量%〜0.5重量%であり、ガリウム(Ga)が0.001重量%〜0.5重量%であり、残りが錫(Sn)から成ることを特徴とする。   In the lead-free alloy for soldering according to the present invention, copper (Cu) is 0.05 wt% to 1.5 wt%, nickel (Ni) is 0.001 wt% to 0.5 wt%, and phosphorus is 0.001 wt% to 0.5 wt%. And gallium (Ga) is 0.001 wt% to 0.5 wt%, and the remainder is made of tin (Sn).

上述した本発明による半田付け用無鉛半田によれば、金属に対し濡れ性にすぐれ、接着性にすぐれ、信頼性にすぐれた無鉛半田が得られた。   According to the above-described lead-free solder for soldering according to the present invention, a lead-free solder excellent in wettability, adhesion, and reliability with respect to metal was obtained.

本発明による半田付け用無鉛半田は、銅(Cu)が0.05重量%〜1.5重量%、ニッケル(Ni)が0.001重量%〜0.5重量%であり、燐が0.001重量%〜0.5重量%であり、ガリウム(Ga)が0.001重量%〜0.5重量%であり、残部錫(Sn)から成る。   In the lead-free solder for soldering according to the present invention, copper (Cu) is 0.05 wt% to 1.5 wt%, nickel (Ni) is 0.001 wt% to 0.5 wt%, and phosphorus is 0.001 wt% to 0.5 wt%, Gallium (Ga) is 0.001% to 0.5% by weight, and the balance is tin (Sn).

上述の構成において、錫(Sn)は自体の毒性がないものであり、接合母材に対して濡れ性を提供する役割をする半田材必須金属である。
銅(Cu)は無鉛合金に添加されて合金の組織を微細化して接合強度を向上させると共に被接合体の例えば電子部品や印刷回路基板の浸食を抑える効果を奏する。
In the above-described configuration, tin (Sn) does not have its own toxicity, and is a solder material essential metal that plays a role of providing wettability to the bonding base material.
Copper (Cu) is added to the lead-free alloy to refine the structure of the alloy to improve the bonding strength and to suppress the erosion of the electronic parts and the printed circuit board of the bonded object.

本発明では、Cuを0.05重量%〜1.5重量%含有させる。この含有量の選定は、銅の含有率が0.05重量%未満とすると、機械的な強度の向上の効果が微々であり、1.5重量%を超えると溶融温度を上昇させて濡れ性の低下及びドロッス(Dross)の発生量が増加することを認めたことに因る。   In the present invention, 0.05 wt% to 1.5 wt% Cu is contained. This content is selected when the copper content is less than 0.05% by weight, and the effect of improving the mechanical strength is negligible. This is due to the fact that the amount of (Dross) is increased.

また、ニッケル(Ni)は、錫に固溶(Solid Solution)され、機械的な強度を向上させる役割をする。
本発明構成では、Niを0.001重量%〜0.5重量%含有させるものであり、この含有量の選定は、0.001重量%未満では機械的な強度の向上の効果が微々であり、0.5重量%を超えると液状性の温度が上昇して半田の流動性が減少することを認めたことに因る。
Nickel (Ni) is dissolved in tin (Solid Solution) and plays a role of improving mechanical strength.
In the configuration of the present invention, Ni is contained in an amount of 0.001% to 0.5% by weight. When the content is selected, the effect of improving the mechanical strength is negligible if it is less than 0.001% by weight, and exceeds 0.5% by weight. This is due to the fact that the liquid temperature rises and the solder fluidity decreases.

燐(P)の添加は、半田の酸化防止及び濡れ性を向上させる効果を有する。すなわちこの燐の添加によって無鉛半田の製造時において、その溶融状態で燐が上部層へ浮き上がって空気中の酸素と接触する皮膜が形成されるようにして、ドロス(Dross)される量を最小化することができる効果を奏する。
本発明構成では、燐(P)0.001重量%〜0.5重量%を含有させる。この含有量の選定は、燐の添加量は0.001重量%未満では酸化防止および濡れ性の向上に効果がみられず、0.5重量%を超えると、半田の粘性を増加させて半田付け時のブリッジ(Bridge)などの欠陥が発生することを認めたことに因る。
Addition of phosphorus (P) has an effect of preventing solder oxidation and improving wettability. In other words, the addition of phosphorus minimizes the amount of dross when manufacturing lead-free solder so that in the molten state phosphorus rises to the upper layer and forms a film that contacts oxygen in the air. The effect which can be done is produced.
In the composition of the present invention, 0.001% by weight to 0.5% by weight of phosphorus (P) is contained. When the amount of phosphorus added is less than 0.001% by weight, the effect of preventing oxidation and improving wettability is not seen. When the amount exceeds 0.5% by weight, the viscosity of the solder is increased to increase the bridge during soldering. This is due to the fact that defects such as (Bridge) were observed.

そして、上記の無鉛合金に0.001重量%〜0.5重量%のガリウム(Ga)を添加する。このGaの添加により融点を低下させることができ、作業性を改善し、酸化防止及び濡れ性を更に向上させることができる。
このように溶融半田にガリウム(Ga)を添加すると、溶融半田の表面に薄く拡散するため、半田付けに際してガリウムの薄い酸化物が溶融半田の表面を覆うことによって溶融半田の大気との接触を遮断する効果が得られ、高温で溶融された無鉛半田における酸化を防止するという効果を奏することができる。
このGa添加量の選定は、0.001重量%未満では融点低下、酸化防止及び濡れ性の改善に効果がほとんど生じることがなく、0.5重量%を超えると溶融半田の粘性が増加され、作業が困難になり、さらに製造原価の上昇で経済性が落ちることに因る。
Then, 0.001 wt% to 0.5 wt% gallium (Ga) is added to the above lead-free alloy. By adding Ga, the melting point can be lowered, workability can be improved, and oxidation prevention and wettability can be further improved.
When gallium (Ga) is added to the molten solder in this way, it diffuses thinly on the surface of the molten solder. Therefore, when soldering, a thin oxide of gallium covers the surface of the molten solder, thereby blocking the contact of the molten solder with the atmosphere. The effect of preventing oxidation in lead-free solder melted at a high temperature can be achieved.
When the amount of Ga added is less than 0.001% by weight, there is almost no effect on lowering the melting point, preventing oxidation and improving wettability. On the other hand, if it exceeds 0.5% by weight, the viscosity of the molten solder is increased and the work becomes difficult. Moreover, it is because the economy is lowered due to an increase in manufacturing costs.

以下、本発明の実施例を説明する。
(実施例1)
銅(Cu)が0.5重量%、ニッケル(Ni)が0.06重量%、燐(P)が0.07重量%、ガリウム(Ga)が0.02重量%で、残りが錫である無鉛合金を製造した。
Examples of the present invention will be described below.
Example 1
A lead-free alloy in which copper (Cu) was 0.5% by weight, nickel (Ni) was 0.06% by weight, phosphorus (P) was 0.07% by weight, gallium (Ga) was 0.02% by weight, and the balance was tin.

(実施例2)
銅(Cu)が0.8重量%、ニッケル(Ni)が0.4重量%、燐(P)が0.4重量%、ガリウム(Ga)が0.4重量%で、残りが錫である無鉛合金を製造した。
(Example 2)
A lead-free alloy in which copper (Cu) was 0.8 wt%, nickel (Ni) was 0.4 wt%, phosphorus (P) was 0.4 wt%, gallium (Ga) was 0.4 wt%, and the remainder was tin.

(比較例1)
錫が63.0重量%、鉛が37重量%である有鉛合金を製造した。
上記の実施例1、2によって製造された無鉛合金と比較例1による半田との、固相温度、液相温度、半田付けの強度及びクリープ(creep)の寿命を表1に比較して示した。
(Comparative Example 1)
A leaded alloy with 63.0% by weight of tin and 37% by weight of lead was produced.
Table 1 shows the solid phase temperature, liquid phase temperature, soldering strength, and creep life of the lead-free alloy manufactured according to Examples 1 and 2 and the solder according to Comparative Example 1. .

Figure 2007075836
上記の表1で示すように、本発明の無鉛合金は固相温度が200℃〜208℃であり、液相温度が212℃〜215℃であって凝固範囲が狭いので、電子部品の配線用の無鉛半田として用いることができる。さらに、本発明の添加元素によって半田付けの強度及びクリープ(creep)の寿命が増加して機械的な特性が向上されることが分かる。
Figure 2007075836
As shown in Table 1 above, the lead-free alloy of the present invention has a solid phase temperature of 200 ° C. to 208 ° C., a liquid phase temperature of 212 ° C. to 215 ° C. and a narrow solidification range. It can be used as a lead-free solder. Furthermore, it can be seen that the additive elements of the present invention increase the soldering strength and creep life and improve the mechanical properties.

(実施例3)
銅(Cu)が0.5重量%、ニッケル(Ni)が0.06重量%、燐(P)が0.002重量%、ガリウム(Ga)が0.01重量%で、残りが錫である無鉛合金を製造した。
(Example 3)
A lead-free alloy in which copper (Cu) was 0.5% by weight, nickel (Ni) was 0.06% by weight, phosphorus (P) was 0.002% by weight, gallium (Ga) was 0.01% by weight, and the remainder was tin.

(実施例4)
銅(Cu)が0.5重量%、ニッケル(Ni)が0.06重量%、燐(P)が0.004重量%、ガリウム(Ga)が0.2重量%で、残りが錫である無鉛合金を製造した。
Example 4
A lead-free alloy in which copper (Cu) was 0.5% by weight, nickel (Ni) was 0.06% by weight, phosphorus (P) was 0.004% by weight, gallium (Ga) was 0.2% by weight, and the remainder was tin.

(実施例5)
銅(Cu)が0.5重量%、ニッケル(Ni)が0.06重量%、燐(P)が0.008重量%、ガリウム(Ga)が0.4重量%で、残りが錫である無鉛合金を製造した。
(Example 5)
A lead-free alloy in which copper (Cu) was 0.5% by weight, nickel (Ni) was 0.06% by weight, phosphorus (P) was 0.008% by weight, gallium (Ga) was 0.4% by weight, and the balance was tin.

(比較例2)
銅が0.5重量%で、残りが錫である無鉛合金を製造した。
(Comparative Example 2)
A lead-free alloy with 0.5% by weight copper and the remainder tin was produced.

(比較例3)
銅が0.5重量%で、ニッケルが0.06重量%で、残りが錫である無鉛合金を製造した。
(Comparative Example 3)
A lead-free alloy was produced with 0.5 wt% copper, 0.06 wt% nickel and the remainder tin.

(比較例4)
銅が0.5重量%で、ニッケルが0.06重量%で、燐が0.002重量%で、残りが錫である無鉛合金を製造した。
(Comparative Example 4)
A lead-free alloy was prepared with 0.5 wt% copper, 0.06 wt% nickel, 0.002 wt% phosphorus, and the balance being tin.

上記の実施例3乃至実施例5によって製造された無鉛合金と比較例2乃至比較例4によって製造された無鉛合金を小型半田付けの分類槽から各10kg溶融して、攪拌したときの1時間の間のドロッス(Dross)の発生量を表2に示した。   10 hours each of the lead-free alloys produced in Examples 3 to 5 and the lead-free alloys produced in Comparative Examples 2 to 4 were melted from a small soldering classification tank and stirred for 1 hour. The amount of dross generated during this period is shown in Table 2.

Figure 2007075836
上記の表2のように従来の無鉛合金に燐とガリウムを同時に添加するとき、ドロッスの発生量が急激に減少する。これは添加された微量の燐とガリウムが溶融半田の表面に薄い酸化皮膜を形成して大気との接触を遮断して高温で溶融された無鉛半田の酸化を防止するためである。
Figure 2007075836
As shown in Table 2 above, when phosphorus and gallium are added simultaneously to a conventional lead-free alloy, the amount of dross generated decreases rapidly. This is because the added trace amounts of phosphorus and gallium form a thin oxide film on the surface of the molten solder to prevent contact with the atmosphere and prevent oxidation of lead-free solder melted at a high temperature.

上述したように、本発明の無鉛合金は従来のSn-Pb系の半田におけるように鉛が含有されていないので、作業の環境を改善することができるものであり、冒頭に述べた環境汚染を回避することができる。
また、本発明によれば、上述したように、既存のSn-Pb系半田比較して半田付けの強度及びクリープの寿命を延長させる優秀な効果を有している。さらに、既存の無鉛半田と比較しても、ガリウムの追加的な添加によって融点の低下、ドロッス(Dross)量の低減及び機械的な特性を向上させることができる。
また、鉛を使用しなくても既存の半田とほぼ類似な融点を有することになるので、Sn-Pb系半田を使用する場合の装備をそのまま使用することができるということは勿論、濡れ性の向上及びドロッス(Dross)の発生量の低減などで無鉛合金の使用量を最小化することができることから、工業的、経済的に大きな利益をもたらすものである。
As described above, the lead-free alloy of the present invention does not contain lead as in the conventional Sn-Pb solder, so that the working environment can be improved. It can be avoided.
Further, according to the present invention, as described above, the present invention has an excellent effect of extending the soldering strength and creep life as compared with the existing Sn-Pb solder. Furthermore, compared with existing lead-free solder, the addition of gallium can lower the melting point, reduce the amount of dross, and improve the mechanical characteristics.
In addition, since the melting point is almost similar to that of the existing solder without using lead, it is possible to use the equipment in the case of using Sn-Pb solder as it is. Since the amount of lead-free alloy used can be minimized by improving and reducing the amount of dross generated, it provides significant industrial and economic benefits.

Claims (1)

銅(Cu)が0.05重量%〜1.5重量%であり、ニッケル(Ni)が0.001重量%〜0.5重量%であり、燐が0.001重量%〜0.5重量%であり、ガリウム(Ga)が0.001重量%〜0.5重量%であり、残りが錫(Sn)から成る
ことを特徴とする半田付け用無鉛合金。
Copper (Cu) is 0.05 wt% to 1.5 wt%, Nickel (Ni) is 0.001 wt% to 0.5 wt%, Phosphorus is 0.001 wt% to 0.5 wt%, and Gallium (Ga) is 0.001 wt% A lead-free alloy for soldering, characterized in that it is ˜0.5% by weight and the remainder consists of tin (Sn).
JP2005264107A 2005-09-12 2005-09-12 Lead free alloy for soldering Pending JP2007075836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005264107A JP2007075836A (en) 2005-09-12 2005-09-12 Lead free alloy for soldering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005264107A JP2007075836A (en) 2005-09-12 2005-09-12 Lead free alloy for soldering

Publications (1)

Publication Number Publication Date
JP2007075836A true JP2007075836A (en) 2007-03-29

Family

ID=37936647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005264107A Pending JP2007075836A (en) 2005-09-12 2005-09-12 Lead free alloy for soldering

Country Status (1)

Country Link
JP (1) JP2007075836A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009104271A1 (en) * 2008-02-22 2009-08-27 株式会社日本スペリア社 Method of regulating nickel concentration in lead-free solder containing nickel
CN103406687A (en) * 2013-08-20 2013-11-27 四川朗峰电子材料有限公司 Sn-Cu-Ni series alloy soldering tin material and application thereof
JP5842973B1 (en) * 2014-09-04 2016-01-13 千住金属工業株式会社 Lead-free solder alloy and electronic parts for terminal pre-plating
JP2016537206A (en) * 2013-10-31 2016-12-01 アルファ・メタルズ・インコーポレイテッドAlpha Metals, Inc. Lead-free and silver-free solder alloy
CN109702374A (en) * 2019-02-13 2019-05-03 南昌大学 A kind of Sn-Cu-Ni-In lead-free solder alloy and preparation method thereof
CN112042088A (en) * 2018-03-28 2020-12-04 特耐斯株式会社 Commutator and manufacturing method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009104271A1 (en) * 2008-02-22 2009-08-27 株式会社日本スペリア社 Method of regulating nickel concentration in lead-free solder containing nickel
JP5249958B2 (en) * 2008-02-22 2013-07-31 株式会社日本スペリア社 Ni concentration adjustment method for lead-free solder containing Ni
US8557021B2 (en) 2008-02-22 2013-10-15 Nihon Superior Sha Co., Ltd. Method of regulating nickel concentration in lead-free solder containing nickel
CN103406687A (en) * 2013-08-20 2013-11-27 四川朗峰电子材料有限公司 Sn-Cu-Ni series alloy soldering tin material and application thereof
EP3385027A1 (en) * 2013-10-31 2018-10-10 Alpha Metals, Inc. Lead-free, silver-free solder alloys
JP2016537206A (en) * 2013-10-31 2016-12-01 アルファ・メタルズ・インコーポレイテッドAlpha Metals, Inc. Lead-free and silver-free solder alloy
CN106687250A (en) * 2014-09-04 2017-05-17 千住金属工业株式会社 Lead-free solder alloy for use in terminal preplating, and electronic component
JP5842973B1 (en) * 2014-09-04 2016-01-13 千住金属工業株式会社 Lead-free solder alloy and electronic parts for terminal pre-plating
CN106687250B (en) * 2014-09-04 2020-05-22 千住金属工业株式会社 Lead-free solder alloy for terminal pre-plating and electronic component
CN112042088A (en) * 2018-03-28 2020-12-04 特耐斯株式会社 Commutator and manufacturing method thereof
CN112042088B (en) * 2018-03-28 2023-05-05 特耐斯株式会社 Commutator and manufacturing method thereof
CN109702374A (en) * 2019-02-13 2019-05-03 南昌大学 A kind of Sn-Cu-Ni-In lead-free solder alloy and preparation method thereof
CN109702374B (en) * 2019-02-13 2021-02-09 南昌大学 Sn-Cu-Ni-In lead-free solder alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4432946B2 (en) Lead-free solder alloy
KR19980068127A (en) Lead-Free Alloys for Soldering
JP2002018589A (en) Lead-free solder alloy
JP2011156558A (en) Lead-free solder alloy
JP4401671B2 (en) High temperature lead-free solder alloys and electronic components
JP2007075836A (en) Lead free alloy for soldering
JP4392020B2 (en) Lead-free solder balls
JP5140644B2 (en) Soldering composition and electronic component
JPH0994688A (en) Lead-free solder alloy
JP2004148372A (en) Lead-free solder and soldered article
JP2019155467A (en) Lead-free solder alloy
KR100327768B1 (en) Lead-Free Alloys for Soldering
KR100743240B1 (en) Low temperature lead-free solder alloy
KR100333401B1 (en) Lead-Free Alloys for Soldering
KR100445350B1 (en) Lead-free solder alloy
KR100756072B1 (en) Lead-free solder alloy
KR100509509B1 (en) Lead-free solder alloy
KR100327767B1 (en) Lead-Free Alloys for Soldering
KR100337498B1 (en) Lead-Free Alloys for Soldering
KR100443230B1 (en) Lead-free solder alloy
KR100337496B1 (en) Lead-Free Alloys for Soldering
KR100337497B1 (en) Lead-Free Alloys for Soldering
JP3992107B2 (en) Lead-free solder alloy
JP2004260147A (en) Soldering method and method for manufacturing component-packaged substrate
KR100666007B1 (en) A tin zinc solder wire for film condenser

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080407

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090428