JP4846677B2 - Arsenic-containing solution processing method - Google Patents

Arsenic-containing solution processing method Download PDF

Info

Publication number
JP4846677B2
JP4846677B2 JP2007218058A JP2007218058A JP4846677B2 JP 4846677 B2 JP4846677 B2 JP 4846677B2 JP 2007218058 A JP2007218058 A JP 2007218058A JP 2007218058 A JP2007218058 A JP 2007218058A JP 4846677 B2 JP4846677 B2 JP 4846677B2
Authority
JP
Japan
Prior art keywords
arsenic
solution
iron
added
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007218058A
Other languages
Japanese (ja)
Other versions
JP2009050769A (en
Inventor
哲雄 藤田
良一 田口
健一 井上
勉 菅原
丈晴 稻永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metals and Mining Co Ltd
Original Assignee
Dowa Metals and Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metals and Mining Co Ltd filed Critical Dowa Metals and Mining Co Ltd
Priority to JP2007218058A priority Critical patent/JP4846677B2/en
Publication of JP2009050769A publication Critical patent/JP2009050769A/en
Application granted granted Critical
Publication of JP4846677B2 publication Critical patent/JP4846677B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、砒素含有溶液の処理方法に関し、特に、非鉄製錬の製錬中間物などの砒素以外の各種の元素を含む砒素含有物質を処理して得られる高純度で高濃度の砒素含有溶液のような砒素含有溶液の処理方法に関する。   The present invention relates to a method for treating an arsenic-containing solution, and in particular, a high-purity and high-concentration arsenic-containing solution obtained by treating an arsenic-containing substance containing various elements other than arsenic, such as a non-ferrous smelting intermediate. The processing method of the arsenic containing solution like this.

非鉄製錬において生成される各種の製錬中間物や製錬原料には、有価金属が含まれているが、砒素などの好ましくない元素も含まれている。   Various smelting intermediates and smelting raw materials produced in non-ferrous smelting contain valuable metals, but also contain undesirable elements such as arsenic.

従来、砒素を含む製錬中間物などから砒素を浸出して分離して回収する方法として、湿式反応により砒素を分離して砒素含有溶液を回収する方法が提案されている(例えば、特許文献1参照)。また、砒酸鉄溶液中に存在する砒素を鉄との安定な結晶性で且つ不溶出性の鉄・砒素化合物として除去して固定する方法が提案されている(例えば、特許文献2参照)。また、砒素含有溶液に鉄(II)溶液および鉄(III)溶液の少なくとも一方を加えて反応させてスコロダイト(Scorodite)(FeAsO・2HO)を生成させ、固液分離して銅を含む非鉄金属成分を含有するスコロダイトを回収し、得られた銅を含む非鉄金属成分を含有するスコロダイトに水を加えてリパルプし、スコロダイトに含まれる銅を含む非鉄金属成分を液中に溶かしてスコロダイトから分離する方法が提案されている(例えば、特許文献3参照)。さらに、砒素を含む煙灰から酸溶液により砒素を浸出し、その浸出液に鉄イオンを含む酸性水溶液を混合して非晶質の砒酸鉄(FeAsO)を沈澱させた後、その混合液を加温して非晶質の砒酸鉄を結晶化し、その混合液をろ過して結晶化された砒酸鉄を除去する方法が提案されている(例えば、特許文献4参照)。 Conventionally, as a method of leaching arsenic from a smelting intermediate containing arsenic and separating and recovering it, a method of separating arsenic by a wet reaction and recovering an arsenic-containing solution has been proposed (for example, Patent Document 1). reference). Further, a method has been proposed in which arsenic present in an iron arsenate solution is removed and fixed as a stable crystalline and non-eluting iron / arsenic compound with iron (see, for example, Patent Document 2). In addition, at least one of an iron (II) solution and an iron (III) solution is added to the arsenic-containing solution and reacted to form Scorodite (FeAsO 4 .2H 2 O), which is separated into solid and liquid and contains copper. Collect scorodite containing non-ferrous metal component, add water to scorodite containing non-ferrous metal component containing copper and repulp, dissolve non-ferrous metal component containing copper contained in scorodite in liquid and from scorodite A separation method has been proposed (see, for example, Patent Document 3). Further, arsenic is leached from the ash containing arsenic with an acid solution, and an acidic aqueous solution containing iron ions is mixed into the leached solution to precipitate amorphous iron arsenate (FeAsO 4 ), and then the mixture is heated. Then, a method has been proposed in which amorphous iron arsenate is crystallized, and the mixed liquid is filtered to remove the crystallized iron arsenate (see, for example, Patent Document 4).

特公昭61−24329号公報(第1−3頁)Japanese Examined Patent Publication No. 61-24329 (page 1-3) 特開平11−277075号公報(段落番号0013−0014)JP 11-277075 A (paragraph number 0013-0014) 特開2000−219920号公報(段落番号0007)JP 2000-219920 A (paragraph number 0007) 特開2005−161123号公報(段落番号0006)Japanese Patent Laying-Open No. 2005-161123 (paragraph number 0006)

しかし、特許文献1は、砒素含有溶液を回収するまでの方法を提案しているが、その回収された砒素含有溶液を安定な不溶出性の物質まで固定する方法について提案していない。また、特許文献2〜4の方法によって生成される従来の鉄と砒素の化合物よりもさらに安定な不溶出性の鉄と砒素の化合物を生成することが望まれている。特に、特許文献4の方法では、非晶質の砒酸鉄を沈澱させた後に非晶質の砒酸鉄を結晶化するので、非常に長時間を要するという問題がある。   However, Patent Document 1 proposes a method for collecting an arsenic-containing solution, but does not propose a method for fixing the collected arsenic-containing solution to a stable non-eluting substance. In addition, it is desired to produce a non-eluting iron and arsenic compound that is more stable than conventional iron and arsenic compounds produced by the methods of Patent Documents 2 to 4. In particular, the method of Patent Document 4 has a problem that it takes a very long time because amorphous iron arsenate is crystallized after the amorphous iron arsenate is precipitated.

また、砒素含有溶液からの脱砒素率を高くするとともに、pHが高くても砒素の溶出濃度が非常に小さい鉄と砒素の化合物を生成して回収することができるようにすることが望まれている。   It is also desirable to increase the rate of arsenic removal from arsenic-containing solutions and to generate and recover iron and arsenic compounds with very low arsenic elution concentrations even at high pH. Yes.

したがって、本発明は、このような従来の問題点に鑑み、非鉄製錬の製錬中間物などの砒素以外の各種の元素を含む砒素含有物質を処理して得られる高純度で高濃度の砒素含有溶液のような砒素含有溶液を処理して、砒素含有溶液からの脱砒素率を高くすることができるとともに、pHが高くても砒素の溶出濃度が非常に小さい鉄と砒素の化合物を生成して回収することができる、砒素含有溶液の処理方法を提供することを目的とする。   Therefore, in view of such conventional problems, the present invention provides high-purity and high-concentration arsenic obtained by treating an arsenic-containing material containing various elements other than arsenic, such as non-ferrous smelting intermediates. Arsenic-containing solutions such as those containing solutions can be processed to increase the rate of arsenic removal from arsenic-containing solutions and produce iron and arsenic compounds with very low arsenic elution concentrations even at high pH It is an object of the present invention to provide a method for treating an arsenic-containing solution that can be recovered in the above manner.

本発明者らは、上記課題を解決するために鋭意研究した結果、20g/L以上の砒素を含む溶液に2価の鉄イオンを加えて、溶液中の砒素に対する鉄のモル比(Fe/As)を1以上にし、酸素ガスまたは空気を吹き込んで撹拌しながら大気圧下において70〜95℃で反応させてFeとAsの化合物を生成させた後、さらに溶液に2価の鉄イオンを加え、酸素ガスまたは空気を吹き込んで撹拌しながら大気圧下において70〜95℃で反応させ、その後、固液分離して固形分を回収することにより、砒素含有溶液からの脱砒素率を高くすることができるとともに、pHが高くても砒素の溶出濃度が非常に小さい鉄と砒素の化合物の結晶からなる粉体として回収することができることを見出し、本発明を完成するに至った。 As a result of diligent research to solve the above problems, the present inventors have added divalent iron ions to a solution containing 20 g / L or more of arsenic, so that the molar ratio of iron to arsenic in the solution (Fe / As) is set to 1 or more, and oxygen gas or air is blown in and stirred to react at 70 to 95 ° C. under atmospheric pressure to form a compound of Fe and As, and then divalent iron ions are added to the solution. To increase the dearsenic ratio from the arsenic-containing solution by reacting at 70 to 95 ° C. under atmospheric pressure while blowing oxygen gas or air and stirring, and then recovering the solid content by solid-liquid separation. it is found that it is possible to elute the concentration of arsenic higher pH is to recover as a powder consisting of very compounds of small iron and arsenic crystals, and completed the present invention.

すなわち、本発明による砒素含有溶液の処理方法は、20g/L以上の砒素を含む溶液に2価の鉄イオンを加えて、溶液中の砒素に対する鉄のモル比(Fe/As)を1以上にし、酸素ガスまたは空気を吹き込んで撹拌しながら大気圧下において70〜95℃で反応させてFeとAsの化合物を生成させた後、さらに溶液に2価の鉄イオンを加え、酸素ガスまたは空気を吹き込んで撹拌しながら大気圧下において70〜95℃で反応させ、その後、固液分離して固形分として鉄と砒素の化合物の結晶からなる粉体を回収することを特徴とする。 That is, in the method for treating an arsenic-containing solution according to the present invention, a divalent iron ion is added to a solution containing 20 g / L or more of arsenic, and the molar ratio of iron to arsenic (Fe / As) in the solution is 1 or more. Then, oxygen gas or air is blown in and stirred to react at 70 to 95 ° C. under atmospheric pressure to form a compound of Fe and As. Then, divalent iron ions are added to the solution, and oxygen gas or air is added. The mixture is allowed to react at 70 to 95 ° C. under atmospheric pressure with stirring, and then solid-liquid separation is performed to recover a powder composed of iron and arsenic compound crystals as a solid content.

この砒素含有溶液の処理方法において、溶液中の砒素の濃度が20g/L以上であるのが好ましい。また、2価の鉄イオンとして硫酸鉄(II)七水塩を溶液に加えるのが好ましい。さらに、回収された固形分を水に加えてスラリーとし、このスラリーに酸を加えた後、2価の鉄イオンを加え、酸化剤を加えて撹拌しながら70〜95℃で反応させるのが好ましい。また、酸化剤として酸素ガスまたは空気を使用することができる。   In this method for treating an arsenic-containing solution, the arsenic concentration in the solution is preferably 20 g / L or more. Further, it is preferable to add iron (II) sulfate heptahydrate as a divalent iron ion to the solution. Furthermore, it is preferable to add the recovered solid content to water to form a slurry, add an acid to the slurry, add a divalent iron ion, add an oxidizing agent, and react at 70 to 95 ° C. with stirring. . Moreover, oxygen gas or air can be used as an oxidizing agent.

本発明によれば、非鉄製錬の製錬中間物などの砒素以外の各種の元素を含む砒素含有物質を処理して得られる高純度で高濃度の砒素含有溶液のような砒素含有溶液を処理して、砒素含有溶液からの脱砒素率を高くすることができるとともに、pHが高くても砒素の溶出濃度が非常に小さい鉄と砒素の化合物を生成して回収することができる。   According to the present invention, an arsenic-containing solution such as a high-purity and high-concentration arsenic-containing solution obtained by treating an arsenic-containing substance containing various elements other than arsenic, such as a non-ferrous smelting intermediate, is treated. Thus, the arsenic removal rate from the arsenic-containing solution can be increased, and an iron and arsenic compound having a very low arsenic elution concentration can be generated and recovered even when the pH is high.

図1は、本発明による砒素含有溶液の処理方法の実施の形態を概略的に示す工程図である。図1に示すように、本発明による砒素含有溶液の処理方法の実施の形態は、(1)砒素含有物質をアルカリ溶液に加えてpH10以上、好ましくはpH12以上にして酸化しながらアルカリ浸出した後に固液分離して砒素を含む浸出液を得るアルカリ浸出・酸化工程と、(2)この浸出液にアルカリ土類金属またはその塩を添加した後に固液分離して砒素とアルカリ土類金属の化合物を含む残渣を得るアルカリ土類金属置換工程と、(3)この残渣を洗浄して付着したアルカリ液を除去する洗浄工程と、(4)この洗浄した残渣を硫酸溶液に添加した後に固液分離して高純度で高濃度の砒素含有溶液を得る硫酸溶解工程とを備えた砒素含有溶液の製造方法によって砒素含有溶液を製造し、(5)この砒素含有溶液にFe塩を添加して反応させた後に固液分離し、洗浄して固液分離して鉄と砒素の化合物を得る工程を備えている。このようにして得られた鉄と砒素の化合物は、結晶粒が粗大であり、砒素の溶出濃度が非常に低く、廃棄、堆積または保管することができる。以下、これらの各工程について説明する。   FIG. 1 is a process diagram schematically showing an embodiment of a method for treating an arsenic-containing solution according to the present invention. As shown in FIG. 1, an embodiment of the method for treating an arsenic-containing solution according to the present invention is as follows. (1) After leaching an alkali while oxidizing it to an pH of 10 or more, preferably 12 or more by adding an arsenic-containing substance Alkaline leaching / oxidation step for obtaining a leaching solution containing arsenic by solid-liquid separation, and (2) adding an alkaline earth metal or a salt thereof to the leaching solution, followed by solid-liquid separation and containing a compound of arsenic and alkaline earth metal An alkaline earth metal replacement step for obtaining a residue; (3) a washing step for washing the residue to remove the adhering alkaline solution; and (4) a solid-liquid separation after adding the washed residue to the sulfuric acid solution. An arsenic-containing solution is produced by a method for producing an arsenic-containing solution comprising a sulfuric acid dissolving step for obtaining a high-purity and high-concentration arsenic-containing solution. (5) Fe salt is added to the arsenic-containing solution and reacted. Later solid-liquid separation, washed and subjected to solid-liquid separation and a step of obtaining a compound of iron and arsenic. The compound of iron and arsenic thus obtained has coarse crystal grains and a very low arsenic elution concentration, and can be discarded, deposited or stored. Hereinafter, each of these steps will be described.

なお、上記の砒素含有溶液の製造方法の原料となる砒素含有物質としては、硫化砒素(As)やFeAsSなどの硫化物のように硫黄と砒素を含む物質を使用することができる。また、亜鉛製錬工程などにより得られる砒化銅(CuAs)を主成分とする残渣なども使用することができる。この砒化銅を主成分とする残渣には、亜鉛や鉄などの他にインジウムやガリウムなどの有価金属も含まれている。なお、実施の形態の砒素含有物質の処理方法によって処理する砒素含有物質が硫黄を含まない場合には、アルカリ浸出・酸化工程前にNaSO塩のような硫酸塩などを添加するか、あるいは、アルカリ浸出・酸化工程後の浸出液に硫酸塩などを添加して、アルカリ土類金属置換工程前の浸出液中にSOイオンが存在するようにしておく必要がある。また、砒素含有物質は、砒素(As)と硫黄(S)の他に、銅(Cu)、亜鉛(Zn)、鉄(Fe)、インジウム(In)、ガリウム(Ga)、錫(Sn)、アンチモン(Sb)、鉛(Pb)、カドミウム(Cd)、ナトリウム(Na)、カリウム(K)、マグネシウム(Mg)およびカルシウム(Ca)の少なくとも一種を含んでもよい。 As the arsenic-containing substance used as a raw material for the method for producing the arsenic-containing solution, a substance containing sulfur and arsenic such as sulfides such as arsenic sulfide (As 2 S 3 ) and FeAsS can be used. Also, such residue composed mainly of the resulting copper arsenide (Cu 3 As) due zinc smelting process can also be used. The residue mainly composed of copper arsenide contains valuable metals such as indium and gallium in addition to zinc and iron. If the arsenic-containing material to be treated by the method for treating an arsenic-containing material of the embodiment does not contain sulfur, a sulfate such as Na 2 SO 4 salt is added before the alkali leaching / oxidation step, or Alternatively, it is necessary to add sulfate or the like to the leaching solution after the alkali leaching / oxidation step so that SO 4 ions are present in the leaching solution before the alkaline earth metal replacement step. In addition to arsenic (As) and sulfur (S), arsenic-containing substances include copper (Cu), zinc (Zn), iron (Fe), indium (In), gallium (Ga), tin (Sn), It may contain at least one of antimony (Sb), lead (Pb), cadmium (Cd), sodium (Na), potassium (K), magnesium (Mg) and calcium (Ca).

(1)アルカリ浸出・酸化工程
まず、上記の砒素含有物質を酸化剤とともにアルカリ溶液に添加してpH10以上、好ましくはpH12以上にし、液温50〜100℃に加熱して撹拌しながら反応させることにより、砒素含有物質を酸化しながら浸出する。このアルカリ浸出・酸化工程における反応は、pH10以上、好ましくはpH12以上の強アルカリ性で起こる反応であり、反応速度は非常に速い。
(1) Alkali leaching / oxidation step First, the above-mentioned arsenic-containing substance is added to an alkaline solution together with an oxidizing agent so as to have a pH of 10 or more, preferably 12 or more, and the reaction is carried out while stirring at a liquid temperature of 50 to 100 ° C. Leaching while oxidizing the arsenic-containing material. The reaction in the alkali leaching / oxidation step is a reaction that occurs at a strong alkalinity of pH 10 or more, preferably pH 12 or more, and the reaction rate is very fast.

このアルカリ浸出によって、Cuを浸出させずにAsを浸出させてCuとAsを分離することができる。また、このアルカリ浸出では、In、Pb、CdおよびMgも浸出されず、Fe、Sn、SbおよびCaもほとんど浸出されない。しかし、Gaはほとんど浸出されるので、この段階では、AsとGaは分離されない。   By this alkali leaching, Cu and As can be separated by leaching As without leaching Cu. In this alkaline leaching, In, Pb, Cd and Mg are not leached, and Fe, Sn, Sb and Ca are hardly leached. However, since Ga is almost leached, As and Ga are not separated at this stage.

なお、Znは、アルカリ濃度が高いと浸出されるが、アルカリ濃度が低いと浸出されないので、砒素含有物質中のZnの品位、砒素の品位および他の不純物(特にSnとSb)の浸出挙動を勘案してアルカリ濃度を決定すればよい。すなわち、SnやSbの品位が低ければ、残渣中にZnを残しておく方がよいが、SnやSbの品位が高いと、ある程度Znを溶解させた方がよい。   Zn is leached when the alkali concentration is high, but is not leached when the alkali concentration is low. Therefore, the quality of Zn in the arsenic-containing material, the quality of arsenic, and the leaching behavior of other impurities (particularly Sn and Sb) The alkali concentration may be determined in consideration. That is, if the quality of Sn or Sb is low, it is better to leave Zn in the residue, but if the quality of Sn or Sb is high, it is better to dissolve Zn to some extent.

アルカリ溶液としてNaOH溶液を使用することができ、その場合、NaOH濃度が50〜300g/Lであるのが好ましい。   A NaOH solution can be used as the alkaline solution, in which case the NaOH concentration is preferably 50 to 300 g / L.

酸化剤としては、過マンガン酸カリウムなどの固形酸化剤の他、過酸化水素やオゾンなどを使用することができるが、空気や濃度を高めた酸素などを使用してもよく、その場合、液中にガスを吹き込んでバブリングして撹拌することによって酸化反応が容易に進む。   As an oxidizing agent, hydrogen peroxide, ozone, etc. can be used in addition to a solid oxidizing agent such as potassium permanganate, but air or oxygen with increased concentration may be used. Oxidation reaction proceeds easily by bubbling and stirring the gas.

アルカリ浸出後に固液分離を行う。この固液分離は、フィルタプレス、遠心分離、デカンタ、ベルトフィルタなどの一般的なろ過のいずれでもよく、ろ過性、脱水性、洗浄性などを勘案してその種類および条件が決定される。   Solid-liquid separation is performed after alkali leaching. This solid-liquid separation may be any of general filtration such as a filter press, centrifugal separation, decanter, and belt filter, and its type and conditions are determined in consideration of filterability, dewaterability, washability, and the like.

一方、固液分離後の固形分は、有価なCuやInなどを含む金属性化合物と、一部酸化された化合物であるので、製錬工程において有効に活用することができる。なお、銅製錬では、自溶炉や反射炉に直接投入してアノードを作成することができる。   On the other hand, since the solid content after the solid-liquid separation is a metallic compound containing valuable Cu or In and a partially oxidized compound, it can be effectively utilized in the smelting process. In copper smelting, an anode can be created by directly charging into a flash smelting furnace or a reflection furnace.

(2)アルカリ土類金属置換工程
次に、固液分離後の浸出液(主にNaとAsを含む液)にアルカリ土類を添加する。アルカリ浸出後の浸出液にCaOなどのアルカリ土類を添加すると、アルカリ土類金属が砒素と反応してアルカリ土類金属と砒素の化合物を生成するとともに、NaOHのようなアルカリ液を再生する。
(2) Alkaline earth metal replacement step Next, alkaline earth is added to the leachate (mainly a liquid containing Na and As) after solid-liquid separation. When an alkaline earth such as CaO is added to the leachate after alkaline leaching, the alkaline earth metal reacts with arsenic to produce a compound of alkaline earth metal and arsenic, and an alkaline liquid such as NaOH is regenerated.

上記の反応のために過剰のアルカリ土類を添加することによって、再生されたアルカリ液にSO塩またはイオンを混在させて、アルカリ液へのアルカリ土類金属の混入を防止する。再生されたアルカリ液中にSO塩がなく、ほぼ純粋なアルカリ液である場合には、過剰にアルカリ土類を添加すると、再生されたアルカリ液中にアルカリ土類金属が溶存してしまう。 By adding an excess of alkaline earth for the above reaction, SO 4 salts or ions are mixed in the regenerated alkaline liquid to prevent the alkaline earth metal from being mixed into the alkaline liquid. In the case where the regenerated alkaline solution has no SO 4 salt and is a substantially pure alkaline solution, if the alkaline earth is added excessively, the alkaline earth metal is dissolved in the regenerated alkaline solution.

再生されたアルカリ液中にアルカリ土類金属が存在すると、そのアルカリ液を砒素の浸出に再利用する際に、砒素とアルカリ土類金属が反応して溶解度が低い沈殿物を生成するので、アルカリ浸出工程における浸出率が極端に悪くなる場合がある。一方、過剰のアルカリ土類金属を加えないと、アルカリ液中に砒素が除去されずに残ってしまうため、砒素の回収効率が非常に悪くなる。また、アルカリ液にSOが混在していると、アルカリ土類としてCaOを使用した場合に、CaOまたはCa(OH)がその状態で溶解せずに固形分中にとどまる。すなわち、NaとSO 2−の濃度を高くすることによって、Ca2+の溶解度が非常に低く抑制されるため、CaOとして固形分中にとどまる。 If alkaline earth metal is present in the regenerated alkaline liquid, when the alkaline liquid is reused for arsenic leaching, arsenic and alkaline earth metal react to produce a precipitate with low solubility. The leaching rate in the leaching process may become extremely poor. On the other hand, if excess alkaline earth metal is not added, arsenic will remain in the alkaline solution without being removed, and the arsenic recovery efficiency will be very poor. In addition, when SO 4 is mixed in the alkaline solution, when CaO is used as the alkaline earth, CaO or Ca (OH) 2 remains in the solid content without being dissolved in that state. That is, by increasing the concentration of Na + and SO 4 2− , the solubility of Ca 2+ is suppressed to be very low, so that it remains in the solid content as CaO.

アルカリ土類の添加量は、砒素とアルカリ土類金属の化合物を生成するための等当量でもよいが、Ca(AsOに加えてCa(OH)を生成するように、等当量よりもややアルカリ土類リッチにするのが好ましい。 The amount of alkaline earth added may be equivalent to produce a compound of arsenic and alkaline earth metal, but is equivalent to produce Ca (OH) 2 in addition to Ca 3 (AsO 4 ) 2. It is preferable to make it slightly richer in alkaline earth.

(3)洗浄工程
次に、固形分として得られた砒素とアルカリ土類金属の化合物に付着したアルカリ液を水洗する。この水洗では、固形分中に砒素をとどめておく必要がある。砒素が洗浄排水中に溶出すると、その排水中の砒素を除去するための煩雑な操作が必要になるからである。そのような操作を回避するために、洗浄によってアルカリ液を除去するが砒素を除去しないようにすることが必要である。このような洗浄を可能にするために、上述したようにアルカリ土類を添加する際にアルカリ土類リッチにしてアルカリ性にするのが好ましい。また、アルカリ土類リッチにすると、洗浄によってアルカリ液が洗い流されるだけでなく、アルカリ土類金属が優先的に溶出し、砒素とアルカリ土類金属の化合物はそのまま保持される。なお、アルカリ土類の添加量は、洗浄水の量の増加に伴って多くなるが、Asと反応する量よりも0.5〜1.0質量%だけ過剰にするのが好ましい。
(3) Washing step Next, the alkaline solution adhering to the arsenic and alkaline earth metal compound obtained as a solid content is washed with water. In this water washing, it is necessary to keep arsenic in the solid content. This is because if arsenic elutes into the washing waste water, a complicated operation for removing the arsenic in the waste water becomes necessary. In order to avoid such an operation, it is necessary to remove the alkaline solution by washing but not to remove arsenic. In order to enable such cleaning, it is preferable that the alkaline earth is made rich by alkaline earth when the alkaline earth is added as described above. Further, when the alkaline earth is rich, not only the alkaline solution is washed away but also the alkaline earth metal is preferentially eluted, and the compound of arsenic and alkaline earth metal is retained as it is. In addition, although the addition amount of alkaline-earth increases with the increase in the quantity of washing water, it is preferable to make it excess 0.5-1.0 mass% rather than the quantity which reacts with As.

(4)硫酸溶解工程
次に、洗浄後の砒素とアルカリ土類金属の化合物を硫酸溶液に添加して、強く撹拌しながら反応させて、砒素を再溶解させるとともに石膏を生成する。この砒素とアルカリ土類金属の化合物は、アルカリ側では不溶性であるが、pHが4以下ではほぼ全量が溶解するので、鉱酸によってpHを4以下にすれば、ほぼ全量を溶解させることが可能である。しかし、砒素とアルカリ土類金属を分離するためには、硫酸を用いて石膏と砒素含有溶液に分離するのが好ましい。砒素とアルカリ土類金属の化合物を硫酸溶液に添加すると、砒素の溶解と同時に、アルカリ土類と硫酸塩の析出反応が起こる。
(4) Sulfuric acid dissolution step Next, the washed arsenic and alkaline earth metal compound is added to the sulfuric acid solution and reacted with vigorous stirring to re-dissolve arsenic and produce gypsum. This arsenic and alkaline earth metal compound is insoluble on the alkali side, but almost completely dissolves when the pH is 4 or less. Therefore, if the pH is lowered to 4 or less with mineral acid, almost all of the compound can be dissolved. It is. However, in order to separate arsenic and alkaline earth metal, it is preferable to separate into gypsum and an arsenic-containing solution using sulfuric acid. When a compound of arsenic and alkaline earth metal is added to the sulfuric acid solution, precipitation of alkaline earth and sulfate occurs simultaneously with the dissolution of arsenic.

硫酸溶液の濃度は、100〜500g/Lであるのが好ましく、150〜300g/Lであるのがさらに好ましい。砒素含有溶液中の砒素を高濃度にしたい場合には、硫酸溶液の濃度をより高くする必要があるが、生成する石膏に付着する硫酸溶液の濃度が上昇し、また、溶液の粘度も上昇するので好ましくない。しかし、砒素の未反応を防止する観点では、砒素とアルカリ土類金属の化合物を濃硫酸に添加して、砒素だけでなく石膏も溶解させた後に、水を加えて加水分解により石膏を析出させてもよい。   The concentration of the sulfuric acid solution is preferably 100 to 500 g / L, and more preferably 150 to 300 g / L. To increase the concentration of arsenic in the arsenic-containing solution, it is necessary to increase the concentration of the sulfuric acid solution. However, the concentration of the sulfuric acid solution adhering to the gypsum produced increases, and the viscosity of the solution also increases. Therefore, it is not preferable. However, from the viewpoint of preventing unreacted arsenic, after adding a compound of arsenic and alkaline earth metal to concentrated sulfuric acid to dissolve not only arsenic but also gypsum, water is added to precipitate gypsum by hydrolysis. May be.

撹拌は強く行うことが好ましい。砒素の溶解反応と石膏の析出反応が同時に起こり、また、ウェットケーキの状態で硫酸溶液に投入するのが好ましく、局部的な中和などを起こし易い系であるので、均一且つ完全に反応させるために、強く撹拌して十分に砒素を硫酸に接触させて高純度で高濃度の砒素含有溶液にする必要があるからである。   Stirring is preferably performed strongly. Arsenic dissolution reaction and gypsum precipitation reaction occur at the same time, and it is preferable to put it into the sulfuric acid solution in the form of a wet cake. In addition, it is necessary to vigorously agitate to bring arsenic into sufficient contact with sulfuric acid to obtain a high purity and high concentration arsenic-containing solution.

(5)FeとAsの化合物の生成工程
次に、得られた砒素含有溶液に2価の鉄イオンを加えて、溶液中の砒素に対する鉄のモル比(Fe/As)を1以上にし、酸化剤を加えて撹拌しながら70℃以上で反応させることによってFeとAsの化合物を生成させる。その後、溶液中にさらに2価の鉄イオンを加えて、酸化剤を加えて撹拌しながら70℃以上で反応させた後、固液分離して得られる固形分を乾燥して、乾燥したFeとAsの化合物を得る。このようにFeとAsの化合物を生成させた後に溶液中にさらに2価の鉄イオンを加えて反応させるのは、溶液中の砒素に対する鉄のモル比(Fe/As)の低下を補うとともに、FeとAsの化合物の結晶を安定して成長させるためである。なお、本実施の形態では、2価の鉄イオンの添加を2回に分けて行っているが、3回以上に分けて行ってもよい。
(5) Step of generating Fe and As compound Next, divalent iron ions are added to the obtained arsenic-containing solution so that the molar ratio of iron to arsenic (Fe / As) in the solution is 1 or more and oxidation is performed. A compound of Fe and As is produced by adding an agent and reacting at 70 ° C. or higher with stirring. Thereafter, divalent iron ions are further added to the solution, and an oxidant is added and reacted at 70 ° C. or higher while stirring, and then the solid content obtained by solid-liquid separation is dried, and dried Fe and The compound of As is obtained. In this way, after the formation of the compound of Fe and As, the reaction by adding further divalent iron ions to the solution compensates for the decrease in the molar ratio of iron to arsenic (Fe / As) in the solution, This is because the crystal of the compound of Fe and As is stably grown. In this embodiment, the addition of the divalent iron ion is performed twice, but may be performed three times or more.

砒素含有溶液中のAs濃度は、不純物として含まれるNaなどが1g/L以下であれば、それほど高くなくてもよいが、As濃度が低いとFeとAsの化合物の析出から成長過程で粒子が粗大化し難くなる傾向があるので、10g/L以上であるのが好ましく、20g/L以上であるのがさらに好ましい。また、砒素含有溶液のpHが2以下であるのが好ましい。なお、砒素含有溶液中のAs濃度が高ければ、溶液中に不純物としてNa、Mg、Cu、Zn、Mnなどの塩が共存してもよい。   The concentration of As in the arsenic-containing solution may not be so high as long as the amount of Na contained as an impurity is 1 g / L or less, but if the concentration of As is low, particles are formed during the growth process from precipitation of a compound of Fe and As. Since it tends to be difficult to coarsen, it is preferably 10 g / L or more, and more preferably 20 g / L or more. Further, the pH of the arsenic-containing solution is preferably 2 or less. If the As concentration in the arsenic-containing solution is high, salts such as Na, Mg, Cu, Zn, and Mn may coexist as impurities in the solution.

2価のFe源としては、可溶性のFeSO・7HOを使用するのが好ましい。溶液中の砒素に対する鉄のモル比(Fe/As)は1以上であるのが好ましく、1.0〜1.5程度であるのがさらに好ましい。 As the divalent Fe source, soluble FeSO 4 · 7H 2 O is preferably used. The molar ratio of iron to arsenic (Fe / As) in the solution is preferably 1 or more, and more preferably about 1.0 to 1.5.

酸化剤としては、Fe2+を酸化することができる酸化剤であれば使用することができるが、酸化速度を制御することができる酸化剤が好ましく、酸素ガスや空気などを使用するのが好ましい。また、酸化剤としてKMnOなどを使用しても、添加量を制御することによって酸化速度を制御することができる。 As the oxidizing agent, any oxidizing agent capable of oxidizing Fe 2+ can be used, but an oxidizing agent capable of controlling the oxidation rate is preferable, and oxygen gas, air, or the like is preferably used. Even when KMnO 4 or the like is used as the oxidizing agent, the oxidation rate can be controlled by controlling the amount added.

反応温度は、50℃以上であればFeとAsの化合物を析出させることができるが、Asの溶出濃度を低下させるためには、70〜95℃にするのが好ましく、80〜95℃程度であるのがさらに好ましい。   If the reaction temperature is 50 ° C. or higher, a compound of Fe and As can be precipitated. However, in order to reduce the elution concentration of As, it is preferably 70 to 95 ° C., and about 80 to 95 ° C. More preferably.

このようにして得られたFeとAsの化合物を水と混合してスラリーとし、pHが4程度になるように酸を加えた後、2価の鉄イオンを加え、酸化剤を加えて撹拌しながら30℃以上で反応させることにより、FeとAsの化合物の表面に鉄塩を生成させる表面処理を行ってもよい。この鉄塩によってFeとAsの化合物の表面がさらに安定化され、pHが高くても砒素の溶出をさらに抑えることができる。なお、FeとAsの化合物の表面に生成される鉄塩は少量でもよく、FeとAsの化合物の1質量%程度でも十分である。   The Fe and As compound thus obtained was mixed with water to form a slurry, acid was added so that the pH was about 4, and then divalent iron ions were added, and an oxidizing agent was added and stirred. However, a surface treatment for generating an iron salt on the surface of the Fe and As compound may be performed by reacting at 30 ° C. or higher. This iron salt further stabilizes the surface of the compound of Fe and As, and even if the pH is high, elution of arsenic can be further suppressed. Note that a small amount of iron salt may be generated on the surface of the Fe and As compound, and about 1% by mass of the Fe and As compound is sufficient.

以下、本発明による砒素含有溶液の処理方法の実施例について詳細に説明する。   Examples of the method for treating an arsenic-containing solution according to the present invention will be described in detail below.

[実施例1]
まず、溶液を撹拌するための撹拌機と、溶液中に酸化ガスや空気などを吹き込むためのガス供給口とを備え、上部が開放されて大気圧下で反応を行うことができる反応槽を用意した。
[Example 1]
First, a reaction vessel equipped with a stirrer for stirring the solution and a gas supply port for blowing oxidizing gas or air into the solution and capable of performing the reaction at atmospheric pressure with the upper part opened. did.

次に、市販の砒酸液によって作成した砒素濃度30g/Lの砒素含有溶液4.1Lを反応槽に貯留した。この反応槽内の砒素含有溶液に市販の硫酸第一鉄溶液(FeSO・7HO)676gを添加して、溶液中の砒素に対する鉄のモル比(Fe/As)が1.5となるようにした(1回目の硫酸第一鉄溶液の添加)。この溶液に濃硫酸を加えてpHを1に調整した後、加熱して液温を95℃にし、5L/分で空気を吹き込んで、撹拌しながら5時間反応させた。なお、この反応後に鉄と砒素の化合物の生成を確認した。 Next, 4.1 L of an arsenic-containing solution having an arsenic concentration of 30 g / L prepared with a commercially available arsenic acid solution was stored in the reaction vessel. 676 g of commercially available ferrous sulfate solution (FeSO 4 · 7H 2 O) is added to the arsenic-containing solution in the reaction tank, and the molar ratio of iron to arsenic (Fe / As) in the solution becomes 1.5. (First addition of ferrous sulfate solution). Concentrated sulfuric acid was added to this solution to adjust the pH to 1, and then heated to bring the liquid temperature to 95 ° C., and air was blown at 5 L / min, and the reaction was allowed to proceed for 5 hours with stirring. After this reaction, formation of iron and arsenic compounds was confirmed.

5時間反応させた後、市販の硫酸第一鉄溶液451g(1回目に添加した硫酸第一鉄溶液の1.5分の1の量)を添加し(2回目の硫酸第一鉄溶液の添加)、加熱して液温を95℃にし、5L/分で空気を吹き込んで、撹拌しながら2時間反応させた。なお、2回の硫酸第一鉄溶液の添加によって砒素に対する鉄のモル比(Fe/As)を2.5にした。   After reacting for 5 hours, 451 g of a commercially available ferrous sulfate solution (an amount that is 1 / 1.5 of the ferrous sulfate solution added the first time) was added (addition of the second ferrous sulfate solution) The solution was heated to 95 ° C., air was blown at 5 L / min, and the mixture was allowed to react for 2 hours with stirring. The molar ratio of iron to arsenic (Fe / As) was set to 2.5 by adding the ferrous sulfate solution twice.

次に、No.5Cのろ紙を用いてろ過(固液分離)し、得られた固形分を純水で洗った後、乾燥して粉体を得た。   Next, no. The mixture was filtered (solid-liquid separation) using 5C filter paper, and the resulting solid content was washed with pure water and then dried to obtain a powder.

このようにして得られた粉体は、X線回折(XRD)の結果から、スコロダイトと同じ角度でピークがあり、鉄と砒素の化合物の結晶であることがわかった。   From the results of X-ray diffraction (XRD), it was found that the powder thus obtained had a peak at the same angle as scorodite and was a crystal of a compound of iron and arsenic.

また、得られた粉体の表面のFeの量をオージェ電子分光法(Auger Electron Spectroscopy(AES))により測定したところ、25質量%であった。なお、AESの測定条件は、電子銃10KV、1×10−7A、分析エリア35nmΦであった。また、粉体中のFeの量は25質量%、Asの量は31.5質量%、Sの量は0.5質量%であった。また、砒素含有溶液からの砒素の分離度合いを示す脱砒素率は98質量%であった。 Further, the amount of Fe on the surface of the obtained powder was measured by Auger Electron Spectroscopy (AES) and found to be 25% by mass. The AES measurement conditions were an electron gun of 10 KV, 1 × 10 −7 A, and an analysis area of 35 nmΦ. The amount of Fe in the powder was 25% by mass, the amount of As was 31.5% by mass, and the amount of S was 0.5% by mass. The arsenic removal rate indicating the degree of separation of arsenic from the arsenic-containing solution was 98% by mass.

また、得られた粉体について、環境庁告示13号法に基づいて、固形分100gに対してpH5の水1Lを混合し、溶出試験専用しんとう機で6時間しんとうさせた後、固液分離して得られたろ液(溶出液)中の砒素濃度を分析することによって溶出試験を行った。その結果、砒素の溶出濃度は0.01mg/L以下であった。   In addition, the obtained powder was mixed with 1 L of water having a pH of 5 per 100 g of solid content according to the notification method No. 13 of the Environment Agency, and stirred for 6 hours with a special elution tester, followed by solid-liquid separation. An elution test was conducted by analyzing the arsenic concentration in the filtrate (eluate) obtained in this manner. As a result, the elution concentration of arsenic was 0.01 mg / L or less.

また、得られた粉体についての溶出試験を、それぞれpH1、pH2、pH6、pH11、pH13に調整した溶液で行ったところ、砒素の溶出濃度は、pH1では0.04mg/L、pH2では0.01mg/L以下、pH6では0.01mg/L以下であったが、pH11およびpH13では0.3mg/Lよりも高かった。   Further, when the dissolution test on the obtained powder was carried out with solutions adjusted to pH 1, pH 2, pH 6, pH 11 and pH 13, respectively, the arsenic dissolution concentration was 0.04 mg / L at pH 1 and 0. It was 0.01 mg / L or less at pH 6 and 0.01 mg / L or less at pH 6, but was higher than 0.3 mg / L at pH 11 and pH 13.

[実施例2]
1回目の硫酸第一鉄溶液の添加による反応を1時間とし、2回目の硫酸第一鉄の添加による反応を6時間とした(合計の反応時間は7時間で実施例1と同じ)以外は、実施例1と同様の方法により得られた粉体について、実施例1と同様の分析および溶出試験を行った。
[Example 2]
The reaction by adding the first ferrous sulfate solution was 1 hour, and the reaction by adding the second ferrous sulfate was 6 hours (total reaction time was 7 hours, the same as in Example 1). The powder obtained by the same method as in Example 1 was subjected to the same analysis and dissolution test as in Example 1.

この実施例で得られた粉体は、X線回折(XRD)の結果から、スコロダイトと同じ角度でピークがあり、鉄と砒素の化合物の結晶であることがわかった。また、得られた粉体の表面のFeの量は、25質量%であり、粉体中のFeの量は25質量%、Asの量は31.4質量%、Sの量は0.6質量%であった。また、砒素含有溶液からの砒素の分離度合いを示す脱砒素率は99質量%であった。   From the results of X-ray diffraction (XRD), the powder obtained in this example had a peak at the same angle as scorodite, and was found to be a crystal of an iron and arsenic compound. The amount of Fe on the surface of the obtained powder was 25% by mass, the amount of Fe in the powder was 25% by mass, the amount of As was 31.4% by mass, and the amount of S was 0.6%. It was mass%. The arsenic removal rate indicating the degree of separation of arsenic from the arsenic-containing solution was 99% by mass.

また、環境庁告示13号法に基づいて行った溶出試験では、砒素の溶出濃度は0.01mg/L以下であった。また、得られた粉体についての溶出試験を、それぞれpH1、pH2、pH6、pH11、pH13に調整した溶液で行ったところ、砒素の溶出濃度は、pH1では0.04mg/L、pH2では0.01mg/L以下、pH6では0.01mg/L以下であったが、pH11およびpH13では0.3mg/Lよりも高かった。   In the dissolution test conducted based on the Environmental Agency Notification No. 13, the arsenic dissolution concentration was 0.01 mg / L or less. Further, when the dissolution test on the obtained powder was carried out with solutions adjusted to pH 1, pH 2, pH 6, pH 11 and pH 13, respectively, the arsenic dissolution concentration was 0.04 mg / L at pH 1 and 0. It was 0.01 mg / L or less at pH 6 and 0.01 mg / L or less at pH 6, but was higher than 0.3 mg / L at pH 11 and pH 13.

[実施例3]
実施例1で得られた粉体30gを純水0.6Lと混合してスラリーとし、pHが4になるように濃硫酸を添加して調整した後、市販の硫酸第一鉄溶液(FeSO・7HO)90gを添加して、加熱して液温を95℃にし、1.4L/分で空気を吹き込んで2時間反応させた。この反応後、No.5Cのろ紙を用いてろ過(固液分離)し、得られた固形分を水洗し、乾燥することによって、表面処理を行った粉体を得た。このようにして得られた粉体について、実施例1と同様の分析および溶出試験を行った。
[Example 3]
30 g of the powder obtained in Example 1 was mixed with 0.6 L of pure water to prepare a slurry, and after adjusting by adding concentrated sulfuric acid so that the pH was 4, a commercially available ferrous sulfate solution (FeSO 4 · 7H 2 O) was added to 90 g, and the liquid temperature at 95 ° C. was heated and allowed to react for 2 hours by blowing air at 1.4 L / min. After this reaction, no. Filtration (solid-liquid separation) was performed using 5C filter paper, and the obtained solid content was washed with water and dried to obtain a surface-treated powder. The powder thus obtained was subjected to the same analysis and dissolution test as in Example 1.

この実施例で得られた粉体の表面のFeの量は、27質量%であり、粉体中のFeの量は25質量%、Asの量は31.5質量%、Sの量は0.5質量%であった。また、得られた粉体についての溶出試験を、それぞれpH1、pH2、pH6、pH11、pH13に調整した溶液で行ったところ、砒素の溶出濃度は、pH1では0.04mg/L、pH2では0.01mg/L以下、pH6では0.01mg/L以下、pH11では0.01mg/L以下、pH13では0.3mg/Lであった。   The amount of Fe on the surface of the powder obtained in this example is 27% by mass, the amount of Fe in the powder is 25% by mass, the amount of As is 31.5% by mass, and the amount of S is 0%. It was 5% by mass. Further, when the dissolution test on the obtained powder was carried out with solutions adjusted to pH 1, pH 2, pH 6, pH 11 and pH 13, respectively, the arsenic dissolution concentration was 0.04 mg / L at pH 1 and 0. It was 0.01 mg / L or less at pH 6, 0.01 mg / L or less at pH 11, 0.01 mg / L or less at pH 11, and 0.3 mg / L at pH 13.

[比較例]
硫酸第一鉄溶液の添加を1回だけにした(反応時間は7時間で実施例1の合計の反応時間と同じ)以外は、実施例1と同様の方法により得られた粉体について、実施例1と同様の分析および溶出試験を行った。
[Comparative example]
For the powder obtained by the same method as in Example 1, except that the addition of the ferrous sulfate solution was performed only once (the reaction time was 7 hours, the same as the total reaction time in Example 1). The same analysis and dissolution test as in Example 1 were performed.

この比較例で得られた粉体は、X線回折(XRD)の結果から、スコロダイトと同じ角度でピークがあり、鉄と砒素の化合物の結晶であることがわかった。また、砒素含有溶液からの砒素の分離度合いを示す脱砒素率は97.5質量%であった。   From the results of X-ray diffraction (XRD), the powder obtained in this comparative example had a peak at the same angle as scorodite, and was found to be a crystal of a compound of iron and arsenic. The arsenic removal rate indicating the degree of separation of arsenic from the arsenic-containing solution was 97.5% by mass.

また、環境庁告示13号法に基づいて行った溶出試験では、砒素の溶出濃度は0.02mg/L以下であった。   In the dissolution test conducted based on the Environmental Agency Notification No. 13, the arsenic dissolution concentration was 0.02 mg / L or less.

本発明による砒素含有溶液の処理方法の実施の形態を概略的に示す工程図である。It is process drawing which shows schematically embodiment of the processing method of the arsenic containing solution by this invention.

Claims (3)

20g/L以上の砒素を含む溶液に2価の鉄イオンを加えて、溶液中の砒素に対する鉄のモル比(Fe/As)を1以上にし、酸素ガスまたは空気を吹き込んで撹拌しながら大気圧下において70〜95℃で反応させてFeとAsの化合物を生成させた後、さらに溶液に2価の鉄イオンを加え、酸素ガスまたは空気を吹き込んで撹拌しながら大気圧下において70〜95℃で反応させ、その後、固液分離して固形分として鉄と砒素の化合物の結晶からなる粉体を回収することを特徴とする、砒素含有溶液の処理方法。 Divalent iron ions are added to a solution containing 20 g / L or more of arsenic, the molar ratio of iron to arsenic (Fe / As) in the solution is set to 1 or more, and oxygen gas or air is blown into the solution while stirring. After reacting at 70 to 95 ° C. under atmospheric pressure to form a compound of Fe and As, divalent iron ions were further added to the solution, and oxygen gas or air was blown into the solution and stirred at 70 to 95 under atmospheric pressure. A method for treating an arsenic-containing solution, characterized by reacting at a temperature of 0 ° C., and then recovering a powder comprising crystals of a compound of iron and arsenic as a solid content by solid-liquid separation. 前記2価の鉄イオンとして硫酸鉄(II)七水塩を前記溶液に加えることを特徴とする、請求項に記載の砒素含有溶液の処理方法。 The method for treating an arsenic-containing solution according to claim 1 , wherein iron (II) sulfate heptahydrate is added to the solution as the divalent iron ions. 前記固形分を水に加えてスラリーとし、このスラリーに酸を加えた後、2価の鉄イオンを加え、酸素ガスまたは空気を吹き込んで撹拌しながら70〜95℃で反応させることを特徴とする、請求項1または2に記載の砒素含有溶液の処理方法。 The solid content is added to water to form a slurry. After adding an acid to the slurry, divalent iron ions are added, and oxygen gas or air is blown into the slurry and reacted at 70 to 95 ° C. while stirring. The processing method of the arsenic containing solution of Claim 1 or 2 .
JP2007218058A 2007-08-24 2007-08-24 Arsenic-containing solution processing method Active JP4846677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007218058A JP4846677B2 (en) 2007-08-24 2007-08-24 Arsenic-containing solution processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007218058A JP4846677B2 (en) 2007-08-24 2007-08-24 Arsenic-containing solution processing method

Publications (2)

Publication Number Publication Date
JP2009050769A JP2009050769A (en) 2009-03-12
JP4846677B2 true JP4846677B2 (en) 2011-12-28

Family

ID=40502343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007218058A Active JP4846677B2 (en) 2007-08-24 2007-08-24 Arsenic-containing solution processing method

Country Status (1)

Country Link
JP (1) JP4846677B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103011368A (en) * 2012-12-07 2013-04-03 常州大学 Method for removing arsenic in sewage

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4538481B2 (en) * 2007-09-25 2010-09-08 日鉱金属株式会社 Method for producing scorodite and method for recycling liquid after synthesis of scorodite
WO2010131686A1 (en) * 2009-05-13 2010-11-18 Dowaメタルマイン株式会社 Scorodite-type iron-arsenic compound particles, production method, and arsenic-containing solid
JP2011177651A (en) * 2010-03-01 2011-09-15 Dowa Metals & Mining Co Ltd Arsenic-containing solution treatment method
JP5777413B2 (en) * 2011-06-06 2015-09-09 株式会社合同資源 Method for synthesizing scorodite
CN108946819B (en) * 2018-07-10 2020-11-10 中南大学 Stabilization method of scorodite
US10822673B1 (en) * 2019-12-17 2020-11-03 American Air Liquide, Inc. Arsenic removal from lead concentrate by ozone treatment and reverse flotation
CN112717319B (en) * 2020-12-16 2022-04-08 陕西新天地固体废物综合处置有限公司 Harmless treatment method for arsenic-containing waste reagent
CN115259454B (en) * 2022-07-15 2023-08-29 浙大城市学院 Treatment method of arsenic-containing acidic wastewater in wide pH range
CN115554647B (en) * 2022-10-26 2023-09-01 中节能(攀枝花)清洁技术发展有限公司 Method for cooperatively treating dangerous chemicals

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59164639A (en) * 1983-03-08 1984-09-17 Nippon Mining Co Ltd Separation of arsenic
FI119438B (en) * 2005-05-03 2008-11-14 Outokumpu Oy Method for recovering precious metals and arsenic from solution
JP4087433B2 (en) * 2006-04-28 2008-05-21 Dowaメタルマイン株式会社 Arsenic-containing solution processing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103011368A (en) * 2012-12-07 2013-04-03 常州大学 Method for removing arsenic in sewage

Also Published As

Publication number Publication date
JP2009050769A (en) 2009-03-12

Similar Documents

Publication Publication Date Title
JP4846677B2 (en) Arsenic-containing solution processing method
JP3999805B1 (en) Arsenic-containing solution processing method
JP3756687B2 (en) Method for removing and fixing arsenic from arsenic-containing solutions
AU2014279361B2 (en) Wastewater treatment process
JP4268196B2 (en) Method for producing scorodite
JP4710034B2 (en) Arsenic-containing material treatment method
JP4710033B2 (en) Arsenic content treatment method
JP2006219719A (en) Method for recovering indium
US5290338A (en) Antimony separation process
JP4149488B2 (en) Iron arsenate powder
JP4615561B2 (en) Arsenic-containing solution processing method
JP4087433B2 (en) Arsenic-containing solution processing method
JP2008260683A (en) Iron arsenate powder
JP5062111B2 (en) Method for producing high-purity arsenous acid aqueous solution from copper-free slime
JP2008274382A (en) Method for separating lead from aqueous cobalt chloride solution
US5939042A (en) Tellurium extraction from copper electrorefining slimes
JP3955934B2 (en) Wet treatment of zinc leaching residue
US20090291307A1 (en) Iron arsenate powder
JP5564514B2 (en) Method for producing high purity zinc oxide using secondary dust
JP4635231B2 (en) Zinc raw material processing method
JP7359059B2 (en) Method for producing cadmium hydroxide
US20240092654A1 (en) Process for the purification of manganese sulfate solutions and subsequent crystallization of high purity manganese sulfate monohydrate
JPH09137236A (en) Method for recovering cadmium and sponge cadmium.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111011

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4846677

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250