JP4149488B2 - Iron arsenate powder - Google Patents

Iron arsenate powder Download PDF

Info

Publication number
JP4149488B2
JP4149488B2 JP2006204153A JP2006204153A JP4149488B2 JP 4149488 B2 JP4149488 B2 JP 4149488B2 JP 2006204153 A JP2006204153 A JP 2006204153A JP 2006204153 A JP2006204153 A JP 2006204153A JP 4149488 B2 JP4149488 B2 JP 4149488B2
Authority
JP
Japan
Prior art keywords
arsenic
powder
solution
iron arsenate
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006204153A
Other languages
Japanese (ja)
Other versions
JP2007314405A (en
Inventor
哲雄 藤田
良一 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metals and Mining Co Ltd
Original Assignee
Dowa Metals and Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2006204153A priority Critical patent/JP4149488B2/en
Application filed by Dowa Metals and Mining Co Ltd filed Critical Dowa Metals and Mining Co Ltd
Priority to EP07791129.5A priority patent/EP2042472A4/en
Priority to US12/375,075 priority patent/US20090291307A1/en
Priority to AU2007277825A priority patent/AU2007277825B2/en
Priority to CA2656724A priority patent/CA2656724C/en
Priority to CNA2007800278034A priority patent/CN101495412A/en
Priority to KR1020097001575A priority patent/KR20090051034A/en
Priority to PCT/JP2007/064393 priority patent/WO2008013124A1/en
Publication of JP2007314405A publication Critical patent/JP2007314405A/en
Application granted granted Critical
Publication of JP4149488B2 publication Critical patent/JP4149488B2/en
Priority to NO20090718A priority patent/NO20090718L/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、砒酸鉄粉末に関し、特に、非鉄製錬の製錬中間物などの砒素以外の各種の元素を含む砒素含有物質を処理して得られる高純度で高濃度の砒素を含む溶液から製造した砒酸鉄粉末に関する。   The present invention relates to iron arsenate powder, and in particular, manufactured from a solution containing high-concentration and high-concentration arsenic obtained by treating an arsenic-containing substance containing various elements other than arsenic, such as non-ferrous smelting intermediates. Related to iron arsenate powder.

非鉄製錬において生成される各種の製錬中間物や製錬原料には、有価金属が含まれているが、砒素などの好ましくない元素も含まれている。   Various smelting intermediates and smelting raw materials produced in non-ferrous smelting contain valuable metals, but also contain undesirable elements such as arsenic.

従来、砒素を含む製錬中間物などから砒素を浸出して分離して回収する方法として、湿式反応により砒素を分離して砒素含有溶液を回収する方法が提案されている(例えば、特許文献1参照)。また、砒酸鉄溶液中に存在する砒素を鉄との安定な結晶性で且つ不溶出性の鉄・砒素化合物として除去して固定する方法が提案されている(例えば、特許文献2参照)。また、砒素含有溶液に鉄(II)溶液および鉄(III)溶液の少なくとも一方を加えて反応させてスコロダイト(Scorodite)(FeAsO・2HO)を生成させ、固液分離して銅を含む非鉄金属成分を含有するスコロダイトを回収し、得られた銅を含む非鉄金属成分を含有するスコロダイトに水を加えてリパルプし、スコロダイトに含まれる銅を含む非鉄金属成分を液中に溶かしてスコロダイトから分離する方法が提案されている(例えば、特許文献3参照)。さらに、砒素を含む煙灰から酸溶液により砒素を浸出し、その浸出液に鉄イオンを含む酸性水溶液を混合して非晶質の砒酸鉄(FeAsO)を沈澱させた後、その混合液を加温して非晶質の砒酸鉄を結晶化し、その混合液をろ過して結晶化された砒酸鉄を除去する方法が提案されている(例えば、特許文献4参照)。また、鉄と砒素の化合物として砒酸鉄などの安定性の評価も報告されている(例えば、非特許文献1参照)。 Conventionally, as a method of leaching arsenic from a smelting intermediate containing arsenic and separating and recovering it, a method of separating arsenic by a wet reaction and recovering an arsenic-containing solution has been proposed (for example, Patent Document 1). reference). Further, a method has been proposed in which arsenic present in an iron arsenate solution is removed and fixed as a stable crystalline and non-eluting iron / arsenic compound with iron (see, for example, Patent Document 2). In addition, at least one of an iron (II) solution and an iron (III) solution is added to the arsenic-containing solution and reacted to form Scorodite (FeAsO 4 .2H 2 O), which is separated into solid and liquid and contains copper. Collect scorodite containing non-ferrous metal component, add water to scorodite containing non-ferrous metal component containing copper and repulp, dissolve non-ferrous metal component containing copper contained in scorodite in liquid A separation method has been proposed (see, for example, Patent Document 3). Further, arsenic is leached from the ash containing arsenic with an acid solution, and an acidic aqueous solution containing iron ions is mixed into the leached solution to precipitate amorphous iron arsenate (FeAsO 4 ), and then the mixture is heated. Then, a method has been proposed in which amorphous iron arsenate is crystallized, and the mixed liquid is filtered to remove the crystallized iron arsenate (see, for example, Patent Document 4). In addition, stability evaluation of iron arsenate as a compound of iron and arsenic has been reported (for example, see Non-Patent Document 1).

特公昭61−24329号公報(第1−3頁)Japanese Examined Patent Publication No. 61-24329 (page 1-3) 特開平11−277075号公報(段落番号0013−0014)JP 11-277075 A (paragraph number 0013-0014) 特開2000−219920号公報(段落番号0007)JP 2000-219920 A (paragraph number 0007) 特開2005−161123号公報(段落番号0006)Japanese Patent Laying-Open No. 2005-161123 (paragraph number 0006) 東北大学選鉱製錬研究所彙報 第34巻 第1号 別刷(昭和53年6月)、選鉱製錬研究所報告 第764号、「砒酸鉄、砒酸カルシウム、砒酸マグネシウムの溶解度積について(西村忠久、戸沢一光)」Tohoku University Beneficiation and Smelting Research Institute Vocabulary Vol. 34 No. 1 Reprint (June 1978), Report of Beneficiation and Smelting Research Institute No. 764, “Solubility products of iron arsenate, calcium arsenate, and magnesium arsenate (Tadahisa Nishimura, Izawa Tozawa)

しかし、特許文献1は、砒素含有溶液を回収するまでの方法を提案しているが、その回収された砒素含有溶液を安定な不溶出性の物質まで固定する方法について提案していない。また、特許文献2〜4の方法によって生成される従来の鉄と砒素の化合物や、非特許文献1などに報告されている砒酸鉄のような従来の鉄と砒素の化合物よりもさらに安定な不溶出性の鉄と砒素の化合物を生成することが望まれている。特に、特許文献4の方法では、非晶質の砒酸鉄を沈澱させた後に非晶質の砒酸鉄を結晶化するので、非常に長時間を要するという問題がある。   However, Patent Document 1 proposes a method for collecting an arsenic-containing solution, but does not propose a method for fixing the collected arsenic-containing solution to a stable non-eluting substance. Further, it is more stable than conventional iron and arsenic compounds produced by the methods of Patent Documents 2 to 4 and conventional iron and arsenic compounds such as iron arsenate reported in Non-Patent Document 1 and the like. It is desirable to produce leachable iron and arsenic compounds. In particular, the method of Patent Document 4 has a problem that it takes a very long time because amorphous iron arsenate is crystallized after the amorphous iron arsenate is precipitated.

したがって、本発明は、このような従来の問題点に鑑み、砒素含有溶液から製造されて砒素の溶出濃度が非常に低い砒酸鉄粉末を提供することを目的とする。   Therefore, in view of the above-described conventional problems, an object of the present invention is to provide an iron arsenate powder manufactured from an arsenic-containing solution and having a very low arsenic elution concentration.

本発明者らは、上記課題を解決するために鋭意研究した結果、平均粒径が8μm以上、粒径5μm以下の粒子の割合が10%以下、BET比表面積が2m/g以下である砒酸鉄粉末が砒素の溶出濃度が非常に低いことを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have found that the proportion of particles having an average particle size of 8 μm or more and a particle size of 5 μm or less is 10% or less, and the BET specific surface area is 2 m 2 / g or less. The iron powder was found to have a very low arsenic elution concentration, and the present invention was completed.

すなわち、本発明による砒酸鉄粉末は、平均粒径が8μm以上、好ましくは10μm以上、粒径5μm以下の粒子の割合が10%以下、好ましくは5%以下、BET比表面積が2m/g以下、好ましくは0.5m/g以下であることを特徴とする。この砒酸鉄粉末は、砒酸鉄二水塩の粉末であるのが好ましく、不純物として含有するカルシウムおよびマグネシウムの量が、それぞれ2質量%以下であるのが好ましく、0.1質量%以下であるのがさらに好ましい。 That is, the iron arsenate powder according to the present invention has an average particle size of 8 μm or more, preferably 10 μm or more, and the proportion of particles having a particle size of 5 μm or less is 10% or less, preferably 5% or less, and the BET specific surface area is 2 m 2 / g or less. , Preferably 0.5 m 2 / g or less. This iron arsenate powder is preferably an iron arsenate dihydrate powder, and the amount of calcium and magnesium contained as impurities is preferably 2% by mass or less, and preferably 0.1% by mass or less. Further preferred.

本発明によれば、砒素含有溶液から砒素の溶出濃度が非常に低い砒酸鉄粉末を製造することができる。特に、砒素の溶出基準である0.3mg/Lよりも非常に低い溶出濃度の砒酸鉄粉末を製造することができる。   According to the present invention, iron arsenate powder having a very low arsenic elution concentration can be produced from an arsenic-containing solution. In particular, iron arsenate powder having an elution concentration much lower than 0.3 mg / L, which is the elution standard for arsenic, can be produced.

本発明による砒酸鉄粉末の実施の形態は、平均粒径が大きく、小さい粒径の粒子の割合が少なく、比表面積が小さいのが好ましい。平均粒径が大きく、小さい粒径の粒子の割合が少なく、比表面積が小さくて表面が平滑であれば、砒素の溶出濃度が非常に低くなるからである。具体的には、砒酸鉄粉末の平均粒径は、8μm以上であるのが好ましく、10μm以上であるのがさらに好ましい。また、砒酸鉄粉末の粒径5μm以下の粒子の割合は、10%以下であるのが好ましく、5%以下であるのがさらに好ましく、0%であるのが最も好ましい。さらに、砒酸鉄粉末のBET比表面積は、2m/g以下であるのが好ましく、0.5m/g以下であるのがさらに好ましい。 The embodiment of the iron arsenate powder according to the present invention preferably has a large average particle size, a small proportion of particles having a small particle size, and a small specific surface area. This is because if the average particle size is large, the proportion of particles having a small particle size is small, the specific surface area is small and the surface is smooth, the elution concentration of arsenic becomes very low. Specifically, the average particle diameter of the iron arsenate powder is preferably 8 μm or more, and more preferably 10 μm or more. Further, the ratio of particles having a particle diameter of 5 μm or less in the iron arsenate powder is preferably 10% or less, more preferably 5% or less, and most preferably 0%. Further, BET specific surface area of the iron arsenate powder is preferably equal to or less than 2m 2 / g, more preferably equal to or less than 0.5 m 2 / g.

また、本発明による砒酸鉄粉末の実施の形態は、砒酸鉄二水塩の粉末であるのが好ましく、不純物として含有するカルシウムおよびマグネシウムの量が、それぞれ2質量%以下であるのが好ましく、0.1質量%以下であるのがさらに好ましい。   The embodiment of the iron arsenate powder according to the present invention is preferably an iron arsenate dihydrate powder, and the amount of calcium and magnesium contained as impurities is preferably 2% by mass or less, respectively. More preferably, it is 1 mass% or less.

さらに、本発明による砒酸鉄粉末の実施の形態では、運搬効率などを考慮して圧縮密度ができるだけ高いのが好ましく、1トン加圧による圧縮密度が1.9g/cc以上であるのが好ましい。   Furthermore, in the embodiment of the iron arsenate powder according to the present invention, it is preferable that the compression density is as high as possible in consideration of transportation efficiency and the like, and it is preferable that the compression density by 1 ton pressurization is 1.9 g / cc or more.

このような砒酸鉄粉末は、例えば、図1に示すような方法によって製造することができる。図1に示す方法では、砒酸鉄粉末は、(1)砒素含有物質をアルカリ溶液に加えてpH10以上、好ましくはpH12以上にして酸化しながらアルカリ浸出した後に固液分離して砒素を含む浸出液を得るアルカリ浸出・酸化工程と、(2)この浸出液にアルカリ土類金属またはその塩を添加した後に固液分離して砒素とアルカリ土類金属の化合物を含む残渣を得るアルカリ土類金属置換工程と、(3)この残渣を洗浄して付着したアルカリ液を除去する洗浄工程と、(4)この洗浄した残渣を硫酸溶液に添加した後に固液分離して高純度で高濃度の砒素含有溶液を得る硫酸溶解工程とを備えた砒素含有溶液の製造方法によって砒素含有溶液を製造し、(5)この砒素含有溶液にFe塩を添加して反応させた後に固液分離し、洗浄して固液分離し、その後、乾燥することによって製造することができる。このようにして得られた砒酸鉄粉末は、結晶粒が粗大であり、砒素の溶出濃度が非常に低く、廃棄、堆積または保管することができる。以下、これらの各工程について説明する。   Such an iron arsenate powder can be produced, for example, by a method as shown in FIG. In the method shown in FIG. 1, iron arsenate powder is obtained by (1) adding an arsenic-containing substance to an alkaline solution and leaching the alkali while oxidizing it to pH 10 or more, preferably pH 12 or more, followed by solid-liquid separation to obtain a leachate containing arsenic. An alkaline leaching / oxidation step to be obtained; and (2) an alkaline earth metal substitution step of obtaining a residue containing a compound of arsenic and an alkaline earth metal by solid-liquid separation after adding an alkaline earth metal or a salt thereof to the leaching solution. (3) a washing step for washing the residue to remove the adhering alkali solution; and (4) adding the washed residue to the sulfuric acid solution, followed by solid-liquid separation to obtain a high-purity and high-concentration arsenic-containing solution. An arsenic-containing solution is produced by a method for producing an arsenic-containing solution having a sulfuric acid dissolution step to be obtained. (5) After the Fe salt is added to the arsenic-containing solution for reaction, solid-liquid separation, washing and solid-liquid Separation , It can then be prepared by drying. The iron arsenate powder thus obtained has coarse crystal grains and a very low arsenic elution concentration, and can be discarded, deposited or stored. Hereinafter, each of these steps will be described.

なお、上記の砒素含有溶液の製造方法の原料となる砒素含有物質としては、硫化砒素(As)やFeAsSなどの硫化物のように硫黄と砒素を含む物質を使用することができる。また、亜鉛製錬工程などにより得られる砒化銅(CuAs)を主成分とする残渣なども使用することができる。この砒化銅を主成分とする残渣には、亜鉛や鉄などの他にインジウムやガリウムなどの有価金属も含まれている。なお、実施の形態の砒素含有物質の処理方法によって処理する砒素含有物質が硫黄を含まない場合には、アルカリ浸出・酸化工程前にNaSO塩のような硫酸塩などを添加するか、あるいは、アルカリ浸出・酸化工程後の浸出液に硫酸塩などを添加して、アルカリ土類金属置換工程前の浸出液中にSOイオンが存在するようにしておく必要がある。また、砒素含有物質は、砒素(As)と硫黄(S)の他に、銅(Cu)、亜鉛(Zn)、鉄(Fe)、インジウム(In)、ガリウム(Ga)、錫(Sn)、アンチモン(Sb)、鉛(Pb)、カドミウム(Cd)、ナトリウム(Na)、カリウム(K)、マグネシウム(Mg)およびカルシウム(Ca)の少なくとも一種を含んでもよい。 As the arsenic-containing substance used as a raw material for the method for producing the arsenic-containing solution, a substance containing sulfur and arsenic such as sulfides such as arsenic sulfide (As 2 S 3 ) and FeAsS can be used. Also, such residue composed mainly of the resulting copper arsenide (Cu 3 As) due zinc smelting process can also be used. The residue mainly composed of copper arsenide contains valuable metals such as indium and gallium in addition to zinc and iron. If the arsenic-containing material to be treated by the method for treating an arsenic-containing material of the embodiment does not contain sulfur, a sulfate such as Na 2 SO 4 salt is added before the alkali leaching / oxidation step, or Alternatively, the addition of sulfate, etc. leachate after alkali leaching and oxidation process, it is necessary as sO 4 ions are present in the leaching solution before the alkaline earth metal substitution step. In addition to arsenic (As) and sulfur (S), arsenic-containing substances include copper (Cu), zinc (Zn), iron (Fe), indium (In), gallium (Ga), tin (Sn), It may contain at least one of antimony (Sb), lead (Pb), cadmium (Cd), sodium (Na), potassium (K), magnesium (Mg) and calcium (Ca).

(1)アルカリ浸出・酸化工程
まず、上記の砒素含有物質を酸化剤とともにアルカリ溶液に添加してpH10以上、好ましくはpH12以上にし、液温50〜100℃に加熱して撹拌しながら反応させることにより、砒素含有物質を酸化しながら浸出する。このアルカリ浸出・酸化工程における反応は、pH10以上、好ましくはpH12以上の強アルカリ性で起こる反応であり、反応速度は非常に速い。
(1) Alkali leaching / oxidation step First, the above-mentioned arsenic-containing substance is added to an alkaline solution together with an oxidizing agent so as to have a pH of 10 or more, preferably 12 or more, and the reaction is carried out while stirring at a liquid temperature of 50 to 100 ° C. Leaching while oxidizing the arsenic-containing material. The reaction in the alkali leaching / oxidation step is a reaction that occurs at a strong alkalinity of pH 10 or more, preferably pH 12 or more, and the reaction rate is very fast.

このアルカリ浸出によって、Cuを浸出させずにAsを浸出させてCuとAsを分離することができる。また、このアルカリ浸出では、In、Pb、CdおよびMgも浸出されず、Fe、Sn、SbおよびCaもほとんど浸出されない。しかし、Gaはほとんど浸出されるので、この段階では、AsとGaは分離されない。   By this alkali leaching, Cu and As can be separated by leaching As without leaching Cu. In this alkaline leaching, In, Pb, Cd and Mg are not leached, and Fe, Sn, Sb and Ca are hardly leached. However, since Ga is almost leached, As and Ga are not separated at this stage.

なお、Znは、アルカリ濃度が高いと浸出されるが、アルカリ濃度が低いと浸出されないので、砒素含有物質中のZnの品位、砒素の品位および他の不純物(特にSnとSb)の浸出挙動を勘案してアルカリ濃度を決定すればよい。すなわち、SnやSbの品位が低ければ、残渣中にZnを残しておく方がよいが、SnやSbの品位が高いと、ある程度Znを溶解させた方がよい。   Zn is leached when the alkali concentration is high, but it is not leached when the alkali concentration is low. The alkali concentration may be determined in consideration. That is, if the quality of Sn or Sb is low, it is better to leave Zn in the residue, but if the quality of Sn or Sb is high, it is better to dissolve Zn to some extent.

アルカリ溶液としてNaOH溶液を使用することができ、その場合、NaOH濃度が50〜300g/Lであるのが好ましい。   A NaOH solution can be used as the alkaline solution, in which case the NaOH concentration is preferably 50 to 300 g / L.

酸化剤としては、過マンガン酸カリウムなどの固形酸化剤の他、過酸化水素やオゾンなどを使用することができるが、空気や濃度を高めた酸素などを使用してもよく、その場合、液中にガスを吹き込んでバブリングして撹拌することによって酸化反応が容易に進む。   As an oxidizing agent, hydrogen peroxide, ozone, etc. can be used in addition to a solid oxidizing agent such as potassium permanganate, but air or oxygen with increased concentration may be used. Oxidation reaction proceeds easily by bubbling and stirring the gas.

アルカリ浸出後に固液分離を行う。この固液分離は、フィルタプレス、遠心分離、デカンタ、ベルトフィルタなどの一般的なろ過のいずれでもよく、ろ過性、脱水性、洗浄性などを勘案してその種類および条件が決定される。   Solid-liquid separation is performed after alkali leaching. This solid-liquid separation may be any of general filtration such as a filter press, centrifugal separation, decanter, and belt filter, and its type and conditions are determined in consideration of filterability, dewaterability, washability, and the like.

一方、固液分離後の固形分は、有価なCuやInなどを含む金属性化合物と、一部酸化された化合物であるので、製錬工程において有効に活用することができる。なお、銅製錬では、自溶炉や反射炉に直接投入してアノードを作成することができる。   On the other hand, since the solid content after the solid-liquid separation is a metallic compound containing valuable Cu or In and a partially oxidized compound, it can be effectively utilized in the smelting process. In copper smelting, an anode can be created by directly charging into a flash smelting furnace or a reflection furnace.

(2)アルカリ土類金属置換工程
次に、固液分離後の浸出液(主にNaとAsを含む液)にアルカリ土類を添加する。アルカリ浸出後の浸出液にCaOなどのアルカリ土類を添加すると、アルカリ土類金属が砒素と反応してアルカリ土類金属と砒素の化合物を生成するとともに、NaOHのようなアルカリ液を再生する。
(2) Alkaline earth metal replacement step Next, alkaline earth is added to the leachate (mainly a liquid containing Na and As) after solid-liquid separation. When an alkaline earth such as CaO is added to the leachate after alkaline leaching, the alkaline earth metal reacts with arsenic to produce a compound of alkaline earth metal and arsenic, and an alkaline liquid such as NaOH is regenerated.

上記の反応のために過剰のアルカリ土類を添加することによって、再生されたアルカリ液にSO塩またはイオンを混在させて、アルカリ液へのアルカリ土類金属の混入を防止する。再生されたアルカリ液中にSO塩がなく、ほぼ純粋なアルカリ液である場合には、過剰にアルカリ土類を添加すると、再生されたアルカリ液中にアルカリ土類金属が溶存してしまう。 By adding an excess of alkaline earth for the above reaction, SO 4 salts or ions are mixed in the regenerated alkaline liquid to prevent the alkaline earth metal from being mixed into the alkaline liquid. No SO 4 salts in an alkali solution which is reproduced, when it is substantially pure alkali solution, an excessive addition of alkaline earth, alkaline earth metals in an alkali solution which is reproduced will be dissolved.

再生されたアルカリ液中にアルカリ土類金属が存在すると、そのアルカリ液を砒素の浸出に再利用する際に、砒素とアルカリ土類金属が反応して溶解度が低い沈殿物を生成するので、アルカリ浸出工程における浸出率が極端に悪くなる場合がある。一方、過剰のアルカリ土類金属を加えないと、アルカリ液中に砒素が除去されずに残ってしまうため、砒素の回収効率が非常に悪くなる。また、アルカリ液にSOが混在していると、アルカリ土類としてCaOを使用した場合に、CaOまたはCa(OH)がその状態で溶解せずに固形分中にとどまる。すなわち、NaとSO 2−の濃度を高くすることによって、Ca2+の溶解度が非常に低く抑制されるため、CaOとして固形分中にとどまる。 If alkaline earth metal is present in the regenerated alkaline liquid, when the alkaline liquid is reused for arsenic leaching, arsenic and alkaline earth metal react to produce a precipitate with low solubility. The leaching rate in the leaching process may become extremely poor. On the other hand, if excess alkaline earth metal is not added, arsenic will remain in the alkaline solution without being removed, and the arsenic recovery efficiency will be very poor. In addition, when SO 4 is mixed in the alkaline solution, when CaO is used as the alkaline earth, CaO or Ca (OH) 2 remains in the solid content without being dissolved in that state. That is, by increasing the concentration of Na + and SO 4 2− , the solubility of Ca 2+ is suppressed to be very low, so that it remains in the solid content as CaO.

アルカリ土類の添加量は、砒素とアルカリ土類金属の化合物を生成するための等当量でもよいが、Ca(AsOに加えてCa(OH)を生成するように、等当量よりもややアルカリ土類リッチにするのが好ましい。 The amount of alkaline earth added may be equivalent to produce a compound of arsenic and alkaline earth metal, but is equivalent to produce Ca (OH) 2 in addition to Ca 3 (AsO 4 ) 2. It is preferable to make it slightly richer in alkaline earth.

(3)洗浄工程
次に、固形分として得られた砒素とアルカリ土類金属の化合物に付着したアルカリ液を水洗する。この水洗では、固形分中に砒素をとどめておく必要がある。砒素が洗浄排水中に溶出すると、その排水中の砒素を除去するための煩雑な操作が必要になるからである。そのような操作を回避するために、洗浄によってアルカリ液を除去するが砒素を除去しないようにすることが必要である。このような洗浄を可能にするために、上述したようにアルカリ土類を添加する際にアルカリ土類リッチにしてアルカリ性にするのが好ましい。また、アルカリ土類リッチにすると、洗浄によってアルカリ液が洗い流されるだけでなく、アルカリ土類金属が優先的に溶出し、砒素とアルカリ土類金属の化合物はそのまま保持される。なお、アルカリ土類の添加量は、洗浄水の量の増加に伴って多くなるが、Asと反応する量よりも0.5〜1.0質量%程度過剰に、あるいはそれ以上過剰にするのが好ましい。
(3) Washing step Next, the alkaline solution adhering to the arsenic and alkaline earth metal compound obtained as a solid content is washed with water. In this water washing, it is necessary to keep arsenic in the solid content. This is because if arsenic elutes into the washing waste water, a complicated operation for removing the arsenic in the waste water becomes necessary. In order to avoid such an operation, it is necessary to remove the alkaline solution by washing but not to remove arsenic. In order to enable such cleaning, it is preferable that the alkaline earth is made rich by alkaline earth when the alkaline earth is added as described above. Further, when the alkaline earth is rich, not only the alkaline solution is washed away but also the alkaline earth metal is preferentially eluted, and the compound of arsenic and alkaline earth metal is retained as it is. The amount of alkaline earth added increases with an increase in the amount of washing water, but it is about 0.5 to 1.0% by mass or more than the amount reacting with As. Is preferred.

(4)硫酸溶解工程
次に、洗浄後の砒素とアルカリ土類金属の化合物を硫酸溶液に添加して、強く撹拌しながら反応させて、砒素を再溶解させるとともに石膏を生成する。この砒素とアルカリ土類金属の化合物は、アルカリ側では不溶性であるが、pHが4以下ではほぼ全量が溶解するので、鉱酸によってpHを4以下にすれば、ほぼ全量を溶解させることが可能である。しかし、砒素とアルカリ土類金属を分離するためには、硫酸を用いて石膏と砒素含有溶液に分離するのが好ましい。砒素とアルカリ土類金属の化合物を硫酸溶液に添加すると、砒素の溶解と同時に、アルカリ土類と硫酸塩の析出反応が起こる。
(4) Sulfuric acid dissolution step Next, the washed arsenic and alkaline earth metal compound is added to the sulfuric acid solution and reacted with vigorous stirring to re-dissolve arsenic and produce gypsum. This arsenic and alkaline earth metal compound is insoluble on the alkali side, but almost completely dissolves when the pH is 4 or less. Therefore, if the pH is lowered to 4 or less with mineral acid, almost all of the compound can be dissolved. It is. However, in order to separate arsenic and alkaline earth metal, it is preferable to separate into gypsum and an arsenic-containing solution using sulfuric acid. When a compound of arsenic and alkaline earth metal is added to the sulfuric acid solution, precipitation of alkaline earth and sulfate occurs simultaneously with the dissolution of arsenic.

硫酸溶液の濃度は、100〜500g/Lであるのが好ましく、150〜300g/Lであるのがさらに好ましい。砒素含有溶液中の砒素を高濃度にしたい場合には、硫酸溶液の濃度をより高くする必要があるが、生成する石膏に付着する硫酸溶液の濃度が上昇し、また、溶液の粘度も上昇するので好ましくない。しかし、砒素の未反応を防止する観点では、砒素とアルカリ土類金属の化合物を濃硫酸に添加して、砒素だけでなく石膏も溶解させた後に、水を加えて加水分解により石膏を析出させてもよい。   The concentration of the sulfuric acid solution is preferably 100 to 500 g / L, and more preferably 150 to 300 g / L. In order to increase the concentration of arsenic in the arsenic-containing solution, it is necessary to increase the concentration of the sulfuric acid solution. However, the concentration of the sulfuric acid solution adhering to the generated gypsum increases, and the viscosity of the solution also increases. Therefore, it is not preferable. However, from the viewpoint of preventing unreacted arsenic, after adding a compound of arsenic and alkaline earth metal to concentrated sulfuric acid to dissolve not only arsenic but also gypsum, water is added to precipitate gypsum by hydrolysis. May be.

撹拌は強く行うことが好ましい。砒素の溶解反応と石膏の析出反応が同時に起こり、また、ウェットケーキの状態で硫酸溶液に投入するのが好ましく、局部的な中和などを起こし易い系であるので、均一且つ完全に反応させるために、強く撹拌して十分に砒素を硫酸に接触させて高純度で高濃度の砒素含有溶液にする必要があるからである。   Stirring is preferably performed strongly. Arsenic dissolution reaction and gypsum precipitation reaction occur at the same time, and it is preferable to put it into the sulfuric acid solution in the form of a wet cake. In addition, it is necessary to vigorously agitate to sufficiently contact arsenic with sulfuric acid to obtain a high-purity and high-concentration arsenic-containing solution.

(5)FeとAsの化合物の生成工程
次に、得られた砒素含有溶液に2価の鉄イオンを加えて、溶液中の鉄に対する砒素のモル比(Fe/As)を1以上にし、酸化剤を加えて撹拌しながら70℃以上に昇温させて反応させた後、固液分離して固形分が得られる。
(5) Step of producing Fe and As compound Next, divalent iron ions are added to the obtained arsenic-containing solution so that the molar ratio of arsenic to iron in the solution (Fe / As) is 1 or more and oxidation is performed. After adding an agent and stirring, the temperature is raised to 70 ° C. or higher and the reaction is performed, and then solid-liquid separation is performed to obtain a solid content.

砒素含有溶液中のAs濃度は、不純物として含まれるNaなどが1g/L以下であれば、それほど高くなくてもよいが、As濃度が低いとFeとAsの化合物の析出から成長過程で粒子が粗大化し難くなる傾向があるので、10g/L以上であるのが好ましく、20g/L以上であるのがさらに好ましい。また、砒素含有溶液のpHが2以下であるのが好ましい。   The concentration of As in the arsenic-containing solution may not be so high as long as the amount of Na contained as an impurity is 1 g / L or less. Since there exists a tendency which becomes difficult to coarsen, it is preferable that it is 10 g / L or more, and it is further more preferable that it is 20 g / L or more. Further, the pH of the arsenic-containing solution is preferably 2 or less.

2価のFe源としては、可溶性のFeSO・7HOを使用するのが好ましい。溶液中の鉄に対する砒素のモル比(Fe/As)は1以上であるのが好ましく、1.0〜1.5程度であるのがさらに好ましい。 As the divalent Fe source, soluble FeSO 4 · 7H 2 O is preferably used. The molar ratio of arsenic to iron in the solution (Fe / As) is preferably 1 or more, and more preferably about 1.0 to 1.5.

酸化剤としては、Fe2+を酸化することができる酸化剤であれば使用することができ、酸素ガスを使用してもよい。また、空気を使用してもよいが、酸化能力が若干低下するので、空気を使用する場合には、Cuなどの触媒を使用して酸化能力を向上させてもよい。 As an oxidizing agent, any oxidizing agent capable of oxidizing Fe 2+ can be used, and oxygen gas may be used. In addition, air may be used, but since the oxidation ability is slightly lowered, when using air, a catalyst such as Cu may be used to improve the oxidation ability.

反応温度は、50℃以上であればFeとAsの化合物を析出させることができるが、Asの溶出濃度を低下させるためには、70℃以上にするのが好ましく、80〜95℃程度であるのがさらに好ましい。また、オートクレーブなどを用いて100℃以上にしてもよい。なお、反応時間は1〜3時間でよい。   If the reaction temperature is 50 ° C. or higher, the compound of Fe and As can be precipitated. However, in order to reduce the elution concentration of As, it is preferably 70 ° C. or higher, and is about 80 to 95 ° C. Is more preferable. Moreover, you may make it 100 degreeC or more using an autoclave. The reaction time may be 1 to 3 hours.

このようにして得られた粉末についてX線回折による分析を行ったところ、砒酸鉄二水塩(FeAsO・2HO)であった。 The powder thus obtained was analyzed by X-ray diffraction. As a result, it was iron arsenate dihydrate (FeAsO 4 .2H 2 O).

以下、本発明による砒酸鉄粉末の実施例について詳細に説明する。   Hereinafter, examples of the iron arsenate powder according to the present invention will be described in detail.

[実施例1]
まず、出発原料として表1に示す組成の砒素含有物質を用意した。この砒素含有物質400gをNaOH濃度100g/LのNaOH溶液(Na濃度57.5g/L)4Lに入れ、液温90℃に加熱し、2L/分の流量で空気(ガス/液比率=0.5)を吹き込んで、撹拌しながら1時間反応させ、砒素含有物質を酸化しながらアルカリ浸出した。なお、砒素含有物質をNaOH溶液に入れた後のpHは約12であった。
[Example 1]
First, an arsenic-containing material having the composition shown in Table 1 was prepared as a starting material. 400 g of this arsenic-containing substance is placed in 4 L of NaOH solution (Na concentration 57.5 g / L) having a NaOH concentration of 100 g / L, heated to a liquid temperature of 90 ° C., and air (gas / liquid ratio = 0.0) at a flow rate of 2 L / min. 5) was blown in, reacted for 1 hour with stirring, and alkali leached while oxidizing the arsenic-containing substance. The pH after the arsenic-containing substance was added to the NaOH solution was about 12.

Figure 0004149488
Figure 0004149488

次に、目開き3ミクロンのPTFE(ポリ四フッ化エチレン)からなるメンブランフィルタを用いて、加圧ろ過機によって0.4MPaに加圧して固液分離した。フィルタ上に残った残渣(浸出残渣)の水分は20%であり、質量は600gであった。この浸出残渣は、Cu、Zn、Fe、Inなどを含み、製錬原料として使用される。   Next, using a membrane filter made of PTFE (polytetrafluoroethylene) having an opening of 3 microns, solid-liquid separation was performed by applying pressure to 0.4 MPa with a pressure filter. The residue (leaching residue) remaining on the filter had a water content of 20% and a mass of 600 g. This leaching residue contains Cu, Zn, Fe, In and the like and is used as a smelting raw material.

一方、フィルタを通過したろ液(アルカリ浸出液)に純度95%の工業用生石灰(CaO)を添加して、液温60℃に加熱し、撹拌して1時間反応させ、固形分としてCaとAsの化合物を得るとともに、NaOH液を再生した。この置換反応によって液温は60℃から80℃まで上昇した。なお、工業用生石灰の添加量は、アルカリ浸出の際に加えたNaOH溶液のNaOH濃度との関係からアルカリ浸出液を置換するに足りるCaOと同当量とした。また、CaOを添加すると水(HO)を消費するので、濃度の上昇を避けるために、アルカリ浸出液が同じ量になるように水を補給して調整した。 On the other hand, 95% pure industrial quicklime (CaO) is added to the filtrate (alkaline leachate) that has passed through the filter, heated to a liquid temperature of 60 ° C., stirred and reacted for 1 hour, and Ca and As as solids. As a result, the NaOH solution was regenerated. The liquid temperature rose from 60 ° C. to 80 ° C. by this substitution reaction. The amount of industrial quicklime added was the same as that of CaO sufficient to replace the alkaline leaching solution in relation to the NaOH concentration of the NaOH solution added during the alkaline leaching. Moreover, since water (H 2 O) is consumed when CaO is added, in order to avoid an increase in concentration, water was replenished and adjusted so that the alkaline leachate was the same amount.

次に、加圧ろ過機によって固液分離した。得られた残渣(砒素とアルカリ土類金属の塩の固形分)は、20%の水分を含み、158g/Lであった。   Next, solid-liquid separation was performed with a pressure filter. The resulting residue (solid content of arsenic and alkaline earth metal salt) contained 20% water and was 158 g / L.

次に、固液分離後の固形分に付着したアルカリ成分を除去するために、パルプ濃度200g/Lとしてリパルプ洗浄を3回行った。各々のリパルプ洗浄では、液温を60℃として撹拌しながら1時間反応させた。その後、目開き3ミクロンのPTFEからなるメンブランフィルタを用いて、加圧ろ過機によって0.4MPaに加圧して、フィルタ上に残った残渣(洗浄後のカルシウムと砒素を含む固形分)とフィルタを通過したろ液(洗浄后液)に固液分離した。   Next, in order to remove the alkali component adhering to the solid content after solid-liquid separation, repulp washing was performed three times with a pulp concentration of 200 g / L. In each repulp washing, the liquid temperature was 60 ° C. and the reaction was performed for 1 hour with stirring. After that, using a membrane filter made of PTFE with 3 micron openings, pressurize to 0.4 MPa with a pressure filter, and remove the residue (solid content containing calcium and arsenic after washing) and the filter. The filtrate that passed through (liquid after washing) was subjected to solid-liquid separation.

次に、洗浄後の残渣(水分20%を含むカルシウムと砒素の固形分)1912gを200g/Lの硫酸溶液5.59Lに添加してpH1になるようにし、液温を50℃として強く撹拌しながら2時間反応させて残渣を再溶解させた。この置換反応により液温は50℃から80℃に上昇した。   Next, 1912 g of the residue after washing (solid content of calcium and arsenic containing 20% water) was added to 5.59 L of a 200 g / L sulfuric acid solution to adjust the pH to 1, and the solution temperature was 50 ° C. and stirred vigorously. For 2 hours to redissolve the residue. The liquid temperature rose from 50 ° C. to 80 ° C. by this substitution reaction.

その後、目開き3ミクロンのPTFEからなるメンブランフィルタを用いて、加圧ろ過機によって0.4MPaに加圧して、フィルタ上に残った残渣(石膏)とフィルタを通過したろ液(砒素含有溶液)に固液分離した。このようにして得られたろ液について組成分析を行ったところ、表2に示すようにアルカリ土類金属などの不純物が非常に少ない高濃度の砒素を含む溶液であり、pH1.0であった。なお、この溶液中のAsの価数をチオナリド法によって分析したところ、すべて5価であった。   Then, using a membrane filter made of PTFE having a mesh size of 3 microns, the pressure (0.4 gm) was pressurized by a pressure filter, and the residue (gypsum) remaining on the filter and the filtrate (arsenic solution) that passed through the filter Separated into solid and liquid. The composition of the filtrate thus obtained was subjected to composition analysis, and as shown in Table 2, it was a solution containing a high concentration of arsenic such as an alkaline earth metal and had a pH of 1.0. When the valence of As in this solution was analyzed by the thionalide method, all were pentavalent.

Figure 0004149488
Figure 0004149488

次に、得られた砒素含有溶液486mLと、1級試薬のFeSO・7HOに水を加えてFe濃度が183g/Lになるように調整した溶液214mL(この溶液と砒素含有溶液の合計の液量が700mL)とをチタン製の容量1Lの密閉容器(反応槽)に入れて(As濃度50.13g/L、Fe濃度56.00g/L、Fe/As比=1.5)、容器内の雰囲気を不活性ガス雰囲気として、1段の平パドルを500rpmにして撹拌しながら昇温させた。容器内の温度が100℃以上になった時点で一旦不活性ガスを脱気し、引き続き、最終的な設定温度175℃まで昇温させた。この時点で容器内の圧力は0.8MPaまで上昇した。 Next, 486 mL of the obtained arsenic-containing solution and 214 mL of a solution prepared by adding water to the first grade reagent FeSO 4 .7H 2 O so that the Fe concentration becomes 183 g / L (the total of this solution and the arsenic-containing solution) Is put in a 1 L titanium sealed container (reaction vessel) (As concentration 50.13 g / L, Fe concentration 56.00 g / L, Fe / As ratio = 1.5), The atmosphere in the container was set to an inert gas atmosphere, and the temperature of the single-stage flat paddle was increased to 500 rpm while stirring. When the temperature in the container reached 100 ° C. or higher, the inert gas was once degassed, and then the temperature was raised to a final set temperature of 175 ° C. At this time, the pressure in the container rose to 0.8 MPa.

最終的な設定温度175℃に達したときに容器内に純度99%以上の酸素ガスを吹き込んで、温度と圧力(酸素の分圧を0.2MPa、容器内の全圧を1.0MPaとした)を保持して5時間反応させた。5時間経過後、容器への加温を停止して、約1時間で容器を100℃以下まで冷却し、その後、容器を大気に開放して、容器内の溶液を取り出した。この溶液の温度が70℃になった後、目開き3ミクロンのPTFEからなるメンブランフィルタを用いて、加圧ろ過機によって0.4MPaに加圧して固液分離を行った。   When the final set temperature reached 175 ° C., oxygen gas with a purity of 99% or more was blown into the container, and the temperature and pressure (the partial pressure of oxygen was 0.2 MPa, and the total pressure in the container was 1.0 MPa). ) Was allowed to react for 5 hours. After 5 hours, heating to the container was stopped, and the container was cooled to 100 ° C. or less in about 1 hour, and then the container was opened to the atmosphere, and the solution in the container was taken out. After the temperature of this solution reached 70 ° C., solid-liquid separation was performed by applying pressure to 0.4 MPa with a pressure filter using a membrane filter made of PTFE having an opening of 3 μm.

次に、固液分離によって得られた固形分のウェット重量を測定し、ウェットベースで100gの固形分に対して水1Lになるように水を加えて、リパルプ洗浄を行なった。このリパルプ洗浄では、液温を30℃として400rpmで1時間撹拌した。この洗浄後、加圧ろ過機を用いて再度固液分離した。   Next, the wet weight of the solid content obtained by the solid-liquid separation was measured, and water was added to 1 L of water with respect to 100 g of the solid content on a wet base to perform repulp washing. In this repulp washing, the liquid temperature was set to 30 ° C. and stirred at 400 rpm for 1 hour. After this washing, solid-liquid separation was performed again using a pressure filter.

この固液分離によって固形分として得られたケーキの重量を測定し、60℃で18時間乾燥した。なお、この乾燥前後の重量を測定することによって水分値を算出した。   The weight of the cake obtained as a solid content by this solid-liquid separation was measured and dried at 60 ° C. for 18 hours. The moisture value was calculated by measuring the weight before and after drying.

次に、乾燥した固形物をメノウ乳鉢で軽く解砕して得られた粉体について、組成分析、溶出試験、湿式粒度分布測定、Nガス吸着法による比表面積測定(BET1点法)、ベックマン式比重測定、1トン加圧による圧縮密度を測定した。組成分析は、一旦水に溶解した後にICPによって行った。湿式粒度分布は、湿式粒度分布測定器(堀場製作所製のLA500)を用いて測定した。Nガス吸着による比表面積測定は、比表面積測定器(湯浅アイオニクス製のモノソーブ)を用いてBET1点法で行った。また、溶出試験は、環境庁告示13号法に基づいて、固形分100gに対してpH5の水1Lを混合し、溶出試験専用しんとう機で6時間しんとうさせた後、0.45ミクロンのメンブランフィルタを用いて固液分離して得られたろ液(溶出液)中の砒素濃度を分析することによって行った。 Next, regarding the powder obtained by lightly crushing the dried solid in an agate mortar, composition analysis, dissolution test, wet particle size distribution measurement, specific surface area measurement by N 2 gas adsorption method (BET 1-point method), Beckman Formula specific gravity measurement, compression density by 1 ton pressurization was measured. The composition analysis was performed by ICP after once dissolving in water. The wet particle size distribution was measured using a wet particle size distribution measuring device (LA500 manufactured by Horiba, Ltd.). Specific surface area measurement by N 2 gas adsorption was performed by a BET one-point method using a specific surface area measuring device (Monosorb manufactured by Yuasa Ionics). In addition, the dissolution test is based on the Environmental Agency Notification No.13. After mixing 1 L of water with a pH of 5 with 100 g of solid content and stirring for 6 hours with a dedicated machine for dissolution test, a 0.45 micron membrane filter is used. The arsenic concentration in the filtrate (eluate) obtained by solid-liquid separation using was analyzed.

また、分析結果から、Fe/As比率、発生残渣量(砒素品位と水分値から求めたAs1トン当りの量)、処理すべき液量(処理液の前後のAs濃度から求めたAs1トンを除去する際に必要とされる液量)を計算した。   From the analysis results, the Fe / As ratio, the amount of generated residue (the amount per 1 ton of As determined from the arsenic quality and moisture value), and the amount of liquid to be processed (As 1 ton determined from the As concentration before and after the treatment solution) are removed. The amount of liquid required for the calculation was calculated.

さらに、得られた粉体について、X線回折計を用いて粉末X線回折を行った。この粉末X線回折では、対陰極をCuのKα、波長λ=1.5418オングストローム、管電圧=50kV(一部40kV)、管電流=300mA、走査速度0.01°/sec、走査角度2θ=5°〜85°とし、シンチレーションカウンターを使用した。また、得られた回折像が結晶性であるか否か、低角側を中心としてハローパターンが観察されるか否かによって、非晶質であるか結晶質であるかを判定した。また、走査電子顕微鏡(SEM)によって粒子を観察した。   Further, the obtained powder was subjected to powder X-ray diffraction using an X-ray diffractometer. In this powder X-ray diffraction, the counter cathode is Kα of Cu, wavelength λ = 1.5418 angstrom, tube voltage = 50 kV (partial 40 kV), tube current = 300 mA, scanning speed 0.01 ° / sec, scanning angle 2θ = A scintillation counter was used at 5 ° to 85 °. Whether the obtained diffraction image is crystalline or not and whether a halo pattern is observed around the low-angle side was determined to be amorphous or crystalline. The particles were observed with a scanning electron microscope (SEM).

これらの条件および結果を表3〜表5に示す。   These conditions and results are shown in Tables 3 to 5.

Figure 0004149488
Figure 0004149488

Figure 0004149488
Figure 0004149488

Figure 0004149488
Figure 0004149488

表5に示すように、得られた粉体のFe/As(モル比)は1.01を示し、X線回折の結果から結晶質の砒酸鉄粉末が得られたことがわかった。また、得られた砒酸鉄粉末からの砒素の溶出濃度は0.03mg/Lであり、基準値(0.3mg/L)より非常に低かった。   As shown in Table 5, Fe / As (molar ratio) of the obtained powder was 1.01, and from the result of X-ray diffraction, it was found that crystalline iron arsenate powder was obtained. The elution concentration of arsenic from the obtained iron arsenate powder was 0.03 mg / L, which was much lower than the reference value (0.3 mg / L).

[実施例2]
実施例1と同様の砒素含有溶液(表2に示す組成の溶液)を用いて、撹拌速度を1000rpm、反応温度(最終的な設定温度)を95℃にした以外は、実施例1と同様の方法によって反応させた後、反応生成物の固液分離によって得られた固形分を実施例1と同様に処理し、得られた粉体について実施例1と同様の測定および計算を行った。その条件および結果を表3〜表5に示す。また、本実施例で得られた粉体の5000倍の走査電子顕微鏡(SEM)写真およびX線回折(XRD)データをそれぞれ図2および図3に示す。
[Example 2]
The same arsenic-containing solution (solution having the composition shown in Table 2) as in Example 1 was used, except that the stirring speed was 1000 rpm and the reaction temperature (final set temperature) was 95 ° C. After reacting by the method, the solid content obtained by solid-liquid separation of the reaction product was treated in the same manner as in Example 1. The obtained powder was subjected to the same measurements and calculations as in Example 1. The conditions and results are shown in Tables 3 to 5. Moreover, the scanning electron microscope (SEM) photograph and X-ray diffraction (XRD) data of 5000 times the powder obtained in this example are shown in FIGS. 2 and 3, respectively.

表5に示すように、得られた粉体のFe/As(モル比)は1.08を示し、X線回折の結果から結晶質の砒酸鉄二水塩粉末が得られたことがわかった。また、得られた砒酸鉄粉末からの砒素の溶出濃度は0.09mg/Lであり、基準値(0.3mg/L)より非常に低かった。   As shown in Table 5, Fe / As (molar ratio) of the obtained powder was 1.08, and it was found from the result of X-ray diffraction that crystalline iron arsenate dihydrate powder was obtained. The elution concentration of arsenic from the obtained iron arsenate powder was 0.09 mg / L, which was much lower than the reference value (0.3 mg / L).

[実施例3]
実施例1と同様の砒素含有溶液(表2に示す組成の溶液)に40g/LのZnを共存させて用いた以外は、実施例1と同様の方法によって反応させた後、反応生成物の固液分離によって得られた固形分を実施例1と同様に処理し、得られた粉体について実施例1と同様の測定および計算を行った。その条件および結果を表3〜表5に示す。
[Example 3]
Except for using 40 g / L of Zn in the same arsenic-containing solution as in Example 1 (solution having the composition shown in Table 2), after reacting in the same manner as in Example 1, the reaction product The solid content obtained by solid-liquid separation was treated in the same manner as in Example 1, and the same measurement and calculation as in Example 1 were performed on the obtained powder. The conditions and results are shown in Tables 3 to 5.

表5に示すように、得られた粉体のFe/As(モル比)は0.98を示し、X線回折の結果から結晶質の砒酸鉄二水塩粉末が得られたことがわかった。また、得られた砒酸鉄粉末からの砒素の溶出濃度は0.05mg/Lであり、基準値(0.3mg/L)より非常に低かった。   As shown in Table 5, Fe / As (molar ratio) of the obtained powder was 0.98, and it was found from the result of X-ray diffraction that crystalline iron arsenate dihydrate powder was obtained. The elution concentration of arsenic from the obtained iron arsenate powder was 0.05 mg / L, which was much lower than the reference value (0.3 mg / L).

[実施例4]
実施例1と同様の砒素含有溶液(表2に示す組成の溶液)に40g/LのZnを共存させて用いた以外は、実施例2と同様の方法によって反応させた後、反応生成物の固液分離によって得られた固形分を実施例2と同様に処理し、得られた粉体について実施例1と同様の測定および計算を行った。その条件および結果を表3〜表5に示す。
[Example 4]
Except for using 40 g / L of Zn in the same arsenic-containing solution (solution having the composition shown in Table 2) as in Example 1, the reaction product was reacted in the same manner as in Example 2 The solid content obtained by solid-liquid separation was treated in the same manner as in Example 2, and the same measurement and calculation as in Example 1 were performed on the obtained powder. The conditions and results are shown in Tables 3 to 5.

表5に示すように、得られた粉体のFe/As(モル比)は1.05を示し、X線回折の結果から結晶質の砒酸鉄二水塩粉末が得られたことがわかった。また、得られた砒酸鉄粉末からの砒素の溶出濃度は0.06mg/Lであり、基準値(0.3mg/L)より非常に低かった。   As shown in Table 5, Fe / As (molar ratio) of the obtained powder was 1.05, and it was found from the result of X-ray diffraction that crystalline iron arsenate dihydrate powder was obtained. The elution concentration of arsenic from the obtained iron arsenate powder was 0.06 mg / L, which was much lower than the reference value (0.3 mg / L).

[実施例5]
実施例1と同様の砒素含有溶液(表2に示す組成の溶液)を容量2Lのガラス製の開放容器(反応槽)に入れて、撹拌速度を1000rpm、反応温度(最終的な設定温度)を95℃、反応時間を7時間にした以外は、実施例1と同様の方法によって反応させた後、反応生成物の固液分離によって得られた固形分を実施例1と同様に処理し、得られた粉体について実施例1と同様の測定および計算を行った。その条件および結果を表3〜表5に示す。
[Example 5]
An arsenic-containing solution (solution having the composition shown in Table 2) similar to that in Example 1 was placed in a 2 L glass open container (reaction vessel), the stirring speed was 1000 rpm, and the reaction temperature (final set temperature) was After reacting by the same method as in Example 1 except that the reaction time was 95 ° C. and 7 hours, the solid content obtained by solid-liquid separation of the reaction product was treated in the same manner as in Example 1 to obtain The obtained powder was subjected to the same measurements and calculations as in Example 1. The conditions and results are shown in Tables 3 to 5.

表5に示すように、得られた粉体のFe/As(モル比)は1.07を示し、X線回折の結果から結晶質の砒酸鉄二水塩粉末が得られたことがわかった。また、得られた砒酸鉄粉末からの砒素の溶出濃度は0.02mg/Lであり、基準値(0.3mg/L)より非常に低かった。   As shown in Table 5, Fe / As (molar ratio) of the obtained powder was 1.07, and it was found from the result of X-ray diffraction that crystalline iron arsenate dihydrate powder was obtained. The elution concentration of arsenic from the obtained iron arsenate powder was 0.02 mg / L, which was much lower than the reference value (0.3 mg / L).

[実施例6]
実施例1と同様の砒素含有溶液(表2に示す組成の溶液)を水で希釈して溶液中のAs濃度を30.02g/L、Fe濃度を33.63g/L(Fe/As比=1.5)にした以外は、実施例5と同様の方法によって反応させた後、反応生成物の固液分離によって得られた固形分を実施例1と同様に処理し、得られた粉体について実施例1と同様の測定および計算を行った。その条件および結果を表3〜表5に示す。
[Example 6]
An arsenic-containing solution similar to that in Example 1 (solution having the composition shown in Table 2) was diluted with water, the As concentration in the solution was 30.02 g / L, and the Fe concentration was 33.63 g / L (Fe / As ratio = Except for 1.5), after reacting in the same manner as in Example 5, the solid content obtained by solid-liquid separation of the reaction product was treated in the same manner as in Example 1, and the resulting powder was obtained. The same measurements and calculations as in Example 1 were performed. The conditions and results are shown in Tables 3 to 5.

表5に示すように、得られた粉体のFe/As(モル比)は1.02を示し、X線回折の結果から結晶質の砒酸鉄二水塩粉末が得られたことがわかった。また、得られた砒酸鉄粉末からの砒素の溶出濃度は0.02mg/Lであり、基準値(0.3mg/L)より非常に低かった。   As shown in Table 5, Fe / As (molar ratio) of the obtained powder was 1.02, and from the result of X-ray diffraction, it was found that crystalline iron arsenate dihydrate powder was obtained. The elution concentration of arsenic from the obtained iron arsenate powder was 0.02 mg / L, which was much lower than the reference value (0.3 mg / L).

[実施例7]
実施例1と同様の砒素含有溶液(表2に示す組成の溶液)を水で希釈して溶液中のAs濃度を20.07g/L、Fe濃度を22.41g/L(Fe/As比=1.5)にした以外は、実施例5と同様の方法によって反応させた後、反応生成物の固液分離によって得られた固形分を実施例1と同様に処理し、得られた粉体について実施例1と同様の測定および計算を行った。その条件および結果を表3〜表5に示す。
[Example 7]
The same arsenic-containing solution (solution having the composition shown in Table 2) as in Example 1 was diluted with water, the As concentration in the solution was 20.07 g / L, and the Fe concentration was 22.41 g / L (Fe / As ratio = Except for 1.5), after reacting in the same manner as in Example 5, the solid content obtained by solid-liquid separation of the reaction product was treated in the same manner as in Example 1, and the resulting powder was obtained. The same measurements and calculations as in Example 1 were performed. The conditions and results are shown in Tables 3 to 5.

表5に示すように、得られた粉体のFe/As(モル比)は1.03を示し、X線回折の結果から結晶質の砒酸鉄二水塩粉末が得られたことがわかった。また、得られた砒酸鉄粉末からの砒素の溶出濃度は0.02mg/Lであり、基準値(0.3mg/L)より非常に低かった。   As shown in Table 5, Fe / As (molar ratio) of the obtained powder was 1.03, and it was found from the result of X-ray diffraction that crystalline iron arsenate dihydrate powder was obtained. The elution concentration of arsenic from the obtained iron arsenate powder was 0.02 mg / L, which was much lower than the reference value (0.3 mg / L).

[比較例1]
実施例1と同様の砒素含有溶液(表2に示す組成の溶液)の代わりに(500g/Lの砒素を含む)1級試薬の砒素液(5価の砒素液)を希釈して容量5Lの密閉容器(反応槽)に入れ、その溶液中のAs濃度を10.00g/L、Fe濃度を11.18g/L(Fe/As比=1.5)にし、撹拌速度を360rpm、酸素の分圧を0.3MPaにし、固液分離後のリパルプ洗浄を2回行った以外は、実施例1と同様の方法によって反応させた後、反応生成物の固液分離によって得られた固形分を実施例1と同様に処理し、得られた粉体について実施例1と同様の測定および計算を行った。その条件および結果を表3〜表5に示す。
[Comparative Example 1]
Instead of the same arsenic-containing solution as in Example 1 (solution having the composition shown in Table 2), the first grade arsenic liquid (pentavalent arsenic liquid) (containing 500 g / L arsenic) was diluted to a capacity of 5 L Put in an airtight container (reaction tank), set As concentration in the solution to 10.00 g / L, Fe concentration to 11.18 g / L (Fe / As ratio = 1.5), stirring speed to 360 rpm, oxygen content The reaction was carried out in the same manner as in Example 1 except that the pressure was 0.3 MPa and the repulp washing after the solid-liquid separation was performed twice, and then the solid content obtained by solid-liquid separation of the reaction product was carried out. The same processing as in Example 1 was carried out, and the same measurement and calculation as in Example 1 were performed on the obtained powder. The conditions and results are shown in Tables 3 to 5.

表5に示すように、得られた粉体のFe/As(モル比)は1.20を示し、X線回折の結果から結晶質の砒酸鉄二水塩粉末が得られたことがわかった。また、得られた砒酸鉄粉末からの砒素の溶出濃度は0.02mg/Lであった。   As shown in Table 5, Fe / As (molar ratio) of the obtained powder was 1.20, and it was found from the results of X-ray diffraction that crystalline iron arsenate dihydrate powder was obtained. Further, the elution concentration of arsenic from the obtained iron arsenate powder was 0.02 mg / L.

[比較例2]
1級試薬のFeSO・7HOの代わりにポリ鉄(Fe3+)を使用し、As濃度を47.97g/L、Fe濃度53.77g/L、Fe/As比=1.5)にした以外は、実施例1と同様の方法によって反応させた後、反応生成物の固液分離によって得られた固形分を実施例1と同様に処理し、得られた粉体について実施例1と同様の測定および計算を行った。その条件および結果を表3〜表5に示す。
[Comparative Example 2]
Using polyiron (Fe 3+ ) instead of the primary reagent FeSO 4 · 7H 2 O, As concentration 47.97 g / L, Fe concentration 53.77 g / L, Fe / As ratio = 1.5) Except for the above, after reacting by the same method as in Example 1, the solid content obtained by solid-liquid separation of the reaction product was treated in the same manner as in Example 1. Similar measurements and calculations were performed. The conditions and results are shown in Tables 3 to 5.

表5に示すように、得られた粉体のFe/As(モル比)は1.04を示し、X線回折の結果から結晶質の砒酸鉄二水塩粉末が得られたことがわかった。また、得られた砒酸鉄粉末からの砒素の溶出濃度は0.48mg/Lであり、基準値(0.3mg/L)より高かった。   As shown in Table 5, Fe / As (molar ratio) of the obtained powder was 1.04, and it was found from the result of X-ray diffraction that crystalline iron arsenate dihydrate powder was obtained. The elution concentration of arsenic from the obtained iron arsenate powder was 0.48 mg / L, which was higher than the standard value (0.3 mg / L).

[比較例3]
実施例1と同様の砒素含有溶液(表2に示す組成の溶液)の代わりに、亜砒酸を溶解してAs濃度47.97g/Lにした溶液を使用した以外は、比較例2と同様の方法によって反応させた後、反応生成物の固液分離によって得られた固形分を実施例1と同様に処理し、得られた粉体について実施例1と同様の測定および計算を行った。その条件および結果を表3〜表5に示す。
[Comparative Example 3]
A method similar to Comparative Example 2 except that a solution having an As concentration of 47.97 g / L dissolved in arsenous acid was used instead of the arsenic-containing solution similar to Example 1 (solution having the composition shown in Table 2). After the reaction, the solid content obtained by solid-liquid separation of the reaction product was treated in the same manner as in Example 1. The obtained powder was subjected to the same measurements and calculations as in Example 1. The conditions and results are shown in Tables 3 to 5.

表5に示すように、得られた粉体のFe/As(モル比)は1.21を示し、X線回折の結果から結晶質の砒酸鉄二水塩粉末が得られたことがわかった。また、得られた砒酸鉄粉末からの砒素の溶出濃度は4.45mg/Lであり、基準値(0.3mg/L)より非常に高かった。   As shown in Table 5, Fe / As (molar ratio) of the obtained powder was 1.21, and from the results of X-ray diffraction, it was found that crystalline iron arsenate dihydrate powder was obtained. The elution concentration of arsenic from the obtained iron arsenate powder was 4.45 mg / L, which was much higher than the standard value (0.3 mg / L).

[比較例4]
最終的な設定温度(反応温度)を70℃にした以外は、実施例5と同様の方法によって反応させた後、反応生成物の固液分離によって得られた固形分を実施例1と同様に処理し、得られた粉体について実施例1と同様の測定および計算を行った。その条件および結果を表3〜表5に示す。
[Comparative Example 4]
Except for setting the final set temperature (reaction temperature) to 70 ° C., the reaction was carried out in the same manner as in Example 5, and then the solid content obtained by solid-liquid separation of the reaction product was obtained in the same manner as in Example 1. The same measurement and calculation as in Example 1 were performed on the processed powder. The conditions and results are shown in Tables 3 to 5.

表5に示すように、得られた粉体のFe/As(モル比)は1.06を示し、X線回折の結果から結晶質の砒酸鉄二水塩粉末が得られたことがわかった。また、得られた砒酸鉄粉末からの砒素の溶出濃度は0.32mg/Lであり、基準値(0.3mg/L)より高かった。   As shown in Table 5, Fe / As (molar ratio) of the obtained powder was 1.06, and it was found from the result of X-ray diffraction that crystalline iron arsenate dihydrate powder was obtained. The elution concentration of arsenic from the obtained iron arsenate powder was 0.32 mg / L, which was higher than the reference value (0.3 mg / L).

[比較例5]
最終的な設定温度(反応温度)を50℃にした以外は、実施例5と同様の方法によって反応させた後、反応生成物の固液分離によって得られた固形分を実施例1と同様に処理し、得られた粉体について実施例1と同様の測定および計算を行った。その条件および結果を表3〜表5に示す。
[Comparative Example 5]
Except that the final set temperature (reaction temperature) was 50 ° C., the reaction was carried out in the same manner as in Example 5, and then the solid content obtained by solid-liquid separation of the reaction product was changed in the same manner as in Example 1. The same measurement and calculation as in Example 1 were performed on the processed powder. The conditions and results are shown in Tables 3 to 5.

表5に示すように、得られた粉体のFe/As(モル比)は0.92を示し、X線回折の結果から非晶質の砒酸鉄二水塩粉末が得られたことがわかった。また、得られた砒酸鉄粉末からの砒素の溶出濃度は319.5mg/Lであり、基準値(0.3mg/L)より非常に高かった。   As shown in Table 5, Fe / As (molar ratio) of the obtained powder was 0.92, and it was found from the result of X-ray diffraction that amorphous iron arsenate dihydrate powder was obtained. . The elution concentration of arsenic from the obtained iron arsenate powder was 319.5 mg / L, which was much higher than the reference value (0.3 mg / L).

[比較例6]
容量2Lのガラス製の開放容器(反応槽)に入れた溶液中のAs濃度を10.01g/L、Fe濃度を11.21g/L(Fe/As比=1.5)にした以外は、実施例5と同様の方法によって反応させた後、反応生成物の固液分離によって得られた固形分を実施例1と同様に処理し、得られた粉体について実施例1と同様の測定および計算を行った。その条件および結果を表3〜表5に示す。
[Comparative Example 6]
Except that the concentration of As in the solution placed in a glass open container (reaction vessel) with a capacity of 2 L was 10.1 g / L and the Fe concentration was 11.21 g / L (Fe / As ratio = 1.5), After reacting by the same method as in Example 5, the solid content obtained by solid-liquid separation of the reaction product was treated in the same manner as in Example 1. The obtained powder was measured in the same manner as in Example 1. Calculation was performed. The conditions and results are shown in Tables 3 to 5.

表5に示すように、得られた粉体のFe/As(モル比)は1.03を示し、X線回折の結果から結晶質の砒酸鉄二水塩粉末が得られたことがわかった。また、得られた砒酸鉄粉末からの砒素の溶出濃度は0.01mg/Lであった。   As shown in Table 5, Fe / As (molar ratio) of the obtained powder was 1.03, and it was found from the result of X-ray diffraction that crystalline iron arsenate dihydrate powder was obtained. The elution concentration of arsenic from the obtained iron arsenate powder was 0.01 mg / L.

これらの結果から、比較例1および比較例3〜6では、実施例1〜7と比べて非常に微細な結晶が生成していることがわかる。また、ポリ鉄を使用した比較例3では、実施例1〜7と比べて、平均粒径が小さく、5μm以下の粒子の割合が多く、BET比表面積が大きくなっているのがわかる。同様にポリ鉄を使用した比較例2では、平均粒径が大きく、5μm以下の粒子の割合が0%であり、BET比表面積が小さくなっているが、SEM像の結果から、緻密な結晶形態でなく、凝集しているため、平均粒径、5μm以下の粒子の割合およびBET比表面積が見掛けの値であることがわかった。これらの結果から、実施例1〜7のように、緻密且つ結晶質で粗い粒子であれば、砒素が溶出し難い安定した結晶であるのがわかる。   From these results, it can be seen that in Comparative Example 1 and Comparative Examples 3 to 6, very fine crystals were generated as compared with Examples 1 to 7. Moreover, in the comparative example 3 which uses polyiron, compared with Examples 1-7, it turns out that an average particle diameter is small, there are many ratios of a particle | grain of 5 micrometers or less, and the BET specific surface area is large. Similarly, in Comparative Example 2 using polyiron, the average particle size is large, the proportion of particles of 5 μm or less is 0%, and the BET specific surface area is small. However, since the particles were aggregated, it was found that the average particle diameter, the proportion of particles having a size of 5 μm or less, and the BET specific surface area were apparent values. From these results, it can be seen that, as in Examples 1 to 7, if the particles are dense, crystalline, and coarse, they are stable crystals in which arsenic is difficult to elute.

本発明による砒酸鉄の実施の形態の製造方法を概略的に示す工程図である。It is process drawing which shows schematically the manufacturing method of embodiment of the iron arsenate by this invention. 実施例2で得られた粉体の走査電子顕微鏡(SEM)写真である。3 is a scanning electron microscope (SEM) photograph of the powder obtained in Example 2. FIG. 実施例2で得られた粉体のX線回折(XRD)データを示す図である。4 is a graph showing X-ray diffraction (XRD) data of the powder obtained in Example 2. FIG.

Claims (6)

平均粒径が8μm以上、粒径5μm以下の粒子の割合が10%以下、BET比表面積が2m/g以下であることを特徴とする、砒酸鉄粉末。 An iron arsenate powder characterized in that the proportion of particles having an average particle size of 8 μm or more and a particle size of 5 μm or less is 10% or less, and the BET specific surface area is 2 m 2 / g or less. 前記平均粒径が10μm以上であることを特徴とする、請求項1に記載の砒酸鉄粉末。 The iron arsenate powder according to claim 1, wherein the average particle size is 10 μm or more. 前記粒径5μm以下の粒子の割合が5%以下であることを特徴とする、請求項1または2に記載の砒酸鉄粉末。 3. The iron arsenate powder according to claim 1, wherein a ratio of the particles having a particle diameter of 5 μm or less is 5% or less. 前記BET比表面積が0.5m/g以下であることを特徴とする、請求項1乃至3のいずれかに記載の砒酸鉄粉末。 The iron arsenate powder according to claim 1, wherein the BET specific surface area is 0.5 m 2 / g or less. 前記砒酸鉄粉末が砒酸鉄二水塩の粉末であることを特徴とする、請求項1乃至4のいずれかに記載の砒酸鉄粉末。
The iron arsenate powder according to any one of claims 1 to 4, wherein the iron arsenate powder is an iron arsenate dihydrate powder.
不純物として含有するカルシウムおよびマグネシウムの量がそれぞれ2質量%以下であることを特徴とする、請求項1乃至5のいずれかに記載の砒酸鉄粉末。

The iron arsenate powder according to any one of claims 1 to 5, wherein the amounts of calcium and magnesium contained as impurities are each 2% by mass or less.

JP2006204153A 2006-04-28 2006-07-27 Iron arsenate powder Active JP4149488B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2006204153A JP4149488B2 (en) 2006-04-28 2006-07-27 Iron arsenate powder
US12/375,075 US20090291307A1 (en) 2006-07-27 2007-07-17 Iron arsenate powder
AU2007277825A AU2007277825B2 (en) 2006-07-27 2007-07-17 Iron arsenate powder
CA2656724A CA2656724C (en) 2006-07-27 2007-07-17 Iron arsenate powder
EP07791129.5A EP2042472A4 (en) 2006-07-27 2007-07-17 Iron arsenate powder
CNA2007800278034A CN101495412A (en) 2006-07-27 2007-07-17 Iron arsenate powder
KR1020097001575A KR20090051034A (en) 2006-07-27 2007-07-17 Iron arsenate powder
PCT/JP2007/064393 WO2008013124A1 (en) 2006-07-27 2007-07-17 Iron arsenate powder
NO20090718A NO20090718L (en) 2006-07-27 2009-02-13 Jernarsenatpulver

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006126662 2006-04-28
JP2006204153A JP4149488B2 (en) 2006-04-28 2006-07-27 Iron arsenate powder

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008129477A Division JP2008260683A (en) 2006-04-28 2008-05-16 Iron arsenate powder

Publications (2)

Publication Number Publication Date
JP2007314405A JP2007314405A (en) 2007-12-06
JP4149488B2 true JP4149488B2 (en) 2008-09-10

Family

ID=38848618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006204153A Active JP4149488B2 (en) 2006-04-28 2006-07-27 Iron arsenate powder

Country Status (1)

Country Link
JP (1) JP4149488B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010202443A (en) * 2009-03-03 2010-09-16 Dowa Metals & Mining Co Ltd Iron arsenate powder and method for producing the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008260683A (en) * 2006-04-28 2008-10-30 Dowa Metals & Mining Co Ltd Iron arsenate powder
JP2010083719A (en) * 2008-09-30 2010-04-15 Dowa Metals & Mining Co Ltd Porous maghemite, method for producing tmaghemite and method for treating water to be treated
JP4717917B2 (en) 2008-10-06 2011-07-06 Jx日鉱日石金属株式会社 Manufacturing method and cleaning method of scorodite
JP5232806B2 (en) * 2010-01-25 2013-07-10 Jx日鉱日石金属株式会社 Manufacturing method and cleaning method of scorodite

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010202443A (en) * 2009-03-03 2010-09-16 Dowa Metals & Mining Co Ltd Iron arsenate powder and method for producing the same

Also Published As

Publication number Publication date
JP2007314405A (en) 2007-12-06

Similar Documents

Publication Publication Date Title
JP3999805B1 (en) Arsenic-containing solution processing method
US8110162B2 (en) Method of processing copper arsenic compound
JP4846677B2 (en) Arsenic-containing solution processing method
US8092765B2 (en) Method of processing non-ferrous smelting intermediates containing arsenic
US8147779B2 (en) Method of alkali processing substance containing arsenic
JP6241661B2 (en) Arsenic separation and immobilization method
US8092764B2 (en) Method of processing non-ferrous smelting intermediate containing arsenic
US8388927B2 (en) Scorodite-type iron-arsenic compound particles, production method thereof, and arsenic-containing solid
JP4149488B2 (en) Iron arsenate powder
JP5114048B2 (en) Arsenic liquid manufacturing method
JP2008260683A (en) Iron arsenate powder
JP4615561B2 (en) Arsenic-containing solution processing method
JP4087433B2 (en) Arsenic-containing solution processing method
JP5016929B2 (en) Arsenic solution purification method
JP4710033B2 (en) Arsenic content treatment method
WO2008013124A1 (en) Iron arsenate powder
JP4635231B2 (en) Zinc raw material processing method
JP2006225697A (en) Method for treating zinc raw material
JP2008036470A (en) Thallium-containing iron/arsenic compound and its production method, and treatment method of aqueous arsenic/thallium-containing solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080214

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20080214

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20080314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4149488

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250