JP4710033B2 - Arsenic content treatment method - Google Patents

Arsenic content treatment method Download PDF

Info

Publication number
JP4710033B2
JP4710033B2 JP2006126586A JP2006126586A JP4710033B2 JP 4710033 B2 JP4710033 B2 JP 4710033B2 JP 2006126586 A JP2006126586 A JP 2006126586A JP 2006126586 A JP2006126586 A JP 2006126586A JP 4710033 B2 JP4710033 B2 JP 4710033B2
Authority
JP
Japan
Prior art keywords
arsenic
solution
containing substance
alkali
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006126586A
Other languages
Japanese (ja)
Other versions
JP2007297240A (en
Inventor
哲雄 藤田
良一 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metals and Mining Co Ltd
Original Assignee
Dowa Metals and Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metals and Mining Co Ltd filed Critical Dowa Metals and Mining Co Ltd
Priority to JP2006126586A priority Critical patent/JP4710033B2/en
Publication of JP2007297240A publication Critical patent/JP2007297240A/en
Application granted granted Critical
Publication of JP4710033B2 publication Critical patent/JP4710033B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は、砒素含有物質の処理方法に関し、特に、非鉄製錬の製錬中間物などの砒素以外の各種の元素を含む砒素含有物質を処理して砒素を回収する方法に関する。   The present invention relates to a method for treating an arsenic-containing substance, and more particularly to a method for treating an arsenic-containing substance containing various elements other than arsenic, such as a non-ferrous smelting intermediate, and recovering arsenic.

非鉄製錬において生成される各種の製錬中間物や製錬原料には、有価金属が含まれているが、砒素などの好ましくない元素も含まれている。   Various smelting intermediates and smelting raw materials produced in non-ferrous smelting contain valuable metals, but also contain undesirable elements such as arsenic.

従来、砒素を含む製錬中間物などから砒素を分離して回収する方法としては、製錬中間物などを焼成することによってAsとして回収する方法が提案されている。しかし、この方法では、CO雰囲気の制御やAsの粉塵の回収などが技術的に容易ではなく、大規模な設備が必要である。 Conventionally, as a method for separating and recovering arsenic from a smelting intermediate containing arsenic, a method of recovering As 2 O 3 by firing the smelting intermediate has been proposed. However, in this method, control of the CO atmosphere and recovery of As 2 O 3 dust are not technically easy, and a large-scale facility is required.

また、砒素を含む製錬中間物から砒素を浸出して分離する方法として、湿式反応により砒素を分離して回収する方法が提案されている(例えば、特許文献1参照)。この方法は、砒素を含む硫化物態の銅製錬中間物をスラリー化し、これに空気を吹き込みながらアルカリを添加し、スラリーの温度を50℃以上、pH5〜8に保持しながら浸出処理を行って、製錬中間物中の砒素を酸性砒酸塩として含有する溶液を生成し、この溶液と不溶解残渣を分離する第1工程と、この第1工程で得られた水溶液に消石灰を添加して、生成する砒酸カルシウム沈澱とアルカリの水溶液とを分離し、アルカリの水溶液を第1工程に再循環する第2工程と、この第2工程で得られた砒酸カルシウムの沈澱を硫酸に溶解し、得られた砒酸と石膏とを分離する第3工程と、この第3工程で得られた砒酸を亜硫酸ガスで還元し、得られた亜砒酸と硫酸溶液とを分離し、硫酸溶液を第3工程に再循環する第4工程とからなる。この特許文献1では、アルカリとして水酸化ナトリウムを使用した場合に砒素が酸化抽出される反応式として、以下の反応式を推定している。
As+3/2O+HO→2HAsO+3S (1)
HAsO+1/2O+NaOH→NaHAsO (2)
HAsO+1/2O+2NaOH→NaHAsO+HO (3)
As+6O+4HO→2HAsO+3HSO (4)
Further, as a method of leaching and separating arsenic from a smelting intermediate containing arsenic, a method of separating and recovering arsenic by a wet reaction has been proposed (for example, see Patent Document 1). In this method, a sulfide-type copper smelting intermediate containing arsenic is slurried, and alkali is added while blowing air thereto, and leaching is performed while maintaining the temperature of the slurry at 50 ° C. or higher and pH 5-8. A first step of producing a solution containing arsenic in the smelting intermediate as an acidic arsenate, separating the solution and the insoluble residue, and adding slaked lime to the aqueous solution obtained in the first step, The resulting calcium arsenate precipitate is separated from the aqueous alkali solution, the second step of recycling the aqueous alkali solution to the first step, and the calcium arsenate precipitate obtained in the second step is dissolved in sulfuric acid. A third step of separating arsenic acid and gypsum, reducing the arsenic acid obtained in this third step with sulfurous acid gas, separating the resulting arsenous acid and sulfuric acid solution, and recycling the sulfuric acid solution to the third step And a fourth step. In this patent document 1, the following reaction formula is estimated as a reaction formula in which arsenic is oxidized and extracted when sodium hydroxide is used as an alkali.
As 2 S 3 + 3 / 2O 2 + H 2 O → 2HAsO 2 + 3S (1)
HAsO 2 + 1 / 2O 2 + NaOH → NaH 2 AsO 4 (2)
HAsO 2 + 1 / 2O 2 + 2NaOH → Na 2 HAsO 4 + H 2 O (3)
As 2 S 3 + 6O 2 + 4H 2 O → 2HAsO 2 + 3H 2 SO 4 (4)

また、特許文献1には、抽出反応時のpHを高くして上記の反応式(4)に従ってもよいが、この反応式(4)に従うと、原料中の硫黄分が硫酸にまで酸化され、生成する硫酸を中和するために余分なアルカリの消費が行われるが、抽出反応時の水溶液のpHを5〜8に制御して反応式(1)に従って砒素を抽出すると、原料中の硫黄分は硫酸まで酸化されずに元素状態の硫黄でとどまるので、水溶液を中和するための余分なアルカリの消費を避けることができると記載されている。   Further, in Patent Document 1, the pH during the extraction reaction may be increased and the above reaction formula (4) may be followed, but according to this reaction formula (4), the sulfur content in the raw material is oxidized to sulfuric acid, Excess alkali is consumed to neutralize the sulfuric acid produced. When arsenic is extracted according to the reaction formula (1) while controlling the pH of the aqueous solution during the extraction reaction to 5 to 8, the sulfur content in the raw material is reduced. Is not oxidized to sulfuric acid but remains in elemental sulfur, so that it is possible to avoid consumption of excess alkali to neutralize the aqueous solution.

しかし、反応式(1)の反応は極めて遅い反応であり、また、アルカリ溶液中におけるAsの酸化反応はアルカリ濃度が高いほど速くなるので(例えば、非特許文献1参照)、アルカリ濃度を高くして反応を速くすることが望ましい。   However, the reaction of the reaction formula (1) is an extremely slow reaction, and the oxidation reaction of As in an alkaline solution becomes faster as the alkali concentration is higher (for example, see Non-Patent Document 1). It is desirable to speed up the reaction.

特公昭61−24329号公報(第1−3頁)Japanese Examined Patent Publication No. 61-24329 (page 1-3) 日本金属学会誌、第48巻、第3号(1984年)、267−272頁Journal of the Japan Institute of Metals, Vol. 48, No. 3 (1984), 267-272

しかし、上述したように、アルカリ濃度を高くすると反応式(4)に従って原料中の硫黄分が硫酸にまで酸化されて、生成する硫酸を中和するために余分なアルカリが必要になるので、使用したアルカリを効率的に回収することができる方法が望まれている。また、特許文献1の方法では、浸出処理後の溶液中に消石灰を添加してアルカリ溶液を分離回収しているが、消石灰を添加することによって工程が複雑になるため、浸出処理後の溶液中に消石灰などの添加物を添加することなく、砒素とアルカリを容易に分離する方法が望まれている。   However, as described above, when the alkali concentration is increased, the sulfur content in the raw material is oxidized to sulfuric acid in accordance with the reaction formula (4), and extra alkali is required to neutralize the sulfuric acid to be produced. A method that can efficiently recover the alkali thus obtained is desired. Further, in the method of Patent Document 1, slaked lime is added to the solution after the leaching treatment to separate and recover the alkaline solution. However, the process becomes complicated by adding slaked lime, so the solution in the solution after the leaching treatment There is a demand for a method for easily separating arsenic and alkali without adding additives such as slaked lime.

したがって、本発明は、このような従来の問題点に鑑み、砒素含有物質を処理して砒素を効率的且つ容易に回収することができるとともに、再生されるアルカリ液への砒素の混入を防止して再利用可能なアルカリ液を効率的且つ容易に回収することができる、砒素含有物質の処理方法を提供することを目的とする。   Therefore, in view of such conventional problems, the present invention can efficiently and easily recover arsenic by treating an arsenic-containing substance and prevent arsenic from being mixed into the regenerated alkaline liquid. Another object of the present invention is to provide a method for treating an arsenic-containing substance, which can efficiently and easily recover an alkaline liquid that can be reused.

本発明者らは、上記課題を解決するために鋭意研究した結果、砒素含有物質をアルカリ溶液に加えてpH10以上にして酸化しながらアルカリ浸出した後に固液分離して得られた砒素を含む浸出液を冷却晶析することにより、砒素含有物質を処理して砒素を効率的且つ容易に回収することができるとともに、再生されるアルカリ液への砒素の混入を防止して再利用可能なアルカリ液を効率的且つ容易に回収することができることを見出し、本発明を完成するに至った。   As a result of diligent research to solve the above-mentioned problems, the present inventors have found that an leaching solution containing arsenic obtained by solid-liquid separation after alkali leaching while oxidizing an arsenic-containing substance to an alkaline solution by oxidizing to pH 10 or higher By cooling and crystallizing, the arsenic-containing substance can be treated to recover arsenic efficiently and easily, and an alkaline liquid that can be reused by preventing arsenic from being mixed into the regenerated alkaline liquid. The inventors have found that it can be efficiently and easily recovered, and have completed the present invention.

すなわち、本発明による砒素含有物質の処理方法は、砒素含有物質をアルカリ溶液に加えてpH10以上にして酸化しながらアルカリ浸出した後に固液分離して砒素を含む浸出液を得る工程と、この浸出液を冷却して析出物を得た後に固液分離して、砒素とアルカリ金属の化合物を得るとともにアルカリ溶液を回収する工程とを備えたことを特徴とする。   That is, the method for treating an arsenic-containing substance according to the present invention includes a step of adding an arsenic-containing substance to an alkaline solution to obtain a leachate containing arsenic by solid-liquid separation after alkali leaching while oxidizing to pH 10 or more and oxidizing the leached liquid. The method is characterized by comprising a step of solid-liquid separation after cooling to obtain a precipitate to obtain a compound of arsenic and an alkali metal and collecting an alkali solution.

この砒素含有物質の処理方法において、アルカリ溶液が水酸化ナトリウム溶液であるのが好ましく、水酸化ナトリウム溶液中の水酸化ナトリウム濃度が150〜300g/Lであるのが好ましい。また、砒素含有物質の酸化および浸出の際の温度が70℃以上であるのが好ましく、70〜98℃であるのがさらに好ましい。また、浸出液の冷却の際の温度が50℃以下であるのが好ましく、10℃以下であるのがさらに好ましい。さらに、浸出液の冷却の際に浸出液を撹拌するのが好ましい。また、砒素含有物質が、銅、亜鉛、鉄、インジウム、ガリウム、錫、アンチモン、鉛、カドミウム、ナトリウム、カリウム、マグネシウムおよびカルシウムの少なくとも一種を含んでもよい。   In this method for treating an arsenic-containing substance, the alkaline solution is preferably a sodium hydroxide solution, and the sodium hydroxide concentration in the sodium hydroxide solution is preferably 150 to 300 g / L. Further, the temperature at the time of oxidation and leaching of the arsenic-containing substance is preferably 70 ° C. or higher, more preferably 70 to 98 ° C. Further, the temperature during cooling of the leachate is preferably 50 ° C. or less, more preferably 10 ° C. or less. Furthermore, it is preferable to stir the leachate when cooling the leachate. The arsenic-containing material may contain at least one of copper, zinc, iron, indium, gallium, tin, antimony, lead, cadmium, sodium, potassium, magnesium, and calcium.

本発明によれば、砒素含有物質を処理して砒素を効率的且つ容易に回収することができるとともに、再生されるアルカリ液への砒素の混入を防止して再利用可能なアルカリ液を効率的且つ容易に回収することができる。   According to the present invention, arsenic can be efficiently and easily recovered by treating an arsenic-containing substance, and the reusable alkaline liquid can be efficiently prevented by preventing arsenic from being mixed into the regenerated alkaline liquid. And it can collect | recover easily.

以下、添付図面を参照して、本発明による砒素含有物質の処理方法の実施の形態について説明する。   Embodiments of a method for treating an arsenic-containing material according to the present invention will be described below with reference to the accompanying drawings.

図1は、本発明による砒素含有物質の処理方法の実施の形態を概略的に示す工程図である。図1に示すように、本発明による砒素含有物質の処理方法の実施の形態は、(1)砒素含有物質をアルカリ溶液に加えてpH10以上、好ましくはpH12以上にして酸化しながらアルカリ浸出した後に固液分離して砒素を含む浸出液を得るアルカリ浸出・酸化工程と、(2)この浸出液の冷却晶析を行った後に固液分離して砒素とアルカリ金属の化合物を得るとともにアルカリ溶液を回収する冷却晶析工程とを備えている。以下、これらの各工程について説明する。   FIG. 1 is a process diagram schematically showing an embodiment of a method for treating an arsenic-containing substance according to the present invention. As shown in FIG. 1, an embodiment of the method for treating an arsenic-containing material according to the present invention is as follows. (1) After leaching the alkali while oxidizing it to pH 10 or more, preferably pH 12 or more by adding the arsenic-containing material to an alkaline solution. An alkaline leaching / oxidation step for obtaining a leaching solution containing arsenic by solid-liquid separation, and (2) cooling and crystallization of the leaching solution, followed by solid-liquid separation to obtain a compound of arsenic and an alkali metal and collecting an alkaline solution. Cooling crystallization process. Hereinafter, each of these steps will be described.

なお、本実施の形態の砒素含有物質の処理方法によって処理する砒素含有物質としては、硫化砒素(As)やFeAsSなどの硫化物のように硫黄と砒素を含む物質を使用することができる。また、亜鉛製錬工程などにより得られる砒化銅(CuAs)を主成分とする残渣なども使用することができる。この砒化銅を主成分とする残渣には、亜鉛や鉄などの他にインジウムやガリウムなどの有価金属も含まれている。また、本実施の形態の砒素含有物質の処理方法によって処理する砒素含有物質は、砒素(As)と硫黄(S)の他に、銅(Cu)、亜鉛(Zn)、鉄(Fe)、インジウム(In)、ガリウム(Ga)、錫(Sn)、アンチモン(Sb)、鉛(Pb)、カドミウム(Cd)、ナトリウム(Na)、カリウム(K)、マグネシウム(Mg)およびカルシウム(Ca)の少なくとも一種を含んでもよい。 Note that as the arsenic-containing substance to be processed by the method for processing an arsenic-containing substance of the present embodiment, a substance containing sulfur and arsenic such as sulfides such as arsenic sulfide (As 2 S 3 ) and FeAsS may be used. it can. Also, such residue composed mainly of the resulting copper arsenide (Cu 3 As) due zinc smelting process can also be used. The residue mainly composed of copper arsenide contains valuable metals such as indium and gallium in addition to zinc and iron. In addition to arsenic (As) and sulfur (S), the arsenic containing material to be treated by the method for treating an arsenic containing material of this embodiment is copper (Cu), zinc (Zn), iron (Fe), indium (In), gallium (Ga), tin (Sn), antimony (Sb), lead (Pb), cadmium (Cd), sodium (Na), potassium (K), magnesium (Mg) and calcium (Ca) One kind may be included.

(1)アルカリ浸出・酸化工程
まず、上記の砒素含有物質を酸化剤とともにアルカリ溶液に添加してpH10以上、好ましくはpH12以上にし、液温50〜100℃に加熱して撹拌しながら反応させることにより、砒素含有物質を酸化しながら浸出する。このアルカリ浸出・酸化工程における反応は、pH10以上、好ましくはpH12以上の強アルカリ性で起こる反応であり、反応速度は非常に速い。
(1) Alkali leaching / oxidation step First, the above-mentioned arsenic-containing substance is added to an alkaline solution together with an oxidizing agent so as to have a pH of 10 or more, preferably 12 or more, and the reaction is carried out while stirring at a liquid temperature of 50 to 100 ° C. Leaching while oxidizing the arsenic-containing material. The reaction in the alkali leaching / oxidation step is a reaction that occurs at a strong alkalinity of pH 10 or more, preferably pH 12 or more, and the reaction rate is very fast.

このアルカリ浸出によって、Cuを浸出させずにAsを浸出させてCuとAsを分離することができる。また、このアルカリ浸出では、In、Pb、CdおよびMgも浸出されず、Fe、Sn、SbおよびCaもほとんど浸出されない。しかし、Gaはほとんど浸出されるので、この段階では、AsとGaは分離されない。   By this alkali leaching, Cu and As can be separated by leaching As without leaching Cu. In this alkaline leaching, In, Pb, Cd and Mg are not leached, and Fe, Sn, Sb and Ca are hardly leached. However, since Ga is almost leached, As and Ga are not separated at this stage.

なお、Znは、アルカリ濃度が高いと浸出されるが、アルカリ濃度が低いと浸出されないので、砒素含有物質中のZnの品位、砒素の品位および他の不純物(特にSnとSb)の浸出挙動を勘案してアルカリ濃度を決定すればよい。すなわち、SnやSbの品位が低ければ、残渣中にZnを残しておく方がよいが、SnやSbの品位が高いと、ある程度Znを溶解させた方がよい。   Zn is leached when the alkali concentration is high, but is not leached when the alkali concentration is low. Therefore, the quality of Zn in the arsenic-containing material, the quality of arsenic, and the leaching behavior of other impurities (especially Sn and Sb) are affected. The alkali concentration may be determined in consideration. That is, if the quality of Sn or Sb is low, it is better to leave Zn in the residue, but if the quality of Sn or Sb is high, it is better to dissolve Zn to some extent.

アルカリ溶液としてNaOH溶液を使用することができ、その場合、NaOH濃度が150〜300g/Lであるのが好ましい。   A NaOH solution can be used as the alkaline solution, in which case the NaOH concentration is preferably 150 to 300 g / L.

酸化剤としては、過マンガン酸カリウムなどの固形酸化剤の他、過酸化水素やオゾンなどを使用することができるが、空気や濃度を高めた酸素などを使用してもよく、その場合、液中にガスを吹き込んでバブリングして撹拌することによって酸化反応が容易に進む。   As an oxidizing agent, hydrogen peroxide, ozone, etc. can be used in addition to a solid oxidizing agent such as potassium permanganate, but air or oxygen with increased concentration may be used. Oxidation reaction proceeds easily by bubbling and stirring the gas.

浸出の際の反応温度が高いほど素早く浸出されるが、後に冷却晶析を行うためには50℃以上にする必要があり、また、熱エネルギー消費の増加を防止するためには高過ぎる温度にしない方がよいので、反応温度は70〜98℃であるのが好ましい。   The higher the reaction temperature during leaching, the quicker the leaching. However, in order to perform cooling crystallization later, the temperature must be 50 ° C. or higher, and the temperature is too high to prevent an increase in heat energy consumption. Since it is better not to do so, the reaction temperature is preferably 70 to 98 ° C.

アルカリ浸出後に固液分離を行う。この固液分離は、フィルタプレス、遠心分離、デカンタ、ベルトフィルタなどの一般的なろ過のいずれでもよく、ろ過性、脱水性、洗浄性などを勘案してその種類および条件が決定される。   Solid-liquid separation is performed after alkali leaching. This solid-liquid separation may be any of general filtration such as a filter press, centrifugal separation, decanter, and belt filter, and its type and conditions are determined in consideration of filterability, dewaterability, washability, and the like.

一方、固液分離後の固形分は、有価なCuやInなどを含む金属性化合物と、一部酸化された化合物であるので、製錬工程において有効に活用することができる。なお、銅製錬では、自溶炉や反射炉に直接投入してアノードを作成することができる。   On the other hand, since the solid content after the solid-liquid separation is a metallic compound containing valuable Cu or In and a partially oxidized compound, it can be effectively utilized in the smelting process. In copper smelting, an anode can be created by directly charging into a flash smelting furnace or a reflection furnace.

(2)冷却晶析工程
次に、得られた浸出液の冷却晶析を行う。上述したアルカリ浸出・酸化工程で使用したNaOH溶液のNaOH濃度が高いと、この浸出液中のNaOH濃度が高くなり、砒素の化合物の形態が変化すると考えられる。すなわち、希薄な溶液の場合と、NaOH濃度が若干高くなった場合のNaとAsの形態は、以下の反応式で表される。
4NaOH+2As+5O+2HO → 4NaHAsO+6S
8NaOH+2As+5O → 4NaHAsO+6S+2H
(2) Cooling crystallization process Next, the obtained leachate is cooled and crystallized. If the NaOH concentration of the NaOH solution used in the alkali leaching / oxidation step described above is high, the NaOH concentration in the leaching solution increases, and the form of the arsenic compound is considered to change. That is, the form of Na and As in the case of a dilute solution and when the NaOH concentration is slightly increased is expressed by the following reaction formula.
4NaOH + 2As 2 S 3 + 5O 2 + 2H 2 O → 4NaH 2 AsO 4 + 6S
8NaOH + 2As 2 S 3 + 5O 2 → 4Na 2 HAsO 4 + 6S + 2H 2 O

このように、NaOH濃度が高くなると、砒素化合物の形態が変化して、砒素とナトリウムの反応の割合が変化する。さらにNaOH濃度を高くすると、以下の反応が起こる。
12NaOH+2As+5O → 4NaAsO+6S+6H
Thus, as the NaOH concentration increases, the form of the arsenic compound changes, and the reaction rate between arsenic and sodium changes. When the NaOH concentration is further increased, the following reaction occurs.
12NaOH + 2As 2 S 3 + 5O 2 → 4Na 3 AsO 4 + 6S + 6H 2 O

そのため、冷却晶析によって析出物を得るためには、アルカリ浸出・酸化工程で使用するNaOH溶液のNaOH濃度を高くしておく必要がある。すなわち、アルカリ浸出可能なZnなどもある程度浸出させる程度のNaOH濃度にしなければ、NaHAsOやNaHAsOの形態でAsが浸出されるため、冷却晶析が進行しないので、NaOH濃度をある程度高くする必要がある。また、上記の反応式では、砒素1モルに対してNaOHが2モルまでは、NaHAsOの形態で生成され、砒素の量がそれ以上になると、NaAsOの形態になるので、1モルの砒素に対して3モルのNaOHにすると、砒素とアルカリ金属の化合物が好ましい形態になる。 Therefore, in order to obtain a precipitate by cooling crystallization, it is necessary to increase the NaOH concentration of the NaOH solution used in the alkali leaching / oxidation step. That is, unless the NaOH concentration that allows alkali leaching to some extent is leached to some extent, As is leached in the form of NaH 2 AsO 4 or Na 2 HAsO 4 , cooling crystallization does not proceed, so the NaOH concentration is reduced. It needs to be raised to some extent. Further, in the above reaction formula, up to 2 moles of NaOH with respect to 1 mole of arsenic is generated in the form of Na 2 HAsO 4 , and when the amount of arsenic is more than that, it is in the form of Na 3 AsO 4 . When 3 mol of NaOH is used per 1 mol of arsenic, a compound of arsenic and an alkali metal is a preferred form.

また、冷却によって析出物を得ることができる冷却温度は50℃以下であり、室温程度まで冷却すれば晶析がほぼ完了するので、冷却温度を25℃以下にするのが好ましいが、冷却温度が低いほど砒素の析出率が上昇するので、冷却温度を10℃以下にするのがさらに好ましい。   In addition, the cooling temperature at which precipitates can be obtained by cooling is 50 ° C. or lower, and crystallization is almost completed if cooled to about room temperature. Therefore, the cooling temperature is preferably 25 ° C. or lower. The lower the value, the higher the arsenic precipitation rate. Therefore, the cooling temperature is more preferably 10 ° C. or lower.

また、冷却晶析の際に撹拌するのが好ましい。撹拌しないと、晶析物が溶液内で網目状に析出して固形化し易くなり、固液分離の際に移液できない場合がある。   Further, it is preferable to stir during cooling crystallization. Without stirring, the crystallized product precipitates in the form of a network in the solution and becomes solidified easily, and there are cases where the liquid cannot be transferred during solid-liquid separation.

なお、アルカリ薬品は非常に高価な薬品であるので、前工程に繰返し使用するのが好ましい。また、アルカリ浸出液は、NaとAsの他にGaなどを含んだ液であり、Gaは繰り返しの工程中で濃縮されていくので、Gaがある程度高濃度になった後にアルカリ電解採取を行って、Gaを回収することができる。   In addition, since alkaline chemicals are very expensive chemicals, they are preferably used repeatedly in the previous step. In addition, the alkaline leaching solution is a solution containing Ga and the like in addition to Na and As. Since Ga is concentrated in the repeated process, alkaline electrowinning is performed after Ga reaches a certain concentration. Ga can be recovered.

以下、本発明による砒素含有物質の処理方法の実施例について詳細に説明する。   Hereinafter, embodiments of the method for treating an arsenic-containing material according to the present invention will be described in detail.

[実施例1]
まず、表1に示す組成の砒素含有物質を用意した。この砒素含有物質80gをNaOH濃度200g/LのNaOH溶液(Na濃度115g/L)800mLに入れ(NaOH溶液1L当りの砒素含有物質100g(パルプ濃度PD=100g/L))、液温98℃に加熱し、0.4L/分の流量で空気(ガス/液比率=0.5)を吹き込んで、撹拌しながら1時間反応させ、砒素含有物質を酸化しながらアルカリ浸出した。なお、砒素含有物質をNaOH溶液に入れた後のpHは約12であった。
[Example 1]
First, an arsenic-containing material having the composition shown in Table 1 was prepared. 80 g of this arsenic-containing substance is put into 800 mL of NaOH solution (Na concentration 115 g / L) with a NaOH concentration of 200 g / L (100 g of arsenic-containing substance per 1 L of NaOH solution (pulp concentration PD = 100 g / L)), and the liquid temperature reaches 98 ° C. The mixture was heated, and air (gas / liquid ratio = 0.5) was blown at a flow rate of 0.4 L / min. The mixture was allowed to react for 1 hour with stirring, and alkali leaching was performed while oxidizing the arsenic-containing substance. The pH after the arsenic-containing substance was added to the NaOH solution was about 12.

Figure 0004710033
Figure 0004710033

次に、液温70℃まで冷却した後、目開き3ミクロンのPTFE(ポリ四フッ化エチレン)からなるメンブランフィルタを用いて、加圧ろ過機によって0.4MPaに加圧して固液分離した。この固液分離後のフィルタを通過したろ液(アルカリ浸出液)についてICPによって組成分析を行った。これらの条件および分析結果をそれぞれ表2および表3に示す。   Next, after cooling to a liquid temperature of 70 ° C., solid-liquid separation was performed using a membrane filter made of PTFE (polytetrafluoroethylene) having an opening of 3 μm and pressurizing to 0.4 MPa with a pressure filter. Composition analysis was performed by ICP on the filtrate (alkaline leachate) that passed through the filter after the solid-liquid separation. These conditions and analysis results are shown in Table 2 and Table 3, respectively.

Figure 0004710033
Figure 0004710033

Figure 0004710033
Figure 0004710033

次に、固液分離後のアルカリ浸出液を300rpmで撹拌しながら1時間で10℃まで冷却した後、さらに1時間保持したところ、白色の結晶が塊となって析出した。その後、目開き3ミクロンのPTFEからなるメンブランフィルタを用いて、加圧ろ過機によって0.4MPaに加圧して固液分離した。この冷却晶析によって、砒素を析出させて分離するとともに、NaOH液を再生した。   Next, the alkali leachate after solid-liquid separation was cooled to 10 ° C. over 1 hour while stirring at 300 rpm, and then kept for 1 hour. As a result, white crystals precipitated as a lump. Thereafter, using a membrane filter made of PTFE having an opening of 3 microns, solid-liquid separation was performed by applying pressure to 0.4 MPa with a pressure filter. By this cooling crystallization, arsenic was precipitated and separated, and the NaOH solution was regenerated.

この固液分離後のフィルタを通過したろ液(冷却晶析后液)とフィルタに残った固形分(冷却晶析物)についてICPによって組成分析を行った。なお、冷却晶析后液の量は718mLであった。また、固液分離後によって固形分として得られたケーキを60℃で乾燥した。なお、この乾燥前後の重量を測定することによって水分値を算出するとともに、冷却晶析による各々の元素の析出率を算出した。これらの条件および分析結果をそれぞれ表4および表5に示し、析出率の計算値を表6に示す。なお、乾燥前の固形分の重量は75gであり、水分は45%であった。   Composition analysis was performed by ICP on the filtrate (liquid after cooling crystallization) that passed through the filter after this solid-liquid separation and the solid content (cooled crystallized product) remaining on the filter. The amount of the solution after cooling crystallization was 718 mL. Moreover, the cake obtained as solid content after solid-liquid separation was dried at 60 ° C. The moisture value was calculated by measuring the weight before and after drying, and the precipitation rate of each element by cooling crystallization was calculated. These conditions and analysis results are shown in Table 4 and Table 5, respectively, and the calculated precipitation rate is shown in Table 6. In addition, the weight of the solid content before drying was 75 g, and the water content was 45%.

Figure 0004710033
Figure 0004710033

Figure 0004710033
Figure 0004710033

Figure 0004710033
Figure 0004710033

[比較例1]
液温を90℃とし、反応液中に空気を吹き込まなかった以外は、実施例1と同様の方法で、砒素含有物質を酸化しながらアルカリ浸出した後、固液分離し、組成分析を行った。これらの条件および分析結果をそれぞれ表2および表3に示す。なお、冷却晶析后液の量は787mLであった。
[Comparative Example 1]
Except that the liquid temperature was 90 ° C. and no air was blown into the reaction solution, the arsenic-containing substance was leached with alkali while oxidizing, and then the solid-liquid separation was performed and the composition analysis was performed in the same manner as in Example 1. . These conditions and analysis results are shown in Table 2 and Table 3, respectively. The amount of the solution after cooling crystallization was 787 mL.

また、実施例1と同様の方法によって冷却晶析を行った後、固液分離し、組成分析および析出率の算出を行った。これらの条件および分析結果をそれぞれ表4および表5に示し、析出率の計算値を表6に示す。なお、乾燥前の固形分の重量は12gであり、水分は54.5%であった。   Further, after cooling crystallization by the same method as in Example 1, solid-liquid separation was performed, and a composition analysis and a precipitation rate were calculated. These conditions and analysis results are shown in Table 4 and Table 5, respectively, and the calculated precipitation rate is shown in Table 6. In addition, the weight of the solid content before drying was 12 g, and the water content was 54.5%.

[実施例2]
砒素含有物質の量を160g(NaOH溶液1L当りの砒素含有物質200g(パルプ濃度PD=200g/L))とした以外は、実施例1と同様の方法で、砒素含有物質を酸化しながらアルカリ浸出した後、固液分離し、組成分析を行った。これらの条件および分析結果をそれぞれ表2および表3に示す。なお、冷却晶析后液の量は606mLであった。
[Example 2]
Alkaline leaching while oxidizing the arsenic-containing material in the same manner as in Example 1 except that the amount of the arsenic-containing material was 160 g (200 g of arsenic-containing material per liter of NaOH solution (pulp concentration PD = 200 g / L)). After that, solid-liquid separation was performed and composition analysis was performed. These conditions and analysis results are shown in Table 2 and Table 3, respectively. The amount of the solution after cooling crystallization was 606 mL.

また、実施例1と同様の方法によって冷却晶析を行った後、固液分離し、組成分析および析出率の算出を行った。これらの条件および分析結果をそれぞれ表4および表5に示し、析出率の計算値を表6に示す。なお、乾燥前の固形分の重量は176.1gであり、水分は37.5%であった。   Further, after cooling crystallization by the same method as in Example 1, solid-liquid separation was performed, and a composition analysis and a precipitation rate were calculated. These conditions and analysis results are shown in Table 4 and Table 5, respectively, and the calculated precipitation rate is shown in Table 6. In addition, the weight of the solid content before drying was 176.1 g, and the water content was 37.5%.

[実施例3]
砒素含有物質の量を240g(NaOH溶液1L当りの砒素含有物質300g(パルプ濃度PD=300g/L))とした以外は、実施例1と同様の方法で、砒素含有物質を酸化しながらアルカリ浸出した後、固液分離し、組成分析を行った。これらの条件および分析結果をそれぞれ表2および表3に示す。なお、冷却晶析后液の量は562mLであった。
[Example 3]
Alkaline leaching while oxidizing the arsenic containing material in the same manner as in Example 1 except that the amount of the arsenic containing material was 240 g (300 g of arsenic containing material per liter of NaOH solution (pulp concentration PD = 300 g / L)) After that, solid-liquid separation was performed and composition analysis was performed. These conditions and analysis results are shown in Table 2 and Table 3, respectively. The amount of the liquid after cooling crystallization was 562 mL.

また、実施例1と同様の方法によって冷却晶析を行った後、固液分離し、組成分析および析出率の算出を行った。これらの条件および分析結果をそれぞれ表4および表5に示し、析出率の計算値を表6に示す。なお、乾燥前の固形分の重量は216.7gであり、水分は46%であった。   Further, after cooling crystallization by the same method as in Example 1, solid-liquid separation was performed, and a composition analysis and a precipitation rate were calculated. These conditions and analysis results are shown in Table 4 and Table 5, respectively, and the calculated precipitation rate is shown in Table 6. The solid content before drying was 216.7 g, and the water content was 46%.

実施例1〜3および比較例1から、1時間という短時間でAsを効率的に浸出していることがわかる。また、実施例1〜3のように空気を吹き込まなければ酸化反応が進まないので、比較例1では、浸出が半分しか進んでいないのがわかる。さらに、実施例1〜3のようにNaOH溶液1L当りの砒素含有物質100〜300gであれば、ほぼ全ての砒素を浸出させることができるのがわかる。また、実施例1〜3から、NaOH溶液1L当りの砒素含有物質の量にかかわらず、浸出した砒素の90%以上を冷却晶析によって析出させて除去することができるのがわかる。   From Examples 1 to 3 and Comparative Example 1, it can be seen that As was efficiently leached in a short time of 1 hour. Further, since the oxidation reaction does not proceed unless air is blown as in Examples 1 to 3, it can be seen that in Comparative Example 1, leaching proceeds only half. Further, it can be seen that almost 100% of arsenic can be leached if the arsenic-containing substance is 100 to 300 g per liter of NaOH solution as in Examples 1 to 3. Further, from Examples 1 to 3, it can be seen that 90% or more of the leached arsenic can be precipitated and removed by cooling crystallization regardless of the amount of arsenic-containing substance per 1 L of NaOH solution.

[実施例4]
NaOH濃度を150g/Lにした以外は、実施例2と同様の方法で、砒素含有物質を酸化しながらアルカリ浸出した後、固液分離し、組成分析を行った。これらの条件および分析結果をそれぞれ表2および表3に示す。なお、冷却晶析后液の量は632mLであった。
[Example 4]
Except for changing the NaOH concentration to 150 g / L, the arsenic-containing material was leached with alkali while oxidizing, followed by solid-liquid separation and composition analysis in the same manner as in Example 2. These conditions and analysis results are shown in Table 2 and Table 3, respectively. The amount of the solution after cooling crystallization was 632 mL.

また、実施例1と同様の方法によって冷却晶析を行った後、固液分離し、組成分析および析出率の算出を行った。これらの条件および分析結果をそれぞれ表4および表5に示し、析出率の計算値を表6に示す。なお、乾燥前の固形分の重量は152.7gであり、水分は36.4%であった。   Further, after cooling crystallization by the same method as in Example 1, solid-liquid separation was performed, and a composition analysis and a precipitation rate were calculated. These conditions and analysis results are shown in Table 4 and Table 5, respectively, and the calculated precipitation rate is shown in Table 6. In addition, the weight of the solid content before drying was 152.7 g, and the water content was 36.4%.

[比較例2]
NaOH濃度を100g/Lにした以外は、実施例2と同様の方法で、砒素含有物質を酸化しながらアルカリ浸出した後、固液分離し、組成分析を行った。これらの条件および分析結果をそれぞれ表2および表3に示す。なお、冷却晶析后液の量は725mLであった。
[Comparative Example 2]
Except that the NaOH concentration was set to 100 g / L, the arsenic-containing material was leached with alkali while oxidizing, followed by solid-liquid separation and composition analysis in the same manner as in Example 2. These conditions and analysis results are shown in Table 2 and Table 3, respectively. The amount of the liquid after cooling crystallization was 725 mL.

また、実施例1と同様の方法によって冷却晶析を行った後、固液分離し、組成分析および析出率の算出を行った。これらの条件および分析結果をそれぞれ表4および表5に示し、析出率の計算値を表6に示す。なお、乾燥前の固形分の重量は68gであり、水分は47.4%であった。   Further, after cooling crystallization by the same method as in Example 1, solid-liquid separation was performed, and a composition analysis and a precipitation rate were calculated. These conditions and analysis results are shown in Table 4 and Table 5, respectively, and the calculated precipitation rate is shown in Table 6. In addition, the weight of the solid content before drying was 68 g, and the water content was 47.4%.

[比較例3]
NaOH濃度を50g/Lにした以外は、実施例2と同様の方法で、砒素含有物質を酸化しながらアルカリ浸出した後、固液分離し、組成分析を行った。これらの条件および分析結果をそれぞれ表2および表3に示す。また、実施例1と同様の方法によって冷却晶析を試みたが、析出物が全くなかったため、その後の固液分離を行わず、組成分析および析出率の計算値も行わなかった。
[Comparative Example 3]
Except that the NaOH concentration was changed to 50 g / L, the arsenic-containing substance was leached with alkali while oxidizing in the same manner as in Example 2, followed by solid-liquid separation and composition analysis. These conditions and analysis results are shown in Table 2 and Table 3, respectively. Moreover, although cooling crystallization was tried by the same method as Example 1, since there was no precipitate at all, subsequent solid-liquid separation was not performed, and the compositional analysis and the calculated value of the precipitation rate were not performed.

[比較例4]
NaOH濃度を25g/Lにした以外は、実施例2と同様の方法で、砒素含有物質を酸化しながらアルカリ浸出した後、固液分離し、組成分析を行った。これらの条件および分析結果をそれぞれ表2および表3に示す。また、実施例1と同様の方法によって冷却晶析を試みたが、析出物が全くなかったため、その後の固液分離を行わず、組成分析および析出率の計算値も行わなかった。
[Comparative Example 4]
Except for changing the NaOH concentration to 25 g / L, the arsenic-containing substance was leached with alkali while oxidizing in the same manner as in Example 2, followed by solid-liquid separation and composition analysis. These conditions and analysis results are shown in Table 2 and Table 3, respectively. Moreover, although cooling crystallization was tried by the same method as Example 1, since there was no precipitate at all, subsequent solid-liquid separation was not performed, and the compositional analysis and the calculated value of the precipitation rate were not performed.

実施例4および比較例2〜4から、NaOH溶液1L当りの砒素含有物質200gとしてアルカリ浸出させる場合には、NaOH濃度を100g/L以上にすれば、砒素を完全に浸出させることができるのがわかる。また、実施例4および比較例2〜4から、NaOH溶液1L当りの砒素含有物質200gとしてアルカリ浸出させる場合には、NaOH濃度を50g/Lより高くしなければ、冷却晶析によって析出物を得ることができないのがわかる。   From Example 4 and Comparative Examples 2 to 4, when alkali leaching as 200 g of an arsenic-containing substance per liter of NaOH solution, arsenic can be completely leached if the NaOH concentration is 100 g / L or more. Recognize. Also, from Example 4 and Comparative Examples 2 to 4, when alkali leaching as 200 g of an arsenic-containing substance per 1 L of NaOH solution, a precipitate is obtained by cooling crystallization unless the NaOH concentration is higher than 50 g / L. I can't understand.

本発明による砒素含有物質の処理方法の実施の形態を概略的に示す工程図である。It is process drawing which shows schematically embodiment of the processing method of the arsenic containing substance by this invention.

Claims (7)

砒素含有物質をアルカリ溶液に加えてpH10以上にして酸化しながらアルカリ浸出した後に固液分離して砒素を含む浸出液を得る工程と、この浸出液を冷却して析出物を得た後に固液分離して、砒素とアルカリ金属の化合物を得るとともにアルカリ溶液を回収する工程とを備えたことを特徴とする、砒素含有物質の処理方法。 A step of adding an arsenic-containing substance to an alkali solution to obtain a leachate containing arsenic by solid-liquid separation after alkali leaching while oxidizing to pH 10 or higher, and cooling the leachate to obtain a precipitate, followed by solid-liquid separation. A process for obtaining a compound of arsenic and an alkali metal and recovering an alkali solution. 前記アルカリ溶液が水酸化ナトリウム溶液であることを特徴とする、請求項1に記載の砒素含有物質の処理方法。 The method for treating an arsenic-containing substance according to claim 1, wherein the alkaline solution is a sodium hydroxide solution. 前記水酸化ナトリウム溶液中の水酸化ナトリウム濃度が150〜300g/Lであることを特徴とする、請求項2に記載の砒素含有物質の処理方法。 The method for treating an arsenic-containing substance according to claim 2, wherein the sodium hydroxide concentration in the sodium hydroxide solution is 150 to 300 g / L. 前記砒素含有物質の酸化および浸出の際の温度が70℃以上であることを特徴とする、請求項1乃至3のいずれかに記載の砒素含有物質の処理方法。 The method for treating an arsenic-containing substance according to any one of claims 1 to 3, wherein the temperature during oxidation and leaching of the arsenic-containing substance is 70 ° C or higher. 前記浸出液の冷却の際の温度が50℃以下であることを特徴とする、請求項1乃至4のいずれかに記載の砒素含有物質の処理方法。 The method for treating an arsenic-containing substance according to any one of claims 1 to 4, wherein a temperature at the time of cooling the leachate is 50 ° C or lower. 前記浸出液の冷却の際に前記浸出液を撹拌することを特徴とする、請求項1乃至5のいずれかに記載の砒素含有物質の処理方法。 The method for treating an arsenic-containing substance according to any one of claims 1 to 5, wherein the leachate is stirred when the leachate is cooled. 前記砒素含有物質が、銅、亜鉛、鉄、インジウム、ガリウム、錫、アンチモン、鉛、カドミウム、ナトリウム、カリウム、マグネシウムおよびカルシウムの少なくとも一種を含むことを特徴とする、請求項1乃至6のいずれかに記載の砒素含有物質の処理方法。

7. The arsenic-containing material includes at least one of copper, zinc, iron, indium, gallium, tin, antimony, lead, cadmium, sodium, potassium, magnesium, and calcium. A method for treating an arsenic-containing substance as described in 1.

JP2006126586A 2006-04-28 2006-04-28 Arsenic content treatment method Active JP4710033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006126586A JP4710033B2 (en) 2006-04-28 2006-04-28 Arsenic content treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006126586A JP4710033B2 (en) 2006-04-28 2006-04-28 Arsenic content treatment method

Publications (2)

Publication Number Publication Date
JP2007297240A JP2007297240A (en) 2007-11-15
JP4710033B2 true JP4710033B2 (en) 2011-06-29

Family

ID=38767072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006126586A Active JP4710033B2 (en) 2006-04-28 2006-04-28 Arsenic content treatment method

Country Status (1)

Country Link
JP (1) JP4710033B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5114048B2 (en) * 2006-12-15 2013-01-09 Dowaメタルマイン株式会社 Arsenic liquid manufacturing method
JP2011161386A (en) * 2010-02-10 2011-08-25 Akita Univ Method for treating thioarsenite
RU2483129C1 (en) * 2012-03-02 2013-05-27 Федеральное государственное унитарное предприятие "Государственный научно-исследовательский, проектный и конструкторский институт горного дела и металлургии цветных металлов" ФГУП "Гипроцветмет" Method of neutralising arsenic-containing sulfide cakes
JP6241661B2 (en) * 2013-03-29 2017-12-06 三菱マテリアル株式会社 Arsenic separation and immobilization method
KR102147242B1 (en) * 2017-11-22 2020-08-24 한국해양과학기술원 Method for reduction of hexavalent chromium using freezing
CN114059077B (en) * 2021-10-27 2023-10-20 湖南有色金属研究院有限责任公司 Treatment method of arsenic filter cake

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6124329B2 (en) * 1978-06-09 1986-06-10 Sumitomo Metal Mining Co
JPH09241776A (en) * 1996-03-08 1997-09-16 Nikko Kinzoku Kk Separation of arsenic container in smelting intermediate material and recovering method of arsenic
JPH09263408A (en) * 1996-03-29 1997-10-07 Nikko Kinzoku Kk Separation of arsenic from arsenic sulfide-containing smelting intermediate product
JPH09315819A (en) * 1996-05-30 1997-12-09 Nikko Kinzoku Kk Method for recovering arsenic from sulfide containing arsenic and production of calcium arsenate
JPH11199231A (en) * 1997-12-26 1999-07-27 Nippon Mining & Metals Co Ltd Production of calcium arsenate
JP2004523341A (en) * 2000-12-14 2004-08-05 バリック・ゴールド・コーポレイション Method for recovering arsenic from aqueous acid

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6124329B2 (en) * 1978-06-09 1986-06-10 Sumitomo Metal Mining Co
JPH09241776A (en) * 1996-03-08 1997-09-16 Nikko Kinzoku Kk Separation of arsenic container in smelting intermediate material and recovering method of arsenic
JPH09263408A (en) * 1996-03-29 1997-10-07 Nikko Kinzoku Kk Separation of arsenic from arsenic sulfide-containing smelting intermediate product
JPH09315819A (en) * 1996-05-30 1997-12-09 Nikko Kinzoku Kk Method for recovering arsenic from sulfide containing arsenic and production of calcium arsenate
JPH11199231A (en) * 1997-12-26 1999-07-27 Nippon Mining & Metals Co Ltd Production of calcium arsenate
JP2004523341A (en) * 2000-12-14 2004-08-05 バリック・ゴールド・コーポレイション Method for recovering arsenic from aqueous acid

Also Published As

Publication number Publication date
JP2007297240A (en) 2007-11-15

Similar Documents

Publication Publication Date Title
JP3999805B1 (en) Arsenic-containing solution processing method
CA2798302C (en) Process for recovering valuable metals from precious metal smelting slag
CA2632923C (en) Method for recovering rare metals in a zinc leaching process
US8110162B2 (en) Method of processing copper arsenic compound
JP6241661B2 (en) Arsenic separation and immobilization method
JP4710034B2 (en) Arsenic-containing material treatment method
JP4846677B2 (en) Arsenic-containing solution processing method
EA012466B1 (en) Method for the recovery of valuable metals and arsenic from a solution
US8092764B2 (en) Method of processing non-ferrous smelting intermediate containing arsenic
JP4268196B2 (en) Method for producing scorodite
JP4710033B2 (en) Arsenic content treatment method
JP7016463B2 (en) How to collect tellurium
JP3403289B2 (en) Method for separating arsenic contained in smelting intermediate and method for recovering arsenic
JP4149488B2 (en) Iron arsenate powder
JP5571517B2 (en) Separation of copper and arsenic from non-ferrous smelting intermediates containing copper and arsenic
JP4615561B2 (en) Arsenic-containing solution processing method
JP3069520B2 (en) Method for separating arsenic from smelting intermediates containing arsenic sulfide
JP4087433B2 (en) Arsenic-containing solution processing method
JP2008260683A (en) Iron arsenate powder
US5939042A (en) Tellurium extraction from copper electrorefining slimes
AU2014360655A1 (en) Process for producing refined nickel and other products from a mixed hydroxide intermediate
JP2007092124A (en) Method for treating copper converter dust
US20090291307A1 (en) Iron arsenate powder
JP2012001754A (en) Wet treatment method of non-ferrous smelting intermediate product
WO2023099424A1 (en) A method for iron and copper removal from solution using metallic reagents

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110215

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110224

R150 Certificate of patent or registration of utility model

Ref document number: 4710033

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250