JP4843354B2 - Biological antifouling agent, antifouling treatment method and antifouling treatment article - Google Patents

Biological antifouling agent, antifouling treatment method and antifouling treatment article Download PDF

Info

Publication number
JP4843354B2
JP4843354B2 JP2006106767A JP2006106767A JP4843354B2 JP 4843354 B2 JP4843354 B2 JP 4843354B2 JP 2006106767 A JP2006106767 A JP 2006106767A JP 2006106767 A JP2006106767 A JP 2006106767A JP 4843354 B2 JP4843354 B2 JP 4843354B2
Authority
JP
Japan
Prior art keywords
group
polymer
antifouling
repellent
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006106767A
Other languages
Japanese (ja)
Other versions
JP2007277432A (en
Inventor
望 鶴田
実 山下
速都 篠原
和秀 浜田
兀 福冨
浩 古澤
稔 滝澤
幸男 吉川
道衛 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainichiseika Color and Chemicals Mfg Co Ltd
Kochi University of Technology
Kochi Prefecture
Original Assignee
Dainichiseika Color and Chemicals Mfg Co Ltd
Kochi University of Technology
Kochi Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainichiseika Color and Chemicals Mfg Co Ltd, Kochi University of Technology, Kochi Prefecture filed Critical Dainichiseika Color and Chemicals Mfg Co Ltd
Priority to JP2006106767A priority Critical patent/JP4843354B2/en
Publication of JP2007277432A publication Critical patent/JP2007277432A/en
Application granted granted Critical
Publication of JP4843354B2 publication Critical patent/JP4843354B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Paints Or Removers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a new aquatic organism antifouling agent which takes the environment into account, is safe to marine products for foods and has an excellent antifouling effect, to provide an antifouling treatment method and to obtain an antifouling treated article. <P>SOLUTION: The organism antifouling agent comprises at least an organism repellent group-containing polymer and a coating film-forming material. The polymer is a polymer bonded through a substantially nonhydrolyzable connecting group to at least one kind of an organism repellent group selected from the group consisting of an amino group, an ammonium group, a pyridine group, a pyridinium group, a phenolic group and a polyethylene glycol group. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、生物防汚剤、防汚処理方法および防汚処理物品に関する。   The present invention relates to a biological antifouling agent, an antifouling treatment method, and an antifouling treatment article.

海洋航行船舶などは、航行中に海水中に棲む水棲生物が海水中に没する船底面や船側面に付着または固定することが見られ、これらの水棲生物との摩擦抵抗によって船舶などの航行速度の低下をもたらし、燃料の消費も増加し、また、補修の頻度も増え、経済的にも多大な損失を被るなどの色々な弊害をもたらしている。また、海洋魚類の養殖場においても隔離網に同様に海洋生物が付着し、網の開口部の減少による新鮮な海水の流入などが妨げられ、養殖魚の生育に弊害となっている。   In marine navigating ships, it is observed that aquatic organisms that live in seawater during navigation are attached to or fixed to the bottom and side of the ship where they are submerged in seawater. , Fuel consumption increases, the frequency of repairs also increases, and there are various adverse effects such as costly loss. Also, in marine fish farms, marine organisms similarly adhere to the segregation nets, preventing the inflow of fresh seawater due to the decrease in the openings of the nets, which is detrimental to the growth of farmed fish.

海水中に生息し、船体や海中の構造物に付着する水棲生物としては、非常に多くの水棲生物があり、水棲動物としてはフジツボ類、コケムシ類、セルブラ類、ほや類などであり、植物としては海藻類が挙げられ、特にフジツボ類、海藻類が挙げられる。   There are a large number of aquatic organisms that inhabit seawater and adhere to hulls and structures in the sea, and the aquatic animals are barnacles, bryozoans, selbras, frogs, etc. Includes seaweeds, particularly barnacles and seaweeds.

これら水棲生物の付着を防止するために船底防汚塗料として錫化合物や銅化合物を含む塗料が使用されてきた。しかしながら、それらの錫化合物や銅化合物は海水中に溶出し、環境の汚染や魚、貝、海藻などへの汚染をもたらし、それらを食料とする人達にも汚染が広がり、健康を阻害するなどの大きな社会問題になってきている。   In order to prevent adhesion of these aquatic organisms, paints containing tin compounds and copper compounds have been used as ship bottom antifouling paints. However, those tin compounds and copper compounds are eluted in seawater, causing environmental pollution and pollution to fish, shellfish, seaweeds, etc. It has become a big social problem.

本発明は、上記の事情に鑑みてなされたもので、水棲生物が船底や網糸などの基材に対する着生、生育、脱落の生態メカニズムを検討して見出された生物忌避性材料を水棲生物付着防止剤として使用するものである。生物忌避性材料として、水棲生物の生理的、物理的作用を利用した、しかも海水中に溶出しない非放出性の重合体を使用することによって、環境に配慮し、食用水産物に対しても安全であり、優れた防汚効果をもたらす新規な水棲生物防汚剤、防汚処理方法および防汚処理物品を提供することを目的とする。   The present invention has been made in view of the above circumstances, and biorepellent materials found by examining the ecological mechanism of aquatic organisms on the growth, growth, and shedding of base materials such as ship bottoms and net yarns have been developed. It is used as a biofouling inhibitor. By using a non-release polymer that utilizes the physiological and physical effects of aquatic organisms and does not elute into seawater, it is environmentally friendly and safe for edible marine products. It is an object of the present invention to provide a novel aquatic organism antifouling agent, an antifouling treatment method and an antifouling treatment article that provide an excellent antifouling effect.

本発明者らは、上記問題点を解決すべく鋭意研究を重ねた結果、実質的に加水分解しない結合基を介して生物忌避性基(以下単に「忌避性基」という場合がある)が連結している重合体(以下「忌避性重合体」という場合がある)は安全な有機物質であり、塗料として塗膜を形成し、長期間海水中に浸漬された際においても、上記重合体は粒子として脱落することはあっても水中に溶出する材料ではなく、環境に対しても汚染することはなく、水産資源に対しても安全であり、防汚性能についても、忌避性重合体を表面に高密度に有する塗膜が水棲生物の着生を減少させ、また、付着した水棲生物も細胞の生育が阻害されたり死滅したりし、付着した水棲生物が経時的に基材面から剥離する傾向が見られ、その結果としてこの死滅した水棲生物の上にさらに水棲生物が付着堆積しても、該付着堆積した水棲生物は、その自重により、さらに海水の流動力などの物理的な作用もあいまって、ついには付着した水棲生物が脱落する現象を見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have linked a biological repellent group (hereinafter sometimes simply referred to as “repellent group”) via a linking group that is not substantially hydrolyzed. The polymer (hereinafter sometimes referred to as “repellent polymer”) is a safe organic substance, forms a coating film as a paint, and even when immersed in seawater for a long time, the polymer is Even if it falls off as particles, it is not a material that elutes in water, does not pollute the environment, is safe for marine resources, and has anti-fouling performance on the surface of anti-fouling polymers. The coating film with a high density reduces the aquatic organisms' growth, and the attached aquatic organisms also inhibit cell growth or die, and the attached aquatic organisms peel off from the substrate surface over time. There is a trend, and as a result this dead aquatic life Even if aquatic organisms adhere and accumulate on the surface, the attached aquatic organisms, due to their own weight, are combined with physical actions such as the fluidity of seawater, and eventually the attached aquatic organisms fall off. As a result, the present invention has been completed.

すなわち、本発明の構成は以下の通りである。
1.忌避性基を有する重合体と塗膜形成材料とを少なくとも含み、上記重合体が、アミノ基、アンモニウム基、ピリジン基、ピリジニウム基、フェノール基およびポリエチレングリコール基からなる群から選ばれた少なくとも1種の忌避性基が、実質的に加水分解しない連結基を介して結合している重合体であることを特徴とする生物防汚剤。
2.前記重合体が、線状重合体(A)および/または重合体微粒子(B)である前記1に記載の生物防汚剤。
3.前記連結基が、アミン結合、アンモニウム結合、エーテル結合、チオエーテル結合および炭化水素結合からなる群から選ばれた少なくとも1種の実質的に加水分解しない結合基である前記1に記載の生物防汚剤。
That is, the configuration of the present invention is as follows.
1. At least one selected from the group consisting of an amino group, an ammonium group, a pyridine group, a pyridinium group, a phenol group, and a polyethylene glycol group, comprising at least a polymer having a repellent group and a film-forming material. A biofouling agent characterized in that the repellent group is a polymer bonded via a linking group that is not substantially hydrolyzed.
2. 2. The biofouling agent according to 1, wherein the polymer is a linear polymer (A) and / or polymer fine particles (B).
3. 2. The biofouling antifouling agent according to 1, wherein the linking group is at least one non-hydrolyzable linking group selected from the group consisting of an amine bond, an ammonium bond, an ether bond, a thioether bond and a hydrocarbon bond. .

4.前記重合体の少なくとも1部の構成単位が、下記一般式(1)で表わされるスチレン(6−)メチレン基である前記1に記載の生物防汚剤。

Figure 0004843354
(式中のXは、アミノ基、アンモニウム基、ピリジン基、ピリジニウム基、フェノール基およびポリエチレングリコール基からなる群から選ばれた少なくとも1種の生物忌避性基である。)
5.前記重合体が、ハロゲン化メチルスチレン共重合体に忌避性基を有する化合物を反応させて得られる重合体、またはハロゲン化メチルスチレンに忌避性基を有する化合物を反応させた単量体を重合して得られる重合体である前記1に記載の生物防汚剤。
6.前記重合体(A)と塗膜形成材料(B)との配合質量比が、A:B=95:5〜5:95である前記1に記載の生物防汚剤。
7.前記1〜6のいずれかに記載の生物防汚剤を基材に塗布または含浸し、あるいは基材に混練または内添することを特徴とする基材の生物防汚処理方法。 4). 2. The biological antifouling agent according to 1, wherein at least one part of the polymer is a styrene (6-) methylene group represented by the following general formula (1).
Figure 0004843354
(X in the formula is at least one biological repellent group selected from the group consisting of an amino group, an ammonium group, a pyridine group, a pyridinium group, a phenol group and a polyethylene glycol group.)
5). The polymer is a polymer obtained by reacting a halogenated methylstyrene copolymer with a compound having a repellent group, or a monomer obtained by reacting a halogenated methylstyrene with a compound having a repellent group. 2. The biofouling agent as described in 1 above, which is a polymer obtained by
6). 2. The biological antifouling agent according to 1 above, wherein a blending mass ratio of the polymer (A) and the coating film forming material (B) is A: B = 95: 5 to 5:95.
7). A biological antifouling treatment method for a substrate comprising applying or impregnating the biological antifouling agent according to any one of 1 to 6 above, or kneading or internally adding to the substrate.

8.前記7に記載の方法で処理されたことを特徴とする生物防汚処理物品。
9.アミノ基、アンモニウム基、ピリジン基、ピリジニウム基、フェノール基およびポリエチレングリコール基からなる群から選ばれた少なくとも1種の忌避性基が、アミン結合、アンモニウム結合、エーテル結合、チオエーテル結合および炭化水素結合からなる群から選ばれた少なくとも1種の実質的に加水分解しない連結基を介して連結されていることを特徴とする単量体。
10.下記一般式(2)で表されることを特徴とする単量体。

Figure 0004843354
(式中のXは、アミノ基、アンモニウム基、ピリジン基、ピリジニウム基、フェノール基およびポリエチレングリコール基からなる群から選ばれた少なくとも1種の生物忌避性基である。) 8). A biological antifouling treatment article treated by the method described in 7 above.
9. At least one repellent group selected from the group consisting of an amino group, an ammonium group, a pyridine group, a pyridinium group, a phenol group, and a polyethylene glycol group is formed from an amine bond, an ammonium bond, an ether bond, a thioether bond, and a hydrocarbon bond. A monomer that is linked through at least one linking group that does not substantially hydrolyze, selected from the group consisting of:
10. A monomer represented by the following general formula (2).
Figure 0004843354
(X in the formula is at least one biological repellent group selected from the group consisting of an amino group, an ammonium group, a pyridine group, a pyridinium group, a phenol group and a polyethylene glycol group.)

従来、防汚塗料に使用されてきた錫化合物や銅化合物の忌避作用は、それらのイオンが徐々に溶出して水棲生物に作用し、水棲生物が忌避して付着を避ける作用あるいは付着しても死滅させることで脱落させようとする作用である。それに対して本発明の水棲生物防汚剤は、忌避性基が実質的に加水分解性を有しない連結基で結合した重合体を使用している。これらは長期間海水中に浸漬された際においても、環境に対して汚染せず、安全な有機物質であり、魚類や貝類、海藻などの食用水産物に対しても安全であり、衛生的である。   Conventionally, the repellent effect of tin compounds and copper compounds that have been used in antifouling paints is that the ions gradually elute and act on aquatic organisms, and the aquatic organisms avoid or adhere to the aquatic organisms. It is an action to try to drop out by killing. In contrast, the aquatic biofouling agent of the present invention uses a polymer in which a repellent group is bonded with a linking group having substantially no hydrolyzability. These are safe organic substances that do not pollute the environment even when immersed in seawater for a long period of time, and are safe and sanitary for edible marine products such as fish, shellfish, and seaweed. .

本発明で使用する前記重合体は、可溶性重金属イオンを使用しないにもかかわらず、防汚効果をもたらすメカニズムは必ずしも完全に解明されている訳ではないが、そのメカニズムには、水棲生物の船底などの基材に対する生態メカニズムである着生、生育、脱落などの生物体の生理的作用、物理的作用が関係していると考えられる。忌避性線状重合体あるいは重合体微粒子が塗膜中に、特に塗膜表面に露出して存在していることによって、塗膜に対する水棲生物の着生を減少させ、また、塗膜表面にある忌避性基により付着した生物体の細胞が破壊されて付着層が死滅するなどして生育に阻害をきたし、基材面から剥離する傾向が見られた。また、その結果としてこの破壊された水棲生物の上にさらに水棲生物が付着堆積しても、付着堆積した水棲生物はその自重によって、さらに海水の流動力など物理的な作用もあいまってか、ついには塗膜表面から剥離し脱落するものと考察できる。   Although the polymer used in the present invention does not necessarily use a soluble heavy metal ion, the mechanism that provides the antifouling effect is not necessarily completely elucidated. It is considered that the physiological and physical actions of organisms, such as settlement, growth, and shedding, which are ecological mechanisms for the base material, are related. The presence of repellent linear polymers or polymer fine particles in the coating, especially on the surface of the coating, reduces the aquatic organism's growth on the coating and is on the coating surface. There was a tendency that the cells of the living organism attached by the repellent group were destroyed and the attached layer was killed, and thus the growth was inhibited, and the cells peeled off from the substrate surface. As a result, even if aquatic organisms adhere to and accumulate on the destroyed aquatic organisms, the attached aquatic organisms may eventually have physical effects such as seawater fluidity due to their own weight. Can be considered to peel off from the coating surface.

次に発明を実施するための最良の形態を挙げて本発明をさらに詳細に説明する。
本発明で使用できる忌避性重合体としては、線状の重合体(A)および微粒子状の重合体(B)が使用できる。忌避性基の支持体となる重合体としては、公知の付加重合体系、縮合重合体系、熱硬化重合体系など、全ての重合体系が使用できる。付加重合体系としてはビニル系、ジエン系、(メタ)アクリル系などの公知の(共)重合体、縮合重合体系としてはエステル系、アミド系、ウレタン系などの公知の(共)重合体、熱硬化重合体系としてはメラミン−ホルムアルデヒド系、フェノール−ホルムアルデヒド系、エポキシ−アミン系、イソシアネート−アルコール系などの公知の熱硬化性樹脂初期縮合物を使用した硬化物などが挙げられる。
Next, the present invention will be described in more detail with reference to the best mode for carrying out the invention.
As the repellent polymer that can be used in the present invention, a linear polymer (A) and a fine particle polymer (B) can be used. As the polymer serving as a support for the repellent group, all polymer systems such as a known addition polymer system, condensation polymer system, and thermosetting polymer system can be used. Addition polymer systems include known (co) polymers such as vinyl, diene, and (meth) acrylic systems, and condensation polymerization systems include known (co) polymers such as ester, amide, and urethane systems, heat Examples of the cured polymer system include a cured product using a known thermosetting resin initial condensate such as a melamine-formaldehyde system, a phenol-formaldehyde system, an epoxy-amine system, and an isocyanate-alcohol system.

本発明に使用する忌避性基としては、アミノ基、アンモニウム基、ピリジン基、ピリジニウム基、フェノール基およびポリエチレングリコール基などが挙げられる。これらの忌避性基から選ばれた少なくとも1種が、実質的に加水分解しない結合基を介して上記重合体に連結している。   Examples of repellent groups used in the present invention include amino groups, ammonium groups, pyridine groups, pyridinium groups, phenol groups, and polyethylene glycol groups. At least one selected from these repellent groups is linked to the polymer via a linking group that does not substantially hydrolyze.

より具体的には、n−デシルアミン基、n−ドデシルアミン基、n−ヘキサデシルアミン基などの脂肪族アミノ基;脂環族アミノ基、N,N−ジメチル−n−デシルアンモニウム基、N,N−ジメチル−n−ドデシルアンモニウム基、N,N−ジメチル−n−ヘキサデシルアンモニウム基、それらのアンモニウム基;アニリン基、アニシジン基などの芳香族アミノ基、それらのアンモニウム基;4−オクチルアニリン基、4−ノニルアニリン基、4−ドデシルアニリン基などの脂肪族炭化水素基置換芳香族アミノ基、それらのアンモニウム基;ピリジン基、ピリジニウム基、4−オクチルピリジン基、4−ノニルピリジン基、4−ドデシルピリジン基などの脂肪族炭化水素基置換ピリジン基、それらのピリジニウム基;フェノール基、クレゾール基、アミノフェノール基などのフェノール性水酸基およびポリエチレングリコール基などが挙げられる。   More specifically, aliphatic amino groups such as n-decylamine group, n-dodecylamine group, n-hexadecylamine group; alicyclic amino group, N, N-dimethyl-n-decylammonium group, N, N-dimethyl-n-dodecylammonium group, N, N-dimethyl-n-hexadecylammonium group, their ammonium group; aromatic amino groups such as aniline group and anisidine group, their ammonium group; 4-octylaniline group Aliphatic hydrocarbon group-substituted aromatic amino groups such as 4-nonylaniline group and 4-dodecylaniline group, ammonium groups thereof; pyridine group, pyridinium group, 4-octylpyridine group, 4-nonylpyridine group, 4- Aliphatic hydrocarbon group-substituted pyridine groups such as dodecylpyridine group, their pyridinium group; phenol group, crezo Group, and the like phenolic hydroxyl groups and polyethylene glycol group, such as aminophenol group.

また、実質的に加水分解しない結合基としては、直接結合およびアミン結合、アンモニウム結合、エーテル結合、チオエーテル結合および炭化水素結合などである。連結鎖として、例えば、ポリアルキレン(炭素数2〜4)グリコール鎖や炭化水素(炭素数1〜40)鎖などをスペーサーとして介在させることも良い方法である。海水によってマトリックス相(塗膜)が親水化するように形成する。   Examples of the bonding group that does not substantially hydrolyze include a direct bond and an amine bond, an ammonium bond, an ether bond, a thioether bond, and a hydrocarbon bond. As a connecting chain, for example, a polyalkylene (2 to 4 carbon atoms) glycol chain or a hydrocarbon (1 to 40 carbon atoms) chain may be interposed as a spacer. It is formed so that the matrix phase (coating film) is hydrophilized by seawater.

本発明で使用できる典型的な忌避性線状重合体あるいは重合体微粒子の構成単量体の1例を挙げる。
(1)アミノ基、アンモニウム基、ピリジン基、ピリジニウム基、フェノール基およびポリエチレングリコール基からなる群から選ばれた少なくとも1種の忌避性基が、アミン結合、アンモニウム結合、エーテル結合、チオエーテル結合および炭化水素結合からなる群から選ばれた実質的に加水分解しない連結基を介して連結されている単量体。
An example of a typical constituent monomer of a repellent linear polymer or polymer fine particle that can be used in the present invention is given.
(1) At least one repellent group selected from the group consisting of an amino group, an ammonium group, a pyridine group, a pyridinium group, a phenol group and a polyethylene glycol group has an amine bond, an ammonium bond, an ether bond, a thioether bond and a carbonization A monomer linked through a linking group that is not substantially hydrolyzed and is selected from the group consisting of hydrogen bonds.

(2)下記一般式(2)で表される単量体。

Figure 0004843354
(式中のXは、アミノ基、アンモニウム基、ピリジン基、ピリジニウム基、フェノール基およびポリエチレングリコール基からなる群から選ばれた少なくとも1種の生物忌避性基である。) (2) A monomer represented by the following general formula (2).
Figure 0004843354
(X in the formula is at least one biological repellent group selected from the group consisting of an amino group, an ammonium group, a pyridine group, a pyridinium group, a phenol group and a polyethylene glycol group.)

さらに、上記のスチレン(6−)メチレン基に忌避性基が結合した重合体の好ましい製造方法を挙げる。
(1)6−ハロゲン化メチルスチレン(共)重合体に忌避性基を有する化合物を反応させる方法。
(2)6−ハロゲン化メチルスチレンに忌避性基を有する化合物を反応させて忌避性基を有する単量体を合成し、次いで重合させる方法。
Furthermore, the preferable manufacturing method of the polymer which the repellent group couple | bonded with said styrene (6-) methylene group is mentioned.
(1) A method of reacting a 6-halogenated methylstyrene (co) polymer with a compound having a repellent group.
(2) A method in which a compound having a repellent group is reacted with 6-halogenated methylstyrene to synthesize a monomer having a repellent group, followed by polymerization.

上記の方法に加えて以下の方法が挙げられる。
(A1)忌避性基を分子中に有する前記以外の単量体やマクロモノマーを必要に応じて他の単量体と混合し、重合し、忌避性重合体とする方法。
(A2)忌避性基に容易に変わり得る基を分子中に有する単量体やマクロモノマーを必要に応じて他の単量体とを混合し、重合し、次いで忌避性基に変える方法。
(A3)予め反応基を分子中に有する単量体を重合させ、次いで忌避性基を有する反応性化合物と反応させる方法。
In addition to the above methods, the following methods may be mentioned.
(A1) A method in which a monomer other than the above or a macromonomer having a repellent group in a molecule is mixed with another monomer as necessary and polymerized to obtain a repellent polymer.
(A2) A method in which a monomer or macromonomer having a group that can be easily changed to a repellent group is mixed with another monomer as necessary, polymerized, and then converted to a repellent group.
(A3) A method in which a monomer having a reactive group in the molecule is previously polymerized and then reacted with a reactive compound having a repellent group.

(A4)重合体微粒子の合成の際に、予め核(コア)になる重合体微粒子を重合し、さらにシェル(殻)になる単量体は上記(A1)、(A2)、(A3)と同様に選択して表面に含浸させ、重合し、(A2)、(A3)の場合にはさらに上記の後処理を行い、シェル表面を修飾する方法。
(A5)反応基を分子中に有する単量体の(共)重合体を、忌避性重合体の先駆体として忌避性基を有する反応性化合物と共に塗料化し、塗膜中で反応させ、忌避性を有する塗膜を得る方法。
(A4) In the synthesis of polymer fine particles, the polymer fine particles that become cores in advance are polymerized, and the monomers that become shells are the above (A1), (A2), (A3) and A method of modifying the shell surface by selecting and impregnating the surface in the same manner, polymerizing, and in the case of (A2) and (A3), further performing the above-mentioned post-treatment.
(A5) A monomer (co) polymer having a reactive group in the molecule is made into a paint together with a reactive compound having a repellent group as a precursor of the repellent polymer, and reacted in the coating film. A method for obtaining a coating film having

付加重合体の合成方法としては、忌避性重合体の形態に合う公知の重合方法、例えば、溶液重合、乳化重合、懸濁重合、ソープフリー重合がすべて使用できる。重合媒体も有機溶剤、水−有機溶剤混合溶媒、水が選ばれる。   As a method for synthesizing the addition polymer, known polymerization methods suitable for the form of the repellent polymer, for example, solution polymerization, emulsion polymerization, suspension polymerization, and soap-free polymerization can all be used. As the polymerization medium, an organic solvent, a water-organic solvent mixed solvent, and water are selected.

さらに前記忌避性基以外に、親水性基が結合している共重合体鎖や、親水基が数多く結合しているマクロモノマーのグラフト共重合体鎖は、海水中に溶出することができるので防汚性に効果的である。共重合されてもよい親水性基を有する単量体としては従来公知の単量体が挙げられる。例えば、スチレンスルホン酸、ビニルスルホン酸など;(メタ)アクリル酸、マレイン酸、フマル酸、イタコン酸など;(メタ)アクリル酸エチル硫酸エステル、2−(メタ)アクリロイルエチルアシッドフォスフェート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、トリメチルアンモニウムエチル(メタ)アクリレート塩酸塩、3−トリメチルアンモニウム(2−ヒドロキシ)−プロピル(メタ)アクリレート塩酸塩、(メタ)アクリル酸、マレイン酸、イタコン酸などのカルボキシル基を有する単量体のヒドロキシエチルエステル、グリセリルエステル、ポリエチレングリコールエステル、メトキシポリエチレングリコールエステルなどが挙げられる。   In addition to the repellent groups, copolymer chains to which hydrophilic groups are bonded and macromonomer graft copolymer chains to which many hydrophilic groups are bonded can be eluted in seawater. Effective for dirtyness. Examples of the monomer having a hydrophilic group that may be copolymerized include conventionally known monomers. For example, styrene sulfonic acid, vinyl sulfonic acid, etc .; (meth) acrylic acid, maleic acid, fumaric acid, itaconic acid, etc .; (meth) acrylic acid ethyl sulfate, 2- (meth) acryloylethyl acid phosphate, dimethylaminoethyl (Meth) acrylate, diethylaminoethyl (meth) acrylate, trimethylammonium ethyl (meth) acrylate hydrochloride, 3-trimethylammonium (2-hydroxy) -propyl (meth) acrylate hydrochloride, (meth) acrylic acid, maleic acid, itacon Examples thereof include hydroxyethyl esters, glyceryl esters, polyethylene glycol esters, methoxypolyethylene glycol esters of monomers having a carboxyl group such as acids.

前記の忌避性基を有する単量体および親水性基を有する単量体と従来公知の疎水性の単量体を共重合することも好ましい方法である。疎水性の単量体としては、例えば、スチレン、エチレン、プロピレン、ブタジエン、イソプレン、(メタ)アクリル酸の脂肪族(C1〜C30)、芳香族(C6〜C15)、脂環式(C6〜C15)炭化水素エステルなど、また、重合体微粒子に架橋結合をもたらす多官能性単量体、例えば、ジビニルベンゼン、アルキレン(C2〜C4)グリコールジ(メタ)アクリレート、ポリ(C2〜C30)アルキレン(C2〜C4)グリコール(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、メチレンビスアクリルアミドなどが挙げられる。   It is also a preferable method to copolymerize the monomer having the repellent group and the monomer having a hydrophilic group with a conventionally known hydrophobic monomer. Examples of the hydrophobic monomer include styrene, ethylene, propylene, butadiene, isoprene, aliphatic (C1 to C30), aromatic (C6 to C15), and alicyclic (C6 to C15) of (meth) acrylic acid. ) Hydrocarbon esters and other polyfunctional monomers that cause cross-linking to polymer fine particles, such as divinylbenzene, alkylene (C2-C4) glycol di (meth) acrylate, poly (C2-C30) alkylene (C2) -C4) glycol (meth) acrylate, pentaerythritol tetra (meth) acrylate, trimethylolpropane tri (meth) acrylate, methylenebisacrylamide and the like.

本発明の生物防汚剤は、忌避性線状重合体や重合体微粒子が塗膜表面に露出する状態を形成する塗料として使用することが好ましい。例えば、忌避性線状重合体や重合体微粒子を塗膜形成材料中に高濃度に添加すること、忌避性線状重合体を塗膜中で相分離させ、高濃度の膜部分をつくること、忌避性重合体微粒子の粒径を比較的大きくすること、さらに忌避性重合体微粒子の粒径を水棲生物の忌避する粒径に制御することなどが挙げられる。徐々に表面から溶解していく自己研磨(ポリシング)型の樹脂系は塗膜中の忌避性重合体が順次表面に露出することができるので好ましい。   The biological antifouling agent of the present invention is preferably used as a coating material that forms a state in which the repellent linear polymer and polymer fine particles are exposed on the surface of the coating film. For example, adding a repellent linear polymer or polymer fine particles to the coating film forming material at a high concentration, phase-separating the repellent linear polymer in the coating film, creating a high concentration film portion, Examples thereof include making the particle size of the repellent polymer fine particles relatively large, and controlling the particle size of the repellent polymer fine particles to a particle size that is repelled by aquatic organisms. A self-polishing (polishing) type resin system that gradually dissolves from the surface is preferable because the repellent polymer in the coating film can be sequentially exposed to the surface.

本発明の生物防汚剤を構成する塗膜形成材料としては、公知の樹脂材料が使用できる。樹脂の分類からは、例えば、合成ゴム系樹脂、アクリル系樹脂、ビニル系樹脂、塩化ゴム系樹脂、エポキシ系樹脂、シリコーン系樹脂、フッ素系樹脂などおよびそれらの共重合体系、混合系などが挙げられる。   A known resin material can be used as the coating film forming material constituting the biofouling agent of the present invention. From the classification of resins, for example, synthetic rubber resins, acrylic resins, vinyl resins, chlorinated rubber resins, epoxy resins, silicone resins, fluorine resins, and their copolymer systems, mixed systems, etc. It is done.

上記した生物防汚剤において、忌避性重合体(A)と塗膜形成材料(B)との配合質量比は、A:B=95:5〜5:95であり、忌避性重合体が塗膜表面に高密度に露出して欲しい点からいえば、好ましくはA:B=80:20〜30:70である。   In the above-described biological antifouling agent, the blending mass ratio of the repellent polymer (A) to the coating film forming material (B) is A: B = 95: 5 to 5:95, and the repellent polymer is applied. From the viewpoint of exposing the film surface at a high density, A: B is preferably 80:20 to 30:70.

本発明の生物防汚剤を基材に塗布または含浸し、あるいは基材に混練または内添することにより基材を生物防汚処理し、水棲生物防汚処理物品が得られる。本発明の水棲生物防汚剤は従来の防汚塗料と同様の用途、例えば、海洋航行船舶の海水中に没する船底面や船側面の塗装に、また、海洋魚類の養殖場においても隔離網などの広範な用途で使用できる。   By applying or impregnating the biological antifouling agent of the present invention to the base material, or kneading or internally adding to the base material, the base material is biologically antifouling treated to obtain an aquatic biological antifouling treatment article. The aquatic biofouling agent of the present invention is used in the same manner as conventional antifouling paints, for example, for painting the bottom and side of a ship that is submerged in the seawater of a marine navigation ship, and also in a marine fish farm. It can be used in a wide range of applications.

さらに、別の実施の態様として、海中に浸漬する建造物や部材などの合成樹脂成型物や、魚網や隔離用網などに合成繊維が使用されているが、それらの場合には上記物品の表面を本発明の生物防汚剤で塗装したり、含浸する方法のみでなく、それらの合成樹脂製品や合成繊維製品中に本発明の生物防汚剤を内添する方法も優れた方法である。それらの基材樹脂に適合する生物防汚剤をマスターバッチの形状や、紡糸液に適合する生物防汚剤の分散液として使用することも好ましい。合成樹脂としてはポリプロピレン樹脂、ポリエチレン樹脂、ポリ塩化ビニル樹脂、合成ゴム、ポリスチレン樹脂、ABS樹脂、ナイロン樹脂、ポリエステル樹脂、ポリカーボネート樹脂などの公知の樹脂が挙げられる。合成繊維としては、ポリプロピレン繊維、ポリエチレン繊維、ポリアクリロニトリル繊維、ナイロン繊維、ポリエステル繊維などの公知の繊維が挙げられる。   Furthermore, as another embodiment, synthetic fibers are used for synthetic resin moldings such as buildings and members immersed in the sea, fish nets, segregation nets, etc. In such cases, the surface of the article is used. In addition to the method of coating or impregnating the biofouling agent of the present invention, the method of internally adding the biofouling agent of the present invention to these synthetic resin products and synthetic fiber products is also an excellent method. It is also preferable to use a biofouling agent that is compatible with the base resin as a masterbatch shape or a dispersion of a biofouling agent that is compatible with the spinning solution. Examples of the synthetic resin include known resins such as polypropylene resin, polyethylene resin, polyvinyl chloride resin, synthetic rubber, polystyrene resin, ABS resin, nylon resin, polyester resin, and polycarbonate resin. Examples of the synthetic fiber include known fibers such as polypropylene fiber, polyethylene fiber, polyacrylonitrile fiber, nylon fiber, and polyester fiber.

また、本発明の生物防汚剤は、建造物や住宅などにおける洗濯場、洗い場、流し、洗面所、風呂場などの水周り個所におけるかびなどの生物的汚れに対して、あるいは住宅、病院、公共施設などの空気清浄機のフィンや充填材の抗菌性塗布材料などとしても使用できる。   The biological antifouling agent of the present invention is against biological stains such as mold in washing places such as laundry, washing place, sink, washroom, bathroom, etc. in buildings and houses, or in houses, hospitals, It can also be used as an antibacterial coating material for air cleaner fins and fillers in public facilities.

次に実施例および比較例を挙げて本発明をさらに具体的に説明する。なお、文中、「部」または「%」とあるのは質量基準である。   Next, the present invention will be described more specifically with reference to examples and comparative examples. In the text, “part” or “%” is based on mass.

[合成例1]
(1)加熱装置としてのウオーターバス、攪拌機、モノマー滴下装置、試薬投入口、逆流冷却器および窒素ガス吹込み口を備えた重合反応装置を準備し、重合容器に水100部、エタノール342.5部および分散安定剤としてポリアクリル酸(平均分子量:25万)6部を仕込み、攪拌してポリアクリル酸を溶解した。次いでモノマーとしてスチレン(St)45部、およびアゾビスイソブチロニトリル(AIBN)0.75部を混合して、添加し、窒素ガス気流下、70℃で8時間攪拌し、懸濁重合を行った。得られた重合体の粒径は動的光散乱法で測定したところ約1μmであった。
[Synthesis Example 1]
(1) A polymerization reactor equipped with a water bath as a heating device, a stirrer, a monomer dropping device, a reagent inlet, a back-flow cooler, and a nitrogen gas inlet is prepared, and 100 parts of water and ethanol 342.5 are placed in the polymerization vessel. Part and 6 parts of polyacrylic acid (average molecular weight: 250,000) were charged as a dispersion stabilizer and stirred to dissolve the polyacrylic acid. Next, 45 parts of styrene (St) and 0.75 part of azobisisobutyronitrile (AIBN) are mixed and added as monomers, and the suspension is stirred at 70 ° C. for 8 hours under a nitrogen gas stream to perform suspension polymerization. It was. The particle size of the obtained polymer was about 1 μm as measured by the dynamic light scattering method.

さらに、この懸濁重合液にクロロメチルスチレン(CMS)25部、ジビニルベンゼン(DVB)12.5部、およびAIBN0.56部の混合液を添加し、攪拌した後、窒素ガス気流下70℃で8時間重合した。表面に反応性のクロルメチル基を有するコア−シェル型の架橋された重合体微粒子を得た。遠心分離機を用いて、重合反応混合物から重合体微粒子を濾別、洗浄した。得られた架橋重合体微粒子をキシレン/n−ブタノール混合溶媒(75/25)中に再分散させた(固形分:21.6%)。以下の各合成例における重合反応および合成反応も同様の装置を使用して行った。   Further, a mixed liquid of 25 parts of chloromethylstyrene (CMS), 12.5 parts of divinylbenzene (DVB), and 0.56 parts of AIBN was added to this suspension polymerization liquid, stirred, and then at 70 ° C. under a nitrogen gas stream. Polymerized for 8 hours. Core-shell type crosslinked polymer fine particles having a reactive chloromethyl group on the surface were obtained. Using a centrifuge, polymer fine particles were separated from the polymerization reaction mixture and washed. The obtained crosslinked polymer fine particles were redispersed in a xylene / n-butanol mixed solvent (75/25) (solid content: 21.6%). The polymerization reaction and synthesis reaction in each of the following synthesis examples were also performed using the same apparatus.

(2)ポリエチレングリコール(PEG)(凡その平均重合度:9)のジグリシジルエーテル(エポキシ当量:268)の50%キシレン/n−ブタノール混合溶媒(9/1)溶液107.2部を仕込んだ。そこへオクチルアニリンの50%キシレン/n−ブタノール混合溶媒溶液41.2部を85〜90℃にて3時間で滴下し、さらに90〜115℃にて4時間攪拌した。次いで、ジエチルアミン(DEA)の50%キシレン/n−ブタノール混合溶媒溶液15.0部を50℃にて3時間で滴下し、さらに50〜55℃にて5時間攪拌し、反応をさせ、3級アミン化した。片末端がオクチルアニリン基であり、他末端が3−ジエチルアミノ(2−ヒドロキシ)プロピル基が結合したPEGを主成分とするPEG誘導体溶液を得た(固形分:51.8%)。各段階の反応の進行は赤外スペクトルで確認した。 (2) 107.2 parts of a 50% xylene / n-butanol mixed solvent (9/1) solution of diglycidyl ether (epoxy equivalent: 268) of polyethylene glycol (PEG) (approximately average polymerization degree: 9) was charged. . Thereto, 41.2 parts of a 50% xylene / n-butanol mixed solvent solution of octylaniline was added dropwise at 85 to 90 ° C. over 3 hours, and further stirred at 90 to 115 ° C. for 4 hours. Next, 15.0 parts of a 50% xylene / n-butanol mixed solvent solution of diethylamine (DEA) was added dropwise at 50 ° C. over 3 hours, and the mixture was further stirred at 50 to 55 ° C. for 5 hours to cause reaction. Aminated. A PEG derivative solution containing PEG having one end as an octylaniline group and the other end bound with a 3-diethylamino (2-hydroxy) propyl group was obtained (solid content: 51.8%). The progress of the reaction at each stage was confirmed by infrared spectrum.

(3)反応容器に上記(1)で得られたクロルメチル基を有するコア−シェル型架橋重合体微粒子の分散液250部を仕込み、次いで上記(2)で得られた3−ジエチルアミノ(2−ヒドロキシ)プロピル基と3−オクチルフェニルアミノ(2−ヒドロキシ)プロピル基を結合したPEG誘導体13.5部を含むキシレン/n−ブタノール混合溶媒溶液27.0部を添加し、70℃で3時間、80℃で5時間反応させた。反応後、反応液を300部のエタノールに投入し、重合体微粒子を濾別し、エタノールで洗浄した。PEG鎖を介してオクチルアニリンで修飾された架橋重合体微粒子ペーストを得た。以下、「忌避性微粒子−1」と称する。 (3) A reaction vessel was charged with 250 parts of a dispersion of core-shell type crosslinked polymer fine particles having a chloromethyl group obtained in (1) above, and then 3-diethylamino (2-hydroxy) obtained in (2) above. ) 27.0 parts of a xylene / n-butanol mixed solvent solution containing 13.5 parts of a PEG derivative bonded with a propyl group and a 3-octylphenylamino (2-hydroxy) propyl group was added at 70 ° C. for 3 hours, 80 The reaction was carried out at 5 ° C. for 5 hours. After the reaction, the reaction solution was poured into 300 parts of ethanol, and polymer fine particles were separated by filtration and washed with ethanol. A crosslinked polymer fine particle paste modified with octylaniline via a PEG chain was obtained. Hereinafter, it is referred to as “repellent fine particles-1”.

[合成例2]
(1)合成例1(2)と同様にして、PEG(凡その平均重合度:22)のジグリシジルエーテル(エポキシ当量:551)110.2部に3−エチルアミノ−4−メチルフェノール15.2部およびDEA7.5部を順次反応させて片末端が3−(ヒドロキシトリル(エチル)アミノ)−(2−ヒドロキシ)プロピル基および他端が3−ジエチルアミノ(2−ヒドロキシ)プロピル基を結合したPEGを主成分とするPEG誘導体を得た。次いでハイドロキノン0.07部を添加し、CMSの50%メチルエチルケトン(MEK)溶液30.6部を50℃にて1時間で滴下し、さらに50〜55℃にて2時間攪拌し、反応をさせた。水酸化ナトリウム水溶液で塩酸を中和した後、減圧蒸留でMEKを溜去し、PEGをスペーサーとして3−エチルアミノ−4−メチルフェノール基が結合したスチレン系モノマーを得た。
[Synthesis Example 2]
(1) In the same manner as in Synthesis Example 1 (2), 110.2 parts of diglycidyl ether (epoxy equivalent: 551) of PEG (general average degree of polymerization: 22) was added to 15% of 3-ethylamino-4-methylphenol. 2 parts and 7.5 parts of DEA were reacted sequentially to bond one end to a 3- (hydroxytolyl (ethyl) amino)-(2-hydroxy) propyl group and the other end to a 3-diethylamino (2-hydroxy) propyl group. A PEG derivative containing PEG as a main component was obtained. Next, 0.07 part of hydroquinone was added, and 30.6 parts of a 50% methyl ethyl ketone (MEK) solution of CMS was added dropwise at 50 ° C. over 1 hour, and further stirred at 50 to 55 ° C. for 2 hours to cause a reaction. . After neutralizing hydrochloric acid with an aqueous sodium hydroxide solution, MEK was distilled off under reduced pressure to obtain a styrene monomer having a 3-ethylamino-4-methylphenol group bonded thereto using PEG as a spacer.

(2)St80部、上記(1)で得られたPEGをスペーサーとして3−エチルアミノ−4−メチルフェノール基が結合したスチレン系モノマー10部、DVB10部と2,2’−アゾビス(2−アミジノプロパン)塩酸塩0.2部とを混合した。重合反応装置に脱イオン水400部を入れた。窒素ガスを導入して昇温し、上記のモノマー混合液を滴下し、65〜70℃にて8時間重合反応を行った。以下、「忌避性微粒子−2」と称する。 (2) 80 parts of St, 10 parts of styrene monomer to which 3-ethylamino-4-methylphenol group is bonded using PEG obtained in (1) above as a spacer, 10 parts of DVB and 2,2′-azobis (2-amidino Propane) hydrochloride 0.2 parts was mixed. 400 parts of deionized water was added to the polymerization reactor. Nitrogen gas was introduced to raise the temperature, the above monomer mixture was dropped, and a polymerization reaction was carried out at 65 to 70 ° C. for 8 hours. Hereinafter, it is referred to as “repellent fine particles-2”.

[合成例3]
(1)合成例1(2)のPEGジグリシジルエーテルのDEAとの反応と同様にして、ラウリルオキシPEG(n:15)モノグリシジルエーテル(エポキシ当量:971)97.1部にDEA7.4部を反応させて、3−ジエチルアミノ(2−ヒドロキシ)プロピル基が結合したPEGモノラウリルエーテルを生成させた。続いて、合成例2(1)の反応に準じて、CMS15.3部を反応させ、水酸化ナトリウムで中和して、3−(スチリルメチル(N,N−ジエチル−)アミノ)(2−ヒドロキシ−)プロピル基が結合したPEGモノラウリルエーテル(ラウリルオキシPEG鎖が結合したスチレン系モノマー)を得た。
[Synthesis Example 3]
(1) 7.4 parts of DEA in 97.1 parts of lauryloxy PEG (n: 15) monoglycidyl ether (epoxy equivalent: 971) in the same manner as in the reaction of Synthesis Example 1 (2) with PEG diglycidyl ether with DEA To produce PEG monolauryl ether having a 3-diethylamino (2-hydroxy) propyl group attached thereto. Subsequently, according to the reaction of Synthesis Example 2 (1), 15.3 parts of CMS was reacted, neutralized with sodium hydroxide, and 3- (styrylmethyl (N, N-diethyl-) amino) (2- A PEG monolauryl ether having a hydroxy-) propyl group bonded thereto (a styrenic monomer having a lauryloxy PEG chain bonded thereto) was obtained.

(2)重合反応装置にキシレン−酢酸ブチル(1/1)混合溶媒150部を仕込んだ。別に上記(1)で得られたラウリルオキシPEG鎖が結合したスチレン系モノマー20部、St25部、メチルメタクリレート(MMA)25部、メタクリル酸ブチル(BMA)25部、2−ヒドロキシエチルメタアクリレート(HEMA)5部およびAIBN2部を混合し、モノマー混合液を準備した。重合装置に窒素ガスを導入して昇温し、内温が65℃で上記のモノマー溶液を40部添加して1時間反応させた後、70℃にして残りの溶液を3時間かけて滴下した後80℃で6時間反応した。ラウリルオキシPEG鎖を有する基を側鎖に有するSt−MMA−BMA−HEMA共重合体溶液(固形分:40%)を得た。以下、「忌避性重合体−1」と称する。 (2) A polymerization reaction apparatus was charged with 150 parts of a xylene-butyl acetate (1/1) mixed solvent. Separately, 20 parts of a styrenic monomer to which the lauryloxy PEG chain obtained in (1) is bonded, 25 parts of St, 25 parts of methyl methacrylate (MMA), 25 parts of butyl methacrylate (BMA), 2-hydroxyethyl methacrylate (HEMA) ) 5 parts and 2 parts of AIBN were mixed to prepare a monomer mixture. Nitrogen gas was introduced into the polymerization apparatus, the temperature was raised, 40 parts of the monomer solution was added at an internal temperature of 65 ° C., and the mixture was allowed to react for 1 hour, then the temperature was raised to 70 ° C. and the remaining solution was added dropwise over 3 hours. Thereafter, the mixture was reacted at 80 ° C. for 6 hours. An St-MMA-BMA-HEMA copolymer solution (solid content: 40%) having a group having a lauryloxy PEG chain in the side chain was obtained. Hereinafter, it is referred to as “repellent polymer-1”.

[合成例4]
合成例3と同様にして、フェニルオキシPEG(n:5)−モノグリシジルエーテル(エポキシ当量:400)40.0部にDEA7.4部を反応させて得られた3−ジエチルアミノ(2−ヒドロキシ)プロピル基が結合したPEGモノフェニルエーテルにCMS15.3部を反応させて、3−(スチリルメチル(N,N−ジエチル−)アミノ)(2−ヒドロキシ)プロピル基が結合したPEGモノフェニルエーテル(フェニルオキシPEG鎖が結合したスチレン系モノマー)を得た。それを使用して同様に共重合し、フェニルオキシPEG鎖を有する基を側鎖に有するSt−MMA−BMA−HEMA共重合体溶液(固形分:40%)を得た。以下、「忌避性重合体−2」と称する。
[Synthesis Example 4]
In the same manner as in Synthesis Example 3, 3-diethylamino (2-hydroxy) obtained by reacting 40.0 parts of phenyloxy PEG (n: 5) -monoglycidyl ether (epoxy equivalent: 400) with 7.4 parts of DEA PEG monophenyl ether having a propyl group bonded thereto was reacted with 15.3 parts of CMS, and PEG monophenyl ether having a 3- (styrylmethyl (N, N-diethyl-) amino) (2-hydroxy) propyl group bonded thereto (phenyl) A styrenic monomer having an oxyPEG chain attached thereto was obtained. Using this, copolymerization was carried out in the same manner to obtain a St-MMA-BMA-HEMA copolymer solution (solid content: 40%) having a group having a phenyloxy PEG chain in the side chain. Hereinafter, referred to as “repellent polymer-2”.

[合成例5]
合成例1(1)で得られたクロルメチル基を有するコア−シェル型架橋重合体微粒子分散液250部を仕込み、N,N−ジメチルアニリン12.3部を添加し、130℃で8時間反応させジメチルアニリンで表面が修飾された重合体微粒子を得た。反応後、反応液を300部のエタノールに投入し、重合体微粒子を濾別し、エタノールで洗浄した。フェニルジメチルアンモニウム基で表面修飾された架橋重合体微粒子ペーストを得た。以下、「忌避性微粒子−3」と称する。
[Synthesis Example 5]
250 parts of the core-shell type crosslinked polymer fine particle dispersion having a chloromethyl group obtained in Synthesis Example 1 (1) was charged, 12.3 parts of N, N-dimethylaniline was added, and the mixture was reacted at 130 ° C. for 8 hours. Polymer fine particles whose surface was modified with dimethylaniline were obtained. After the reaction, the reaction solution was poured into 300 parts of ethanol, and polymer fine particles were separated by filtration and washed with ethanol. A crosslinked polymer fine particle paste surface-modified with a phenyldimethylammonium group was obtained. Hereinafter, it is referred to as “repellent fine particles-3”.

[合成例6〜7]
合成例5の架橋重合体微粒子の表面修飾反応と同様にして、N,N−ジメチルアニリンに代えて表1のアニリン系化合物を反応させた。反応後、反応液をエタノールに投入し、重合体微粒子を濾別し、洗浄し、塩基性化合物で表面修飾された架橋重合体微粒子ペーストを得た。以下、表1で示す名称で表わす。
[Synthesis Examples 6 to 7]
In the same manner as the surface modification reaction of the crosslinked polymer fine particles of Synthesis Example 5, the aniline compounds shown in Table 1 were reacted instead of N, N-dimethylaniline. After the reaction, the reaction solution was poured into ethanol, and polymer fine particles were separated by filtration and washed to obtain a crosslinked polymer fine particle paste whose surface was modified with a basic compound. Hereinafter, the names shown in Table 1 are used.

Figure 0004843354
Figure 0004843354

[合成例8]
(1)合成例3と同様にして、モノマーとしてCMS20部、St25部、MMA25部、BMA25部およびHEMA5部を使用して、合成例3と同様にして重合反応を行い、反応性のクロルメチル基を有する、CMS−St−MMA−BMA−HEMA共重合体溶液(固形分:40%)を得た。以下、「忌避性先駆重合体−1」と称する。
[Synthesis Example 8]
(1) In the same manner as in Synthesis Example 3, using 20 parts of CMS, 25 parts of St, 25 parts of MMA, 25 parts of BMA, and 5 parts of HEMA as a monomer, a polymerization reaction is carried out in the same manner as in Synthesis Example 3, and a reactive chloromethyl group is formed. A CMS-St-MMA-BMA-HEMA copolymer solution (solid content: 40%) was obtained. Hereinafter, referred to as “repellent precursor polymer-1”.

(2)上記(1)で得られたCMS−St−MMA−BMA−HEMA共重合体の溶液125部を仕込んだ。この中に2−ジメチルアミノエチルフェノール50%MEK溶液19.8部を滴下して添加し、80℃で8時間攪拌、反応させた。反応後、反応液を500部のエタノールに投入し、重合物を析出させた。濾別し、数回エタノールで洗浄した。さらに300部のエタノール中で60℃に加温した後、冷却し、濾別し、さらにエタノールで洗浄した。以下、「忌避性重合体−3」と称する。 (2) 125 parts of the CMS-St-MMA-BMA-HEMA copolymer solution obtained in (1) above was charged. 19.8 parts of 2-dimethylaminoethylphenol 50% MEK solution was added dropwise thereto, and the mixture was stirred and reacted at 80 ° C. for 8 hours. After the reaction, the reaction solution was added to 500 parts of ethanol to precipitate a polymer. Filtered off and washed several times with ethanol. The mixture was further heated to 60 ° C. in 300 parts of ethanol, cooled, filtered, and further washed with ethanol. Hereinafter, referred to as “repellent polymer-3”.

[合成例9]
63.57部のポリエチレングリコール(PEG)(凡その平均重合度:9)のジグリシジルエーテル(エポキシ等量:268)と25部のオクチルアニリンと20部のn−ブタノールを仕込んだ。140℃にて4時間攪拌した。片末端がオクチルアニリン基であり、他末端がエポキシ基である分子量約4,000(GPCポリスチレン換算)のオリゴマーを得た(固形分:86%)。GPCによれば未反応のオクチルアニリンは認められなかった。各段階の反応の進行は赤外スペクトルで確認した。
[Synthesis Example 9]
Diglycidyl ether (epoxy equivalent: 268) of 63.57 parts of polyethylene glycol (PEG) (approximately average degree of polymerization: 9), 25 parts of octylaniline and 20 parts of n-butanol were charged. Stir at 140 ° C. for 4 hours. An oligomer having a molecular weight of about 4,000 (in terms of GPC polystyrene) in which one end is an octylaniline group and the other end is an epoxy group was obtained (solid content: 86%). According to GPC, no unreacted octylaniline was observed. The progress of the reaction at each stage was confirmed by infrared spectrum.

[比較例1]
重合容器にキシレン/n−ブタノール混合溶媒(7/3)150部を仕込み、90℃に加熱する。次いでMMA50部、メタクリル酸ブチル(BMA)35部、HEMA15部、およびt−ブチルパーオキシ−2−エチルヘキサノエート1.5部のモノマー混合液を2時間にわたって滴下し、窒素ガス気流下で6時間反応し、MMA−BMA−HEMA共重合体のキシレン溶液を得た(固形分:40%)。以下、「比較用アクリル樹脂」と称する。
[Comparative Example 1]
A polymerization vessel is charged with 150 parts of a xylene / n-butanol mixed solvent (7/3) and heated to 90 ° C. Next, a monomer mixture of 50 parts of MMA, 35 parts of butyl methacrylate (BMA), 15 parts of HEMA, and 1.5 parts of t-butylperoxy-2-ethylhexanoate was added dropwise over 2 hours. The mixture was reacted for a time to obtain a xylene solution of MMA-BMA-HEMA copolymer (solid content: 40%). Hereinafter, it is referred to as “comparative acrylic resin”.

[実施例1]
合成例1で得られた忌避性微粒子−1を下記の固着用アクリル樹脂のキシレン/n−ブタノール溶液と固形分質量比で65/35で、混合し、酢酸ブチルで固形分25%に調整した後、忌避性微粒子−1の粉末を超音波で微分散させ、塗料を調製した。防錆処理を施した試験用鋼板の周囲の上下左右および中央に境界を作り、それぞれ約1cmの幅でエポキシ系下塗り塗料を塗布し、保護と境界を作った。その下半分に上記の塗料を厚く塗布して常温下で10日間乾燥した。塗膜の厚みはほぼ110〜130g/m2であった。上半分は下記比較例2で示すように比較用のアクリル樹脂を塗布した。上記で使用した固着用アクリル樹脂は以下のようにして合成した。合成例1に使用した重合装置を使用し、重合容器にキシレン114部、n−ブタノール38部を仕込み、90℃に加熱する。次いでMMA35部、BMA35部、アクリル酸15部、HEMA15部、およびt−ブチルパーオキシ−2−エチルヘキサノエート1.5部の混合液を2時間にわたって滴下し、窒素ガス気流下で6時間反応して得た(固形分:40%)。また、上記の試験用鋼板はテストパネル社製の中目両面サンドプラスト鋼板(幅×長さ×厚さ:70×150×1mm)にタールエポキシ系の下塗り塗料を乾燥後で約150g/m2で塗布し、風乾して準備した。
[Example 1]
The repellent fine particles-1 obtained in Synthesis Example 1 were mixed with a xylene / n-butanol solution of the following fixing acrylic resin at a solid content mass ratio of 65/35, and adjusted to a solid content of 25% with butyl acetate. Thereafter, the powder of repellent fine particles-1 was finely dispersed with ultrasonic waves to prepare a coating material. Borders were created around the top, bottom, left, and right and center of the test steel sheet that had been subjected to rust prevention treatment, and an epoxy-based primer was applied in a width of about 1 cm to create a protection and a boundary. The lower half was coated with the above paint thickly and dried at room temperature for 10 days. The thickness of the coating film was approximately 110 to 130 g / m 2 . The upper half was coated with a comparative acrylic resin as shown in Comparative Example 2 below. The fixing acrylic resin used above was synthesized as follows. Using the polymerization apparatus used in Synthesis Example 1, 114 parts of xylene and 38 parts of n-butanol are charged in a polymerization vessel and heated to 90 ° C. Next, a mixed solution of 35 parts of MMA, 35 parts of BMA, 15 parts of acrylic acid, 15 parts of HEMA, and 1.5 parts of t-butylperoxy-2-ethylhexanoate was dropped over 2 hours and reacted for 6 hours under a nitrogen gas stream. (Solid content: 40%). In addition, the above test steel plate is about 150 g / m 2 after drying a tar epoxy base coat on a medium-sized double-sided sand plast steel plate (width × length × thickness: 70 × 150 × 1 mm) manufactured by Test Panel. It was applied and air-dried to prepare.

[比較例2]
実施例1で調製した各塗板上の区分した上半分に、防汚性能の比較のための比較例1で得られた樹脂溶液を塗布し、常温下で10日間乾燥した。塗膜の厚みはほぼ110〜130g/m2であった。以下の実施例においても同様に上下に分けて塗布し、比較した。
[Comparative Example 2]
The resin solution obtained in Comparative Example 1 for comparison of antifouling performance was applied to the upper half of each of the coated plates prepared in Example 1 and dried at room temperature for 10 days. The thickness of the coating film was approximately 110 to 130 g / m 2 . Similarly, in the following examples, the coating was divided into upper and lower portions and compared.

[実施例2〜8]
表2の固形分での配合処方により実施例1で述べた塗料の調製方法および塗装方法に従い、塗装板を調製した。膜厚はほぼ110〜130g/m2であった。
[Examples 2 to 8]
A coated plate was prepared according to the coating preparation method and the coating method described in Example 1 according to the formulation of solids in Table 2. The film thickness was approximately 110 to 130 g / m 2 .

Figure 0004843354
Figure 0004843354

[実施例9]
合成例8(1)のクロルメチル基を有する忌避性先駆重合体−1を樹脂分で95部およびアニシジン5部を含む固形分50%に調整した塗料を調製した。この塗料を実施例1と同様にして試験用鋼板上に塗布して常温下で10日間乾燥した。塗膜の厚みはほぼ110〜130g/m2であった。同じ塗液をポリプロピレン製容器中で10日間乾燥して、フィルム(200g/m2膜)をヘキサンにて抽出試験を行った結果、ヘキサン可溶分は認められなかった。
[Example 9]
A paint was prepared by adjusting the repellent precursor polymer-1 having a chloromethyl group of Synthesis Example 8 (1) to a solid content of 95% including resin and 95 parts of anisidine. This paint was applied on the test steel plate in the same manner as in Example 1 and dried at room temperature for 10 days. The thickness of the coating film was approximately 110 to 130 g / m 2 . The same coating solution was dried in a polypropylene container for 10 days, and the film (200 g / m 2 membrane) was subjected to an extraction test with hexane. As a result, no hexane-soluble component was found.

[実施例10]
合成例8(1)のクロルメチル基を有する忌避性先駆重合体−1を樹脂分で60部および合成例9のオクチルアニリン基を持つオリゴマー50部を含む固形分40%に調整した塗料を調製した。この塗料を実施例1と同様にして試験用鋼板上に塗布して常温下で10日間乾燥した。塗膜はほぼ110〜130g/m2であった。
[Example 10]
A paint prepared by adjusting the repellent precursor polymer-1 having a chloromethyl group of Synthesis Example 8 (1) to a solid content of 40% containing 60 parts of a resin and 50 parts of an oligomer having an octylaniline group of Synthesis Example 9 was prepared. . This paint was applied on the test steel plate in the same manner as in Example 1 and dried at room temperature for 10 days. The coating film was approximately 110 to 130 g / m 2 .

[試験方法および塗装鋼板浸漬試験]
(1)試験方法および試験用塗装鋼板の海水浸漬試験は内湾の比較的海水流の少ない、幼魚の成育場に隣接する場所で、魚の餌の投与のあることから栄養分の多い環境で行った。水温は凡そ25〜28℃、COD濃度は4〜10mg/Lを示した。COD濃度については瀬戸内海の比較的海水のきれいなところで1〜2mg/L、港の中など水の色が緑から黄色に見えるところでは3〜5mg/Lと言われている。実施例1〜10および比較例2で調製した塗装した試験用鋼板をポリ塩化ビニル製の枠に上下固定して吊るした。塩ビ製枠を海面より1〜2mの深さに浸漬した。4週間にわたって1週間ごとに試験用鋼板を上げて試験用鋼板の上半分、下半分のフジツボの付着状態を観察し、状態の変化を評価した。
[Test method and coated steel plate immersion test]
(1) The test method and the seawater immersion test of the coated steel sheet for the test were conducted in an environment with a high nutrient content because the fish feed was administered in a place adjacent to the young fish breeding ground in the inner bay where the seawater flow was relatively small. The water temperature was about 25 to 28 ° C., and the COD concentration was 4 to 10 mg / L. The COD concentration is said to be 1 to 2 mg / L in the Seto Inland Sea where the seawater is relatively clean, and 3 to 5 mg / L where the color of the water looks green to yellow, such as in a harbor. The coated steel plates for test prepared in Examples 1 to 10 and Comparative Example 2 were suspended up and down on a polyvinyl chloride frame. The PVC frame was immersed at a depth of 1 to 2 m from the sea surface. The test steel plate was raised every week for 4 weeks, and the state of adhesion of barnacles in the upper and lower halves of the test steel plate was observed to evaluate the change in the state.

(2)状態観察の結果および評価
○:非放出性防汚塗料としての機能を有している。
△:非放出性ではあるが、防汚塗料としての機能はやや不十分である。
×:非放出性ではあるが、防汚塗料としての機能を有していない。
(2) Results of state observation and evaluation ○: Has a function as a non-release antifouling paint.
(Triangle | delta): Although it is non-release, the function as an antifouling paint is a little inadequate.
X: Although it is non-release, it does not have a function as an antifouling paint.

Figure 0004843354
Figure 0004843354

[比較例3]
実施例と同様にして亜酸化銅を用いたポリシング型の塗装板を調製し、同様にして海水浸漬を行い、防汚性を評価した。フジツボは殆ど付着しておらず、非常に優れた防汚性を示していたが、試験用鋼板の周囲の上下左右、中央境界のエポキシ系下塗り塗料を塗装した部分にも同様にフジツボが付着していなかった。これは防汚塗料の塗装されていない部分を含めた隣接する環境も亜酸化銅の溶出の影響を受けていることを示している。それに対し、上記実施例1〜10の塗装物はエポキシ系下塗り塗料を塗装した部分にはフジツボが著しく多く、しかも強固に付着しており、使用された重合体が溶出していないことを示している。これによって、実施例に使用した各種重合体は環境への負荷が小さいことを示している。
[Comparative Example 3]
Polishing type coated plates using cuprous oxide were prepared in the same manner as in the Examples, and were immersed in seawater in the same manner to evaluate antifouling properties. Barnacles hardly adhered and showed very excellent antifouling property, but the barnacles also adhered to the part where the epoxy base coat was applied at the top, bottom, left, and right of the test steel plate and the central boundary. It wasn't. This indicates that the adjacent environment including the part where the antifouling paint is not applied is also affected by the elution of cuprous oxide. On the other hand, the coated materials of Examples 1 to 10 show that the portion coated with the epoxy base coat has a large number of barnacles and is firmly adhered, and the used polymer does not elute. Yes. This indicates that the various polymers used in the examples have a low environmental load.

従来から防汚塗料に使用されてきた錫化合物や銅化合物の忌避作用は、それらのイオンが徐々に溶出して水棲生物に作用し、忌避あるいは死滅させる作用である。それに対して本発明の水棲生物防汚剤は、実質的に加水分解しない結合基を介して忌避性基を連結している重合体を使用している。これらは長期間海水中に浸漬された際においても、環境に対して汚染せず、安全な有機物質であり、魚類や貝類、海藻などの食用水産物に対しても安全であり、衛生的である。このような生物防汚剤を基材に塗布または含浸し、あるいは基材に混練または内添することにより水棲生物防汚処理物品が得られる。   The repellent action of tin compounds and copper compounds conventionally used in antifouling paints is the action of those ions eluting gradually and acting on aquatic organisms to repel or kill them. On the other hand, the aquatic biofouling agent of the present invention uses a polymer in which a repellent group is linked through a linking group that does not substantially hydrolyze. These are safe organic substances that do not pollute the environment even when immersed in seawater for a long period of time, and are safe and sanitary for edible marine products such as fish, shellfish, and seaweed. . By applying or impregnating such a biological antifouling agent to a substrate, or kneading or internally adding to the substrate, an aquatic biological antifouling treatment article can be obtained.

本発明の水棲生物防汚剤は、従来の防汚塗料と同様の用途、例えば、海洋航行船舶の海水中に没する船底面や船側面の塗装に、また、海洋魚類の養殖場においても隔離網などにも使用できる。海中に浸漬する建造物や部材などの合成樹脂成型物や、魚網や隔離用網などの合成繊維に対して本発明の防汚剤を適用する場合は、基材樹脂に適合するマスターバッチの形態で、また、紡糸液に適合する生物防汚剤の分散液として使用して、合成樹脂製品や合成繊維製品中に本発明の生物防汚剤を内添することもできる。また、本発明の生物防汚剤は、建造物や住宅などの水周り個所に発生するかびなどの生物的汚れに対して、あるいは住宅、病院、公共施設などの空気清浄機のフィンや充填材の抗菌性塗布材料としても使用できる。
The aquatic organism antifouling agent of the present invention is used in the same applications as conventional antifouling paints, for example, for painting the bottom and side of a ship that is submerged in the seawater of marine navigating vessels, and also in marine fish farms. It can also be used for nets. When the antifouling agent of the present invention is applied to synthetic resin moldings such as buildings and parts immersed in the sea, and synthetic fibers such as fish nets and isolation nets, a masterbatch that is compatible with the base resin In addition, the biofouling agent of the present invention can be internally added to a synthetic resin product or a synthetic fiber product by using it as a dispersion of a biofouling agent that is compatible with the spinning solution. The biological antifouling agent of the present invention is used for biological dirt such as fungi that occur in places around water such as buildings and houses, or for air cleaner fins and fillers of houses, hospitals, public facilities, etc. It can also be used as an antibacterial coating material.

Claims (7)

生物忌避性基を有する重合体と塗膜形成材料とを少なくとも含み、上記重合体が、アミノ基、アンモニウム基、ピリジン基、ピリジニウム基およびフェノール基からなる群から選ばれた少なくとも1種の生物忌避性基が、ポリアルキレン(炭素数2〜4)グリコール鎖および炭化水素(炭素数1〜40)鎖をスペーサーとして介在させて結合している重合体であることを特徴とする生物防汚剤。 Comprising at least a polymer and a film-forming material having a biological repellent group, the polymer is an amino group, an ammonium group, a pyridine group, at least one organism selected from pyridinium group and a phenolic group or Ranaru group A biofouling agent, wherein the repellent group is a polymer having a polyalkylene (2 to 4 carbon atoms) glycol chain and a hydrocarbon (1 to 40 carbon atoms) chain bonded as spacers . 前記重合体が、線状重合体(A)および/または重合体微粒子(B)である請求項1に記載の生物防汚剤。   The biofouling agent according to claim 1, wherein the polymer is a linear polymer (A) and / or polymer fine particles (B). 前記重合体の少なくとも1部の構成単位が、下記一般式(1)で表わされるスチレン(6−)メチレン基である請求項1に記載の生物防汚剤。
Figure 0004843354
(式中のXは、アミノ基、アンモニウム基、ピリジン基、ピリジニウム基およびフェノール基からなる群から選ばれた少なくとも1種の生物忌避性基がポリアルキレン(炭素数2〜4)グリコール鎖および炭化水素(炭素数1〜40)鎖をスペーサーとして介在させて結合した基である。)
The biofouling antifouling agent according to claim 1, wherein at least one part of the structural unit of the polymer is a styrene (6-) methylene group represented by the following general formula (1).
Figure 0004843354
(X in the formula is an amino group, an ammonium group, a pyridine group, at least one biological repellency group polyalkylene selected from pyridinium group and a phenolic group or Ranaru group (2-4 carbon atoms) glycol chain and (A group in which a hydrocarbon (carbon number 1 to 40) chain is bonded as a spacer .)
前記重合体が、ハロゲン化メチルスチレン共重合体に生物忌避性基を有する化合物を反応させて得られる重合体、またはハロゲン化メチルスチレンに生物忌避性基を有する化合物を反応させた単量体を重合して得られる重合体である請求項1に記載の生物防汚剤。   A polymer obtained by reacting a halogenated methylstyrene copolymer with a compound having a biorepellent group, or a monomer obtained by reacting a halogenated methylstyrene with a compound having a biorepellent group. The biofouling agent according to claim 1, which is a polymer obtained by polymerization. 前記重合体(A)と塗膜形成材料(B)との配合質量比が、A:B=95:5〜5:95である請求項1に記載の生物防汚剤。   The biofouling antifouling agent according to claim 1, wherein a blending mass ratio of the polymer (A) and the coating film forming material (B) is A: B = 95: 5 to 5:95. 請求項1〜のいずれか1項に記載の生物防汚剤を基材に塗布または含浸し、あるいは基材に混練または内添することを特徴とする基材の生物防汚処理方法。 A biological antifouling treatment method for a substrate, comprising applying or impregnating the biological antifouling agent according to any one of claims 1 to 5 to the substrate, or kneading or internally adding to the substrate. 請求項に記載の方法で処理されたことを特徴とする生物防汚処理物品。 A biological antifouling treatment article treated by the method according to claim 6 .
JP2006106767A 2006-04-07 2006-04-07 Biological antifouling agent, antifouling treatment method and antifouling treatment article Expired - Fee Related JP4843354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006106767A JP4843354B2 (en) 2006-04-07 2006-04-07 Biological antifouling agent, antifouling treatment method and antifouling treatment article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006106767A JP4843354B2 (en) 2006-04-07 2006-04-07 Biological antifouling agent, antifouling treatment method and antifouling treatment article

Publications (2)

Publication Number Publication Date
JP2007277432A JP2007277432A (en) 2007-10-25
JP4843354B2 true JP4843354B2 (en) 2011-12-21

Family

ID=38679214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006106767A Expired - Fee Related JP4843354B2 (en) 2006-04-07 2006-04-07 Biological antifouling agent, antifouling treatment method and antifouling treatment article

Country Status (1)

Country Link
JP (1) JP4843354B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0699244B2 (en) * 1985-04-10 1994-12-07 日本ペイント株式会社 Fine resin particles with anti-pest properties
JP2784652B2 (en) * 1988-08-31 1998-08-06 日本カーバイド工業株式会社 Aqueous dispersion type antifouling paint
JPH0676563B2 (en) * 1988-11-02 1994-09-28 大日精化工業株式会社 Antifouling composition and method for preventing pollution
EP1371699A3 (en) * 2002-06-14 2004-01-14 Rohm And Haas Company Polymeric nanoparticle and antimicrobial coating formulations
JP2004123559A (en) * 2002-09-30 2004-04-22 Seimi Chem Co Ltd Method for producing unsaturated tertiary amine
ES2302182T3 (en) * 2004-02-03 2008-07-01 Akzo Nobel Coatings International Bv ANTIENSUCIATION COMPOSITIONS THAT INCLUDE A POLYMER WITH SALINE GROUPS.
JP4843353B2 (en) * 2006-04-07 2011-12-21 高知県 Biological antifouling agent, antifouling treatment method and antifouling treatment article

Also Published As

Publication number Publication date
JP2007277432A (en) 2007-10-25

Similar Documents

Publication Publication Date Title
JP4843353B2 (en) Biological antifouling agent, antifouling treatment method and antifouling treatment article
JP5320008B2 (en) Antifouling / antibacterial agent, antifouling / antibacterial coating material, antifouling / antibacterial agent composition and antifouling / antibacterial treatment method
JP5815730B2 (en) Antifouling paint composition, antifouling coating film and antifouling substrate, and method for producing antifouling substrate
Pan et al. Degradable vinyl polymers for combating marine biofouling
JP5989237B2 (en) Antifouling paint composition, antifouling coating film, antifouling substrate and method for producing antifouling substrate
TWI303654B (en) Antifouling coating composition
JP6360909B2 (en) Two-pack type antifouling paint composition, antifouling coating film, antifouling substrate and method for producing antifouling substrate
CN112513207B (en) Antifouling coating composition, antifouling coating film, substrate with antifouling coating film, method for producing same, and method for repairing same
Zhang et al. A switchable zwitterionic ester and capsaicin copolymer for multifunctional marine antibiofouling coating
JP4118356B2 (en) Antifouling paint composition
WO2017164283A1 (en) Antifouling coating composition, antifouling coating film, antifouling substrate and method for producing same
JP4843354B2 (en) Biological antifouling agent, antifouling treatment method and antifouling treatment article
JP3465199B2 (en) Antifouling paint composition
JP4154344B2 (en) Coating composition and copolymer
JP2002012630A (en) Metal-containing resin composition and antifouling coating composition
JPH0582865B2 (en)
JP3053081B2 (en) Copolymer for antifouling coating material
JP4743677B2 (en) Underwater pest control material
JP2833493B2 (en) Antifouling coating material
WO2020195907A1 (en) Antifouling coating composition
JP5362313B2 (en) Antifouling / antibacterial agent, antifouling / antibacterial agent composition and antifouling / antibacterial treatment method
US4939219A (en) Coating compositions for preventing adhesion of aquatic organisms
JPH11293183A (en) Antifouling coating composition, antifouling coating film, underwater structure or ship covered with the same film, and antifouling finish of underwater structure and outer body of ship
JP2020200382A (en) Resin composition for antifouling coating, antifouling coating, antifouling coating film, base material with antifouling coating film, and method for producing base material with antifouling coating film
JP2008088440A (en) Antifouling coating composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080801

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091116

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110808

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111007

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees