JP4842892B2 - 送信装置、及び送信方法 - Google Patents

送信装置、及び送信方法 Download PDF

Info

Publication number
JP4842892B2
JP4842892B2 JP2007170108A JP2007170108A JP4842892B2 JP 4842892 B2 JP4842892 B2 JP 4842892B2 JP 2007170108 A JP2007170108 A JP 2007170108A JP 2007170108 A JP2007170108 A JP 2007170108A JP 4842892 B2 JP4842892 B2 JP 4842892B2
Authority
JP
Japan
Prior art keywords
symbol
initial value
signal
modulation
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007170108A
Other languages
English (en)
Other versions
JP2009010686A (ja
Inventor
明記 橋本
陽一 鈴木
和義 正源
祥次 田中
久 筋誡
武史 木村
政明 小島
哲宏 二見
隆一郎 志村
英之 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Japan Broadcasting Corp
Original Assignee
Sony Corp
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp, Japan Broadcasting Corp filed Critical Sony Corp
Priority to JP2007170108A priority Critical patent/JP4842892B2/ja
Publication of JP2009010686A publication Critical patent/JP2009010686A/ja
Application granted granted Critical
Publication of JP4842892B2 publication Critical patent/JP4842892B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Radio Relay Systems (AREA)

Description

本発明は、送信装置、及び送信方法に関し、特に、例えば、BS(Broadcasting Satellite)ディジタル放送等のディジタル放送において、受信側で適切な処理を行うことができるようにする送信装置、及び送信方法に関する。
現在、BSディジタル放送では、ISDB-S(Satellite Integrated Services. Digital Broadcasting)方式が採用されているが、近年、より大容量の伝送を行うために、ISDB-S方式の高度化が検討されている(例えば、非特許文献1を参照)。
ISDB-S方式の高度化では、主信号の他に、パイロット信号を送信することが検討されている。ここで、主信号とは、例えば、番組としての画像データ等の、送信すべき本来の情報であり、パイロット信号は、ディジタル変調を行って得られる変調信号に伝送路(変調信号を送信する送信装置、及び変調信号を受信する受信装置の内部を含む伝送路)上で生じる非線形歪みを受信側で補償するために用いられる信号である。
また、ISDB-S方式では、主信号のシンボルをディジタル変調する変調方式を、複数の変調方式としてのBPSK(Binary Phase Shift Keying),QPSK(Quadrature Phase Shift Keying)、及び8PSK(Phase Shift Keying)の3つの変調方式の中から選択することが可能であるが、ISDB-S方式の高度化では、上述の3つの変調方式に、16APSK(Amplitude Phase Shift Keying)、及び32APSKを加えた5つの変調方式の中から、主信号のシンボルをディジタル変調する変調方式を選択可能とすることが検討されている。
ここで、ディジタル変調を含む変調では、搬送波を、送信の対象のデータ(信号)に従って変調することにより、変調信号が得られるのであるが、本明細書では、説明の便宜上、搬送波を、送信の対象のデータに従って変調することを、送信の対象のデータを変調するともいう。
橋本明記、鈴木陽一、筋誡久、田中祥次、正源和義、「ISDB-S高度化の一検討」、2007年電子情報通信学会通信総合大会講演論文集,B-3-7, 2007.3
ISDB-S方式を高度化した場合に採用されるパイロット信号は、変調信号に伝送路上で生じる非線形歪みを受信側で補償するために用いられるため、パイロット信号のシンボルは、主信号のシンボルと同一の変調方式でディジタル変調される。したがって、パイロット信号のシンボルも、主信号のシンボルと同様に、複数の変調方式の中から選択された変調方式でディジタル変調される。
一方、ISDB-S方式では、変調信号において、特定の周波数にエネルギー(電力)が集中するのを防止するために、主信号のシンボルに、エネルギー拡散の処理が施されるが、パイロット信号を採用した場合には、そのパイロット信号のシンボルにも、エネルギー拡散の処理を施す必要がある。
エネルギー拡散の処理では、PRBS(Pseudorandom Binary Sequence)の1つである、例えば、M系列(maximal-length sequences)が、所定の値を初期値として発生され、そのM系列が、エネルギー拡散に用いる拡散符号として、シンボルに乗算される。
ところで、拡散符号(の系列)は、初期値が異なれば、異なる系列になるため、パイロット信号のシンボルのエネルギー拡散に用いる拡散符号の初期値が、不適切な値である場合には、受信側で適切な処理を行うことが困難になることがある。
すなわち、例えば、拡散符号の初期値によって、パイロット信号のシンボルをエネルギー拡散して得られるシンボル(エネルギー拡散後のパイロット信号のシンボル)の変調信号のPAPR(Peak-to-Average Power Ratio)は変化する。そして、パイロット信号のPAPRが小となるような拡散符号の初期値が採用された場合、受信側では、PAPRが小さいパイロット信号によっては、PAPRが大の主信号に伝送路上で生じる非線形歪みを、受信側で適切に補償することができないことが生じ得る。
一方、PAPRが大である場合には、変調信号に生じる非線形歪みにより、変調信号の周波数帯域が拡がって、周波数帯域の使用効率が劣化することがあり得る。
また、例えば、拡散符号の初期値によっては、エネルギー拡散後のパイロット信号のシンボルが取り得るシンボル値が不均一に出現する。このように、パイロット信号が取り得るシンボル値が不均一に出現する場合、受信側において、そのようなパイロット信号によっては、伝送路上で生じる主信号のシンボルの非線形歪みを、受信側で適切に補償することができないことが生じ得る。
本発明は、このような状況に鑑みてなされたものであり、ディジタル放送において、受信側で適切な処理を行うことができるようにするものである。
本発明の一側面の送信装置は、ディジタル変調を行うことにより得られる変調信号を送信する送信装置において、送信すべき情報である主信号のシンボルと、伝送路上で生じる非線形歪みを受信側で補償するために用いられるパイロット信号のシンボルとを、少なくとも1スロットに含む複数のスロットから構成されるフレームのシンボルをディジタル変調することにより得られる変調信号であって、前記主信号のシンボル、及び前記パイロット信号のシンボルを、複数の変調方式の中から選択された選択変調方式でディジタル変調することにより得られる変調信号を送信する送信装置であり、前記複数の変調方式それぞれに対応付けて、エネルギー拡散に用いる拡散符号としてのPRBS(Pseudorandom Binary Sequence)の初期値を記憶する記憶手段と、前記記憶手段に記憶された複数の変調方式に対応付けられた初期値の中から、前記選択変調方式に対応付けられた初期値を選択する選択手段と、前記初期値を用いて、前記拡散符号を発生する発生手段と、前記拡散符号を用いて、前記パイロット信号のシンボルのエネルギー拡散を行う拡散手段とを備える。
本発明の一側面の送信方法は、ディジタル変調を行うことにより得られる変調信号を送信する送信装置の送信方法において、送信すべき情報である主信号のシンボルと、伝送路上で生じる非線形歪みを受信側で補償するために用いられるパイロット信号のシンボルとを、少なくとも1スロットに含む複数のスロットから構成されるフレームのシンボルをディジタル変調することにより得られる変調信号であって、前記主信号のシンボル、及び前記パイロット信号のシンボルを、複数の変調方式の中から選択された選択変調方式でディジタル変調することにより得られる変調信号を送信する送信装置の送信方法であり、前記複数の変調方式それぞれに対応付けて、エネルギー拡散に用いる拡散符号の初期値を記憶する記憶手段に記憶された複数の変調方式に対応付けられた初期値の中から、前記選択変調方式に対応付けられた初期値を選択し、前記初期値を用いて、前記拡散符号を発生し、前記拡散符号を用いて、前記パイロット信号のシンボルのエネルギー拡散を行うステップを含む。
本発明の一側面においては、送信すべき情報である主信号のシンボルと、伝送路上で生じる非線形歪みを受信側で補償するために用いられるパイロット信号のシンボルとを、少なくとも1スロットに含む複数のスロットから構成されるフレームのシンボルをディジタル変調することにより得られる変調信号であって、前記主信号のシンボル、及び前記パイロット信号のシンボルを、複数の変調方式の中から選択された選択変調方式でディジタル変調することにより得られる変調信号が送信される。その際、複数の変調方式に対応付けられた初期値の中から、前記選択変調方式に対応付けられた初期値が選択され、前記初期値を用いて、前記拡散符号が発生される。そして、前記拡散符号を用いて、前記パイロット信号のシンボルのエネルギー拡散が行われる。
本発明の一側面によれば、ディジタル放送において、受信側で適切な処理を行うことができる。
以下に本発明の実施の形態を説明するが、本発明の構成要件と、明細書又は図面に記載の実施の形態との対応関係を例示すると、次のようになる。この記載は、本発明をサポートする実施の形態が、明細書又は図面に記載されていることを確認するためのものである。したがって、明細書又は図面中には記載されているが、本発明の構成要件に対応する実施の形態として、ここには記載されていない実施の形態があったとしても、そのことは、その実施の形態が、その構成要件に対応するものではないことを意味するものではない。逆に、実施の形態が構成要件に対応するものとしてここに記載されていたとしても、そのことは、その実施の形態が、その構成要件以外の構成要件には対応しないものであることを意味するものでもない。
本発明の一側面の送信装置は、
ディジタル変調を行うことにより得られる変調信号を送信する送信装置(例えば、図3の送信装置11)において、
送信すべき情報である主信号のシンボルと、伝送路上で生じる非線形歪みを受信側で補償するために用いられるパイロット信号のシンボルとを、少なくとも1スロットに含む複数のスロットから構成されるフレームのシンボルをディジタル変調することにより得られる変調信号であって、前記主信号のシンボル、及び前記パイロット信号のシンボルを、複数の変調方式の中から選択された選択変調方式でディジタル変調することにより得られる変調信号を送信する送信装置であり、
前記複数の変調方式それぞれに対応付けて、エネルギー拡散に用いる拡散符号としてのPRBS(Pseudorandom Binary Sequence)の初期値を記憶する記憶手段(例えば、図4の初期値記憶部110)と、
前記選択変調方式に対応付けられた初期値を選択する選択手段(例えば、図4のセレクタ116)と、
前記初期値を用いて、前記拡散符号を発生する発生手段(例えば、図4の拡散符号発生部61)と、
前記拡散符号を用いて、前記パイロット信号のシンボルのエネルギー拡散を行う拡散手段(例えば、図4の拡散部65)と
を備える。
一側面の送信装置には、
前記初期値を、1フレーム周期、又は1スロット周期で前記発生手段に設定する初期値設定手段(例えば、図4の初期値設定部63)をさらに設けることができる。
一側面の送信装置には、
前記記憶手段に、初期値を設定することにより、前記記憶手段に記憶された初期値を書き換える記憶値設定手段(例えば、図4の記憶値設定部117)をさらに設けることができる。
本発明の一側面の送信方法は、
ディジタル変調を行うことにより得られる変調信号を送信する送信装置(例えば、図3の送信装置11)の送信方法において、
送信すべき情報である主信号のシンボルと、伝送路上で生じる非線形歪みを受信側で補償するために用いられるパイロット信号のシンボルとを、少なくとも1スロットに含む複数のスロットから構成されるフレームのシンボルをディジタル変調することにより得られる変調信号であって、前記主信号のシンボル、及び前記パイロット信号のシンボルを、複数の変調方式の中から選択された選択変調方式でディジタル変調することにより得られる変調信号を送信する送信装置の送信方法であり、
前記複数の変調方式それぞれに対応付けて、エネルギー拡散に用いる拡散符号の初期値を記憶する記憶手段に記憶された複数の変調方式に対応付けられた初期値の中から、前記選択変調方式に対応付けられた初期値を選択し(例えば、図5のステップS11)、
前記初期値を用いて、前記拡散符号を発生し(例えば、図5のステップS13)、
前記拡散符号を用いて、前記パイロット信号のシンボルのエネルギー拡散を行う(例えば、図5のステップS14)
ステップを含む。
以下、図面を参照して、本発明の実施の形態について説明する。
図1は、本発明を適用した放送システム(システムとは、複数の装置が論理的に集合した物をいい、各構成の装置が同一筐体中にあるか否かは問わない)の一実施の形態の構成例を示している。
図1において、放送システムは、送信装置11と受信装置12とから構成される。
送信装置11は、例えば、BSディジタル放送用の送信装置であり、搬送波をシンボルに従ってディジタル変調することにより得られる変調信号を送信する。送信装置11が送信した変調信号は、図示せぬ衛星で受信され、必要な処理が施されて送信される。
受信装置12は、例えば、BSディジタル放送用の受信装置であり、送信装置11から衛星を介して送信されてくる変調信号を受信する。
図2は、図1の送信装置11が送信する変調信号のフォーマットを示している。
送信装置11は、複数の変調方式としての、例えば、BPSK,QPSK,8PSK,16APSK、及び32APSKの5つの変調方式の中から、搬送波をディジタル変調する変調方式を選択し、その変調方式で、送信対象のシンボルがディジタル変調される。
したがって、送信装置11は、BPSK,QPSK,8PSK,16APSK、及び32APSKの中から選択された変調方式の変調信号を送信する。
ここで、BPSK,QPSK,8PSK,16APSK、及び32APSKの中から選択された変調方式を、以下、適宜、選択変調方式ともいう。
送信装置11は、シンボルを、フレームと呼ばれる単位で送信する。
フレームは、複数としての120個のスロット#1ないし#120からなる。
スロット#i(i=1,2,・・・,120)は、その先頭から、ユニークな同期信号Syncの24シンボル、パイロット信号Pの32シンボル、及び、66セットの主信号Data#nの136シンボルとTMCC(Transmission Multiplexing Configuration Control)信号Tの4シンボルとのセットが順次配置されて構成されており、したがって、9296(=24+32+(136+4)×66)シンボルからなる。
ここで、図2において、スロットの長さ(スロット周期)は、0.286296ミリ秒になっている。したがって、フレームの長さ(フレーム周期)は、34.3554ミリ秒(=0.286296ミリ秒×120スロット)である。
スロット#iの同期信号Syncのシンボルは、ユニークで既知の、BPSK変調されるシンボルであり、受信装置12において、同期を確立するのに用いられる。
なお、同期信号Syncには、信号Sync1、及びSync2の2種類がある。フレームを構成する先頭のスロット#1には、信号Sync1のシンボルが配置され、先頭から2番目のスロット#2には、信号Sync2のシンボルが配置される。そして、先頭から3番目以降のスロット#3ないし#120には、信号Sync1のシンボルと、信号Sync2を反転した信号!Sync2のシンボルとが、交互に配置される。
ここで、スロットの先頭に配置される信号Sync1,Sync2、又は!Sync2のシンボルにより、スロットの先頭を検出することができる。また、フレームの先頭のスロット#1に配置される信号Sync1のシンボルと、先頭から2番目のスロット#2に配置される信号Sync2のシンボルとのセットにより、フレームの先頭を検出することができる。
パイロット信号Pのシンボルは、送信装置11と受信装置12との間の伝送路上で変調信号に生じる非線形歪みを受信側としての受信装置12で補償するために用いられ、5つの変調方式であるBPSK,QPSK,8PSK,16APSK、及び32APSKのうちの主信号Data#nのシンボルと同一の変調方式(選択変調方式)でディジタル変調される。
ここで、パイロット信号Pの32シンボルとしては、選択変調方式のシンボルが取り得るシンボル値が順次配置される。
すなわち、選択変調方式がBPSKである場合(パイロット信号PのシンボルがBPSK変調される場合)、パイロット信号Pの32シンボルとしては、BPSKのシンボルが取り得る2個のシンボル値である0bと1bとが16回だけ繰り返し配置される。ここで、bは、その前の値が2進数であることを表す。
また、選択変調方式がQPSKである場合、パイロット信号Pの32シンボルとしては、QPSKのシンボルが取り得る4個のシンボル値である00b,01b,10b、及び11bが8回だけ繰り返し配置される。
さらに、選択変調方式が8PSKである場合、パイロット信号Pの32シンボルとしては、8PSKのシンボルが取り得る8個のシンボル値である000b,001b,010b,011b,100b,101b,110b、及び111bが4回だけ繰り返し配置される。
同様に、選択変調方式が16APSKである場合、パイロット信号Pの32シンボルとしては、16APSKのシンボルが取り得る16個のシンボル値である0000bないし1111bが2回だけ繰り返し配置される。また、選択変調方式が32APSKである場合、パイロット信号Pの32シンボルとしては、32APSKのシンボルが取り得る32個のシンボル値である00000bないし11111bが1回だけ配置される。
主信号Data#nのシンボルは、画像データや音声データ等の、送信すべき本来の情報のシンボルであり、5つの変調方式であるBPSK,QPSK,8PSK,16APSK、及び32APSKの中から選択された変調方式(選択変調方式)でディジタル変調される。
ここで、主信号Data#nのシンボルの変調方式(選択変調方式)は、例えば、主信号Data#nのデータレート等に基づいて選択される。すなわち、例えば、主信号Data#nのデータレートが低い場合には、BPSK,QPSK,8PSK,16APSK、及び32APSKのうちの、例えば、BPSKが選択変調方式として選択される。また、例えば、主信号Data#nのデータレートが高い場合には、BPSK,QPSK,8PSK,16APSK、及び32APSKのうちの、例えば、32PPSKが選択変調方式として選択される。
なお、主信号Data#nのシンボルの変調方式は(したがって、パイロット信号Pのシンボルの変調方式も)、スロットごとに選択することができる。
TMCC信号Tは、変調信号における主信号の変調方式や符号化方式等を含む制御情報であり、TMCC信号Tのシンボルは、BPSK変調される。TMCC信号Tのシンボルは、1フレーム単位で復号することができ、受信装置12では、TMCC信号Tのシンボルの復号によって得られるTMCC信号により、変調信号における主信号Data#nのシンボル(パイロット信号Pのシンボルも)の変調方式を認識して、主信号Data#nを復調することができる。
次に、図3は、図1の送信装置11の構成例を示すブロック図である。
同期信号出力部31は、同期信号(図2の信号Sync1,Sync2,!Sync2)を出力する。同期信号出力部31が出力する同期信号は、マッピング部36に供給される。
TMCC出力部32は、TMCC信号を出力する。TMCC出力部32が出力するTMCC信号は、マッピング部37に供給される。
主信号出力部33は、主信号を出力する。主信号出力部33が出力する主信号は、マッピング部38に供給される。
パイロット信号出力部34は、変調方式選択部35から供給される選択情報が表す選択変調方式に応じて、図2で説明したシンボル値をとるパイロット信号を出力する。パイロット信号出力部34が出力するパイロット信号は、マッピング部39に供給される。
変調方式選択部35は、5つの変調方式であるBPSK,QPSK,8PSK,16APSK、及び32APSKの中から、主信号(のシンボル)を変調する変調方式を、選択変調方式として選択する。さらに、変調方式選択部35は、選択変調方式を表す選択情報を、パイロット信号出力部34、マッピング部38及び39、並びにエネルギー拡散部42に供給する。
ここで、変調方式選択部35は、例えば、主信号のビットレートに応じて、そのビットレートの主信号を伝送しうる変調方式を、選択変調方式として選択する。
マッピング部36は、同期信号出力部31から供給される同期信号を、搬送波と同相のI成分を表すI軸と、搬送波と直交するQ成分を表すQ軸とで規定されるIQ平面(IQコンスタレーション)上のBPSKの信号点が表すシンボル(シンボル値)にシンボル化し、そのシンボルを、BPSKの信号点にマッピング(変換)して、多重化部43に供給する。
ここで、BPSKの信号点は2個であり、2(=21)個の値(シンボル値)を表すことができるから、同期信号については、同期信号の1ビットが、1個のシンボルにシンボル化される。
マッピング部37は、TMCC出力部32から供給されるTMCC信号を、IQ平面上のBPSKの信号点が表すシンボルにシンボル化し、さらに、そのシンボルを、BPSKの信号点にマッピングして、エネルギー拡散部40に供給する。
ここで、TMCC信号についても、同期信号と同様に、TMCC信号の1ビットが、1個のシンボルにシンボル化される。
マッピング部38は、主信号出力部33から供給される主信号を、IQ平面上の、変調方式選択部35から供給される選択情報が表す選択変調方式の信号点が表すシンボルにシンボル化し、さらに、そのシンボルを、選択変調方式の信号点にマッピングして、エネルギー拡散部41に供給する。
すなわち、マッピング部38では、選択変調方式がBPSKである場合には、BPSKの信号点は2個であり、2(=21)個の値を表すことができるから、主信号の1ビットが、1個のシンボルにシンボル化される。
また、マッピング部38では、選択変調方式がQPSKである場合には、QPSKの信号点は4個であり、4(=22)個の値を表すことができるから、主信号の2ビットが、1個のシンボルにシンボル化される。さらに、マッピング部38では、選択変調方式が8PSKである場合には、8PSKの信号点は8個であり、8(=23)個の値を表すことができるから、主信号の3ビットが、1個のシンボルにシンボル化される。また、マッピング部38では、選択変調方式が16APSKである場合には、16APSKの信号点は16個であり、16(=24)個の値を表すことができるから、主信号の4ビットが、1個のシンボルにシンボル化される。さらに、マッピング部38では、選択変調方式が32APSKである場合には、32APSKの信号点は32個であり、32(=25)個の値を表すことができるから、主信号の5ビットが、1個のシンボルにシンボル化される。
マッピング部39は、パイロット信号出力部34から供給されるパイロット信号を、マッピング部38と同様に、IQ平面上の、変調方式選択部35から供給される選択情報が表す選択変調方式の信号点が表すシンボルにシンボル化し、さらに、そのシンボルを、選択変調方式の信号点にマッピングして、エネルギー拡散部41に供給する。
エネルギー拡散部40は、マッピング部37から供給されるTMCC信号のシンボル(がマッピングされた信号点のI成分及びQ成分)に、拡散符号としてのPRBS(Pseudorandom Binary Sequence)を用いてエネルギー拡散処理を施し、エネルギー拡散後のTMCC信号のシンボルを、多重化部43に供給する。
エネルギー拡散部41は、マッピング部38から供給される主信号のシンボルに、拡散符号としてのPRBSを用いてエネルギー拡散処理を施し、エネルギー拡散後の主信号のシンボルを、多重化部43に供給する。
エネルギー拡散部42は、マッピング部39から供給されるパイロット信号のシンボルに、拡散符号としてのPRBSを用いてエネルギー拡散処理を施し、エネルギー拡散後のパイロット信号のシンボルを、多重化部43に供給する。
なお、エネルギー拡散部42は、エネルギー拡散処理において、初期値を用いて、拡散符号としてのPRBSを発生する。エネルギー拡散部42において、拡散符号の発生に用いられる初期値は、変調方式選択部35から供給される選択情報が表す選択変調方式に応じて設定される。
多重化部43は、マッピング部36から供給される同期信号のシンボル、エネルギー拡散部40から供給されるTMCC信号のシンボル、エネルギー拡散部41から供給される主信号のシンボル、及びエネルギー拡散部42から供給されるパイロット信号のシンボルを多重化することにより、図2に示したスロット、さらには、複数としての120のスロットからなるフレームを構成し、送信フィルタ44に供給する。
送信フィルタ44は、多重化部43からのフレームを構成するシンボルに対して、そのシンボルの系列の周波数帯域を、所定のシンボルレート(図2では、32.47Mbaud)に相当する周波数帯域に制限するためのフィルタリング処理を施し、直交変調部45に供給する。
直交変調部45は、所定の搬送波を、送信フィルタ44からのフレーム(を構成するシンボル)に従ってBPSK変調、QPSK変調、8PSK変調、16APSK変調、又は32APSK変調し、その結果得られる変調信号を、図示せぬ非線形増幅器で増幅等して送信する。
以上のように構成される送信装置11では、変調方式選択部35が、5つの変調方式であるBPSK,QPSK,8PSK,16APSK、及び32APSKの中から、主信号を変調する変調方式を、選択変調方式として選択し、その選択変調方式を表す選択情報を、パイロット信号出力部34、マッピング部38及び39、並びにエネルギー拡散部42に供給する。
一方、マッピング部36は、同期信号出力部31から供給される同期信号のシンボルを、BPSKの信号点にマッピングして、多重化部43に供給する。
また、マッピング部37は、TMCC出力部32から供給されるTMCC信号のシンボルを、IQ平面上のBPSKの信号点にマッピングし、エネルギー拡散部40に供給する。さらに、マッピング部38は、主信号出力部33から供給される主信号のシンボルを、IQ平面上の、変調方式選択部35から供給される選択情報が表す選択変調方式の信号点にマッピングし、エネルギー拡散部41に供給する。
また、マッピング部39は、パイロット信号出力部34から供給されるパイロット信号のシンボルを、マッピング部38と同様に、IQ平面上の、変調方式選択部35から供給される選択情報が表す選択変調方式の信号点にマッピングし、エネルギー拡散部42に供給する。
エネルギー拡散部40は、マッピング部37から供給されるTMCC信号のシンボルに、エネルギー拡散処理を施し、多重化部43に供給する。また、エネルギー拡散部41は、マッピング部38から供給される主信号のシンボルに、エネルギー拡散処理を施し、多重化部43に供給する。
エネルギー拡散部42は、拡散符号の発生に用いる初期値を、変調方式選択部35から供給される選択情報が表す選択変調方式に応じて設定し、その初期値を用いて、拡散符号を発生する。さらに、エネルギー拡散部42は、拡散符号を用いて、マッピング部39から供給されるパイロット信号のシンボルに、エネルギー拡散処理を施し、多重化部43に供給する。
多重化部43は、マッピング部36から供給される同期信号のシンボル、エネルギー拡散部40から供給されるTMCC信号のシンボル、エネルギー拡散部41から供給される主信号のシンボル、及びエネルギー拡散部42から供給されるパイロット信号のシンボルを多重化することにより、図2に示したスロット、さらには、フレームを構成し、送信フィルタ44を介して、直交変調部45に供給する。
直交変調部45は、多重化部43からのフレームを構成するシンボルを、BPSK、QPSK、8PSK、16APSK、又は32APSKでディジタル変調し、その結果得られる変調信号を増幅等して送信する。
図4は、図3のエネルギー拡散部42の構成例を示している。
エネルギー拡散部42は、拡散符号発生部61、初期値出力部62、初期値設定部63、レベル変換部64、及び拡散部65から構成され、上述したように、マッピング部39から供給されるパイロット信号のシンボルに、エネルギー拡散処理を施す。
すなわち、拡散符号発生部61は、15個のセレクタ1011ないし10115、15個のラッチ回路(D)1021ないし10215、及び1つのEXORゲート103から構成され、拡散符号として、既約多項式X15+X14+1で表される15次のM系列(maximal-length sequences)を発生し、レベル変換部64に供給する。
具体的には、拡散符号発生部61は、15セットのセレクタ101k(k=1,2,・・・,15)とラッチ回路102kとのセットがシリーズに接続され、さらに、最終段のラッチ回路10215がラッチしている値と、その1つ前段のラッチ回路10214がラッチしている値とが、EXORゲート103を介して、先頭のセレクタ1011にフィードバックされるように構成されている。
セレクタ101kは、第1と第2の入力端子を有し、第1の入力端子には、初期値出力部62から、M系列の初期値が供給され、第2の入力端子には、前段のラッチ回路102k-1がラッチしている値(但し、先頭のセレクタ1011については、EXORゲート103の出力)が供給されるようになっている。
また、セレクタ101kには、初期値設定部63から、初期化信号が供給されるようになっている。
セレクタ101kは、初期値設定部63から初期化信号に従い、初期値出力部62から第1の入力端子に供給されるM系列の初期値のうちの1ビット、又は、前段のラッチ回路102k-1(但し、先頭のセレクタ1011については、EXORゲート103)から第2の入力端子に供給される、前段のラッチ回路102k-1がラッチしている1ビットの値(但し、先頭のセレクタ1011については、EXORゲート103の1ビットの出力)を選択し、後段のラッチ回路102kに供給する。
ラッチ回路102kは、前段のセレクタ101kから供給される値をラッチし、後段のセレクタ101k+1の第2の入力端子に供給する。但し、最終段のラッチ回路10215は、ラッチしている値を、EXORゲートの2つの入力端子のうちの一方の入力端子に供給するとともに、拡散符号として、レベル変換部64に供給する。
EXORゲート103では、上述したように、その2つの入力端子のうちの一方の入力端子に、最終段のラッチ回路10215がラッチしている値が供給される他、他方の入力端子に、最終段のラッチ回路10215の前段のラッチ回路10214がラッチしている値が供給されるようになっている。
EXORゲート103は、一方の入力端子に供給される、ラッチ回路10215がラッチしている値と、他方の入力端子に供給される、ラッチ回路10214がラッチしている値の排他的論理和を演算し、その演算結果を、先頭のセレクタ1011の第2の入力端子に供給する。
ここで、セレクタ101kは、初期値設定部63から初期化信号が、H(High)又はL(Low)レベルのうちの、例えば、一方のレベルであるLレベルのとき、前段のラッチ回路102k-1から第2の入力端子に供給される、前段のラッチ回路102k-1がラッチしている値(但し、先頭のセレクタ1011については、EXORゲート103から第2の入力端子に供給される、EXORゲート103の出力)を選択し、後段のラッチ回路102kに供給する。
また、初期値設定部63から初期化信号が、H又はLレベルのうちの、他方のレベルであるHレベルのとき、初期値出力部62から第1の入力端子に供給される、M系列の初期値を選択し、後段のラッチ回路102kに供給する。これにより、ラッチ回路1021ないし10215がラッチする値は、M系列の初期値に初期化される。
初期値出力部62は、初期値記憶部110、セレクタ116、及び記憶値設定部117から構成され、複数の変調方式としてのBPSK,QPSK,8PSK,16APSK、及び32APSKのそれぞれに対応付けられた拡散符号の初期値の中から、選択変調方式に対応付けられた初期値を選択して、拡散符号発生部61に供給する。
すなわち、初期値記憶部110は、BPSK用初期値記憶部111、QPSK用初期値記憶部112、8PSK用初期値記憶部113、16APSK用初期値記憶部114、及び32APSK用初期値記憶部115から構成され、BPSK,QPSK,8PSK,16APSK、及び32APSKのそれぞれに対応付けて、拡散符号の初期値を記憶する。
ここで、BPSK用初期値記憶部111は、選択変調方式がBPSKである場合に、拡散符号の初期値として用いられる15ビットの値(BPSK用初期値)を記憶する。QPSK用初期値記憶部112は、選択変調方式がQPSKである場合に、拡散符号の初期値として用いられる15ビットの値(QPSK用初期値)を記憶し、8PSK用初期値記憶部113は、選択変調方式が8PSKである場合に、拡散符号の初期値として用いられる15ビットの値(8PSK用初期値)を記憶する。同様に、16APSK用初期値記憶部114は、選択変調方式が16APSKである場合に、拡散符号の初期値として用いられる15ビットの値(16APSK用初期値)を記憶し、32APSK用初期値記憶部115は、選択変調方式が32APSKである場合に、拡散符号の初期値として用いられる15ビットの値(32APSK用初期値)を記憶する。
セレクタ116には、変調方式選択部35(図3)から選択情報が供給されるようになっている。
セレクタ116は、変調方式選択部35からの選択情報が表す選択変調方式に基づき、その選択変調方式に対応付けられた初期値を選択し、拡散符号発生部61に出力する。
すなわち、セレクタ116は、選択変調方式がBPSKである場合には、BPSK用初期値記憶部111に記憶されたBPSK用初期値を選択する。また、セレクタ116は、選択変調方式がQPSKである場合には、QPSK用初期値記憶部112に記憶されたQPSK用初期値を選択し、選択変調方式が8PSKである場合には、8PSK用初期値記憶部113に記憶された8PSK用初期値を選択する。さらに、セレクタ116は、選択変調方式が16APSKである場合には、16APSK用初期値記憶部114に記憶された16APSK用初期値を選択し、選択変調方式が32APSKである場合には、32APSK用初期値記憶部115に記憶された32APSK用初期値を選択する。
記憶値設定部117は、外部からの指令に応じて、初期値記憶部110を構成するBPSK用初期値記憶部111、QPSK用初期値記憶部112、8PSK用初期値記憶部113、16APSK用初期値記憶部114、及び32APSK用初期値記憶部115に対して、それぞれ、BPSK用初期値、QPSK用初期値、8PSK用初期値、16APSK用初期値、及び32APSK用初期値となる15ビットの値を設定する。
したがって、BPSK用初期値記憶部111、QPSK用初期値記憶部112、8PSK用初期値記憶部113、16APSK用初期値記憶部114、及び32APSK用初期値記憶部115に記憶されたBPSK用初期値、QPSK用初期値、8PSK用初期値、16APSK用初期値、及び32APSK用初期値のそれぞれは、外部からの指令によって書き換えることができる。
なお、外部からの指令は、例えば、送信装置11を制御する制御用マイクロコンピュータ(図示せず)から与えることができる。
初期値設定部63は、カウンタ121から構成され、拡散符号発生部61が有するラッチ回路1021ないし10215の値を、初期値出力部62のセレクタ116が出力する初期値に設定する。
すなわち、カウンタ121は、シンボルに同期したクロックをカウントし、そのカウント値が、例えば、フレーム周期に相当する値となると、カウント値をリセットし、所定のクロックをカウントすることを繰り返す。
初期値設定部63は、カウンタ121のカウント値がリセットされるときを除いて、Lレベルの初期化信号を、拡散符号発生部61のセレクタ1011ないし10115に供給する。また、初期値設定部63は、カウンタ121のカウント値がリセットされるときに、Hレベルの初期化信号を、拡散符号発生部61のセレクタ1011ないし10115に供給し、これにより、フレーム周期(フレームの先頭)で、初期値出力部62が出力する初期値を、拡散符号発生部61のラッチ回路1021ないし10215に設定する。
ここで、初期値出力部62が出力する初期値は、上述したように、15ビットの値であるが、その15ビットの値のMSB(Most Significant Bit)からkビット目が、セレクタ101kを介して、ラッチ回路102kに設定される。
なお、カウンタ121において、カウント値のリセットは、カウント値が、フレーム周期に相当する値となったときではなく、スロット周期に相当する値になったときに行うことができる。この場合、初期値出力部62が出力する初期値は、スロット周期(スロットの先頭)で、拡散符号発生部61のラッチ回路1021ないし10215に設定される。
レベル変換部64は、拡散符号発生部61(のラッチ回路10215)から供給される拡散符号(のビット)のレベル変換を行い、拡散部65に供給する。
すなわち、レベル変換部64は、拡散符号発生部61から供給される拡散符号(のビット)が0又は1のうちの1である場合、その1であるビットを-1にレベル変換し、拡散部65に供給する。また、レベル変換部64は、拡散符号発生部61から供給される拡散符号(のビット)が0又は1のうちの0である場合、その0であるビットを1(+1)にレベル変換し、拡散部65に供給する。
拡散部65は、演算部131及び132から構成され、マッピング部39(図3)から供給されるパイロット信号のシンボルに対して、レベル変換部64からのレベル変換後の拡散符号を乗算することにより、パイロット信号のシンボルのエネルギー拡散を行う。
すなわち、演算部131には、パイロット信号のシンボル(がマッピングされた信号点)のI成分が供給され、演算部132には、パイロット信号のシンボル(がマッピングされた信号点)のQ成分が供給される。
演算部131は、パイロット信号のシンボルのI成分と、レベル変換部64からの拡散符号を乗算し、その結果得られる値を、エネルギー拡散後のシンボルのI成分(I')として、多重化部43(図3)に供給する。
演算部132は、パイロット信号のシンボルのQ成分と、レベル変換部64からの拡散符号を乗算し、その結果得られる値を、エネルギー拡散後のシンボルのQ成分(Q')として、多重化部43(図3)に供給する。
次に、図5のフローチャートを参照して、図4のエネルギー拡散部42で行われる、パイロット信号のシンボルを対象としたエネルギー拡散処理について説明する。
エネルギー拡散部42には、変調方式選択部35(図3)から、選択情報が供給され、その選択情報は、初期値出力部62のセレクタ116に供給される。
セレクタ116は、ステップS11において、初期値記憶部110に記憶された初期値の中から、変調方式選択部35からの選択情報が表す選択変調方式に対応付けられた初期値を選択し、拡散符号発生部61に供給する。
一方、初期値設定部63では、カウンタ121が、クロックをカウントし、そのカウント値が、フレーム周期に相当する値となると、カウント値をリセットし、所定のクロックをカウントすることを繰り返している。初期値設定部63は、カウンタ121のカウント値がリセットされるときを除いて、Lレベルの初期化信号を、拡散符号発生部61に供給する。
そして、カウンタ121のカウント値がリセットされると、処理は、ステップS11からステップS12に進み、初期値設定部63は、Hレベルの初期化信号を、拡散符号発生部61に供給し、これにより、フレームの先頭で、初期値出力部62が出力する初期値を、拡散符号発生部61のラッチ回路1021ないし10215に設定する。
その後、処理は、ステップS12からステップS13に進み、拡散符号発生部61は、直前のステップS12でラッチ回路1021ないし10215に設定された初期値を用いてのM系列の発生を開始し、処理は、ステップS14に進む。
ここで、ステップS13で発生が開始されたM系列は、拡散符号発生部61からレベル変換部64を介して、拡散部65に供給される。
ステップS14では、拡散部65が、直前のステップS13で発生が開始され、拡散符号発生部61からレベル変換部64を介して順次供給されるM系列を、マッピング部39からのパイロット信号のシンボルに乗算することを開始することにより、パイロット信号のシンボルのエネルギー拡散を行い、エネルギー拡散後のパイロット信号のシンボルを、多重化部43(図3)に供給する。
そして、処理は、ステップS14からステップS11に戻り、以下、同様の処理が繰り返される。
なお、図5では、初期値出力部62が出力する初期値を、フレームの先頭のタイミングで、拡散符号発生部61のラッチ回路1021ないし10215に設定することとしたが、初期値出力部62が出力する初期値の、ラッチ回路1021ないし10215への設定は、その他、上述したように、スロットの先頭のタイミングで行うことが可能である。
次に、図6は、図1の受信装置12の構成例を示すブロック図である。
直交復調部201には、送信装置11からの変調信号が供給される。直交復調部201は、送信装置11からの変調信号に対して、送信装置11で用いられる搬送波と(理想的には)同一の搬送波を乗算することにより、変調信号を、I成分とQ成分とからなる、図3で説明したフォーマットの復調信号に、直交復調し、同期部202に供給する。
同期部202は、直交復調部201からの復調信号における同期信号のシンボルに基づき、シンボル同期、フレーム同期、搬送波同期等の同期を確立し、同期のとれた復調信号を、誤り訂正復号部205に供給する。
さらに、同期部202は、同期の確立後、フレーム又はスロットの先頭を表す同期パルスを、エネルギー逆拡散部203に供給する。
また、同期部202は、復調信号から、パイロット信号のシンボルを抽出し、エネルギー逆拡散部203に供給する。
エネルギー逆拡散部203には、上述したように、同期部202からパイロット信号のシンボル、及び同期パルスが供給される他、誤り訂正復号部205から、復調信号から得たTMCC信号に基づいて認識することができる、主信号、及びパイロット信号のシンボルの変調方式(選択変調方式)を表す選択信号が供給されるようになっている。
エネルギー逆拡散部203は、誤り訂正復号部205からの選択情報が表す選択変調方式に基づき、同期部202からのパイロット信号のシンボルに対して、同期部202からの同期パルスに同期したエネルギー逆拡散処理を施し、エネルギー逆拡散後のパイロット信号のシンボルを、非線形歪み計算部204に供給する。
非線形歪み計算部204は、エネルギー逆拡散部203からのパイロット信号のシンボルを用いて、送信装置11と受信装置12との間の伝送路上で変調信号におけるパイロット信号、ひいては、主信号のシンボルに生じる非線形歪みを計算し、その計算結果を、誤り訂正復号部205に供給する。
誤り訂正復号部205は、同期部202から供給される復調信号にエネルギー逆拡散処理を施す。さらに、誤り訂正復号部205は、エネルギー逆拡散後の復調信号から、TMCC信号を復号し、そのTMCC信号に基づいて、主信号、及びパイロット信号のシンボルの変調方式(選択変調方式)を認識する。そして、誤り訂正復号部205は、選択変調方式を表す選択信号を、エネルギー逆拡散部203に供給する。
また、誤り訂正復号部205は、非線形歪み計算部204からの非線形歪みの計算結果を用いて、エネルギー逆拡散後の復調信号における主信号のシンボルに生じている非線形歪みの補償を行い、さらに、非線形歪みの補償後の主信号のシンボルの最尤復号等を行うことにより、主信号の誤り訂正を行って出力する。
以上のように構成される受信装置12では、直交復調部201が、送信装置11からの変調信号の直交復調を行い、その結果得られる復調信号を、同期部202に供給する。
同期部202は、直交復調部201からの復調信号における同期信号のシンボルに基づき、同期を確立し、同期のとれた復調信号を、誤り訂正復号部205に供給するとともに、同期パルスを、エネルギー逆拡散部203に供給する。また、同期部202は、復調信号から、パイロット信号のシンボルを抽出し、エネルギー逆拡散部203に供給する。
誤り訂正復号部205は、同期部202からの復調信号から、TMCC信号を復号し、そのTMCC信号に基づいて、主信号、及びパイロット信号のシンボルの変調方式(選択変調方式)を認識して、その選択変調方式を表す選択信号を、エネルギー逆拡散部203に供給する。
エネルギー逆拡散部203は、誤り訂正復号部205からの選択情報が表す選択変調方式に基づき、同期部202からのパイロット信号のシンボルに対して、同期部202からの同期パルスに同期したエネルギー逆拡散処理を施し、エネルギー逆拡散後のパイロット信号のシンボルを、非線形歪み計算部204に供給する。
非線形歪み計算部204は、エネルギー逆拡散部203からのパイロット信号のシンボルを用いて、主信号のシンボルに生じる非線形歪みを計算し、その計算結果を、誤り訂正復号部205に供給する。
誤り訂正復号部205は、非線形歪み計算部204からの非線形歪みの計算結果を用いて、復調信号における主信号のシンボルに生じている非線形歪みの補償を行い、さらに、非線形歪みの補償後の主信号のシンボルの最尤復号等を行うことにより、主信号の誤り訂正を行って出力する。
誤り訂正復号部205が出力する主信号としての、例えば、画像データや音声データは、図示せぬディスプレイやスピーカに供給されて、対応する画像が表示され、また、対応する音声が出力される。
次に、図7は、図6のエネルギー逆拡散部203の構成例を示すブロック図である。
エネルギー逆拡散部203は、拡散符号発生部261、初期値出力部262、初期値設定部263、レベル変換部264、及び拡散部265から構成され、同期部202(図6)から供給されるパイロット信号のシンボルに、エネルギー逆拡散処理を施す。
すなわち、拡散符号発生部261、初期値出力部262、初期値設定部263、レベル変換部264、及び拡散部265は、図4のエネルギー拡散部42における拡散符号発生部61、初期値出力部62、初期値設定部63、レベル変換部64、及び拡散部65とそれぞれ同様に構成され、同期部202(図6)から供給されるパイロット信号のシンボルに対して、図4のエネルギー拡散部42が行うエネルギー拡散処理と同様のエネルギー逆拡散処理を施す。
したがって、図7のエネルギー逆拡散部203では、拡散符号発生部261が、図4の拡散符号発生部61と同様にして、拡散符号として、既約多項式X15+X14+1で表される15次のM系列を発生し、レベル変換部264に供給する。
レベル変換部264は、拡散符号発生部261から供給される拡散符号(のビット)のレベル変換を行い、拡散部265に供給する。
拡散部265には、レベル変換部264から拡散符号が供給される他、同期部202(図6)からパイロット信号のシンボル(送信装置11でエネルギー拡散がされたパイロット信号のシンボル)のI成分(I')及びQ成分(Q')が供給される。
拡散部265は、同期部202(図6)から供給されるパイロット信号のシンボルI成分(I')及びQ成分(Q')に対して、レベル変換部264からのレベル変換後の拡散符号を乗算することにより、パイロット信号のシンボルのエネルギー逆拡散を行う。そして、拡散部265は、エネルギー逆拡散後のパイロット信号のシンボルのI成分及びQ成分を、非線形歪み計算部204(図6)に供給する。
一方、初期値出力部262は、図4の初期値出力部62と同様に、BPSK,QPSK,8PSK,16APSK、及び32APSKのそれぞれに対応付けて、拡散符号としての15次のM系列の初期値を記憶している。
そして、初期値出力部262には、誤り訂正復号部205(図6)から選択情報が供給されるようになっており、初期値出力部262は、誤り訂正復号部205(図6)からの選択情報が表す選択変調方式、すなわち、変調信号における主信号、及びパイロット信号のシンボルをディジタル変調した変調方式に対応付けられた初期値を選択し、拡散符号発生部261に出力する。
また、初期値設定部263には、同期部202から同期パルスが供給されるようになっている。初期値設定部263は、同期部202の同期パルスに同期して、カウント値をリセットしながら、図4の初期値設定部263と同様に、拡散符号発生部261に対して、初期化信号を出力することにより、フレームの先頭、又はスロットの先頭で、初期値出力部262が出力する初期値を、拡散符号発生部261が発生するM系列の初期値に設定する。
なお、初期値出力部262には、外部から指令を与えることにより、図4の初期値出力部62の場合と同様に、初期値出力部262が記憶している、BPSK,QPSK,8PSK,16APSK、及び32APSKのそれぞれに対応付けられた拡散符号の初期値を書き換えることができるようになっている。初期値出力部262に対する外部からの指令は、例えば、受信装置12を制御する制御用マイクロコンピュータ(図示せず)から与えることができる。
すなわち、例えば、送信装置11が、受信装置12の制御用ソフトウェアのバージョンアップ版を送信し、受信装置12が、そのバージョンアップ版の制御用ソフトウェアをダウンロードする。そして、受信装置12において、制御用マイクロコンピュータに、バージョンアップ版の制御用ソフトウェアを実行させ、初期値出力部262が記憶している拡散符号の初期値を書き換えさせることができる。
以上のように、送信装置11では、主信号のシンボルと、パイロット信号のシンボルとを、少なくとも1スロットに含む120個のスロットから構成されるフレームのシンボルをディジタル変調することにより得られる変調信号であって、主信号のシンボル、及びパイロット信号のシンボルを、5個の変調方式であるBPSK,QPSK,8PSK,16APSK、及び32APSKの中から選択された選択変調方式でディジタル変調することにより得られる変調信号が送信される。
そして、送信装置11において、変調信号の送信にあたって行われる、パイロット信号のシンボルのエネルギー拡散では、BPSK,QPSK,8PSK,16APSK、及び32APSKのそれぞれに対応付けられた拡散符号の初期値の中から、選択変調方式に対応付けられた初期値が選択され、その初期値を用いて、エネルギー拡散に用いられる拡散符号が発生される。
したがって、BPSK,QPSK,8PSK,16APSK、又は32APSKでディジタル変調が行われる場合に、パイロット信号のシンボルのエネルギー拡散に用いる拡散符号の初期値として、適切な値を用いることができ、その結果、受信装置12において、パイロット信号を用いて適切な処理を行うことができる。
すなわち、BPSK,QPSK,8PSK,16APSK、及び32APSKの各変調方式に対して、例えば、エネルギー拡散後のパイロット信号のシンボルの変調信号のPAPRが大(最大を含む)となる拡散符号の初期値を対応付けて記憶しておくことにより、BPSK,QPSK,8PSK,16APSK、及び32APSKのうちのいずれが選択変調方式として選択された場合であっても、パイロット信号の(シンボルの変調信号の)PAPRを大とすることができる。
その結果、受信装置12では、そのようなPAPRが大のパイロット信号によって、主信号について伝送路上で生じる非線形歪みを、その主信号の(シンボルの変調信号の)PAPRが大であっても、適切に補償することができる。
また、BPSK,QPSK,8PSK,16APSK、及び32APSKの各変調方式に対して、例えば、エネルギー拡散後のパイロット信号のシンボルが取り得るシンボル値を均一に出現させる拡散符号の初期値を対応付けて記憶しておくことにより、BPSK,QPSK,8PSK,16APSK、及び32APSKのいずれが選択変調方式として選択された場合であっても、その選択変調方式のパイロット信号のシンボルが取り得るシンボル値のそれぞれについて、伝送路上で生じる非線形歪みを求めることが可能となる。
その結果、受信装置12では、選択変調方式でディジタル変調された主信号のシンボルについて、伝送路上で生じる非線形歪みを、シンボル値にかかわらず、適切に補償することが可能となる。
以上のような、BPSK,QPSK,8PSK,16APSK、及び32APSKの各変調方式に対して、エネルギー拡散後のパイロット信号のシンボルの変調信号のPAPRが大となる拡散符号の初期値や、エネルギー拡散後のパイロット信号のシンボルが取り得るシンボル値を均一に出現させる拡散符号の初期値は、例えば、シミュレーションによって求めることができる。
ここで、以下、適宜、PAPRが大となる初期値や、シンボル値を均一に出現させる初期値等を求めるシミュレーションを、初期値算出シミュレーションという。
以下、図8ないし図13を参照して、本件発明者が行った初期値算出シミュレーションの結果について説明する。
図8は、初期値算出シミュレーションで採用した32APSKの32個の信号点の、IQ平面上の配置を示している。
図8において、黒で塗りつぶされた丸印(●印)は、信号点を表しており、信号点に近接した位置にある数字は、その信号点に割り当てられたシンボル値を10進数で表している。
いま、信号点を、その信号点に近接した位置にある10進数の数字nを用いて、信号点#nと表すこととすると、送信装置11では、シンボル値が10進数でnのシンボルが、信号点#nにマッピングされる。したがって、例えば、シンボル値が2進数で01011b(=11)のシンボルは、信号点#11にマッピングされる。
図9は、32APSKを選択変調方式とした場合の、エネルギー拡散前と、エネルギー拡散後のパイロット信号のシンボルを表す信号点を示している。
すなわち、初期値算出シミュレーションでは、15次のM系列の初期値として取り得る215通りの初期値それぞれについて、その初期値を用いて、拡散符号としての15次のM系列を発生し、BPSK,QPSK,8PSK,16APSK、及び32APSKの各変調方式について、その変調方式の各信号点それぞれにマッピングされたシンボルの、拡散符号を用いたエネルギー拡散を行って、エネルギー拡散後のシンボルの信号点を求めた。
さらに、初期値算出シミュレーションでは、送信装置11の送信フィルタ44(図3)として、シンボルレートの2倍のオーバサンプリングをし、ルートコサインロールオフのロールオフ率が0.20のフィルタを採用した場合の変調信号のPAPRを求めた。
図9は、32APSKの32個の信号点と、その32個の信号点それぞれにマッピングされたシンボルの、エネルギー拡散後の信号点とを示している。
すなわち、図9上は、変調信号のPAPRが最小になったときの信号点を示しており、図9下は、変調信号のPAPRが最大になったときの信号点を示している。
なお、初期値算出シミュレーションにおいては、M系列の初期値を10進数で4963としたときに、変調信号のPAPRが最小になり(図9上)、M系列の初期値を10進数で5662としたときに、変調信号のPAPRが最大になった(図9下)。
また、図9において、「送出シンボル番号」は、エネルギー拡散の対象の、1スロットに配置される32APSKの32シンボルp0ないしp31を表し、「拡散前信号点」は、シンボルp#m(m=0,1,・・・,31)がマッピングされた32APSKの信号点を表す。さらに、「拡散符号」は、シンボルp#mのエネルギー拡散に用いられた拡散符号(の値)を表し、「拡散後信号点」は、シンボルp#mのエネルギー拡散後のシンボルの信号点を表す。
図9上と図9下のそれぞれによれば、エネルギー拡散により、あるシンボルp#mの信号点から、次のシンボルp#m+1の信号点への遷移(信号点遷移)が、エネルギー拡散の前と後とで変化し、さらに、図9上と図9下とを比較することにより、拡散符号としてのM系列の初期値が異なると、信号点遷移も異なることが分かる。
エネルギー拡散後において、IQ平面の原点付近を通過するような信号点遷移、特に、図8の信号点の配置において、最外周にある信号点が、IQ平面の原点付近を通過するような信号点遷移が発生すると、送信フィルタ44の処理でオーバシュートが発生する。そして、そのオーバシュートにより、変調信号のピーク電力が大となり、ひいては、PAPRも大となる。
また、IQ平面の原点に対して対称な位置関係にある2つの信号点のシンボルのエネルギー拡散に用いられる拡散符号が一致しない場合には、例えば、その2つの信号点のうちの一方側に、エネルギー拡散後のシンボルの信号点が偏り、エネルギー拡散後の32APSKのシンボルが取り得る32通りのシンボル値の中で、出現しないシンボル値が生じる。
そして、図9によれば、拡散符号としてのM系列の初期値が異なると、エネルギー拡散後の32APSKのシンボルが取り得る32通りのシンボル値の中で、出現しないシンボル値(「拡散後信号点」)が異なり、さらに、エネルギー拡散後の32APSKのシンボルが取り得る32通りのシンボル値の中で、出現するシンボル値(「拡散後信号点」)の数(以下、適宜、送出信号点数という)が異なることが分かる。
図10は、32APSKを選択変調方式とした場合の、送信フィルタ44(図3)の出力をプロットしたガウス平面(IQ平面)(IQコンスタレーション)を示している。
なお、図10上は、M系列の初期値を10進数で4963として、変調信号のPAPRが最小になった場合(図9上)の送信フィルタ44の出力を示している。また、図10下は、M系列の初期値を10進数で5662として、変調信号のPAPRが最大になった場合(図9下)の送信フィルタ44の出力を示している。
PAPRが最小の場合の図9上において、「送出シンボル番号」がp10,p11,p12であるときの「拡散後信号点」は、それぞれ、信号点#10,#11,#10となっており、信号点遷移は、図10上に示すように、同一象限に隣接して存在する信号点#10と#11との間の遷移になっている。
一方、PAPRが最大の場合の図9下において、「送出シンボル番号」がp10,p11,p12であるときの「拡散後信号点」は、それぞれ、信号点#12,#11,#10となっており、図10下に示すように、信号点#12から信号点#11への、I軸をまたぐ信号点遷移が存在する。その結果、次の、信号点#11から信号点#10への信号点遷移において、オーバシュートが発生し、変調信号のPAPRが大になる。
図11は、32APSKを選択変調方式として、各初期値(15ビットのM系列の全215通りの初期値)を用いて発生した拡散符号でエネルギー拡散を行ったパイロット信号についてのPAPR、及び送出信号点数を示している。
すなわち、図11上は、拡散符号の初期値と、その初期値を採用した場合の、パイロット信号についてのPAPRとの関係を示している。また、図11下は、拡散符号の初期値と、その初期値を採用した場合の、パイロット信号についての送出信号点数との関係を示している。
図12は、16APSKを選択変調方式として、各初期値(15ビットのM系列の全215通りの初期値)を用いて発生した拡散符号でエネルギー拡散を行ったパイロット信号についてのPAPR、及び送出信号点数を示している。
すなわち、図12上は、拡散符号の初期値と、その初期値を採用した場合の、パイロット信号についてのPAPRとの関係を示している。また、図12下は、拡散符号の初期値と、その初期値を採用した場合の、パイロット信号についての送出信号点数との関係を示している。
図11、又は図12によれば、PAPR及び送出信号点数は、いずれも、初期値に依存する(初期値によって異なる)ことが分かる。また、図11、及び図12によれば、PAPR及び送出信号点数は、変調方式に依存することが分かる。
したがって、送信装置11において、BPSK,QPSK,8PSK,16APSK、及び32APSKのそれぞれに拡散符号の初期値を対応付けておくことにより、BPSK,QPSK,8PSK,16APSK、及び32APSKのそれぞれが選択変調方式として選択された場合に、その選択変調方式でディジタル変調されたパイロット信号のPAPRを大にすることや、送出信号点数を大にすること(シンボルが取り得るシンボル値を均一に出現させること)等が可能となる。
すなわち、初期値算出シミュレーションでは、BPSK,QPSK,8PSK,16APSK、及び32APSKの各変調方式に対して、PAPRを最大にする初期値を求め、送信装置11及び受信装置12に記憶させておくことができる。また、初期値算出シミュレーションでは、BPSK,QPSK,8PSK,16APSK、及び32APSKの各変調方式に対して、送出信号点数を最大にする初期値を求め、送信装置11及び受信装置12に記憶させることができる。
その他、初期値算出シミュレーションでは、BPSK,QPSK,8PSK,16APSK、及び32APSKの各変調方式に対して、PAPRをより大にする初期値であって、かつ、送出信号点数をより大にする(シンボルが取り得るシンボル値をより均一に出現させる)初期値を求め、送信装置11及び受信装置12に記憶させることができる。
なお、初期値算出シミュレーションでは、0は、拡散符号の初期値の対象から除外される。拡散符号の初期値として0を採用した場合、送出信号点数は最大となるが、初期値が0の拡散符号は、エネルギー拡散(エネルギー逆拡散)の対象のシンボルを、そのままとするだけであり、拡散符号として機能しないためである。
ここで、PAPRをより大にする初期値であって、かつ、送出信号点数をより大にする初期値としては、PAPRを最大にする初期値であって、かつ、送出信号点数を最大にする初期値が存在すれば、その初期値が最適である。しかしながら、そのような初期値が存在しない場合には、PAPRを大にする初期値であって、かつ、送出信号点数を大にする初期値の中から、PAPRと送出信号点数とを必要に応じてバランスさせた初期値を採用することが望ましい。
なお、PAPRが大である場合には、送信装置11(図3)の直交変調部45で行われる、非線形増幅器による変調信号の増幅によって生じる非線形歪みにより、変調信号の周波数帯域が拡がって、周波数帯域の使用効率が劣化することがあり得る。
また、変調信号に生じる非線形歪みが問題となるのは、例えば、APSKやQAM(Quadrature Amplitude Modulation)等の、変調信号の振幅が一定でない振幅可変変調方式が選択変調方式として選択された場合である。他方、例えば、BPSKやQPSK等の、変調信号の振幅が一定の振幅一定変調方式が選択変調方式として選択された場合には、変調信号に生じる非線形歪みが問題となることは少ない。
そこで、選択変調方式として選択され得る複数の変調方式(以下、適宜、選択対象の複数の変調方式という)が、振幅可変変調方式のみである場合には、拡散符号の初期値として、PAPRをより大にする初期値(あるいは、PAPRをより大にする初期値であって、かつ、送出信号点数をより大にする初期値)を採用することができる。
また、選択対象の複数の変調方式が、振幅一定変調方式のみである場合には、拡散符号の初期値として、PAPRをより小にする初期値(あるいは、PAPRをより小にする初期値であって、かつ、送出信号点数をより大にする初期値)を採用することができる。
さらに、選択対象の複数の変調方式の中に、振幅可変変調方式と、振幅一定変調方式とが混在する場合には、振幅可変変調方式については、PAPRをより大にする初期値(あるいは、PAPRをより大にする初期値であって、かつ、送出信号点数をより大にする初期値)を採用することができる。また、振幅一定変調方式については、PAPRをより小にする初期値(あるいは、PAPRをより小にする初期値であって、かつ、送出信号点数をより大にする初期値)を採用することができる。
図13は、本件発明者が行った初期値算出シミュレーションによって求められた初期値を示している。
すなわち、図13上は、BPSK,QPSK,8PSK,16APSK、及び32APSKのそれぞれについて求められた、PAPRをより大にする初期値であって、かつ、送出信号点数をより大にする初期値の初期値セット#1を示している。
また、図13下は、BPSK,QPSK,8PSK,16APSK、及び32APSKのうちの、振幅一定変調方式であるBPSK,QPSK、及び8PSKのそれぞれについて求められた、PAPRをより小にする初期値であって、かつ、送出信号点数をより大にする初期値と、振幅可変変調方式である16APSK、及び32APSKのそれぞれについて求められたPAPRをより大にする初期値であって、かつ、送出信号点数をより大にする初期値との初期値セット#2を示している。
図13上では、PAPRをより大にする初期値であって、かつ、送出信号点数をより大にする初期値として、BPSKに対しては、000011111000000bが、QPSKに対しては、110100111100101bが、8PSKに対しては、010000110100111bが、16APSKに対しては、010011110000110bが、32APSKに対しては、001111010101010bが、それぞれ求められている。
また、図13下では、振幅一定変調方式であるBPSK,QPSK、及び8PSKに関し、PAPRをより小にする初期値であって、かつ、送出信号点数をより大にする初期値として、BPSKに対しては、011010101101101bが、QPSKに対しては、010000100001000bが、8PSKに対しては、010110011011011bが、それぞれ求められ、振幅可変変調方式である16APSK、及び32APSKに関し、PAPRをより大にする初期値であって、かつ、送出信号点数をより大にする初期値として、16APSKに対しては、010011110000110bが、32APSKに対しては、001111010101010bが、それぞれ求められている。
なお、図13に示した初期値は、図14に示す、BPSK,QPSK,8PSK,16APSK、及び32APSKそれぞれの信号点の配置を前提とする値であり、図13と異なる信号点の配置を採用する場合には、初期値算出シミュレーションを再度行い、初期値を求め直す必要がある。
ここで、信号点の配置が変更された場合にも、初期値算出シミュレーションによって初期値を求め直すことができる。この場合、送信装置11(図3)では、送信装置11の制御用マイクロコンピュータから初期値出力部62(図4)に指令を与えることにより、初期値出力部62(の初期値記憶部110)の記憶内容を、初期値算出シミュレーションによって求め直した初期値に書き換えることができる。また、受信装置12(図6)では、送信装置11から、バージョンアップ版の制御用ソフトウェアをダウンロードし、受信装置12の制御用マイクロコンピュータに、バージョンアップ版の制御用ソフトウェアを実行させ、初期値出力部262(図7)の記憶内容を、初期値算出シミュレーションによって求め直した初期値に書き換えることができる。
なお、本実施の形態では、拡散符号としてのPRBSとして、15次のM系列を採用したが、拡散符号は、15次のM系列に限定されるものではない。
また、変調信号のフォーマットも、図2のフォーマットに限定されるものではない。
さらに、複数の変調方式は、BPSK,QPSK,8PSK,16APSK、及び32APSKの5個の変調方式に限定されるものではなく、4個以下(かつ2個以上)であっても良いし、6個以上であっても良い。
また、複数の変調方式としては、BPSK,QPSK,8PSK,16APSK、及び32APSK以外の、例えば、QAM等の多値変調方式を採用することが可能である。
以上、本発明を、ディジタル放送に適用した場合について説明したが、本発明は、その他、ディジタル変調を行うことにより得られる変調信号を伝送するディジタル通信に適用可能である。
なお、本発明の実施の形態は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更が可能である。
本発明を適用した放送システムの一実施の形態の構成例を示す図である。 変調信号のフォーマットを示す図である。 送信装置11の構成例を示すブロック図である。 エネルギー拡散部42の構成例を示すブロック図である。 エネルギー拡散の処理を説明するフローチャートである。 受信装置12の構成例を示すブロック図である。 エネルギー逆拡散部203の構成例を示すブロック図である。 32APSKの信号点の配置を示す図である。 32APSKの変調信号のPAPRが最小になる拡散符号の初期値と、PAPRが最大になる拡散符号の初期値とを示す図である。 PAPRが最小になる変調信号のコンスタレーションと、PAPRが最大になる変調信号のコンスタレーションとを示す図である。 拡散符号の各初期値に対する、32APSKの変調信号のPAPRと、出現する信号点の数(送出信号点数)とを示す図である。 拡散符号の各初期値に対する、16APSKの変調信号のPAPRと、出現する信号点の数とを示す図である。 初期値算出シミュレーションによって求められた拡散符号の初期値を示す図である。 信号点の配置の例を示す図である。
符号の説明
11 送信装置, 12 受信装置, 31 同期信号出力部, 32 TMCC出力部, 33 主信号出力部, 34 パイロット信号出力部, 35 変調方式選択部, 36ないし39 マッピング部, 40ないし42 エネルギー拡散部, 43 多重化部, 44 送信フィルタ, 45 直交変調部, 61 拡散符号発生部, 62 初期値出力部, 63 初期値設定部, 64 レベル変換部, 65 拡散部, 1011ないし10115 セレクタ, 1021ないし10215 ラッチ回路, 103 EXORゲート, 110 初期値記憶部, 111 BPSK用初期値記憶部, 112 QPSK用初期値記憶部, 113 8PSK用初期値記憶部, 114 16APSK用初期値記憶部, 115 32APSK用初期値記憶部, 116 セレクタ, 117 記憶値設定部, 121 カウンタ, 131,132 演算部, 201 復調部, 202 同期部, 203 エネルギー逆拡散部, 204 非線形歪み計算部, 205 誤り訂正復号部, 261 拡散符号発生部, 262 初期値出力部, 263 初期値設定部, 264 レベル変換部, 265 拡散部

Claims (12)

  1. ディジタル変調を行うことにより得られる変調信号を送信する送信装置において、
    送信すべき情報である主信号のシンボルと、伝送路上で生じる非線形歪みを受信側で補償するために用いられるパイロット信号のシンボルとを、少なくとも1スロットに含む複数のスロットから構成されるフレームのシンボルをディジタル変調することにより得られる変調信号であって、前記主信号のシンボル、及び前記パイロット信号のシンボルを、複数の変調方式の中から選択された選択変調方式でディジタル変調することにより得られる変調信号を送信する送信装置であり、
    前記複数の変調方式それぞれに対応付けて、エネルギー拡散に用いる拡散符号としてのPRBS(Pseudorandom Binary Sequence)の初期値を記憶する記憶手段と、
    前記記憶手段に記憶された複数の変調方式に対応付けられた初期値の中から、前記選択変調方式に対応付けられた初期値を選択する選択手段と、
    前記初期値を用いて、前記拡散符号を発生する発生手段と、
    前記拡散符号を用いて、前記パイロット信号のシンボルのエネルギー拡散を行う拡散手段と
    を備える送信装置。
  2. 前記変調方式に対応付けられる初期値は、その変調方式の前記パイロット信号のシンボルをエネルギー拡散して得られるシンボルの前記変調信号のPAPR(Peak-to-Average Power Ratio)を最大又は最小にする値である
    請求項1に記載の送信装置。
  3. 前記変調信号のPAPRを最大又は最小にする初期値は、シミュレーションによって求められる
    請求項2に記載の送信装置。
  4. 前記変調方式に対応付けられる初期値は、その変調方式の前記パイロット信号のシンボルをエネルギー拡散して得られるシンボルが取り得るシンボル値を均一に出現させる値である
    請求項1に記載の送信装置。
  5. 前記シンボル値を均一に出現させる初期値は、シミュレーションによって求められる
    請求項4に記載の送信装置。
  6. 前記初期値を、1フレーム周期、又は1スロット周期で前記発生手段に設定する初期値設定手段をさらに備える
    請求項1に記載の送信装置。
  7. 前記記憶手段に、初期値を設定することにより、前記記憶手段に記憶された初期値を書き換える記憶値設定手段をさらに備える
    請求項1に記載の送信装置。
  8. 前記変調方式に対応付けられる初期値は、前記変調方式の前記パイロット信号のシンボルをエネルギー拡散して得られるシンボルの前記変調信号のPAPR(Peak-to-Average Power Ratio)をより大又は小にし、かつ、前記変調方式の前記パイロット信号のシンボルをエネルギー拡散して得られるシンボルが取り得るシンボル値をより均一に出現させる値である
    請求項1に記載の送信装置。
  9. 前記変調方式に対応付けられる初期値は、
    前記複数の変調方式のうちの、変調信号の振幅が一定の振幅一定変調方式については、前記振幅一定変調方式の前記パイロット信号のシンボルをエネルギー拡散して得られるシンボルの前記変調信号のPAPR(Peak-to-Average Power Ratio)をより小にし、かつ、前記変調方式の前記パイロット信号のシンボルをエネルギー拡散して得られるシンボルが取り得るシンボル値をより均一に出現させる値であり、
    前記複数の変調方式のうちの、変調信号の振幅が一定でない振幅可変変調方式については、前記振幅可変変調方式の前記パイロット信号のシンボルをエネルギー拡散して得られるシンボルの前記変調信号のPAPRをより大にし、かつ、前記振幅可変変調方式の前記パイロット信号のシンボルをエネルギー拡散して得られるシンボルが取り得るシンボル値をより均一に出現させる値である
    請求項1に記載の送信装置。
  10. 前記発生手段は、15次のM系列(maximal-length sequences)を、前記拡散符号として発生し、
    前記複数の変調方式は、BPSK(Binary Phase Shift Keying),QPSK(Quadrature Phase Shift Keying),8PSK(Phase Shift Keying),16APSK(Amplitude Phase Shift Keying)、及び32APSKのうちの2以上を含み、
    BPSKに対応付けられる初期値は、000011111000000b(その前の値が2進数であることを表す)であり、
    QPSKに対応付けられる初期値は、110100111100101bであり、
    8PSKに対応付けられる初期値は、010000110100111bであり、
    16APSKに対応付けられる初期値は、010011110000110bであり、
    32APSKに対応付けられる初期値は、001111010101010bである
    請求項1に記載の送信装置。
  11. 前記発生手段は、15次のM系列(maximal-length sequences)を、前記拡散符号として発生し、
    前記複数の変調方式は、BPSK(Binary Phase Shift Keying),QPSK(Quadrature Phase Shift Keying),8PSK(Phase Shift Keying),16APSK(Amplitude Phase Shift Keying)、及び32APSKのうちの2以上を含み、
    BPSKに対応付けられる初期値は、011010101101101b(その前の値が2進数であることを表す)であり、
    QPSKに対応付けられる初期値は、010000100001000bであり、
    8PSKに対応付けられる初期値は、010110011011011bであり、
    16APSKに対応付けられる初期値は、010011110000110bであり、
    32APSKに対応付けられる初期値は、001111010101010bである
    請求項1に記載の送信装置。
  12. ディジタル変調を行うことにより得られる変調信号を送信する送信装置の送信方法において、
    送信すべき情報である主信号のシンボルと、伝送路上で生じる非線形歪みを受信側で補償するために用いられるパイロット信号のシンボルとを、少なくとも1スロットに含む複数のスロットから構成されるフレームのシンボルをディジタル変調することにより得られる変調信号であって、前記主信号のシンボル、及び前記パイロット信号のシンボルを、複数の変調方式の中から選択された選択変調方式でディジタル変調することにより得られる変調信号を送信する送信装置の送信方法であり、
    前記複数の変調方式それぞれに対応付けて、エネルギー拡散に用いる拡散符号の初期値を記憶する記憶手段に記憶された複数の変調方式に対応付けられた初期値の中から、前記選択変調方式に対応付けられた初期値を選択し、
    前記初期値を用いて、前記拡散符号を発生し、
    前記拡散符号を用いて、前記パイロット信号のシンボルのエネルギー拡散を行う
    ステップを含む送信方法。
JP2007170108A 2007-06-28 2007-06-28 送信装置、及び送信方法 Active JP4842892B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007170108A JP4842892B2 (ja) 2007-06-28 2007-06-28 送信装置、及び送信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007170108A JP4842892B2 (ja) 2007-06-28 2007-06-28 送信装置、及び送信方法

Publications (2)

Publication Number Publication Date
JP2009010686A JP2009010686A (ja) 2009-01-15
JP4842892B2 true JP4842892B2 (ja) 2011-12-21

Family

ID=40325318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007170108A Active JP4842892B2 (ja) 2007-06-28 2007-06-28 送信装置、及び送信方法

Country Status (1)

Country Link
JP (1) JP4842892B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6195755B2 (ja) * 2013-07-19 2017-09-13 日本放送協会 Ofdm変調方式の送信装置及び受信装置
US9948490B2 (en) * 2015-11-06 2018-04-17 Qualcomm Incorporated Preamble for non-linearity estimation

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3576787B2 (ja) * 1998-01-22 2004-10-13 株式会社東芝 Ofdm信号送受信方法、ofdm信号送受信装置、ofdm信号送信方法及びofdm信号送信装置

Also Published As

Publication number Publication date
JP2009010686A (ja) 2009-01-15

Similar Documents

Publication Publication Date Title
US11362700B2 (en) Efficient methods for generating chirp spread spectrum signals
US5583884A (en) Spread spectrum modulation and demodulation systems which accelerate data rate without increasing multilevel indexing of primary modulation
JPH08331095A (ja) 通信システム
EP0358466B1 (en) A direct sequence modulation apparatus
JPH07123025A (ja) 無線データ通信装置
CN107005356B (zh) 编码装置、编码方法、解码装置、解码方法、存储介质及无线通信***
JP4842892B2 (ja) 送信装置、及び送信方法
JP3613219B2 (ja) 変調装置、通信システム、変調プログラム
JPH09223983A (ja) スペクトラム拡散通信用送信機及び受信機
US6611567B1 (en) Method and apparatus for pulse shaping
JP2015177549A (ja) 位相変調信号用の同期復調電子回路
KR100441196B1 (ko) 연속 위상 직교 진폭 변조 및 복조 장치
EP1931056A1 (en) Modulator, filter, filter gain control method, and code modulating method
US5546423A (en) Spread spectrum digital transmission system using low-frequency pseudorandom encoding of the wanted information and spectrum spreading and compression method used in a system of this kind
JP3348451B2 (ja) 送信方法、送信装置、ビタビ復号方法およびビタビ復号装置
JPH09116589A (ja) 多値数可変変復調器および無線通信装置
JPH05268279A (ja) バースト送信装置
JP2008182614A (ja) 無線通信装置
JP2975390B2 (ja) 多値数可変変復調器
US9130808B2 (en) Apparatus and method for communication using near Golay sequence
JP2005094802A (ja) スペクトラム拡散通信用送信機及び受信機
JPH06232918A (ja) ビタビ復号方法およびその装置
JP2571122B2 (ja) マンチェスタm系列符号変調装置
JP4228353B2 (ja) 直交周波数分割多重信号の送受信システム及び直交周波数分割多重信号の送受信方法
JP3818525B2 (ja) 直交周波数分割多重信号受信装置及び直交周波数分割多重信号の受信方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111006

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4842892

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250