JP4826307B2 - Melting method of high phosphorus steel - Google Patents

Melting method of high phosphorus steel Download PDF

Info

Publication number
JP4826307B2
JP4826307B2 JP2006082050A JP2006082050A JP4826307B2 JP 4826307 B2 JP4826307 B2 JP 4826307B2 JP 2006082050 A JP2006082050 A JP 2006082050A JP 2006082050 A JP2006082050 A JP 2006082050A JP 4826307 B2 JP4826307 B2 JP 4826307B2
Authority
JP
Japan
Prior art keywords
basicity
content
steel
slag
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006082050A
Other languages
Japanese (ja)
Other versions
JP2007254839A (en
JP2007254839A5 (en
Inventor
裕亮 戒田
芳和 黒瀬
芳幸 田中
明広 岩穴口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006082050A priority Critical patent/JP4826307B2/en
Publication of JP2007254839A publication Critical patent/JP2007254839A/en
Publication of JP2007254839A5 publication Critical patent/JP2007254839A5/ja
Application granted granted Critical
Publication of JP4826307B2 publication Critical patent/JP4826307B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

本発明は、転炉等の製鋼炉を用いてP(りん)を0.05mass%以上含有する高りん鋼を溶製する方法に関する。   The present invention relates to a method for melting high phosphorus steel containing 0.05 mass% or more of P (phosphorus) using a steel making furnace such as a converter.

P(りん)は、鋼中成分として存在するときには、鋼の靭性を害する元素であるため、一般には極力低減することが求められ、そのため、鋼の溶製方法も多くは、Pを低下させるものが大部分である。しかし、鋼種によっては、P(りん)を0.05mass%以上含有することが必要とされる場合があり、そのような鋼の溶製方法として特許文献1に開示の手段がある。   P (phosphorus) is an element that harms the toughness of steel when it is present as a component in steel, so it is generally required to reduce it as much as possible. Therefore, many steel melting methods reduce P as well. Is the majority. However, depending on the steel type, it may be necessary to contain 0.05 mass% or more of P (phosphorus), and there is a means disclosed in Patent Document 1 as a method for melting such steel.

この手段は、高燐極低炭素鋼を製造するために、P濃度を調整するための燐鉄を製鋼炉内にて全量添加し、製鋼炉内溶鋼のP濃度を所定値まで上昇させ、製鋼炉出湯後には燐鉄(「フェロフォスホル」ともいう)を添加せず、RH真空脱ガス処理及び成分調整を行うものであり、それにより、燐鉄中に含まれるTiのピックアップを防止できるものとされている。   In order to produce high-phosphorus ultra-low carbon steel, this means is to add the whole amount of phosphorous iron for adjusting the P concentration in the steelmaking furnace, raise the P concentration of the molten steel in the steelmaking furnace to a predetermined value, It does not add phosphorous iron (also referred to as “ferrophosphor”) after the furnace tapping, and performs RH vacuum degassing treatment and component adjustment, thereby preventing pickup of Ti contained in phosphorous iron It is said that.

特開2001-107133号公報JP 2001-107133

しかしながら、特許文献1記載の手段では、P分の添加はP純分で0.8〜1.0kg(溶鋼トン当たり)とされており、出湯時の成分(P:0.095〜0.105mass%)と対比してみると、実質的にすべてのP分が燐鉄から供給されている。これは、転炉精錬において、造滓剤としてCaOを多量に使用するために原料溶銑に含有されていたP分が必要以上に脱Pされ、それを補償するため多量の燐鉄(以下「Fe-P」と略記する)の添加を必要とするためである。このような操作は、合金鉄としてのFe-Pの消費による溶鋼コストの上昇を招くこと原因となる。また、上記特許文献1記載の手段では、出湯後のP含有量の調整が行なわれないために、最終製品のP含有量の精密な調整が困難であるという問題もある。   However, in the means described in Patent Document 1, the addition of P is 0.8 to 1.0 kg (per ton of molten steel) in terms of pure P, in contrast to the component at the time of pouring (P: 0.095 to 0.105 mass%). Looking at it, virtually all the P content is supplied from phosphorous iron. This is because, in converter refining, the P content contained in the raw iron melt is excessively depleted in order to use a large amount of CaO as the ironmaking agent, and a large amount of phosphorous iron (hereinafter referred to as “Fe” This is because the addition of -P "is abbreviated. Such an operation causes an increase in the molten steel cost due to the consumption of Fe-P as the alloy iron. Further, the means described in Patent Document 1 has a problem in that it is difficult to precisely adjust the P content of the final product because the P content after pouring is not adjusted.

本発明は、上記特許文献1に記載の手段の有する問題点を解決することを目的とし、原料溶銑中に含有されているP分を転炉吹止時において残留させることによってFe-Pの使用量を削減して高りん鋼の溶製コストを低減するとともに、出湯後の成分調整を可能にして目標成分への的中率を高める高りん鋼の溶製方法を提供することを目的とする。   The object of the present invention is to solve the problems of the means described in Patent Document 1, and to use Fe-P by leaving the P content contained in the raw material hot metal at the time of blowing the converter. The purpose of the present invention is to provide a high phosphorus steel melting method that reduces the amount of high phosphorus steel and reduces the cost of melting high phosphorus steel, and also enables adjustment of the components after tapping to increase the hit ratio to the target component. .

本発明者は、低い塩基度の下で脱炭製錬するときには、脱炭製錬過程での脱燐が生じ難いことに基礎をおき、低塩基度の下で安定操業が可能であり、かつ、高Pの目標吹止成分が得られる条件を追求して本発明を完成した。   The present inventor, when decarburizing and smelting under low basicity, is based on the difficulty of dephosphorization in the decarburizing and smelting process, can be stably operated under low basicity, and The present invention was completed in pursuit of conditions under which a high P target blowing component can be obtained.

本発明の高りん鋼の溶製方法は、スロッピングを抑止できることを条件として、可及的に低い塩基度を有する転炉スラグを生成せしめて転炉錬を行うこととするものである。
具体的には、高りん鋼の吹練に当たり、転炉操業結果を解析して塩基度とりん分配比との関係式を得ておき、該関係式及び溶銑中Si含有量に基づいて吹止目標P含有量を有する溶鋼を得るための塩基度を求め、該塩基度が達成されるようにCaOを添加して転炉精錬を行うこととするものである。但し、上記塩基度は溶銑中Si含有量及び炉の使用回数により定まるスロッピング抑制可能最低塩基度を下回らないことを条件とする。なお、塩基度とは、転炉スラグ中のCaO含有量(mass%)に対するSiO2含有量(mass%)の比をいう。また、高りん鋼とは、Pの含有量が0.05mass%以上の鋼をいい、他の合金成分の如何を問わない。
Melting method of the high phosphorus steel of the present invention, as a condition to be able to suppress slopping, it is an to perform the smelting converter rectification by yielding converter slag with a lowest possible basicity.
Specifically, when blowing high-phosphorus steel, the converter operation results were analyzed to obtain a relational expression between basicity and phosphorus distribution ratio, and based on the relational expression and the Si content in the hot metal, Basicity for obtaining molten steel having the target P content is obtained, and converter refining is performed by adding CaO so that the basicity is achieved. However, the basicity must be such that it does not fall below the minimum basicity that can suppress slopping, which is determined by the Si content in the hot metal and the number of times the furnace is used. Note that the basicity, refers to the ratio of the SiO 2 content relative CaO content of the converter slag (mass%) (mass%) . Further, high phosphorus steel refers to steel having a P content of 0.05 mass% or more, regardless of other alloy components.

上記発明を実施するに当たり、前記転炉スラグは、10mass%以上のMgOを含有していることとすることができる。   In carrying out the above invention, the converter slag may contain 10 mass% or more of MgO.

上記発明により高りん鋼を溶製するに当たっては、前記塩基度とりん分配比との関係式を高りん鋼の連続溶製回数により修正して用いることが望ましい。   In melting high phosphorus steel according to the above invention, it is desirable to use the relational expression between the basicity and the phosphorus distribution ratio modified by the number of times of continuous high phosphorus steel melting.

本発明により、原料溶銑中に含有されているP分を転炉吹止時において高りん鋼として必要な程度に残留させることができ、それによりFe-Pの使用量を削減して高りん鋼の溶製コストを低減することができる。また、目標成分への的中率を向上させることができ、さらに、成分調整剤としてごく僅かのFe-Pを使用することによって、最終製品のP含有量を目標値に極めて厳密に合わせることができる。   According to the present invention, the P content contained in the raw material hot metal can be left as high phosphorus steel as necessary at the time of blowing the converter, thereby reducing the amount of Fe-P used and high phosphorus steel. The melting cost of can be reduced. Moreover, the hit ratio to the target component can be improved, and furthermore, by using a very small amount of Fe-P as a component modifier, the P content of the final product can be adjusted to the target value very strictly. it can.

本発明を実施するに当たっては、第1にスロッピングを抑止できることを条件として、可及的に低い塩基度を有する転炉スラグを生成せしめて転炉製錬を行う。スロッピングとは、転炉製錬の際の酸素吹錬により溶銑中のSiが酸化されてSiO2が生成してスラグの塩基度が低下し、同時に生成するFeOとともにスラグの融点が下がり、その結果、吹錬反応によって生成するCOガスによってスラグがフォーミング(泡化)し、スラグが転炉のフリーボード以上のレベルを超えて溢れ出る現象であって、転炉の円滑な吹錬操業を阻害し、生産性を低下させるので、その発生を防止する必要がある。本発明は、脱P反応を防止して吹止Pを高くするために、塩基度を極力低下させる。しかしながら、このような低塩基度操業はスロッピングの発生原因となりやすい。そのため、本発明では、上記のとおり、スロッピングを抑止できることを条件として、可及的に低い塩基度を有する転炉スラグを生成せしめて転炉製錬を行うこととする。 In carrying out the present invention, converter smelting is performed by first generating converter slag having as low basicity as possible, provided that slopping can be suppressed. Slopping means that the oxygen in the hot metal during the converter smelting oxidizes Si in the hot metal to produce SiO 2 and lowers the basicity of the slag. At the same time, the melting point of the slag decreases with the generated FeO. As a result, the slag is formed (bubbled) by the CO gas generated by the blowing reaction, and the slag overflows beyond the level of the freeboard of the converter, hindering the smooth blowing operation of the converter. However, since productivity is lowered, it is necessary to prevent the occurrence thereof. In the present invention, the basicity is reduced as much as possible in order to prevent the de-P reaction and increase the blowing P. However, such low basicity operation tends to cause slopping. Therefore, in the present invention, as described above, converter slag is generated by generating converter slag having as low a basicity as possible on the condition that slopping can be suppressed.

このスロッピンングの発生を抑制するには、第一に塩基度を大きく維持することが挙げられるが、転炉の使用回数も影響する。一般に、使用回数が大きくなるにつれてスロッピングが生ずる塩基度の下限値が低下する。一方、塩基度は原料溶銑中のSi量と滓化剤として炉中に添加されるCaO量によって決定される。したがって、スロッピンングの発生抑制条件を決定するには、溶銑中Si含有量に応じた最低塩基度を調査して決定し、これを炉の使用回数により修正した最低塩基度表(表1に示す)を作成し、Si量及び炉の使用回数により与えられる最低塩基度をスロッピング抑制可能最低塩基度とすればよい。典型的には、溶銑中Si含有量:0.10%、炉の使用回数:1500回における上記スロッピング抑制可能最低塩基度A3は2.0程度となる。なお、塩基度とは、通例に従い、転炉スラグ中のCaO含有量(mass%)に対するSiO2含有量(mass%)の比をいう。 In order to suppress the occurrence of this slopping, firstly, it is possible to maintain a large basicity, but the number of times the converter is used is also affected. In general, as the number of uses increases, the lower limit of basicity at which slapping occurs is reduced. On the other hand, the basicity is determined by the amount of Si in the raw material hot metal and the amount of CaO added to the furnace as a soaking agent. Therefore, in order to determine the conditions for suppressing the occurrence of slopping, the minimum basicity according to the Si content in the hot metal was investigated and determined, and this was corrected by the number of times the furnace was used (shown in Table 1). And the minimum basicity given by the amount of Si and the number of times the furnace is used may be set as the minimum basicity capable of suppressing slopping. Typically, the minimum basicity A3 capable of suppressing the above-mentioned slopping is about 2.0 when the Si content in the hot metal is 0.10% and the number of times the furnace is used: 1500 times. Note that the basicity, in accordance with a rule, refers to the ratio of the SiO 2 content relative CaO content of the converter slag (mass%) (mass%) .

Figure 0004826307
Figure 0004826307

上記のように塩基度を定めて転炉操業することにより、スロッピングの発生を見ることなく高りん鋼を溶製することが可能になる。しかしながら、本発明に従う吹錬条件は、基本的に低塩基度を用いるものであるので、転炉炉壁煉瓦が低塩基度のスラグにより強力に侵食され、炉寿命が短くなるおそれがある。そのため、本発明においては、転炉スラグ中にMgOを10mass%以上含有させることとする。好ましくは、飽和溶解度以上とする。ここに、「MgOの飽和溶解度」とは、スラグ中にMgOを溶解させた際、溶解したスラグが含むことができるMgOの限界濃度をいい、その濃度以上にMgOを添加してもMgOはスラグ中へは溶解せず溶解スラグ中のMgO濃度が一定となる。MgOの飽和溶解度の想定方法としては、例えばスラグ中への添加MgO濃度を増加させ、溶解スラグを回収してMgO濃度を測定し、添加MgOの量によらず溶解スラグ中のMgO濃度が一定となる濃度を調査することで測定できる。   By performing the converter operation with the basicity determined as described above, it becomes possible to melt high phosphorus steel without seeing the occurrence of slopping. However, since the blowing conditions according to the present invention basically use low basicity, the converter wall bricks are strongly eroded by low basicity slag, which may shorten the furnace life. For this reason, in the present invention, MgO is contained in the converter slag by 10 mass% or more. Preferably, it is not less than the saturation solubility. Here, “saturated solubility of MgO” means the limit concentration of MgO that can be contained in the dissolved slag when MgO is dissolved in the slag, and even if MgO is added above that concentration, the MgO is still slag The MgO concentration in the molten slag is constant without dissolving in. As a method for assuming the saturation solubility of MgO, for example, increasing the added MgO concentration in the slag, collecting the dissolved slag and measuring the MgO concentration, the MgO concentration in the dissolved slag is constant regardless of the amount of added MgO. Can be measured by investigating the concentration.

図1は、塩基度とMgOの飽和溶解度との関係を示すグラフである。図1から明らかなように、MgOの飽和溶解度は塩基度に依存することなくほぼ一定(約10mass%)である。したがって、本発明では、スラグ中のMgO含有量を、上記飽和溶解度以上含有させることとする。本発明者の知見によれば、スラグ中のMgO含有量を10mass%以上とすれば、吹錬過程におけるMgOの溶損指数を1.3以下に抑制することができ、実質的に従来の高塩基度のスラグを用いたときと同程度の炉寿命を得ることができる。実操業の指針としては、スラグ中のMgO含有量を12mass%程度とすれば、低塩基度、例えば塩基度:2〜3であっても十分炉壁の溶損を防止できる。なお、「溶損指数」とは、転炉操業における塩基度が通常の3.5〜5.5のときの転炉炉壁煉瓦の溶損量を基準値1.0としたときに対する転炉炉壁溶損量の指数であり、1.0超では溶損進行、1.0未満では溶損抑止と判定される。   FIG. 1 is a graph showing the relationship between basicity and the saturation solubility of MgO. As apparent from FIG. 1, the saturation solubility of MgO is almost constant (about 10 mass%) without depending on the basicity. Therefore, in the present invention, the MgO content in the slag is contained in the saturation solubility or more. According to the inventor's knowledge, if the MgO content in the slag is 10 mass% or more, the MgO melting index in the blowing process can be suppressed to 1.3 or less, and the conventional high basicity can be substantially reduced. It is possible to obtain the same furnace life as when using this slag. As a guideline for actual operation, if the MgO content in the slag is about 12 mass%, the melting of the furnace wall can be sufficiently prevented even at a low basicity, for example, a basicity of 2 to 3. Note that the “melting loss index” is the amount of the converter wall wall erosion when the basicity in the converter operation is 3.5 to 5.5 when the reference value is 1.0. It is an index. If it exceeds 1.0, it is judged that the erosion progresses, and if it is less than 1.0, the erosion is suppressed.

本発明により高りん鋼を溶製するに当たっては、吹止Pの含有量の目標値を製品のP含有量よりやや低い値に設定して、そのP含有量が吹止時に実現するように吹錬することが望ましい。そのような操業は、高りん鋼を吹錬する際の転炉操業結果を解析して塩基度とりん分配比との関係式を得ておき、この関係式を用いて、原料溶銑のSi含有量及びCaOの添加量に基づいて定まる塩基度を吹止P含有量が吹止目標値に一致するように調整することによって達成することができる。以下、かかる塩基度の調整方法について具体的に説明する。   In melting high-phosphorus steel according to the present invention, the target value of the blown P content is set to a value slightly lower than the P content of the product, and the blown P is achieved so that the P content is achieved at the time of blowing. It is desirable to smelt. For such operations, the converter operation results when high-phosphorus steel is blown are analyzed to obtain a relational expression between basicity and phosphorus distribution ratio. The basicity determined based on the amount and the added amount of CaO can be achieved by adjusting the blowing P content to match the blowing target value. Hereinafter, the method for adjusting the basicity will be specifically described.

図2は、本発明にしたがって高りん鋼を吹錬したときの塩基度とりん分配比(「P分配比」ともいう)の関係を示すグラフの一例である。この例では塩基度BとP分配比Rの関係式は
R=14.354B+5.0085・・・(1)
により関係付けられている。(1)式から塩基度BとP分配比の関係は表2のとおりとなる。
FIG. 2 is an example of a graph showing the relationship between basicity and phosphorus distribution ratio (also referred to as “P distribution ratio”) when high phosphorus steel is blown in accordance with the present invention. In this example, the relationship between basicity B and P partition ratio R is
R = 14.354B + 5.0085 ... (1)
Are related. From the equation (1), the relationship between the basicity B and the P distribution ratio is as shown in Table 2.

Figure 0004826307
Figure 0004826307

この場合において、下記の条件の下で所期の吹止目標P含有量を有する溶鋼を得るための塩基度を計算上の試行錯誤を繰り返す方法によって求める。
原料溶銑のSi含有量:0.30%
原料溶銑のP含有量:0.150mass%
転炉装入溶銑量:200×103kg
吹止目標P含有量:0.070mass%
In this case, the basicity for obtaining the molten steel having the desired blowing target P content under the following conditions is determined by a method of repeated calculation and trial and error.
Raw material hot metal Si content: 0.30%
Raw material hot metal P content: 0.150mass%
Converter charge: 200 × 10 3 kg
Blown target P content: 0.070mass%

(ケースI:塩基度を2.0とする場合)
溶鋼からスラグに移行するPの量:(0.150-0.070)×200×103/100=160kg
溶鋼からスラグに移行するSiの量:0.30×200×103/100=600kg
SiO2生成量:600×60/28=1286kg
B=2.0であるから、
CaOの添加量:1286×2=2572kg
スラグ中MgO含有量を12%、FeO含有量を10%とすると、
スラグ中MgO量:618kg
スラグ中FeO量:515kg
スラグの全質量:4038+618+515=5171kg
スラグのP含有量:(160/5171)×100=3.1%
分配比Rから計算されるスラグ中Pの含有量:33.7×0.07=2.4%
したがって、このケースIでは、塩基度を2.0としたときのスラグ中Pの含有量が、分配比から計算されるPの含有量と異なっており、必要な脱りんが行えない。
(Case I: When basicity is set to 2.0)
The amount of P to migrate from the molten steel to the slag: (0.150-0.070) × 200 × 10 3/100 = 160kg
The amount of Si to transition from a molten steel slag: 0.30 × 200 × 10 3/ 100 = 600kg
SiO 2 production: 600 × 60/28 = 1286kg
Since B = 2.0,
Addition amount of CaO: 1286 × 2 = 2572kg
If the MgO content in the slag is 12% and the FeO content is 10%,
MgO amount in slag: 618kg
FeO amount in slag: 515kg
Total mass of slag: 4038 + 618 + 515 = 5171kg
P content of the slag :( 160/5171) × 100 = 3.1%
P content in slag calculated from distribution ratio R: 33.7 × 0.07 = 2.4%
Therefore, in this case I, the content of P in the slag when the basicity is 2.0 is different from the content of P calculated from the distribution ratio, and the necessary dephosphorization cannot be performed.

(ケースII:塩基度を2.5とする場合)
ケースIでは、脱りん不十分であったので、塩基度を2.5に上げて計算をやり直すこととする。ケースIの場合と同様にして再計算を行う。
溶鋼からスラグに移行するPの量:(0.150-0.070)×200×103/100=160kg
溶鋼からスラグに移行するSiの量:0.30×200×103/100=600kg
SiO2生成量:600×60/28=1286kg
B=2.5であるから、CaOの添加量:1286×2.5=3215kg
スラグ中MgO含有量を12%、FeO含有量を10%とすると、
スラグ中MgO量:687kg
スラグ中FeO量:572kg
スラグの全質量:4501+687+572=5760kg
スラグのP含有量:(160/5760)×100=2.7%
分配比Rから計算されるスラグ中Pの含有量:0.07×40.9=2.8%
このケースIIでは、塩基度2.5としたときのスラグ中のPの含有量が、分配比から計算されるPの含有量の許容範囲内に収まっており、上記条件で必要な脱りんが行えることを示している。換言すれば、CaOを1286kg投入し塩基度が2.5になるように調整して操業すれば、吹き止めP含有量が0.066mass%となり、所期の目標値に近い脱りんが達成できる。
(Case II: When the basicity is 2.5)
In Case I, dephosphorization was insufficient, so the basicity was increased to 2.5 and the calculation was repeated. Recalculate in the same manner as in Case I.
The amount of P to migrate from the molten steel to the slag: (0.150-0.070) × 200 × 10 3/100 = 160kg
The amount of Si to transition from a molten steel slag: 0.30 × 200 × 10 3/ 100 = 600kg
SiO 2 production: 600 × 60/28 = 1286kg
Since B = 2.5, the amount of CaO added: 1286 × 2.5 = 3215kg
If the MgO content in the slag is 12% and the FeO content is 10%,
MgO amount in slag: 687kg
FeO amount in slag: 572kg
Total mass of slag: 4501 + 687 + 572 = 5760kg
P content of slag: (160/5760) x 100 = 2.7%
P content in slag calculated from distribution ratio R: 0.07 × 40.9 = 2.8%
In this case II, the P content in the slag when the basicity is 2.5 is within the allowable range of the P content calculated from the distribution ratio, and the necessary dephosphorization can be performed under the above conditions. Is shown. In other words, if 1286 kg of CaO is introduced and the basicity is adjusted to 2.5, the operation is performed so that the blowing P content becomes 0.066 mass%, and dephosphorization close to the intended target value can be achieved.

上記の例では、二つにケースについて計算上の試行錯誤を繰り返して、所期の吹止めP含有量を与える塩基度、ひいてはCaO投入量を決定したが、その決定方法は、これに限られるものではない。例えば、上記試行錯誤の過程をプロセスコンピュータにより行うことができることは当然である。   In the above example, calculation and trial and error were repeated for the two cases to determine the basicity that gives the desired blowing-stopper P content, and thus the CaO input amount, but the determination method is limited to this. It is not a thing. For example, it is natural that the process of trial and error can be performed by a process computer.

本発明では、所定の吹止めP含有量を有する鋼を定めるに当たり、転炉操業結果を解析して得た塩基度とりん分配比との関係式を用いる。この関係式は、図2に示すように、高りん鋼を吹錬したときに塩基度とりん分配比を測定し、両者関係を解析することによって得ることができる。しかしながら、この関係式は、操業上の種々の要因、例えば、高りん鋼の連続吹錬回数、出鋼温度、吹止め目標P含有量、吹止めO(酸素)含有量等によって変動するので、これらについて層別し、その解析結果に基づいて、これら要因の影響係数を算出して、上記関係式を修正しておくなど、適当な修正手段を施すのがよい。   In the present invention, a relational expression between basicity and phosphorus distribution ratio obtained by analyzing the converter operation result is used in determining the steel having a predetermined blowing stopper P content. As shown in FIG. 2, this relational expression can be obtained by measuring the basicity and the phosphorus distribution ratio when high phosphorus steel is blown and analyzing the relationship between the two. However, this relational expression varies depending on various operational factors, for example, the number of continuous blowing operations of high phosphorus steel, the output temperature, the target P content of blowing, the blowing O (oxygen) content, etc. It is preferable to apply appropriate correction means such as stratifying these, calculating the influence coefficient of these factors based on the analysis result, and correcting the relational expression.

特に、高りん鋼の連続吹錬回数は、それまでの鋼りん鋼の吹錬の際の転炉スラグが炉壁に付着・堆積するなどの影響により、高りん鋼の連続吹錬回数が大きくなるにつれて、同一の塩基度について与えられるP分配比が低下する傾向が大きく、そのため前記関係式を高りん鋼の連続吹錬回数をパラメータとして補正して使用することが望ましい。図3は、上記関係式を、連続吹錬回数をパラメータとして補正した結果を示す。もちろん、かかる補正の結果をプロセスコンピュータに入力して、前記塩基度の決定計算に利用することもできる。   In particular, the number of continuous high-phosphorus steel continuous blows is high due to the effect of converter slag adhering to and accumulating on the furnace wall during the previous steel-phosphorous steel blowing. As a result, the P distribution ratio given for the same basicity tends to decrease. Therefore, it is desirable to use the above relational expression by correcting the number of continuous blows of high phosphorus steel as a parameter. FIG. 3 shows the result of correcting the above relational expression using the number of continuous blowing operations as a parameter. Of course, the result of such correction can be input to the process computer and used for the determination calculation of the basicity.

なお、本発明の実施に当たっては、スロッピングが発生しないことが重要であり、そのために塩基度の決定は、そのことを条件としてなされる。したがって、いうまでもないことであるが、前記塩基度とりん分配比との関係式、原料溶銑のSi含有量等に基づき計算上決定された塩基度が、スロッピング発生抑止限度を下回るときは、上記計算結果により決定された塩基度に代えて、スロッピング抑止限度として与えられた塩基度を採用すべきであることはいうまでもない。   In implementing the present invention, it is important that no slipping occurs, and therefore the basicity is determined on the condition. Therefore, it goes without saying that when the basicity calculated on the basis of the relational expression between the basicity and the phosphorus distribution ratio, the Si content of the raw material hot metal, etc. is below the limit for preventing the occurrence of slopping, Needless to say, the basicity given as the slopping suppression limit should be adopted instead of the basicity determined by the calculation result.

また、本発明を利用して吹止め目標P含有量を有する高りん鋼を吹錬することができるが、この吹止め目標P含有量は、一般に、製品の目標P含有量をわずかに下回るものとして決定されており、それにより、製品のP含有量が当該製品の規格値を上回ることがないようになっている。したがって、本発明を利用して、高りん鋼を溶製した場合には、吹錬終了後の転炉中において、又は出鋼後取鍋(いわゆる二次精錬取鍋を含む)中において不足したP分を添加すべきことは当然である。なお、その際のP分添加に伴うTi分の汚染を最小限にするため、本発明においては、吹止め目標P含有量は、製品の規格値(目標値)に対して、極力小さく設定すべきことはいうまでもない。   In addition, the present invention can be used to blow high phosphorus steel having a blowing target P content, but this blowing target P content is generally slightly lower than the target P content of the product. As a result, the P content of a product does not exceed the standard value of the product. Therefore, when high phosphorus steel is melted by using the present invention, it is insufficient in the converter after the end of blowing or in the ladle after tapping (including so-called secondary refining ladle). Of course, the P component should be added. In order to minimize the contamination of Ti due to the addition of P at that time, in the present invention, the target P content for blowing is set as small as possible with respect to the standard value (target value) of the product. Needless to say.

公称360tの純酸素上吹転炉に表3に示す組成(単位:mass%)の原料溶銑を360t装入し、本発明により高りん鋼を溶製した。製品の目標P含有量及び吹き止め目標P含有量は、実施例1の場合、実施例2の場合とも0.10mass%であり、操業条件は表4に示すとおりであった。なお、実施例1と実施例2との違いは、高りん鋼連続吹錬回数が大きくなっていることにある。そのため、これら実施例において塩基度とりん分配比との関係式の基礎式は同一であるが、高りん鋼の連続吹錬回数の増加に伴う補正を行う必要があり、実施例2では、すでに図3で説明した手法を用いて塩基度とりん分配比との関係式の補正を行った。   A 360 t nominal oxygen top blow converter was charged with 360 t of raw material hot metal having the composition shown in Table 3 (unit: mass%), and high phosphorus steel was melted according to the present invention. The target P content and the blowing target P content of the product were 0.10 mass% in Example 1 and Example 2, and the operating conditions were as shown in Table 4. The difference between Example 1 and Example 2 is that the number of continuous high-phosphorus steel blowing operations is increased. Therefore, in these examples, the basic expression of the relational expression between the basicity and the phosphorus distribution ratio is the same, but it is necessary to perform correction accompanying an increase in the number of continuous blowing of high phosphorus steel. The relational expression between the basicity and the phosphorus distribution ratio was corrected using the method described in FIG.

Figure 0004826307
Figure 0004826307

Figure 0004826307
Figure 0004826307

本発明における塩基度とMgOの飽和溶解度との関係を示すグラフである。It is a graph which shows the relationship between the basicity in this invention, and the saturation solubility of MgO. 本発明にしたがって高りん鋼を吹錬したときの塩基度とりん分配比(「P分配比」ともいう)の関係を示すグラフの一例である。It is an example of the graph which shows the relationship between a basicity when a high phosphorus steel is blown in accordance with this invention, and a phosphorus distribution ratio (it is also called "P distribution ratio"). 高りん鋼を吹錬したときの塩基度とりん分配比の関係を示すグラフを連続吹錬回数をパラメータとして補正した結果である。It is the result of correcting the graph showing the relationship between basicity and phosphorus distribution ratio when high phosphorus steel is blown, using the number of continuous blowing as a parameter.

Claims (3)

高りん鋼の吹練に当たり、転炉操業結果を解析して塩基度とりん分配比との関係式を得ておき、該関係式及び溶銑中Si含有量に基づいて吹止目標P含有量を有する溶鋼を得るための塩基度を求め、該塩基度が達成されるようにCaOを添加して転炉精錬を行うことを特徴とする高りん鋼の溶製方法。
但し、上記塩基度は溶銑中Si含有量及び炉の使用回数により定まるスロッピング抑制可能最低塩基度を下回らないことを条件とする。
ここに塩基度とは、転炉スラグ中のCaO含有量(mass%)に対するSiO2含有量(mass%)の比をいう。また、高りん鋼とはP含有量が0.05mass%以上の鋼をいう。
When blowing high phosphorus steel, the converter operation results are analyzed to obtain a relational expression between basicity and phosphorus distribution ratio. Based on the relational expression and the Si content in the hot metal, the target P content is determined. A method for producing high-phosphorus steel, characterized in that basicity for obtaining molten steel is obtained, and converter refining is performed by adding CaO so as to achieve the basicity.
However, the basicity must be such that it does not fall below the minimum basicity that can suppress slopping, which is determined by the Si content in the hot metal and the number of uses of the furnace.
Here, basicity refers to the ratio of the SiO 2 content (mass%) to the CaO content (mass%) in the converter slag. Moreover, high phosphorus steel means steel with P content of 0.05 mass% or more.
転炉スラグは、10mass%以上のMgOを含有していることを特徴とする請求項1記載の高りん鋼の溶製方法。   The method for melting high phosphorus steel according to claim 1, wherein the converter slag contains 10 mass% or more of MgO. 塩基度とりん分配比との関係式が高りん鋼の連続溶製回数により修正されたものであることを特徴とする請求項1又は2記載の高りん鋼の溶製方法。   The method for melting high phosphorus steel according to claim 1 or 2, wherein the relational expression between the basicity and the phosphorus distribution ratio is corrected by the number of continuous melting of high phosphorus steel.
JP2006082050A 2006-03-24 2006-03-24 Melting method of high phosphorus steel Expired - Fee Related JP4826307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006082050A JP4826307B2 (en) 2006-03-24 2006-03-24 Melting method of high phosphorus steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006082050A JP4826307B2 (en) 2006-03-24 2006-03-24 Melting method of high phosphorus steel

Publications (3)

Publication Number Publication Date
JP2007254839A JP2007254839A (en) 2007-10-04
JP2007254839A5 JP2007254839A5 (en) 2009-04-30
JP4826307B2 true JP4826307B2 (en) 2011-11-30

Family

ID=38629363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006082050A Expired - Fee Related JP4826307B2 (en) 2006-03-24 2006-03-24 Melting method of high phosphorus steel

Country Status (1)

Country Link
JP (1) JP4826307B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52107215A (en) * 1976-03-05 1977-09-08 Sumitomo Metal Ind Ltd Steel refining in converter
JPS58133310A (en) * 1982-02-01 1983-08-09 Kawasaki Steel Corp Refining of high phosphorus steel
JPH01242711A (en) * 1988-03-24 1989-09-27 Kobe Steel Ltd Method for controlling converter blowing
JPH0678563B2 (en) * 1989-12-07 1994-10-05 株式会社神戸製鋼所 Converter blowing method
JPH08104911A (en) * 1994-10-03 1996-04-23 Nippon Steel Corp Method for melting phosphorus-containing steel
JP4048010B2 (en) * 1999-11-19 2008-02-13 株式会社神戸製鋼所 Method for estimating phosphorus equilibrium in converters and hot metal pretreatment vessels.

Also Published As

Publication number Publication date
JP2007254839A (en) 2007-10-04

Similar Documents

Publication Publication Date Title
US8277537B2 (en) Method of manufacturing ultra low carbon ferritic stainless steel
JP4701727B2 (en) Melting method of high carbon ultra low phosphorus steel
JP5225308B2 (en) Vacuum decarburization refining method for chromium-containing molten steel
JP6937190B2 (en) Ni-Cr-Mo-Nb alloy and its manufacturing method
KR101252644B1 (en) Flux and Method for refining molten steel by Converter
WO2016027765A1 (en) Method for controlling ti concentration in steel, and method for producing silicon-deoxidized steel
JP4463701B2 (en) Decarburization method for molten stainless steel and method for producing ultra-low carbon stainless steel
JP4656007B2 (en) Method of processing molten iron by adding Nd and Ca
JP6410311B2 (en) Stainless steel refining method
JP2010242178A (en) Method for manufacturing steel for high strength steel wire excellent in fatigue characteristics
JP4826307B2 (en) Melting method of high phosphorus steel
JPH10237533A (en) Production of hic resistant steel
JP2010116610A (en) Method for manufacturing low-sulfur thick steel plate excellent in haz toughness at the time of inputting large amount of heat
JP4648820B2 (en) Method for producing extremely low sulfur chromium-containing molten steel
CN109423536A (en) A kind of smelting process of Ultra-low carbon 13Cr stainless steel
KR101786931B1 (en) Method for refining of molten stainless steel
KR102581777B1 (en) method of manufacturing austenite stainless steel
JP4421314B2 (en) Determination of slag amount in hot metal refining
JP3994641B2 (en) Manufacturing method of high clean ultra low carbon steel
JP2002146429A (en) METHOD FOR PRODUCING AUSTENITIC HIGH Mn STAINLESS STEEL
KR101045970B1 (en) Converter refining method to control high end carbon
KR20000032586A (en) Method for producing lowest phosphor steel by using normal melting wire
JP5454313B2 (en) Blowing acid decarburization method for chromium-containing steel
KR20060035274A (en) Method for manufacturing molten steel for galvanized steel plate
JP2007063581A (en) Method for refining molten chromium-containing steel

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090310

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100714

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110816

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110829

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees