JP2007063581A - Method for refining molten chromium-containing steel - Google Patents

Method for refining molten chromium-containing steel Download PDF

Info

Publication number
JP2007063581A
JP2007063581A JP2005248075A JP2005248075A JP2007063581A JP 2007063581 A JP2007063581 A JP 2007063581A JP 2005248075 A JP2005248075 A JP 2005248075A JP 2005248075 A JP2005248075 A JP 2005248075A JP 2007063581 A JP2007063581 A JP 2007063581A
Authority
JP
Japan
Prior art keywords
amount
chromium
alloy
refining
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005248075A
Other languages
Japanese (ja)
Inventor
Katsuhiko Kato
勝彦 加藤
Kenji Onishi
憲二 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005248075A priority Critical patent/JP2007063581A/en
Publication of JP2007063581A publication Critical patent/JP2007063581A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for refining molten chromium-containing steel by which the oxidized loss of the chromium with an oxygen-blowing is minimized, the amont of reducing silicon is reduced and the damage of refractory in a converter can be prevented. <P>SOLUTION: In the method for refining the molten chromium-containing steel, by which the molten iron subjected to a pre-treatment is charged into the converter, and the decarburize-refining is performed while blowing oxygen and adding Fe-Cr alloy being Cr source, the Si content incorporated in the Fe-Cr alloy is regurated to ≥02 to ≤2 mass%, then the alloy is added into the molten metal, thus the oxidized loss of chromium by oxygen-blowing is minimized, the amount of reducing silicon is reduced and the damage of the refractory in the converter is prevented. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、含クロム溶鋼を溶製する際に、吹酸によるクロムの酸化損失を最小に抑制し、かつ還元シリコンの節減、及び転炉耐火物の損傷を防止する含クロム溶鋼の精錬方法に関する。 The present invention relates to a method for refining chromium-containing molten steel that suppresses the oxidation loss of chromium due to blowing acid to a minimum and prevents reduction of reduced silicon and damage to converter refractories when melting chromium-containing molten steel. .

従来、転炉を用いて含クロム鋼を溶製する方法として、例えば、脱Si、脱S、又は脱Pの溶銑予備処理を施した溶銑を転炉に装入し、ランスから酸素を吹酸し、同時に高炭素Fe−Cr合金を添加して、その溶解と脱炭精錬(炭素濃度:0.1質量%以上0.7質量%以下)を行った後、更に二次精錬を行う溶製方法が採用されている。
しかし、脱炭精錬においては、スラグ中にクロム酸化物(Cr23 )が多量に生成するため、例えば、還元処理又はスラグ処理を行ってクロムを溶鋼中に回収することが行われている。この代表的な方法として、以下の方法がある。
Conventionally, as a method of melting chromium-containing steel using a converter, for example, hot metal subjected to hot metal pretreatment of de-Si, de-S or de-P is charged into the converter, and oxygen is blown from the lance. At the same time, a high carbon Fe-Cr alloy is added and melted and decarburized and refined (carbon concentration: 0.1% by mass or more and 0.7% by mass or less), followed by further secondary refining. The method is adopted.
However, in decarburization refining, since a large amount of chromium oxide (Cr 2 O 3 ) is generated in slag, for example, reduction treatment or slag treatment is performed to recover chromium in molten steel. . As this representative method, there is the following method.

例えば、特許文献1には、転炉に装入する溶銑に予備処理を施し、溶銑中のSi成分量を0.02質量%以下にして、クロム鉱石又は生石灰を添加し吹酸して、クロム鉱石中の酸化クロムを還元し、ニッケル−クロム系のステンレス鋼を溶製する方法が開示されている。
また、特許文献2及び特許文献3には、前チャージで精錬した脱炭スラグを転炉内に残し、この転炉に溶銑を装入して、例えば炭材を添加して吹酸することにより、脱炭スラグ中のクロムを還元して溶鉄中にクロムの回収を行った後、Fe−Cr合金の添加を行い、引き続き吹酸して、合金の溶解と脱炭を行う方法が開示されている。
そして、特許文献4には、添加するFe−Cr合金全量の10質量%以上90質量%以下のFe−Cr合金を溶銑に添加した後、第1の吹酸を停止し、残りのFe−Cr合金を添加して、底吹きガスにより2〜7分間の撹拌を施し、第2の吹酸を行うことにより、クロムの酸化を抑制する脱炭精錬が開示されている。
For example, in Patent Document 1, the hot metal charged in the converter is pretreated, the amount of Si component in the hot metal is set to 0.02% by mass or less, chrome ore or quicklime is added, blown acid, A method of reducing chromium oxide in ore and melting nickel-chromium stainless steel is disclosed.
Moreover, in patent document 2 and patent document 3, the decarburized slag refined by the pre-charge is left in the converter, and hot metal is charged into the converter, for example, by adding carbonaceous material and blowing acid. A method is disclosed in which chromium in decarburized slag is reduced and chromium is recovered in molten iron, followed by addition of Fe-Cr alloy, followed by blowing acid to dissolve and decarburize the alloy. Yes.
And in patent document 4, after adding the Fe-Cr alloy of 10 mass% or more and 90 mass% or less of the Fe-Cr alloy whole quantity to add to hot metal, the 1st blowing acid was stopped and the remaining Fe-Cr The decarburization refining which suppresses the oxidation of chromium is disclosed by adding an alloy, stirring for 2 to 7 minutes with bottom blowing gas, and performing 2nd blowing acid.

特開平1−215917号公報Japanese Patent Laid-Open No. 1-215917 特開平9−3517号公報JP-A-9-3517 特開平7−207323号公報JP-A-7-207323 特開平11−172317号公報JP-A-11-172317

しかしながら、前記従来の方法には未だ解決すべき以下のような問題があった。
特許文献1の方法は、クロム鉱石に含まれる酸化クロムを炭素により還元して溶銑中に回収するものであり、クロム鉱石の溶融還元を行った後、この溶銑を別の炉に入れてFe−Cr合金又はFe−Ni合金を添加し、合金の溶解とスラグの還元処理を行っている。このため、溶湯のハンドリングが煩雑で作業性が悪く、しかもクロム鉱石に含まれる不純物により、大量のスラグが発生するため、この処理に対応した設備も必要となり経済的でない。
また、特許文献2及び特許文献3の方法は、前チャージで酸化したスラグ中のクロムを、炭素又は還元性のある元素で還元して溶銑中に回収するものであり、脱炭精錬過程におけるFe−Cr合金の溶解又は脱炭を、クロムの酸化損失を抑制しながら行うことについては考慮されていない。このため、脱炭精錬過程で酸化したクロムを還元する場合、炭素及び還元性のある元素(例えば、シリコン等)のいずれか1又は2の量が増加して経済的でなく、しかもこの量の増加に伴う精錬時間の延長と共に、生成するスラグ量も増加するため、転炉耐火物の溶損も進行する。
そして、特許文献4の方法については、脱炭精錬過程におけるFe−Cr合金の溶解又は脱炭を、クロムの酸化損失を抑制しながら行うことについて考慮されていない。このため、脱炭精錬過程で酸化したクロムを還元する場合、炭素及び還元性のある元素(例えば、シリコン等)のいずれか1又は2の量が増加して経済的でなく、しかもこの量の増加に伴う精錬時間の延長と共に、生成するスラグ量も増加するため、転炉耐火物の溶損も進行する。
However, the conventional method still has the following problems to be solved.
In the method of Patent Document 1, chromium oxide contained in chromium ore is reduced with carbon and recovered in the hot metal, and after melting or reducing the chromium ore, this hot metal is put in another furnace and Fe— Cr alloy or Fe—Ni alloy is added to dissolve the alloy and reduce slag. For this reason, handling of the molten metal is complicated and workability is poor, and a large amount of slag is generated due to impurities contained in the chrome ore.
Moreover, the method of patent document 2 and patent document 3 reduces | restores chromium in the slag oxidized by the pre-charge with carbon or a reducing element, and collects it in the hot metal. -It is not considered that the melting or decarburization of the Cr alloy is performed while suppressing the oxidation loss of chromium. For this reason, when reducing chromium oxidized in the decarburization and refining process, the amount of any one or two of carbon and reducing elements (for example, silicon) increases, which is not economical, and this amount As the refining time is increased along with the increase, the amount of slag to be generated increases, so that the refractory of the converter refractory also progresses.
And about the method of patent document 4, it is not considered about melt | dissolving or decarburizing the Fe-Cr alloy in a decarburization refining process, suppressing the oxidation loss of chromium. For this reason, when reducing chromium oxidized in the decarburization and refining process, the amount of any one or two of carbon and reducing elements (for example, silicon) increases, which is not economical, and this amount As the refining time is increased along with the increase, the amount of slag to be generated increases, so that the refractory of the converter refractory also progresses.

本発明はかかる事情に鑑みてなされたもので、吹酸によるクロムの酸化損失を最小に抑制し、かつ還元シリコンの節減、及び転炉耐火物の損傷の防止が可能な含クロム溶鋼の精錬方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and a method for refining chromium-containing molten steel that can suppress oxidation loss of chromium due to blowing acid to a minimum, reduce reduced silicon, and prevent damage to converter refractories. The purpose is to provide.

前記目的に沿う本発明に係る含クロム溶鋼の精錬方法は、予備処理を施した溶銑を転炉に装入し、吹酸すると共にCr源となるFe−Cr合金を添加しながら脱炭精錬を行う含クロム溶鋼の精錬方法において、
前記Fe−Cr合金に含まれるSi成分量を、0.2質量%以上2質量%以下に調整して、前記溶銑に添加する。
The method for refining chromium-containing molten steel according to the present invention in accordance with the above object is to decarburize and refining while adding pre-treated hot metal to a converter, blowing acid and adding Fe-Cr alloy as a Cr source. In the method of refining chromium-containing molten steel,
The amount of Si component contained in the Fe—Cr alloy is adjusted to 0.2% by mass or more and 2% by mass or less and added to the hot metal.

本発明に係る含クロム溶鋼の精錬方法において、前記Fe−Cr合金は、含まれるSi成分量が異なる複数のFe−Cr合金で構成され、該複数のFe−Cr合金の配合割合を調整して前記Fe−Cr合金のSi成分量を調整することが好ましい。 In the method for refining chromium-containing molten steel according to the present invention, the Fe-Cr alloy is composed of a plurality of Fe-Cr alloys having different amounts of Si components, and the mixing ratio of the plurality of Fe-Cr alloys is adjusted. It is preferable to adjust the amount of Si component in the Fe—Cr alloy.

本発明に係る含クロム溶鋼の精錬方法において、前記脱炭精錬の際のスラグの塩基度CaO/SiO2 を1.1以上2.5以下にすることが好ましい。 In the method for refining chromium-containing molten steel according to the present invention, the basicity CaO / SiO 2 of the slag during the decarburization refining is preferably 1.1 or more and 2.5 or less.

請求項1〜3記載の含クロム溶鋼の精錬方法は、含まれるSi成分量を低く調整したFe−Cr合金を溶銑に添加することにより、生成するSiO2 量を低減できるので、脱炭精錬過程において、スラグ中のクロム濃度と溶銑中のクロム濃度とが平衡状態になるため、溶銑中からスラグ中へ移行しようとするクロム量を減少し、クロムの酸化損失を抑制して、クロムの歩留りを向上できる。このように、クロムの酸化損失を従来よりも低減できるので、例えば、Fe−Cr合金の昇温及び溶解を阻害することなく、また脱炭精錬を阻害することなく、良好な精錬を行うことができる。
また、Fe−Cr合金から溶銑中へ持ち込まれるSi量を低減することで、転炉中に生成するスラグ量の低減が可能になり、これと、クロムの酸化抑制による還元用Si量低減に伴うスラグ量低減との相乗効果で、転炉から排出される含クロムスラグ量の大幅な低減が可能になる。この結果、発生スラグの高価な処理費用の低減を図ることができる。
The method for refining chromium-containing molten steel according to any one of claims 1 to 3, wherein the amount of SiO 2 produced can be reduced by adding an Fe-Cr alloy with a low amount of Si component contained therein to the molten iron. In this case, the chromium concentration in the slag and the chromium concentration in the hot metal are in an equilibrium state. It can be improved. Thus, since the oxidation loss of chromium can be reduced as compared with the prior art, for example, good refining can be performed without inhibiting the temperature rise and dissolution of the Fe—Cr alloy and without inhibiting decarburization refining. it can.
Further, by reducing the amount of Si brought into the hot metal from the Fe-Cr alloy, it becomes possible to reduce the amount of slag generated during the converter, and this is accompanied by a reduction in the amount of Si for reduction by suppressing the oxidation of chromium. Due to the synergistic effect with the reduction of slag amount, the amount of chromium-containing slag discharged from the converter can be greatly reduced. As a result, it is possible to reduce the expensive processing cost of the generated slag.

特に、請求項2記載の含クロム溶鋼の精錬方法は、含まれるSi成分量が異なる複数のFe−Cr合金の配合割合を調整して、溶銑に添加するFe−Cr合金のSi成分量を調整するので、例えば、Si成分量の高いFe−Cr合金でも、Si成分量の低いFe−Cr合金と混合することで溶銑に添加でき、使用可能なFe−Cr合金の種類の選択範囲を広げることができる。
請求項3記載の含クロム溶鋼の精錬方法は、脱炭精錬のスラグ塩基度を調整するので、転炉内面の構成体である耐火物の溶損を軽減できると共に、生成したクロム酸化物の還元性を確保できる。
In particular, the method for refining chromium-containing molten steel according to claim 2 adjusts the blending ratio of a plurality of Fe—Cr alloys having different amounts of Si component to adjust the amount of Si component of the Fe—Cr alloy added to the hot metal. So, for example, even Fe-Cr alloys with high Si content can be added to hot metal by mixing with Fe-Cr alloys with low Si content, and the range of available Fe-Cr alloys can be selected. Can do.
The method for refining chromium-containing molten steel according to claim 3 adjusts the slag basicity of decarburization refining, so that it is possible to reduce the melting loss of the refractory that is a component of the converter inner surface and to reduce the generated chromium oxide Can be secured.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
ここで、図1は本発明の一実施の形態に係る含クロム溶鋼の精錬方法の工程説明図、図2は溶銑に添加したFe−Cr合金中のSi原単位と発生スラグ量との関係を示す説明図、図3は発生スラグ量と耐火物損耗量との関係を示す説明図、図4(A)は溶銑に添加するFe−Cr合金中のSi原単位と酸化したクロムを還元するFe−Si合金中のSi原単位との関係を示す説明図、(B)は(A)の部分拡大図である。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
Here, FIG. 1 is a process explanatory diagram of a method for refining chromium-containing molten steel according to an embodiment of the present invention, and FIG. 2 shows the relationship between the Si basic unit and the amount of generated slag in the Fe—Cr alloy added to the hot metal. FIG. 3 is an explanatory view showing the relationship between the amount of generated slag and the amount of refractory wear. FIG. 4 (A) is an Fe unit that reduces Si basic unit and oxidized chromium in the Fe—Cr alloy added to the hot metal. -Explanatory drawing which shows the relationship with Si basic unit in Si alloy, (B) is the elements on larger scale of (A).

図1に示すように、本発明の一実施の形態に係る含クロム溶鋼の精錬方法は、予備処理を施した溶銑を転炉に装入し、吹酸すると共にCr源となるFe−Cr合金を添加しながら脱炭精錬を行う方法であり、Fe−Cr合金に含まれるSi成分量を所定範囲内に調整して、溶銑に添加している。このFe−Cr合金とは、例えば、Cr:45質量%以上75質量%以下、C:5質量%以上10質量%以下、及びSiを含む合金鉄である。以下、詳しく説明する。 As shown in FIG. 1, the method for refining chromium-containing molten steel according to one embodiment of the present invention is a Fe—Cr alloy in which hot metal subjected to pretreatment is charged into a converter, blown acid is used, and becomes a Cr source. In this method, decarburization refining is performed while adding Si, and the amount of Si component contained in the Fe—Cr alloy is adjusted within a predetermined range and added to the hot metal. This Fe—Cr alloy is, for example, Cr: 45 mass% or more and 75 mass% or less, C: 5 mass% or more and 10 mass% or less, and alloy iron containing Si. This will be described in detail below.

図1に示すように、まず溶銑予備処理において、高炉で製造した溶銑から不純元素であるSi、P、及びSを予め除去する。そして、予備処理を施した溶銑を転炉に装入し、例えば、上吹ランス及び底吹羽口のいずれか一方又は双方で吹酸することにより、溶銑中のCを除去する粗脱炭精錬を行うと共に、例えば、小片としたFe−Cr合金、更にはクロム鉱石のCr源を溶銑に添加して、含クロム粗溶鋼(例えば、炭素濃度が0.1質量%以上0.7質量%以下程度)を製造する。
この含クロム粗溶鋼から含クロム溶鋼を製造する場合、大気雰囲気下で含クロム粗溶鋼に吹酸を行っても、クロム酸化を招いて目標レベルまでC量を低減できない。そこで、引き続き行う二次精錬において、真空下又は不活性ガス雰囲気下で含クロム粗溶鋼の吹酸脱炭(仕上脱炭精錬)を行い、目標C量(例えば、炭素濃度が0.002質量%以上0.08質量%以下程度)となるまで脱炭し、含クロム粗溶鋼の成分調整及び温度調整を行う。しかる後に、この脱炭精錬を行った含クロム溶鋼を、例えば、連続鋳造法により凝固して鋼片を製造する。
As shown in FIG. 1, first, in the hot metal preliminary treatment, Si, P, and S, which are impure elements, are previously removed from the hot metal produced in a blast furnace. Then, the hot metal that has been subjected to the pretreatment is charged into the converter, and, for example, rough decarburization refining that removes C in the hot metal by blowing acid at one or both of the top blowing lance and the bottom blowing nozzle. In addition, for example, a small amount of Fe-Cr alloy, and further chromium source of chromium ore is added to the hot metal, and the chromium-containing crude molten steel (for example, the carbon concentration is 0.1 mass% or more and 0.7 mass% or less) Degree).
When producing chromium-containing molten steel from this chromium-containing crude molten steel, even if blown acid is applied to the chromium-containing coarse molten steel in the air atmosphere, chromium oxidation is caused and the amount of C cannot be reduced to the target level. Therefore, in the subsequent secondary refining, blown acid decarburization (finish decarburization refining) of the chromium-containing crude molten steel is performed in a vacuum or under an inert gas atmosphere, and the target C amount (for example, the carbon concentration is 0.002% by mass). The carbon is decarburized until it becomes about 0.08 mass% or less), and the component adjustment and temperature adjustment of the chromium-containing crude molten steel are performed. Thereafter, the decarburized and refined chromium-containing molten steel is solidified by, for example, a continuous casting method to produce a steel piece.

含クロム溶鋼の脱炭精錬において、主にFe−Cr合金から持ち込まれるSi源は、脱炭のために吹き込まれる酸素によって酸化されSiO2 となる。この際、転炉鉄皮の保護用として、炉体内部に施工された耐火物を保護する目的で、溶銑にCaO源を添加しスラグ塩基度CaO/SiO2 を1.1以上2.5以下(ここでは1.4程度)の範囲内に調整する。
ここで、スラグ塩基度が1.1未満の場合、耐火物の保護効果が薄れ、転炉寿命の低下を招く。一方、2.5を超える場合、例えば、スラグ滓化性の悪化、含クロムスラグ生成量の増加により発生したスラグの処理負荷の増大、更には、スラグ量増大に伴う溶出MgOの増大による耐火物損耗に繋がる。
このように、スラグ生成量は転炉に持ち込まれるSi源の量に左右されることになる。
In the decarburization refining of chromium-containing molten steel, the Si source mainly brought from the Fe—Cr alloy is oxidized by the oxygen blown for decarburization to become SiO 2 . At this time, in order to protect the refractories constructed inside the furnace body, the slag basicity CaO / SiO 2 is set to 1.1 or more and 2.5 or less for the purpose of protecting the refractories constructed in the furnace body for protecting the converter core. Adjust within the range (about 1.4 here).
Here, when the slag basicity is less than 1.1, the protective effect of the refractory is weakened and the converter life is shortened. On the other hand, when it exceeds 2.5, for example, the slag hatchability is deteriorated, the processing load of slag generated due to the increase in the amount of chromium-containing slag is generated, and further, the refractory due to the increase in eluted MgO accompanying the increase in the slag amount It leads to wear and tear.
As described above, the amount of slag generated depends on the amount of Si source brought into the converter.

ここで、転炉へ装入したSi原単位(溶銑1トン当たりの装入Si量)と、発生したスラグ量(溶銑1トン当たりの発生スラグ量)との関係を、図2に示す。なお、図2は、転炉に装入した120トンの溶銑に、Si成分を含むFe−Cr合金(例えば、Cr:52質量%、C:8質量%、Si:1.5質量%)を添加した後、このSi原単位に見合ったCaOを添加して、スラグ塩基度を1.4に調整した結果である。また、発生スラグ量は、スラグ組成分析結果(SiO2 濃度)と転炉への持込Si量(溶鉄中Si、及びFe−Cr合金中Si)から算出した。
図2から明らかなように、溶銑へ添加されるSi原単位が増加すると共に、発生するスラグ量も増加している。このため、添加するSi原単位を低減することで、発生スラグ量の大幅な低減が可能となり、スラグの処理費を低減できることが分かる。
Here, FIG. 2 shows the relationship between the Si basic unit charged into the converter (the amount of Si charged per ton of hot metal) and the amount of generated slag (the amount of generated slag per ton of hot metal). In FIG. 2, Fe-Cr alloy containing Si component (for example, Cr: 52 mass%, C: 8 mass%, Si: 1.5 mass%) is added to 120 tons of molten iron charged in the converter. After the addition, CaO corresponding to this Si basic unit was added to adjust the slag basicity to 1.4. The amount of generated slag was calculated from the slag composition analysis result (SiO 2 concentration) and the amount of Si brought into the converter (Si in molten iron and Si in Fe—Cr alloy).
As is apparent from FIG. 2, the amount of generated slag is increased as the Si basic unit added to the hot metal increases. For this reason, it can be seen that by reducing the Si basic unit to be added, the amount of generated slag can be significantly reduced, and the processing cost of slag can be reduced.

また、この発生したスラグ量(溶銑1トン当たりの発生スラグ量)と、転炉の内張りに使用した耐火物の損耗量(溶銑1トン当たりの耐火物損耗量)との関係を、図3に示す。なお、図3の発生スラグ量は、図2の発生スラグ量に対応するものである。また、使用した耐火物は、マグネシア・カーボンれんがである。なお、耐火物の損耗量は、スラグ組成分析結果を使用して、耐火物から溶出したマグネシア量を求め、該量から耐火物損耗量を算出した。
図3から明らかなように、発生スラグ量が増加すると共に、耐火物損耗量も増加している。このため、添加するSi原単位を低減することで、耐火物損耗量も低減できることが分かる。
図2、図3から分かるように、添加するSi原単位を低減することで、スラグ発生量を減少し、転炉の耐火物損耗量も低減できるので、耐火物の使用寿命が従来より長くなって経済的であると共に、転炉の補修頻度も従来より低減され生産性を向上できる。
Fig. 3 shows the relationship between the generated slag amount (generated slag amount per ton of hot metal) and the wear amount of refractory used for the converter lining (refractory wear amount per ton of hot metal). Show. The generated slag amount in FIG. 3 corresponds to the generated slag amount in FIG. The refractories used are magnesia and carbon bricks. The amount of wear of the refractory was determined by calculating the amount of magnesia eluted from the refractory using the slag composition analysis result and calculating the amount of refractory wear from this amount.
As is apparent from FIG. 3, the amount of generated slag increases and the amount of refractory wear also increases. For this reason, it turns out that the amount of refractory wear can be reduced by reducing the Si basic unit to be added.
As can be seen from FIGS. 2 and 3, by reducing the amount of Si unit added, the amount of slag generated can be reduced and the amount of refractory wear of the converter can be reduced, so the service life of the refractory is longer than before. In addition to being economical, the frequency of repairs to the converter can be reduced as compared with the prior art, and productivity can be improved.

前記した脱炭精錬においては、吹酸によって溶銑中に多量に含まれるクロム成分が一旦酸化され、生成したクロム酸化物を溶銑中の炭素で還元することで、脱炭が進行していくことが知られている。ここで、スラグとして残留するクロム酸化物の濃度は、溶鋼中のクロムと炭素の濃度により規定されるので、クロムを溶鋼中により多く残存させるためには、スラグ生成量を低減する必要がある。
そこで、主なSi持ち込み源であるFe−Cr合金中のSi成分量を調整することで、スラグ生成量を低減する。なお、Fe−Cr合金中のSi成分量は、図4(A)、(B)に基づいて決定した。
In the decarburization refining described above, the chromium component contained in a large amount in the hot metal is once oxidized by the blowing acid, and the decarburization proceeds by reducing the generated chromium oxide with the carbon in the hot metal. Are known. Here, since the density | concentration of the chromium oxide which remains as slag is prescribed | regulated by the density | concentration of chromium and carbon in molten steel, in order to leave more chromium in molten steel, it is necessary to reduce the amount of slag production | generation.
Therefore, the amount of slag generation is reduced by adjusting the amount of Si component in the Fe—Cr alloy, which is the main Si carry-in source. The amount of Si component in the Fe—Cr alloy was determined based on FIGS. 4 (A) and 4 (B).

図4(A)、(B)は、転炉へ装入したSi原単位(溶銑1トン当たりの装入Si量)と、酸化したクロムを還元するために使用した還元Si原単位(溶銑1トン当たりの還元Si量)との関係を示している。なお、図4(A)、(B)は、転炉に装入した115〜140トンの溶銑に、Si成分を含むFe−Cr合金(例えば、Cr:52質量%、C:8質量%、Si:0.5〜4質量%)を添加した後、このSi原単位に見合ったCaOを添加して、スラグ塩基度を1.4に調整し、更に、Si成分を含む酸化クロム還元用Fe−Si合金(例えば、Si:75質量%)を添加した後、このSi原単位に見合ったCaOを添加して、スラグ塩基度を1.4に調整した結果である。また、図4(A)、(B)の各線は、Cr濃度が11質量%(実線)、16質量%(点線)、及び19質量%(一点鎖線)の溶鋼をそれぞれ製造した場合の結果であり、この溶鋼中のCr濃度と装入Si原単位との関係を、表1に示す。 4A and 4B show the Si basic unit charged into the converter (amount of Si charged per ton of hot metal) and the reduced Si basic unit used to reduce oxidized chromium (hot metal 1). (Reduced Si amount per ton)). 4 (A) and 4 (B) show a Fe-Cr alloy containing Si component (for example, Cr: 52 mass%, C: 8 mass%, in the molten iron of 115 to 140 tons charged into the converter. Si: 0.5-4 mass%) is added, then CaO corresponding to this Si basic unit is added, the slag basicity is adjusted to 1.4, and further, the chromium oxide reducing Fe containing Si component This is a result of adjusting the slag basicity to 1.4 by adding CaO corresponding to the Si basic unit after adding a Si alloy (for example, Si: 75% by mass). Moreover, each line of FIG. 4 (A) and (B) is a result at the time of manufacturing the molten steel whose Cr density | concentration is 11 mass% (solid line), 16 mass% (dotted line), and 19 mass% (one-dot chain line), respectively. Yes, Table 1 shows the relationship between the Cr concentration in the molten steel and the charged Si basic unit.

Figure 2007063581
Figure 2007063581

この表1には、各Cr濃度別の溶鋼を製造するときに添加したFe−Cr合金の原単位(溶銑1トン当たりの装入Fe−Cr合金量)と、このFe−Cr合金中のSi原単位(図4(A)、(B)の横軸に相当)を示している。即ち、表1は、各Cr濃度の溶鋼毎に、Fe−Cr合金の原単位が変化し、それに含まれるSi原単位も変化することを示している。なお、Fe−Cr合金中のSi原単位の縦欄の値は、表1の最下欄に位置するFe−Cr合金中のSi量、即ち転炉へ装入したFe−Cr合金中のSi成分量に相当する。 Table 1 shows the basic unit of Fe—Cr alloy added when manufacturing molten steel for each Cr concentration (the amount of Fe—Cr alloy charged per ton of hot metal) and the Si in the Fe—Cr alloy. The basic unit (corresponding to the horizontal axis in FIGS. 4A and 4B) is shown. That is, Table 1 shows that the basic unit of the Fe—Cr alloy changes and the Si basic unit contained therein changes for each molten steel having each Cr concentration. In addition, the value in the column of the Si basic unit in the Fe—Cr alloy is the amount of Si in the Fe—Cr alloy located in the bottom column of Table 1, that is, the Si in the Fe—Cr alloy charged in the converter. It corresponds to the amount of ingredients.

図4(A)、(B)から明らかなように、装入Si原単位の上昇と共に、還元Si原単位、即ちクロム酸化量は、ある一定値まで略一定量であるが、その後急激に増加している。このクロム酸化量が増加する変化点、即ち各装入Si原単位は、製造する溶鋼のCr濃度が11質量%の場合4.7kg/トン、16質量%の場合6.8kg/トン、19質量%の場合8.1kg/トンとなっている。
この装入Si原単位は、表1から分かるように、Fe−Cr合金中のSi成分量が2質量%に相当する。
As is clear from FIGS. 4A and 4B, the reduction Si basic unit, that is, the amount of oxidation of chromium is substantially constant up to a certain value as the charged Si basic unit increases, but then increases rapidly. is doing. The change point at which the chromium oxidation amount increases, that is, each charged Si basic unit is 4.7 kg / ton when the Cr concentration of the molten steel to be produced is 11 mass%, 6.8 kg / ton, 19 mass when 16 mass%. % Is 8.1 kg / ton.
As can be seen from Table 1, the amount of Si component in the Fe-Cr alloy corresponds to 2% by mass.

従って、Fe−Cr合金中のSi成分量を2質量%以下にすることで、生成するSiO2 を低減し、このSiO2 量に応じて添加するCaO量を低減できるため、発生するスラグ全量を低減できる。これにより、スラグ中へ移行しようとするクロム量を減少し、クロムの酸化損失を抑制でき、クロム酸化物の還元に使用する還元用Fe−Si合金量を節減でき、更に、このとき生成するSiO2 を低減し、このSiO2 量に応じて添加するCaO量を低減できるため、発生するスラグ全量を低減できる。
なお、Si成分量が0.2質量%未満の場合、溶銑表面のスラグ(カバースラグともいう)量が少なくなり、吹酸によるダスト飛散が発生し、含クロム粗溶鋼の歩留りが低下する。
以上のことから、Fe−Cr合金中のSi成分量の上限値を2質量%としたが、1.5質量%にすることが好ましく、また下限値を0.2質量%としたが、0.5質量%とすることが好ましい。
Therefore, by reducing the amount of Si component in the Fe—Cr alloy to 2% by mass or less, the amount of generated SiO 2 can be reduced, and the amount of CaO added according to the amount of SiO 2 can be reduced. Can be reduced. As a result, the amount of chromium to be transferred into the slag can be reduced, the chromium oxidation loss can be suppressed, the amount of reducing Fe—Si alloy used for reduction of the chromium oxide can be reduced, and the SiO produced at this time can be reduced. 2 and the amount of CaO added according to the amount of SiO 2 can be reduced, so that the total amount of generated slag can be reduced.
When the amount of Si component is less than 0.2% by mass, the amount of slag (also referred to as cover slag) on the hot metal surface decreases, dust scattering due to blowing acid occurs, and the yield of the chromium-containing crude molten steel decreases.
From the above, the upper limit of the amount of Si component in the Fe—Cr alloy was 2% by mass, but it is preferably 1.5% by mass, and the lower limit was 0.2% by mass. It is preferable to set it as 5 mass%.

なお、Fe−Cr合金中のSi成分量の調整は、溶銑に添加するFe−Cr合金中のSi成分量が0.2質量%以上2質量%以下の範囲内であれば、このFe−Cr合金を単独で使用できる。また、含まれるSi成分量が2質量%を超えるFe−Cr合金を使用する場合は、含まれるSi成分量が2質量%未満のFe−Cr合金と混合して使用する。
ここで、Fe−Cr合金の銘柄を表2に示す。
The amount of Si component in the Fe-Cr alloy can be adjusted if the amount of Si component in the Fe-Cr alloy added to the hot metal is in the range of 0.2 mass% to 2 mass%. The alloy can be used alone. Moreover, when using the Fe-Cr alloy in which the amount of Si component contained exceeds 2 mass%, it is used by mixing with the Fe-Cr alloy in which the amount of Si component contained is less than 2 mass%.
Here, the brands of the Fe—Cr alloy are shown in Table 2.

Figure 2007063581
Figure 2007063581

表2において、銘柄A、Bは、Si成分量が2質量%を超えるFe−Cr合金であり、銘柄C〜Fは、Si成分量が0.2質量%以上2質量%以下のFe−Cr合金である。
従って、銘柄C〜Fのように、Si成分量が2質量%以下のFe−Cr合金は単独で溶銑に添加できる。一方、銘柄A、Bのように、Si成分量が2質量%を超えるFe−Cr合金は、例えば、銘柄Aと銘柄F、銘柄Bと銘柄E、又は銘柄Aと銘柄Eと銘柄Fのように、含まれるSi成分量が異なる複数のFe−Cr合金を混合し、Fe−Cr合金中のSi成分量を2質量%以下に調整して、溶銑に添加する。
In Table 2, brands A and B are Fe-Cr alloys having an Si component amount exceeding 2 mass%, and brands C to F are Fe-Cr alloys having an Si component amount of 0.2 mass% to 2 mass%. It is an alloy.
Therefore, as in brands C to F, an Fe—Cr alloy having an Si component amount of 2 mass% or less can be added alone to the hot metal. On the other hand, Fe-Cr alloys having a Si component amount exceeding 2 mass%, such as brands A and B, are brand A and brand F, brand B and brand E, or brand A and brand E and brand F, for example. In addition, a plurality of Fe—Cr alloys containing different amounts of Si component are mixed, the amount of Si component in the Fe—Cr alloy is adjusted to 2% by mass or less, and added to the hot metal.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の含クロム溶鋼の精錬方法を構成する場合も本発明の権利範囲に含まれる。 As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included. For example, a case where the refining method for chromium-containing molten steel of the present invention is configured by combining some or all of the above-described embodiments and modifications is also included in the scope of the right of the present invention.

本発明の一実施の形態に係る含クロム溶鋼の精錬方法の工程説明図である。It is process explanatory drawing of the refining method of the chromium containing molten steel which concerns on one embodiment of this invention. 溶銑に添加するFe−Cr合金中のSi原単位と発生スラグ量との関係を示す説明図である。It is explanatory drawing which shows the relationship between Si basic unit in the Fe-Cr alloy added to hot metal, and the amount of generated slag. 発生スラグ量と耐火物損耗量との関係を示す説明図である。It is explanatory drawing which shows the relationship between the amount of generated slag, and the amount of refractory wear. (A)は溶銑に添加するFe−Cr合金中のSi原単位と酸化したクロムを還元するFe−Si合金中のSi原単位との関係を示す説明図、(B)は(A)の部分拡大図である。(A) is explanatory drawing which shows the relationship between Si basic unit in the Fe-Cr alloy added to hot metal, and Si basic unit in the Fe-Si alloy which reduces oxidized chromium, (B) is a part of (A) It is an enlarged view.

Claims (3)

予備処理を施した溶銑を転炉に装入し、吹酸すると共にCr源となるFe−Cr合金を添加しながら脱炭精錬を行う含クロム溶鋼の精錬方法において、
前記Fe−Cr合金に含まれるSi成分量を、0.2質量%以上2質量%以下に調整して、前記溶銑に添加することを特徴とする含クロム溶鋼の精錬方法。
In the refining method of the chromium-containing molten steel, the pre-treated hot metal is charged into a converter, blown acid and decarburized and refined while adding a Cr-source Fe-Cr alloy.
A method for refining chromium-containing molten steel, wherein the amount of Si component contained in the Fe-Cr alloy is adjusted to 0.2 mass% or more and 2 mass% or less and added to the molten iron.
請求項1記載の含クロム溶鋼の精錬方法において、前記Fe−Cr合金は、含まれるSi成分量が異なる複数のFe−Cr合金で構成され、該複数のFe−Cr合金の配合割合を調整して前記Fe−Cr合金のSi成分量を調整することを特徴とする含クロム溶鋼の精錬方法。 2. The method for refining chromium-containing molten steel according to claim 1, wherein the Fe—Cr alloy is composed of a plurality of Fe—Cr alloys having different amounts of Si components, and the mixing ratio of the plurality of Fe—Cr alloys is adjusted. And adjusting the amount of Si component in the Fe-Cr alloy. 請求項1及び2のいずれか1項に記載の含クロム溶鋼の精錬方法において、前記脱炭精錬の際のスラグの塩基度CaO/SiO2 を1.1以上2.5以下にすることを特徴とする含クロム溶鋼の精錬方法。 3. The method for refining chromium-containing molten steel according to claim 1, wherein the basicity CaO / SiO 2 of the slag in the decarburization refining is 1.1 or more and 2.5 or less. A method for refining chromium-containing molten steel.
JP2005248075A 2005-08-29 2005-08-29 Method for refining molten chromium-containing steel Pending JP2007063581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005248075A JP2007063581A (en) 2005-08-29 2005-08-29 Method for refining molten chromium-containing steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005248075A JP2007063581A (en) 2005-08-29 2005-08-29 Method for refining molten chromium-containing steel

Publications (1)

Publication Number Publication Date
JP2007063581A true JP2007063581A (en) 2007-03-15

Family

ID=37926115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005248075A Pending JP2007063581A (en) 2005-08-29 2005-08-29 Method for refining molten chromium-containing steel

Country Status (1)

Country Link
JP (1) JP2007063581A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101821363B1 (en) * 2016-12-12 2018-01-24 주식회사 포스코 Method for preventing the powdering phenomena of converter slag in stainless steel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54158319A (en) * 1978-06-03 1979-12-14 Nippon Steel Corp Manufacture of medium carbon molten ferrochromium
JPH0987720A (en) * 1995-09-29 1997-03-31 Kawasaki Steel Corp Method for decarburize-refining chromium-containing molten steel
JP2004083995A (en) * 2002-08-27 2004-03-18 Jfe Steel Kk Method and apparatus for producing molten chromium-containing steel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54158319A (en) * 1978-06-03 1979-12-14 Nippon Steel Corp Manufacture of medium carbon molten ferrochromium
JPH0987720A (en) * 1995-09-29 1997-03-31 Kawasaki Steel Corp Method for decarburize-refining chromium-containing molten steel
JP2004083995A (en) * 2002-08-27 2004-03-18 Jfe Steel Kk Method and apparatus for producing molten chromium-containing steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101821363B1 (en) * 2016-12-12 2018-01-24 주식회사 포스코 Method for preventing the powdering phenomena of converter slag in stainless steel

Similar Documents

Publication Publication Date Title
JP5461146B2 (en) Method for decarbonizing silicochrome
KR101574446B1 (en) Boron-containing stainless steel having excellent hot workability and excellent surface properties
JP5398329B2 (en) Manufacturing method of high strength steel wire steel with excellent fatigue characteristics
JP2000160233A (en) Method for desulfurize-refining stainless steel
KR20090073980A (en) Method for manufacturing Mn containing steel
JP4765374B2 (en) Desulfurization treatment method for chromium-containing hot metal
JP4653629B2 (en) Method for producing Ti-containing chromium-containing molten steel
JP4911298B2 (en) Manufacturing method of high Mn steel
JP3510989B2 (en) Refining method of Si alloy iron and stainless steel used for refining stainless steel
JP4648820B2 (en) Method for producing extremely low sulfur chromium-containing molten steel
JP5398325B2 (en) Manufacturing method of high strength steel wire steel with excellent fatigue characteristics
KR100844794B1 (en) A method for refining with high purity of austenitic stainless steel
JP2007063581A (en) Method for refining molten chromium-containing steel
JP5985437B2 (en) Method for melting high manganese chromium-containing steel
JPH07310110A (en) Production of stainless steel
JP2010280942A (en) Method for manufacturing low-phosphorus stainless steel
KR101786931B1 (en) Method for refining of molten stainless steel
JP3836249B2 (en) Method for melting high ferritic stainless steel with high Al content that suppresses refractory melting of refining vessel
JP3580096B2 (en) Melting method of low Mn steel
JP7255639B2 (en) Molten steel desulfurization method and desulfurization flux
JP5454313B2 (en) Blowing acid decarburization method for chromium-containing steel
JP3063537B2 (en) Stainless steel manufacturing method
JP2964861B2 (en) Stainless steel manufacturing method
KR102171769B1 (en) Method for processing molten material and stainless steel manufactured using the same
JP2002371313A (en) Method for smelting molten stainless steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080306

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20100209

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20100302

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20100415

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100706