JPS58133310A - Refining of high phosphorus steel - Google Patents

Refining of high phosphorus steel

Info

Publication number
JPS58133310A
JPS58133310A JP1337482A JP1337482A JPS58133310A JP S58133310 A JPS58133310 A JP S58133310A JP 1337482 A JP1337482 A JP 1337482A JP 1337482 A JP1337482 A JP 1337482A JP S58133310 A JPS58133310 A JP S58133310A
Authority
JP
Japan
Prior art keywords
blowing
steel
converter
basicity
phosphorus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1337482A
Other languages
Japanese (ja)
Inventor
Toshiro Fujiyama
寿郎 藤山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP1337482A priority Critical patent/JPS58133310A/en
Publication of JPS58133310A publication Critical patent/JPS58133310A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • C21C5/35Blowing from above and through the bath

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Abstract

PURPOSE:To refine high phosphorus steel stably, by a process wherein finely divided lime is added during the first half period of converter blowing so as to lower a calculated basicity and a P-residual amount is adjusted by blowing corresponding to the above stated basicity and carbon concn. in molten steel at a time of blowing-out. CONSTITUTION:In refining high phosphorus steel, an oxygen top and bottom blowing converter or an oxygen bottom blowing converter is used. In this case, finely divided lime is injected during the first half period of blowing from the tuyere of a furnace bottom or a top blowing lance so as to adjust calculated basicity (CaO wt./ SiO2 wt.) determined from oxide formed from a thrown auxiliary stock material and molten iron components to a range of <=2.5 and >=1.5. By this method, slag is rapidly formed and slopping is suppressed in an intitial stage. The addition of lime is not performed during the latter half period of blowing. In the next step, the residual amount of phosphorus in molten steel is adjusted to predetermined value by blowing corresponding to the setting of the above stated calculated basicity and oxygen concn. in molten steel at a time of blowing-out.

Description

【発明の詳細な説明】 本発明は快速鋼などの高リン鋼を転炉で溶製する方法に
関し、さらに詳しくは、酸素上底吹き併用転炉または酸
素底吹き転炉を使用し、Fe−P等の合金鉄を添加せず
に溶銑中の97を吹錬終了時点まで残留させて高リン鋼
(P:0.1−〜O,0S−)を溶製する方法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for melting high-phosphorus steel such as high-speed steel in a converter, and more specifically, using a converter with oxygen top and bottom blowing or an oxygen bottom blowing converter to melt Fe- This invention relates to a method for melting high phosphorus steel (P: 0.1- to O, 0S-) by allowing 97 in hot metal to remain until the end of blowing without adding ferroalloys such as P.

転炉吹錬において溶銑中のリンを残留させ高リン鋼を溶
製するためには、次の2点が重要である。
In order to make high phosphorus steel by leaving phosphorus in the hot metal during converter blowing, the following two points are important.

(1)  高塩基度スラグを吹錬中に形成しないこと。(1) High basicity slag should not be formed during blowing.

このため計算塩基度を低くするようにし、石灰石の添加
量を少くする。計算塩基fBcalとは、転炉に投入さ
れる副原料および溶銑成分が酸化されて生成される酸化
物の重量から求まる塩基度であって、 (供給された( CaO)分重量) である、  ′ (2)  スラグ中酸化鉄濃度を上昇させないこと。
For this reason, the calculated basicity should be lowered and the amount of limestone added should be reduced. Calculated basicity fBcal is the basicity determined from the weight of oxide produced by oxidizing the auxiliary raw materials and hot metal components input into the converter, and is (supplied (CaO) weight), (2) Do not increase the iron oxide concentration in the slag.

炉内鋼浴の攪拌を強化し、炉内における酸化反応が非平
衡な状態で進行しないようにする。
Strengthen the stirring of the steel bath in the furnace to prevent the oxidation reaction in the furnace from proceeding in a non-equilibrium state.

従来の酸素上吹き転炉(以下LDという)において高リ
ン鋼を溶製する場金には、吹錬時における計算塩基IB
calを10−40と逐るように石灰を添加していえ、
これはLDにおいて計算塩基fBcalを2.0未満に
し九場合、吹錬初期の脱ケイ素反応が終了し脱炭最盛期
になる時点において、急激なスロッピングが発生し、炉
内スラグおよび溶鉄が突沸反応により炉外へ噴出し、操
業が困難となるためであり、逆に計算塩基度が3.0を
越えると、第1図に示すように脱リン反応が進行しゃす
く寿シ、吹錬終了時に、目標とするところの多量のリン
を溶鋼中に残留させることができないためである。第1
図は、溶鋼中炭素濃度01sで吹止めた場合における計
算塩基度Bcalと溶鋼中リン濃度〔P〕(単位はxi
o−in)との関係を示すグラフであって、破線はLD
、実線は酸素上底吹き併用転炉■または酸素底吹き転炉
0の場合を示す。
The calculation base IB during blowing is used to melt high phosphorus steel in a conventional oxygen top-blown converter (hereinafter referred to as LD).
Lime can be added to reduce the cal to 10-40,
This is because when the calculated base fBcal is less than 2.0 in the LD, rapid slopping occurs when the desilicification reaction in the early stage of blowing ends and the decarburization reaches its peak, causing the slag and molten iron in the furnace to bump. This is because the reaction ejects out of the furnace, making operation difficult.On the other hand, if the calculated basicity exceeds 3.0, the dephosphorization reaction will proceed as shown in Figure 1, and the blowing will end. This is because sometimes the targeted amount of phosphorus cannot be left in the molten steel. 1st
The figure shows the calculated basicity Bcal and the phosphorus concentration in molten steel [P] (unit: xi
o-in), the broken line is a graph showing the relationship between LD
, the solid line indicates the case of oxygen top and bottom blowing converter (■) or oxygen bottom blowing converter (0).

また第2図は、計算塩基度B calとスラグ中酸化鉄
濃度(T、Fe)(単位は−)との関係を例示するグラ
フである。破線はLD、実線は上記■または■炉の場合
を示す、従来のLDKおける計算塩基度2.0〜3.0
の範囲における操業ではスラグ中酸化鉄濃度[T、Fe
]が上昇してしまう九め脱リンが進行する。従って従来
のLDでは溶銑中すyをO,OS〜O,OS−程度しか
残留させることができず、高リン鋼を溶製するには、出
鋼時にFe−P合金鉄を添加しまければならないという
閾題があった。
Further, FIG. 2 is a graph illustrating the relationship between the calculated basicity B cal and the iron oxide concentration (T, Fe) (unit: -) in the slag. The broken line shows the LD, and the solid line shows the case of the above ■ or ■ furnace, calculated basicity of 2.0 to 3.0 in conventional LDK.
In operation in the range of , the iron oxide concentration in the slag [T, Fe
] Dephosphorization progresses, causing an increase in phosphorus. Therefore, in the conventional LD, it is possible to leave only about O,OS~O,OS- of Soy in the hot metal, and in order to produce high phosphorus steel, it is necessary to add Fe-P alloy iron at the time of tapping. There was a threshold problem.

一方、酸素上底吹き併用転炉の、酸素底吹き転炉■にお
いては、底吹き羽口からの酸素吹込みによる鋼浴の攪拌
力がLDよ一強化されているので、第2図に実線で示す
ように、LDの場合と異り低塩基度でもスラグ中酸化鉄
濃度(T、Fe)が上昇せず、従って溶鋼は脱ダンされ
ず鋼中にリンが残や易く、第1図に示すように計算塩基
度Bcalが10〜3.0の範囲で溶鋼中のリンを0.
06〜0.03−残留させることが可能である。
On the other hand, in the oxygen bottom-blown converter ■, which is a converter with oxygen top and bottom blowing, the stirring power of the steel bath due to oxygen injection from the bottom blowing tuyere is stronger than that of the LD, so the solid line in Figure 2 shows As shown in Figure 1, unlike in the case of LD, the iron oxide concentration (T, Fe) in the slag does not increase even with low basicity, and therefore the molten steel is not removed and phosphorus tends to remain in the steel. As shown, when the calculated basicity Bcal is in the range of 10 to 3.0, the phosphorus in the molten steel is 0.0.
06-0.03 - It is possible to remain.

さらに第1図から、計算塩基度Bcalを一層低めてL
5〜2.0とすれば、溶鋼中のリンを0.1−〜0.0
6*tで残留させることが可能であることがわかる。
Furthermore, from Figure 1, the calculated basicity Bcal is further lowered and L
If it is 5 to 2.0, the phosphorus in the molten steel is 0.1- to 0.0
It turns out that it is possible to make it remain at 6*t.

次に第3図は、計算塩基度B calとスロッピングイ
ンデックス5indとの関係を示すグラフである。スロ
ッピングインデックスS indはスロッピングが無発
生の場合をOとし、全チャージにスロッピングが発生し
たときを1とする指数であって、スロッピングインデッ
クス5indが大きい程初期スロッピングが発生しやす
いことを示す。図中破線(イ)は上吹き転炉LD、上底
吹き併用転炉■、底吹き転炉■の何れを問わず、塊状石
灰を溶鋼中に添加した場合を示し、実1m(ロ)は、上
底吹き併用転炉■または底吹き転炉■において、微粉石
灰をインジェクションした場合を示すものである。第3
図から明らかなように、上底吹き併用転炉■または底吹
き転炉■においてもLDと同様に炉上かも塊状の石灰を
投入する石灰石添加方法では脱ケイ素反応中に滓化が速
やかに遂行しないため、急激なスロッピングが発生し操
業が困難とまるという問題が生ずる。一方上底吹き併用
転炉を九は底吹き転炉において炉底羽口および/または
上吹きランスから微粉石灰をインジェクションした場合
には計算塩基度を低くしてもスロッピングが起)Kくい
Next, FIG. 3 is a graph showing the relationship between the calculated basicity B cal and the slopping index 5ind. The slopping index S ind is an index that takes O when no slopping occurs and 1 when slopping occurs on all charges, and the larger the slopping index S ind, the more likely initial slopping occurs. shows. The broken line (a) in the figure indicates the case where lump lime is added to molten steel regardless of whether it is a top-blown converter LD, a top-bottom blowing combined converter ■, or a bottom-blowing converter ■. , shows the case where pulverized lime is injected in a top-bottom blowing converter (■) or a bottom-blowing converter (■). Third
As is clear from the figure, even in the top-bottom blowing converter ■ or the bottom-blowing converter ■, the limestone addition method in which lump lime is added to the top of the furnace, similar to LD, results in rapid slag formation during the desiliconization reaction. As a result, rapid slopping occurs, making operations difficult and halting. On the other hand, when pulverized lime is injected from the bottom tuyere and/or top blowing lance in a bottom blowing converter, slopping occurs even if the calculated basicity is low.

本発明はこのような知見に基いて完成したものであって
、高リン鋼l1lIII#)IIの問題点を解決し、低
塩基度において溶銑中のリンを極力残留さぜると共にス
ロッピング等を生じない安定した高リン鋼の溶製方法を
提供することを目的とするものである。
The present invention was completed based on such knowledge, and it solves the problems of high phosphorus steel l1lIII#)II, and improves the residual phosphorus in hot metal as much as possible at low basicity, and prevents slopping, etc. The purpose of the present invention is to provide a stable method for melting high phosphorus steel that does not cause oxidation.

第4図は酸素上底吹き併用転炉■または酸素底吹き転炉
@において微粉石灰のインジェクションパターンを変化
させて吹錬中の溶鋼中リン濃度の変化を調査しえ結果を
示す。
Figure 4 shows the results of investigating changes in the phosphorus concentration in molten steel during blowing by changing the injection pattern of pulverized lime in an oxygen top and bottom blowing converter (■) or an oxygen bottom blowing converter (@).

第4図(1)は吹錬時間T(0〜10011Gで表示)
と溶鋼中リン濃度〔P〕(単位線×10−sチ)との関
係を示し、図中−纏(ハ)、に)はそれぞれ第4図(b
)、(C) ItK示す黴看石灰添加パターンにより微
粉石灰を添加し九場合を示す、 **−は従来のLDの
場合を比較の丸め掲げた。伽)、(C)のパターン図は
、横軸に吹錬時間をとり縦軸に黴看石灰添加量をとっで
ある。(C)1図のパターンにより、<a>図のに)−
纏を得られ、溶銑中のリンを吹錬中に脱リンさせずに相
当量残留させることが可能である。
Figure 4 (1) shows the blowing time T (displayed from 0 to 10011G)
and the phosphorus concentration in molten steel [P] (unit line x 10-s).
), (C) Nine cases are shown in which finely powdered lime is added according to the lime addition pattern shown in ItK. **- shows the case of conventional LD for comparison. In the pattern diagrams of (B) and (C), the horizontal axis represents the blowing time and the vertical axis represents the amount of lime added. (C) According to the pattern in figure 1, <a> in figure) -
It is possible to obtain a large amount of phosphorus in the hot metal without dephosphorizing it during blowing.

本発明は高シン鋼を溶製するに当に、酸素上底吹き転炉
■または底吹き転炉■を用い、計算塩基度が1.5以上
2.5以下になるように、微粉石灰を炉底羽口および/
lたは上吹きランスから、インジェクションによ抄、吹
錬期間の前半期間中に、溶鋼中に添加し、溶鋼中リンを
所要量残存させ、この残存量の調整は、上記計算塩基度
と吹止め時の溶鋼中炭素浸度とによって行なう仁とを特
徴とする。
The present invention uses an oxygen top-bottom blowing converter (■) or a bottom-blowing converter (■) to produce high-thin steel, and pulverized lime is added so that the calculated basicity is 1.5 or more and 2.5 or less. Hearth tuyere and/
It is added to the molten steel during the first half of the drawing and blowing period by injection from a top blowing lance or a top blowing lance, and the required amount of phosphorus remains in the molten steel.The adjustment of this remaining amount is based on the basicity calculated above and the blowing process. It is characterized by the degree of penetration of carbon into the molten steel at the time of stopping.

本発明をさらに詳しく説明する。The present invention will be explained in more detail.

まず、吹錬中に使用するCaO含有副原料(石灰石、ド
ロマイト等)の使用量を計算塩基度Bcalが1.5以
上2.5以下になるようにする。計算塩基度が1.5未
満では、脱ケイ素反応が終了し脱炭最盛期になる吹錬初
期にスロッピングが発生し中すく操業が困難になると共
に、転炉耐火物が塩基性のものであるため耐火物浸食が
大となり不可である。
First, the amount of CaO-containing auxiliary raw materials (limestone, dolomite, etc.) used during blowing is adjusted so that the calculated basicity Bcal is 1.5 or more and 2.5 or less. If the calculated basicity is less than 1.5, slopping will occur at the beginning of blowing, which is the peak stage of decarburization after the desiliconization reaction has finished, making operation difficult, and the converter refractories will be basic. Because of this, corrosion of the refractories would be significant, making it impossible.

また、計算塩基度Bcalが15を越えると第1図に示
すように脱リン反応が進行し中すく溶銑中リンを多量に
残留させることができなくなる。
Furthermore, when the calculated basicity Bcal exceeds 15, the dephosphorization reaction proceeds as shown in FIG. 1, making it impossible to leave a large amount of phosphorus in the hot metal.

次に本発明では、吹錬−始と同時に、吹錬前半に投入さ
れる副原料と溶銑酸分の酸化による生成酸化物から計算
されえ微粉石灰を、微粉石灰を底吹き羽口および/また
は上吹きランスからインジェクションし、吹錬後半には
脱リンを抑えるため石灰石の添加は行なわない。微粉石
灰をインジェクションによに添加するのは、低い計算塩
基度においても吹錬初期K (CaO) / (SiO
x )が1.5以上のスラグを速やかに形成させ初期ス
ロッピングの発明を抑制するためである。吹錬前半にの
み微粉石灰を添加し吹錬末期に石灰を添加しないのは、
吹錬末期は炭素濃度も鍬下してお抄、スラグ中酸化鉄濃
度(T、Fe)が上昇しゃすぐ説リン反応が進行し申す
<1ゐのを防止するためである。
Next, in the present invention, at the same time as the blowing starts, pulverized lime is added to the bottom blowing tuyere and/or Injection is performed from the top blowing lance, and limestone is not added in the latter half of blowing to suppress dephosphorization. Adding pulverized lime by injection increases the initial K (CaO) / (SiO) of blowing even at low calculated basicity.
This is to quickly form a slag with x) of 1.5 or more and to suppress the initial slopping. Adding pulverized lime only in the first half of blowing and not adding lime at the end of blowing is
This is to prevent the phosphorus reaction from proceeding as soon as the iron oxide concentration (T, Fe) in the slag increases.

この点はすでに第4図(b)、(C)のパターンで説明
した通りであり、本発明は第4図(C)パターンと第4
図(a)の−纏に)に示すように溶鋼中リンを残存させ
るものである。
This point has already been explained with respect to the patterns in FIGS. 4(b) and (C), and the present invention is applicable to the patterns in
As shown in Figure (a), phosphorus remains in the molten steel.

次に、本発明における鋼中リン濃度を所定値に調整する
操作は、上記計算塩基度の設宇と溶鋼中の吹止炭素濃度
とによって行なう。第5図は計算塩基置割に、吹止時の
溶鋼中炭素濃度(C) (X10”” −)と吹止時第
鋼中リン濃度(P)(XIO″$−)との関係を示すも
のである。第5図に示すように、溶銑中に存在していた
リンを吹止時に鋼中に6.071以上残留させたい場合
には、計算塩基度”Cal t 1.5以上2−0以下
とすると共に、吹止炭素濃度を0.1s以上にする。ま
た溶銑中に存在していたリンを鋼中に0.05−以上〜
o、oy*未満残留させたいときは、計算塩基度を2.
0以上〜2.5以下とし、吹止め炭素濃度をO,OS*
以上〜0.09−以下とすることによって調整できる。
Next, the operation of adjusting the phosphorus concentration in the steel to a predetermined value in the present invention is performed by setting the calculated basicity and the blowout carbon concentration in the molten steel. Figure 5 shows the relationship between the carbon concentration in the molten steel at the time of blow-off (C) (X10''''-) and the phosphorus concentration in the molten steel at the time of blow-off (P) (XIO''$-) in the calculated base position. As shown in Fig. 5, if you want the phosphorus present in the hot metal to remain in the steel at the time of blow-stopping, the calculated basicity "Cal t" should be 1.5 or more 2- 0 or less, and the blow-off carbon concentration to be 0.1 s or more. In addition, the phosphorus present in the hot metal is added to the steel by 0.05 or more.
If you want to have less than o, oy* remaining, set the calculated basicity to 2.
0 or more and 2.5 or less, and the blow-stop carbon concentration is O, OS*
It can be adjusted by setting it between 0.09 and 0.09.

本発明方法では、鉄鉱石、ミルスケール等の酸化鉄の投
入は吹錬末期(吹錬時間の70〜10G−の期間)には
行なわない、その理由は吹錬末期に上記の酸化鉄を大量
に投入するとスラグ中酸化鉄濃度(T、Fe)が上昇し
脱リンが進行して、所期の鋼中リンを確保することがで
きなくなるからである。
In the method of the present invention, iron oxides such as iron ore and mill scale are not introduced at the final stage of blowing (period of 70 to 10 G- of the blowing time). This is because if the iron oxide concentration (T, Fe) in the slag increases and dephosphorization progresses, it becomes impossible to secure the desired amount of phosphorus in the steel.

次に本発明方法の実施例を説明する。Next, examples of the method of the present invention will be described.

実施例1 25G)ン蒙素上底吹會併用転炉に次の組成の溶銑25
0トンを装入しえ。
Example 1 25G) Molten iron with the following composition was put into a converter combined with top and bottom blowing.
Charge 0 tons.

c/ls*  5i10.351G  Mmlo、5−
P/@、14チ S10.o を畳 温度/ 1,30
0℃吹錬開始と同時に、計算塩基度が2..0となるよ
うに1黴看石灰13L5kII/lを底吹−羽口よ抄酸
素ガスでインジェクションしえ、吹き込み速度社0.3
 kll/ t mix 〜5 kf/ t mixの
範囲で調整し、吹錬初期のみインジェクションを行なっ
た。酸化鉄(鉄鉱石およびミルスケール)45に9/l
を吹錬酸素量が5NfI//l〜30 Ngl/ tの
間に投入した。特に3 ONd/を以後は投入しないと
とに留意し九。上吹き吹錬は底吹き吹錬終了の1分以上
前に終了し、サブランスを吹錬終了予安酸素量の6Nd
/を前に投入し、吹止炭素濃度が0.1−となるように
操作した。
c/ls* 5i10.351G Mmlo, 5-
P/@, 14chi S10. o Tatami temperature / 1,30
At the same time as the start of 0°C blowing, the calculated basicity was 2. .. Inject 13L of lime 5kII/l through the bottom blow and tuyere with oxygen gas so that the injection rate is 0.3.
It was adjusted in the range of kll/t mix to 5 kf/t mix, and injection was performed only at the initial stage of blowing. Iron oxide (iron ore and mill scale) 45 to 9/l
The blowing oxygen amount was between 5 NfI//l and 30 Ngl/t. Pay special attention to the fact that 3 ONd/ should not be used after that. The top blowing should be completed at least 1 minute before the end of the bottom blowing, and the sublance should be filled with 6 Nd of oxygen to prepare for the end of the blowing.
/ was added beforehand, and the operation was performed so that the blown carbon concentration was 0.1-.

吹止時の成分iしては以下のような組成を得て出鋼した
The following composition was obtained as component i at the time of blow-stopping, and the steel was tapped.

C10,111Mu/6.211  Plo、075チ
S10.011  I!度71660℃命令リン濃度が
Plo、075$&ので出鋼時にFe−P合金鉄の添加
を行なう必要はない。
C10,111Mu/6.211 Plo,075chiS10.011 I! Since the phosphorus concentration at 71,660° C. is Plo, 075 $&, it is not necessary to add Fe--P alloy iron at the time of tapping.

実施例2 250トン酸素上底吹き併用転炉において本発明法によ
り高リン鋼を溶製し九場合と、−・上吹き転炉において
従来法によ妙法製し九場合の吹錬実績を比較した結果第
1表の通りである。′第1表 高9y鋼溶製與績比較(
250)ン転炉)本発明法により次の効果が得られる。
Example 2 Comparison of the blowing results of 9 cases in which high phosphorus steel was melted by the method of the present invention in a 250 ton oxygen top-bottom blowing converter and 9 cases in which high phosphorus steel was made by the conventional method in a top-blown converter. The results are shown in Table 1. 'Table 1 Comparison of high 9y steel melting performance (
250) Converter) The following effects can be obtained by the method of the present invention.

(1)快削性を要求される0、05〜0.1−のリンを
含有する高リン鋼を脱リン抑制によって、安定し九操業
条件の下に溶製することができる。
(1) By suppressing dephosphorization, high phosphorus steel containing 0.05 to 0.1 - phosphorus, which requires free machinability, can be produced stably under nine operating conditions.

(2)  低塩基度操業のため、石灰石原単位が低減す
る。
(2) Low basicity operation reduces limestone consumption.

(3)脱リン抑制により溶銑中リンを残留させるので、
Fe−P合金鉄原単位が低減する。
(3) Since phosphorus remains in the hot metal by suppressing dephosphorization,
Fe-P alloy iron consumption rate is reduced.

(4)  微粉石灰のインジェクションによる吹錬初期
スロッピングの抑制と、スラグボリューム低減によるス
ラグへの鉄ロス低減により製出鋼歩止が向上する。
(4) The yield rate of steel production is improved by suppressing slopping in the initial stage of blowing by injecting pulverized lime and reducing iron loss to slag by reducing slag volume.

【図面の簡単な説明】[Brief explanation of drawings]

第11nti計算塩基度”cal と溶鋼中リン濃度(
P)(XIO−’1G)との関係例(吹止炭素濃度0.
1−の場合)を示すグラフ、第2図は計算塩基度Bca
lとスラグ中酸化鉄濃度(T、Fe  )(−)との関
係を示すグラフである。第1図、第2図において破線は
従来の酸素上吹き転炉(LD)、実線は酸素上底吹き転
炉のまたは酸素底吹き転炉■の場合を示す。第3図は計
算塩基度Bcalとスロツビングイ/デツクスS  と
の関係を示すグラ盃nd フで5indはスロッピング無発生を01全チヤ一ジス
ロツピング発生を1としである。第3図中破線(イ)は
塊状石灰を溶鋼中に添加した場合、実線←)は酸素上底
吹き併用転炉■または酸素底吹き転炉@において微粉石
灰をインジェクションした場合を示す。第4図(1)は
酸素上底吹き併用転炉■または酸素底吹き転炉■におい
て微粉石灰のインジエタションパターンを変化させたと
きの吹錬中の溶鋼中リン濃度(P)(xlO−”IG)
の変化を示し、一点鎖線(ハ)は第4図(b)のパター
ン、実線に)は第4図(C)のパターンで微粉石灰を添
加した本発明方法の場合を示す。第5図は、計算塩基覆
胴に、吹止時の溶鋼中炭素濃度(C)(xtO−”+G
)と吹止時溶鋼中リン濃度CP)(xlo−1%)との
関係を示すグラフである。第5図中実線は計算塩基度1
.5〜2.01破線は計算塩基度40〜2.5の場合を
示す。 Bcal・・・計算塩基度、〔P〕・・・溶鋼中リン濃
度(x lo−” 1)、LD−・・酸素上吹き転炉、
−■−・・酸素上底吹き併用転炉、■・−・酸素底吹き
転炉、(T 、 Fe  )−xラグ中酸化鉄111(
IG)、5ind・・・スロッピングインデックス、(
イ)・・・境石灰石添加の場合、(ロ)・−微粉石灰イ
ンジェクションの場合、(ハ)・−微粉石灰添加(b)
 パターンの場合、に)・・−黴看石灰添加(C)パタ
ーンの場合(本発明)、(ホ)・・・従来方法の場合、
〔C〕・・・吹止時の溶鋼中炭素濃度(x 1o−” 
−)第1図 12345 →Bcal 第2図 →Bcal 第3図 1 2 3 cal 第4図 −〉吹錬時間(%)
11th nti calculated basicity "cal" and phosphorus concentration in molten steel (
Example of relationship with P) (XIO-'1G) (blowing carbon concentration 0.
Figure 2 shows the calculated basicity Bca
1 is a graph showing the relationship between l and iron oxide concentration in slag (T, Fe) (-). In FIGS. 1 and 2, the broken line indicates a conventional oxygen top-blown converter (LD), and the solid line indicates an oxygen top-blown converter or an oxygen bottom-blown converter (2). FIG. 3 is a graph showing the relationship between the calculated basicity Bcal and the throbbing index S, where 5ind is 01 for no slopping to occur, and 1 is for all slopping to occur. The broken line (A) in FIG. 3 shows the case where lump lime is added to the molten steel, and the solid line ←) shows the case where pulverized lime is injected in the oxygen top and bottom blowing converter ■ or the oxygen bottom blowing converter @. Figure 4 (1) shows the phosphorus concentration (P) in molten steel during blowing (xlO- ”IG)
The dashed line (C) shows the pattern of FIG. 4(b), and the solid line (c) shows the pattern of FIG. 4(C) in the case of the method of the present invention in which pulverized lime was added. Figure 5 shows the carbon concentration in molten steel (C) (xtO-”+G
) and the phosphorus concentration in molten steel at the time of blow-off CP) (xlo-1%). The solid line in Figure 5 shows the calculated basicity of 1.
.. 5-2.01 The broken line shows the case where the calculated basicity is 40-2.5. Bcal... Calculated basicity, [P]... Phosphorus concentration in molten steel (x lo-" 1), LD-... Oxygen top-blown converter,
−■−・Oxygen top and bottom blowing converter, ■・−・Oxygen bottom blowing converter, (T, Fe)−x iron oxide in lag 111 (
IG), 5ind... slopping index, (
B)... In the case of boundary limestone addition, (B) - In the case of fine powder lime injection, (C) - Fine powder lime addition (b)
In the case of a pattern, (2)...-In the case of a lime addition (C) pattern (the present invention), (E)...In the case of a conventional method,
[C]...Carbon concentration in molten steel at the time of blow-off (x 1o-"
-) Fig. 1 12345 → Bcal Fig. 2 → Bcal Fig. 3 1 2 3 cal Fig. 4 -〉Blowing time (%)

Claims (1)

【特許請求の範囲】[Claims] 1 高りン鋼を溶製するに当ヤ、□酸素上底吹き併用転
炉また轄酸素底吹き転炉を使用し、投入副原料および溶
銑成分から生成される酸化物から求まる計算塩基度が1
.5以上2.5以下Kt&ように、吹錬の前半期間中に
、炉底羽口および/まえは上吹きランスから微粉石灰を
インジェクションによ艶消鋼中に添加し、前記計算塩基
度と吹止め時の溶鋼中炭素濃度とにより溶鋼中リン残留
量を所定値に調整吹錬することを特徴とする、高リン鋼
の溶製方法。
1 In order to melt Takarin steel, we use an oxygen top and bottom blowing converter or an oxygen controlled bottom blowing converter, and calculate the basicity calculated from the oxides produced from the input auxiliary raw materials and hot metal components. 1
.. During the first half of the blowing period, pulverized lime is added to the matte steel by injection from the bottom tuyere and/or the top blowing lance so that the calculated basicity A method for producing high phosphorus steel, which is characterized by blowing to adjust the residual amount of phosphorus in the molten steel to a predetermined value depending on the carbon concentration in the molten steel at the time of stopping.
JP1337482A 1982-02-01 1982-02-01 Refining of high phosphorus steel Pending JPS58133310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1337482A JPS58133310A (en) 1982-02-01 1982-02-01 Refining of high phosphorus steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1337482A JPS58133310A (en) 1982-02-01 1982-02-01 Refining of high phosphorus steel

Publications (1)

Publication Number Publication Date
JPS58133310A true JPS58133310A (en) 1983-08-09

Family

ID=11831316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1337482A Pending JPS58133310A (en) 1982-02-01 1982-02-01 Refining of high phosphorus steel

Country Status (1)

Country Link
JP (1) JPS58133310A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254839A (en) * 2006-03-24 2007-10-04 Jfe Steel Kk Melting method of high phosphorus steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254839A (en) * 2006-03-24 2007-10-04 Jfe Steel Kk Melting method of high phosphorus steel

Similar Documents

Publication Publication Date Title
JPS63195209A (en) Steel making method
JPS6067608A (en) Manufacture of medium or low carbon ferromanganese
JP2958848B2 (en) Hot metal dephosphorization method
JPS58133310A (en) Refining of high phosphorus steel
JPH01316409A (en) Method for dephosphorizing molten iron accompanied with scrap melting
US4891064A (en) Method of melting cold material including iron
JPH10102119A (en) Production of sulfur free-cutting steel resulfurized carbon steel
JP3194212B2 (en) Converter steelmaking method
JPH0437135B2 (en)
JP4411934B2 (en) Method for producing low phosphorus hot metal
JPS5847450B2 (en) Method for promoting dephosphorization in oxygen top-blown steelmaking process
JP2587286B2 (en) Steelmaking method
JP2000087125A (en) Method for dephosphorize-refining molten iron
JPH0557327B2 (en)
JP2000328121A (en) Dephosphorization method of molten iron
JPH032312A (en) Production of low-phosphorus pig iron
JPH01252715A (en) Method for operating iron bath type smelting reduction furnace
JPS59159963A (en) Production of high chromium molten metal
JPH01312020A (en) Method for dephosphorizing molten iron by heating
JPH0892627A (en) Production of stainless steel
JPH0433844B2 (en)
JPH0841519A (en) Steelmaking method
JPH0517810A (en) Refining method for high-mn steel
JPH02221311A (en) Production of molten stainless steel by smelting reduction
JPS61139614A (en) Manufacture of steel