JP4825982B2 - 固体撮像素子及びその信号読み出し方法 - Google Patents

固体撮像素子及びその信号読み出し方法 Download PDF

Info

Publication number
JP4825982B2
JP4825982B2 JP2007523379A JP2007523379A JP4825982B2 JP 4825982 B2 JP4825982 B2 JP 4825982B2 JP 2007523379 A JP2007523379 A JP 2007523379A JP 2007523379 A JP2007523379 A JP 2007523379A JP 4825982 B2 JP4825982 B2 JP 4825982B2
Authority
JP
Japan
Prior art keywords
voltage
mos transistor
potential
conversion unit
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007523379A
Other languages
English (en)
Other versions
JPWO2007000879A1 (ja
Inventor
景一郎 香川
淳 太田
Original Assignee
国立大学法人 奈良先端科学技術大学院大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 奈良先端科学技術大学院大学 filed Critical 国立大学法人 奈良先端科学技術大学院大学
Priority to JP2007523379A priority Critical patent/JP4825982B2/ja
Publication of JPWO2007000879A1 publication Critical patent/JPWO2007000879A1/ja
Application granted granted Critical
Publication of JP4825982B2 publication Critical patent/JP4825982B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N3/00Scanning details of television systems; Combination thereof with generation of supply voltages
    • H04N3/10Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical
    • H04N3/14Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical by means of electrically scanned solid-state devices
    • H04N3/15Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical by means of electrically scanned solid-state devices for picture signal generation
    • H04N3/155Control of the image-sensor operation, e.g. image processing within the image-sensor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/65Control of camera operation in relation to power supply
    • H04N23/651Control of camera operation in relation to power supply for reducing power consumption by affecting camera operations, e.g. sleep mode, hibernation mode or power off of selective parts of the camera
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/59Control of the dynamic range by controlling the amount of charge storable in the pixel, e.g. modification of the charge conversion ratio of the floating node capacitance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/709Circuitry for control of the power supply
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/772Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising A/D, V/T, V/F, I/T or I/F converters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

本発明は、撮影対象物から到来する光の強度を検出して電気信号として出力する固体撮像素子、及びその信号読み出し方法に関する。
現在実用化されているイメージセンサ(固体撮像素子)の方式には、大別して、CCD方式とCMOS方式とがある。この両者は主として画素信号を読み出す際の構造及び動作に相違があるが、光強度を電気信号に変換する際には、いずれも、一定時間(通常数sec〜数msec程度)内に画素内受光素子に生じたフォトキャリア(光電荷)を蓄積し、その蓄積電荷量を直接的又は間接的に検出するという動作を行うのが一般的である。従来、感度の高さや高密度化などに有利であるCCD方式が主流であったが、最近は、低消費電力化に有利であるとともに後段の画像処理回路等との1チップ化などに適したCMOS方式も普及している。
こうしたCMOS型のイメージセンサについて、従来から知られている主要な光強度検出方式を図12及び図13を参照しながら説明する。図12は従来の一般的なイメージセンサにおける各種の信号読み出し方式の相違を説明するためのフォトダイオード電位の波形の一例を示す図、図13は或る列の垂直信号線の電圧波形の一例を示す図である。
(1)アクティブピクセルセンサ(APS)方式
まずPN接合ダイオード(フォトダイオード)に或る時点で一定の逆電圧を印加することで、フォトダイオード電位を所定のリセット電位VRSTにリセットする。その後、フォトダイオードに光が入射するとフォトキャリアが発生し、電流が流れることによって放電してフォトダイオード電位が下がってゆく。このときに流れる放電電流は入射光の強度に依存するから、入射光強度が大きいほど電位の低下速度は大きくなる。そこで、図12(a)に示すように、リセット終了時点から或る一定時間t1が経過した時点でのフォトダイオード電位V1を検出し、リセット電位VRSTからの減少量(放電量)を得る。この電位の減少量が入射光強度を反映した輝度信号となる(図13(a)参照)。この方法では、フォトダイオード電位をリセットしてからその電位の減少量を検出するまでの時間(つまり電荷蓄積時間)t1を長くすれば、入射光が微弱であっても検出時の電位差が大きくなるので検出感度を上げることが可能である。この構成では、ダイナミックレンジは飽和信号振幅と、読み出し回路やリセット時のノイズの総量の比で与えられ、電源電圧が下がると飽和信号振幅も低下するため、ダイナミックレンジも低下する。
(2)パルス幅変調(PWM)方式
所定の蓄積期間の後、読み出し期間にPWM方式での画素値読み出しを行う場合、何らかの方法でフォトダイオード電位にランプ状の電圧変化ΔVを与え、蓄積期間後のフォトダイオード電位が所定の基準電圧VREFにまで下がった時点から、ランプ状電位変化の開始点から所定の時間が経過した時点までの時間をパルス信号の幅として検出する。したがって、図12(b)及び図13(b)に示すように、蓄積期間中の入射光量が大きく放電量が大きい場合(つまり蓄積期間終了時点でのフォトダイオード電位が図12(b)中にVPD’で示すように相対的に低い場合)にはパルス幅は長く(例えば図12(b)中のt2’)、蓄積期間中の入射光量が微弱で放電量が小さい場合(つまり蓄積期間終了時点でのフォトダイオード電位が図12(b)中にVPDで示すように相対的に高い場合)にはパルス幅は短く(例えば図12(b)中のt2)なる。この場合には、上述のようにランプ状電位変化の開始点から所定の時間が経過した時点以降に次のリセットを実行する。この方式では、ダイナミックレンジは1画素当たりのPWM読み出し期間と読み出し回路のジッタとの比で表される。これはフォトダイオードの飽和信号振幅と読み出し回路の入力換算ノイズとの比で書き換えることができ、読み出し回路のアンプの利得分だけダイナミックレンジを広げることができる。そのため、APS方式に比較すると電源電圧の低下に強い。
最近、CMOS型のイメージセンサはカメラ付携帯電話の撮像装置等、広く使用されるようになってきている。こうした用途に使用されるイメージセンサでは高画素化とともに低消費電力化が非常に重要である。低消費電力化に有効な方法の1つは、電源電圧を下げることである。しかしながら一般に、電源電圧を落とすとイメージセンサの光電変換部では最大振幅が下がるのに対しノイズ要因は縮小されないためS/N比やダイナミックレンジが低下してしまう。
上述したように、PWM方式による信号の読み出しはAPS方式に比べてダイナミックレンジの拡大に有効であるが、従来一般に知られているソースフォロアアンプを用いた信号読み出し回路では、電源電圧を下げた場合にダイナミックレンジが低下するのは避けられない。これに対し、非特許文献1及び特許文献2では、ダイナミックレンジを確保しつつ低消費電力化を図ることを目的としたイメージセンサが提案されている。図14はそこで提案されているイメージセンサの1個の画素セルの構成図、図15はその読み出し動作を示すタイミング図である。
入射光の光強度に応じた信号電荷を発生するフォトダイオード81のアノード端子は接地され、カソード端子とランプ電圧信号線86との間にはコンデンサ82が接続されている。フォトダイオード81のカソード端子とコンデンサ82との接続点にはアンプ83の入力端が接続され、アンプ83の出力端は出力選択用のMOSトランジスタ85を介して垂直信号線89に接続されている。アンプ83の入力端と出力端との間にはリセット用のMOSトランジスタ84が接続され、そのMOSトランジスタ84のゲート端子はリセット信号線87に、MOSトランジスタ85のゲート端子は行選択信号線88に接続されている。
この画素セルにおける信号読み出し動作は次の通りである。まずリセット信号線87に供給するリセット信号RSTによりMOSトランジスタ84をオンさせてフォトダイオード81のカソード端子の電位(フォトダイオード電位)VPDをリセット電位VRSTに設定する(図15(c)、(d)参照)。このリセットの後にランプ電圧信号線86に所定の電圧を印加すると、コンデンサ82を介してフォトダイオード電位VPDはVRST+ΔVに引き上げられる。それから、フォトダイオード81に光を入射させるとフォトダイオード81に発生する光電流により電圧VPDは図15(d)中に点線で示すように徐々に下降する。そして、所定の蓄積期間終了時には電圧VPDはその蓄積期間開始時よりもΔVSIGだけ電位が低下している。即ち、その時点でのフォトダイオード電位VPDはVRST+ΔV−ΔVSIGである。
その後に、コンデンサ82の一端に印加するランプ電圧VRAMPを所定電圧から一定のレートで低下させてゆくと(図15(a)参照)、コンデンサ82を介してフォトダイオード電位VPDもランプ電圧VRAMPに比例して下がってゆく。具体的には、コンデンサ82の容量をCramp、この容量Crampと直列に接続されているフォトダイオード81の接合容量をCpd、ランプ電圧VRAMPの電圧変化をΔVrampとすると、フォトダイオード電位VPDの電圧変化ΔVpdは、{Cramp/(Cramp+Cpd)}×ΔVrampとなる。このフォトダイオード電位VPDがアンプ83の閾値電圧Vthを横切るとその出力が反転し、入射光量に応じたパルス幅を有する二値信号が出力される(図15(e)参照)。
こうした構成による回路では、1[V]程度の電源電圧で以て動作可能であって低消費電力化を図ることができるとともに、アンプのゲインが大きいため、従来一般的な、読み出し回路にソースフォロアアンプを用いた構成よりも入力換算ノイズをかなり軽減することができ、それによって高いダイナミックレンジも確保することができる。なお、上記非特許文献2に記載のようなイメージセンサを従来のPWM方式イメージセンサと区別するために、ここでは低電圧駆動PWM方式イメージセンサと呼ぶこととする。
しかしながら、上記従来の回路構成による低電圧駆動PWM方式イメージセンサでは、各画素セル内にランプ電圧でチャージされるコンデンサ82を設ける必要がある。半導体チップの場合、コンデンサはトランジスタなどと比べて格段に広い面積を占有する素子であるため、かなり画素サイズが大きくなることは避けられない。本発明者の試算によれば、1画素セルを3個のMOSトランジスタで構成するいわゆる3Tr型のAPS回路に比べて、上記のように画素セル内にコンデンサを設けた構成では4倍程度の画素サイズとなってしまう。そのため、高画素化が困難であり、また画素数が同一であれば半導体チップ面積が大きくなるためコストが高いものとなるおそれがある。
また、上記非特許文献1に開示されている低電圧駆動PWM方式イメージセンサでは、アンプ83としてソース接地型の1個のMOSトランジスタを用いる場合とPMOSトランジスタとNMOSトランジスタとを組み合わせたCMOS構成のインバータアンプを用いる場合とが考えられる。前者は後者に比べて画素セル内のトランジスタ数を1個分減らすことができ画素サイズの縮小という点では有利であるが、フォトダイオード電位VPDがそのソース接地MOSトランジスタの閾値電圧Vthよりも高いときには定常的なバイアス電流が該トランジスタに流れることになる。PWM方式の場合、情報として重要であるのはアンプ83の出力が反転する変化点のタイミングであるが、上記回路ではソース接地MOSトランジスタがオン状態にある期間中には常にバイアス電流が流れており、この分の消費電力は必要な情報の取得に直接関与しないから無駄な電力消費であるとみなすことができる。即ち、前者は消費電力の抑制の点では不利である。
一方、後者、つまりCMOS構成のインバータアンプを用いる場合には、出力が変化する過渡状態のときにのみ電流が流れ、出力が固定されている定常状態ではバイアス電流は流れない。したがって、消費電力の点では有利である。その反面、アンプ83として2個のトランジスタを必要とするため、画素サイズの縮小には不利である。また、CMOS構成のインバータアンプでは上述のように定常的なバイアス電流は流れないものの、出力変化時に電源側からグラウンド側に向かって貫通電流が流れるから、ランプ電圧のスルーレートが小さい場合やCMOSインバータアンプの遷移領域幅が広い場合など、ゲート−ソース間電圧が閾値電圧Vth付近にある時間が長いような条件の下では貫通電流による消費電力が無視できないレベルとなる可能性がある。したがって、貫通電流による消費電力を低減できれば、従来よりもさらに低消費電力化を達成することができる。
特開平10−269345号公報 特開平2005−198149号公報 荘保信、橋口和夫、香川景一郎、太田淳、「ア・ロー−ボルテージ・パルス−ウィドス−モジュレーション・イメージ・センサ(A Low-Votage Pulse-Width-Modulation Image Sensor)」、2005 CCD & AIS、平成17年6月9日
本発明はかかる課題に鑑みて成されたものであり、その第1の目的とするところは、ダイナミックレンジを確保しながら低消費電力化を図ることができ、しかも画素サイズを小さくして高画素化や他の回路の取り込みにも有利である固体撮像素子及びその信号読み出し方法を提供することにある。
また本発明の第2の目的とするところは、上述したような従来の低電圧駆動PWM方式イメージセンサに比べても、さらに一段と低消費電力化を進めることができる固体撮像素子及びその信号読み出し方法を提供することにある。
上記第1の目的を達成するために成された第1発明に係る固体撮像素子は、
a)入射光の強度に応じた信号電荷を発生してこれによる電位を保持する光電変換部と、
b)該光電変換部の保持電位を読み出すようにゲート端子が接続されるとともにドレイン端子を出力とする第1MOSトランジスタを含むアンプ部と、
c)前記光電変換部に読み出すべき電位が保持され、前記第1MOSトランジスタのゲート端子に該保持電位が印加された状態で、該第1MOSトランジスタのソース端子にランプ波形状の電圧を印加する電圧印加部と、
d)前記電圧印加部により前記第1MOSトランジスタのソース端子に印加されたランプ波形状電圧の電圧変化開始点から、該第1MOSトランジスタのゲート−ソース間の電位差が閾値電圧を超えて該トランジスタがオフ状態からオン状態に変化し、それに伴って該トランジスタの出力が変化するまでの、前記保持電位に応じたパルス幅を有する二値信号を生成する信号変換部と、
を備えることを特徴としている。
第1発明に係る固体撮像素子の第1の実施態様として、前記アンプ部は、N型又P型である前記第1MOSトランジスタをソース接地形態としたアンプである構成とすることができる。また、第1発明に係る固体撮像素子の第2の実施態様として、前記アンプ部は、N型又P型である前記第1MOSトランジスタのドレイン端子側にさらに逆極性のMOSトランジスタを追加したCMOSインバータアンプである構成とすることができる。
また上記第1の目的を達成するために成された第2発明は、第1発明に係る固体撮像素子の信号読み出し方法であり、入射光の強度に応じた信号電荷を発生してこれによる電位を保持する光電変換部と、該光電変換部の保持電位を読み出すようにゲート端子が接続されるとともにドレイン端子を出力とする第1MOSトランジスタを含むアンプ部と、該第1MOSトランジスタの出力に基づいて入射光強度に応じた二値信号を生成する信号変換部と、を具備する固体撮像素子の信号読み出し方法であって、
前記光電変換部に入射光の強度に応じた読み出すべき電位が保持され、前記第1MOSトランジスタのゲート端子に該保持電位が印加された状態で、第1MOSトランジスタのソース端子にランプ波形状の電圧を印加し、前記信号変換部により、そのランプ波形状電圧の電圧変化開始点から、該第1MOSトランジスタのゲート−ソース間の電位差が閾値電圧を超えて該トランジスタがオフ状態からオン状態に変化し、それに伴って該トランジスタの出力が変化するまでの、前記保持電位に応じたパルス幅を有する二値信号を生成するようにしたことを特徴としている。
上記第2の目的を達成するために成された第3発明に係る固体撮像素子は、
a)入射光の強度に応じた信号電荷を発生してこれによる電位を保持する光電変換部と、
b)該光電変換部の保持電位を読み出すように該光電変換部の出力端子にゲート端子が接続されるとともにドレイン端子を出力とする第1MOSトランジスタを含むアンプ部と、
c)前記光電変換部に読み出すべき電位が保持された状態で、前記第1MOSトランジスタのソース端子、又は容量素子を介して前記光電変換部の出力端子にランプ波形状の電圧を印加する電圧印加部と、
d)前記アンプ部の出力信号を出力する出力信号線と電源供給線との間に接続された第2MOSトランジスタと、
e)該第2MOSトランジスタのゲート端子に制御電圧を印加する回路であって、ランプ波形状電圧の印加前に該第2MOSトランジスタを導通させて前記出力信号線に一端が接続された浮遊容量を充電する充電制御手段と、
f)記電圧印加部により前記第1MOSトランジスタのソース端子又は容量素子を介して前記光電変換部の出力端子に印加されたランプ波形状電圧の電圧変化開始点から、該第1MOSトランジスタのゲート−ソース間の電位差が閾値電圧を超えて該トランジスタがオフ状態からオン状態に変化し、それに伴って該第1MOSトランジスタを通して前記浮遊容量の充電電荷放電されることで前記出力信号線上の電圧が変化するまでの、前記保持電位に応じたパルス幅を有する二値信号を生成する信号変換部と、
を備えることを特徴としている。
上記第2の目的を達成するために成された第4発明は、第3発明に係る固体撮像素子の信号読み出し方法であり、入射光の強度に応じた信号電荷を発生してこれによる電位を保持する光電変換部と、該光電変換部の保持電位を読み出すように該光電変換部の出力端子にゲート端子が接続されるとともにドレイン端子を出力とする第1MOSトランジスタを含むアンプ部と、前記第1MOSトランジスタのソース端子、又は容量素子を介して前記光電変換部の出力端子にランプ波形状の電圧を印加する電圧印加部と、前記アンプ部の出力信号を出力する出力信号線と電源供給線との間に接続された第2MOSトランジスタと、前記出力信号線上の電圧に基づいて前記保持電位に応じたパルス幅を有する二値信号を生成する信号変換部と、を具備する固体撮像素子の信号読み出し方法であって、
前記光電変換部に入射光の強度に応じた読み出すべき電位が保持され、前記第1MOSトランジスタのゲート端子に該保持電位が印加された状態で且つ前記電圧印加部によるランプ波形状電圧の印加前に、前記第2MOSトランジスタのゲート端子に所定の制御電圧を印加することで該MOSトランジスタを導通させて前記出力信号線に一端が接続された浮遊容量を充電しておき、その後に、前記電圧印加部により前記第1MOSトランジスタのソース端子又は容量素子を介して前記光電変換部の出力端子にランプ波形状電圧を印加し始め、前記信号変換部により、そのランプ波形状電圧の電圧変化開始点から、該第1MOSトランジスタのゲート−ソース間の電位差が閾値電圧を超えて該トランジスタがオフ状態からオン状態に変化し、それに伴って該第1MOSトランジスタを通して前記浮遊容量の充電電荷放電されることで前記出力信号線上の電圧が変化するまでの、前記保持電位に応じたパルス幅を有する二値信号を生成するようにしたことを特徴とする固体撮像素子の信号読み出し方法。
したことを特徴としている。
第1〜第4発明に係る固体撮像素子又はその信号読み出し方法において、光電変換部は典型的にはフォトダイオードである。例えばアノード端子が接地されたフォトダイオードは、入射光を受けるとその光強度に応じた信号電荷を発生し、それによってカソード端子にフォトダイオード電位VPDが発生する。第1の実施態様の固体撮像素子では、このフォトダイオード電位VPDがソース接地形態である第1MOSトランジスタのゲート端子に印加されるため、そのソース端子の電位がVPDから閾値電圧Vthを引いた電位よりも低い間は、該トランジスタはオフ状態である。そのため、例えば第1MOSトランジスタのドレイン端子と出力選択用トランジスタを介して接続されている信号線(垂直信号線)上の出力電圧は通常、電源電圧となる。
この状態から電圧印加部により例えば下り勾配のランプ波形状の電圧が印加された場合、ソース端子に印加される電圧が下がっていってゲート−ソース間の電位差が閾値電圧を超えると第1MOSトランジスタがオンし、上記垂直信号線上の出力電圧はランプ波形状電圧に近いレベルまで急に下がる。ランプ波形状電圧の電圧変化開始点から第1MOSトランジスタの出力の急な変化までの時間は当初のゲート端子の電位、つまりフォトダイオード電位VPDに依存するから、これは入射光の光強度に応じて発生した信号電荷量に対応する。信号変換部は、例えばランプ波形状電圧の電圧変化開始点から第1MOSトランジスタの出力の急な変化点までのパルス幅を有する二値信号を生成する。受光量が変化すればこのパルス幅も変化するから、これによりパルス幅変調信号を得ることができる。
このように第1発明に係る固体撮像素子及び第2発明に係る固体撮像素子の信号読み出し方法によれば、従来のようにフォトダイオード電位を容量結合で制御するためのコンデンサを画素セル内に配置する必要がない。上述したように一般的にコンデンサはMOSトランジスタ等に比べて半導体チップ上で格段に大きな面積を占有する素子であるため、画素セル内にコンデンサが不要であることによって画素サイズを大幅に縮小することができる。それにより、低消費電力化、高ダイナミックレンジ化を図りつつ、高画素化も図ることができる。或いは、画素数を従来と同様にした場合には、1個の画素セルの面積を縮小することで素子面積を小さくすることができ、低コスト化を図ったり、又は、他の機能の回路(例えば画像処理回路など)を同一半導体チップ上に搭載することで高機能化を図ることができる。
第1実施態様の構成のように、単なるソース接地形態のMOSトランジスタをアンプ部として用いた場合には、MOSトランジスタがオン状態であるときに常時電流が流れてしまうため低消費電力化には不利である。これに対し、第2実施態様のようにCMOSインバータアンプの構成とすることにより、インバータの出力が変化する際のごく短い時間にしか電流が流れないため、トランジスタ数が1個増加するという点で画素サイズの縮小には不利な要素があるものの、消費電力を下げる上では非常に有利である。
また第1発明に係る固定撮像素子では、n行m列の二次元状に画素セルが配置され、各画素セルには前記光電変換部と前記アンプ部とを含み、さらに各画素セルは、前記光電変換部の保持電位をリセットするための第2MOSトランジスタと、第1MOSトランジスタの出力電圧を複数の画素セルで共用する信号線(垂直信号線)に出力するか否かを決める出力選択用の第3MOSトランジスタとを少なくとも備える構成とすることができる。
このとき、前記信号線は1列に属するn個の全画素セルに共用され、前記信号変換部は列毎にそれぞれ設けられる構成とするとよい。
即ち、この構成によれば、1個の画素セル内にフォトダイオード以外に、最小限3個のトランジスタを配置した構成とすることができ、1個の画素サイズはAPS方式の3Tr型の読み出し回路とほぼ同程度とすることができる。なお、上述したようにアンプ部をCMOSインバータアンプとした場合でも、1画素のサイズはAPS方式の4Tr型の読み出し回路とほぼ同程度で済む。
また第1発明に係る固体撮像素子では、n行m列の二次元状に画素セルが配置され、各画素セルには前記光電変換部と該光電変換部の保持電位を選択的に出力するための出力用ゲート回路とを含み、隣接する又は近接する複数の画素セルに対し、前記アンプ部と、その複数の画素セル内の光電変換部の保持電位をリセットするための第2MOSトランジスタと、第1MOSトランジスタの出力電圧を複数の画素セルで共用する信号線に出力するか否かを決める出力選択用の第3MOSトランジスタとを共用した構成としてもよい。
この構成によれば、各画素セルにそれぞれ第1乃至第3MOSトランジスタを配置する場合に比べて1画素当たりのMOSトランジスタの個数を減らすことができるので、画素サイズのさらなる縮小が可能であって高画素化に有利である。
また第1発明に係る固体撮像素子では、前記信号変換部は、前記第1MOSトランジスタの出力電圧から前記ランプ波形状電圧に相当する分を差し引いた電圧信号を生成する波形整形部と、該波形整形部の出力電圧を所定の判定閾値で以て判定して二値化する比較部と、を含む構成とすることができる。
第1発明に係る固体撮像素子では、上述したように読み出し用の第1MOSトランジスタのソース端子の電位をランプ波形状に変化させるので、その出力電圧のローレベルも同様に変化してオフセットが生じたようになる。上記構成によれば、信号変換部において、そのオフセットの電圧分がまず波形整形部で除去されてローレベルが平坦になる(つまりほぼ同一電位を維持する)ので、次の比較部で二値化を行う際の判定閾値の設定が容易になる。
もちろん、こうした波形整形を行わずに、ランプ波形状になるローレベルの影響を受けない範囲に判定閾値を設定して二値化を行うことも可能である。
第1発明の具体的な構成の一態様として、前記第1MOSトランジスタはN型であり、前記光電変換部の保持電位をリセットする際に、前記電圧印加部は該第1MOSトランジスタのソース端子に本素子の最低電位でない電圧VH1を印加することで、前記光電変換部の電位をその電圧VH1よりもそのMOSトランジスタの閾値電圧又はそれに近い電圧分だけ高い電位付近のリセット電位VRSTに初期設定し、前記電圧印加部は下り勾配のランプ波形状の電圧を印加する構成とすることができる。
この構成によれば、リセット電圧VRSTと電圧VH1との関係をVRST>VH1とする条件を満たす範囲で、フォトダイオードの信号電圧振幅を可能な限り大きくすることができるので、電源電圧を低くしながらダイナミックレンジを確保するのに有利である。
また上記構成では、前記光電変換部の蓄積期間中の保持電位をリセット電位VRSTに設定した後、入射光の強度に応じた信号電荷を発生して保持電位を該リセット電位VRSTから下げてゆく際に、前記電圧印加部は第1MOSトランジスタのソース端子に前記電圧VH1よりも高い電圧VH2を印加する構成とするとよい。
これにより、電荷蓄積期間中に第1MOSトランジスタが完全にオフ状態になるので、MOSトランジスタのサブスレショルドリークが低減される。それによって、フォトダイオード電位の精度が高まり、これに基づく画質の改善に寄与する。
また第1発明の別の態様として、ランプ波の最大電圧VH1よりも高い(但し電圧VH2よりは低い)電圧VH3で以て光電変換部の保持電位をリセットする構成としてもよい。この構成によれば、読み出し期間に出力電圧が早く反転するため、PWM読み出しを行う際の無駄時間(暗時出力電圧が基準電位VREFに達するまでの時間)を短縮することができる。
また、上記と同様の考え方で、第1MOSトランジスタとしてP型を用いる構成とすることもできる。即ち、前記第1MOSトランジスタはP型であり、前記光電変換部の保持電位をリセットする際に、前記電圧印加部は第1MOSトランジスタのソース端子に本素子の最高電位でない電圧VH1を印加することで、前記光電変換部の電位をその電圧VH1よりもそのMOSトランジスタの閾値電圧の絶対値又はそれに近い電圧分だけ低い電位付近のリセット電位VRSTに初期設定し、前記電圧印加部は上り勾配のランプ波形状の電圧を印加する構成としてもよい。
そして、この構成では、前記光電変換部の蓄積期間中の保持電位をリセット電位VRSTに設定した後、入射光の強度に応じた信号電荷を発生して保持電位を該リセット電位VRSTから上げてゆく際に、前記電圧印加部は第1MOSトランジスタのソース端子に前記電圧VH1よりも低い電圧VH2を印加する構成とすればよい。こうした構成においても、第1MOSトランジスタがN型である場合と同様に、電源電圧を低くしながらダイナミックレンジを確保するのに有利である。
なお第1発明に係る固体撮像素子では、少なくとも前記アンプ部に含まれるMOSトランジスタをSOI(Silicon on Insulator)基板上に形成する構成とするとよい。
即ち、上述したようにソース接地形態のMOSトランジスタのソース電位を変化させた場合、基板バイアス効果によってMOSトランジスタの閾値電圧自体が変化し、それがパルス幅変調を行って画素値を読み出した際の非線形性誤差の一つの要因となる。MOSトランジスタをSOI基板上に形成すれば基板バイアス効果が起こらないため、上記のような非線形性が改善されて精度の向上が期待できる。なお、この場合でも、フォトダイオード自体はSOI基板上ではなくバルク基板上に配置するか、或いはフォトダイオードを載せるSOI層を厚くするのが、感度の点で好ましい。
また、第3発明に係る固体撮像素子及び第4発明に係る固体撮像素子の信号読み出し方法では、画素セル内のアンプ部の出力信号が出力される垂直信号線等の出力信号線と電源供給線との間に接続された第2MOSトランジスタを負荷電流源又は負荷抵抗として使用するのではなく、出力信号線に一端が接続された浮遊容量を充電するための制御用のスイッチとして利用する。即ち、充電制御手段は、光電変換部に入射光の強度に応じた読み出すべき電位が保持された状態で且つランプ波形状電圧が印加される前に、第2MOSトランジスタのゲート端子に所定の制御電圧を印加することにより該MOSトランジスタをオン状態にし、出力信号線を電源供給線の電位まで持ち上げることにより浮遊容量を充電しておく。第2MOSトランジスタがオフ状態になり、第1MOSトランジスタもオフした状態では、浮遊容量の充電電荷は保持される。
その後に、第1MOSトランジスタのソース端子又は容量素子を介して光電変換部の出力端子にランプ波形状の電圧を印加し始め、そのランプ波形状電圧の変化の過程で、第1MOSトランジスタのソース端子−ゲート端子間電圧が閾値電圧Vthを越えると第1MOSトランジスタがオン状態になって、該MOSトランジスタを通して浮遊容量の充電電荷が放電される。これにより、出力信号線上の電圧は大きく変化するから、信号変換部はこの電圧変化を捉えて光電変換部の保持電位に応じたパルス幅を有する二値信号を生成する。
この構成では、浮遊容量に充電された電荷が放電された際にアンプ部のMOSトランジスタ過渡的な電流が流れるだけであり、定常的なバイアス電流は流れない。また、充電電荷の分しか過渡電流も流れないため、CMOS構成のインバータアンプの出力変化時に流れる貫通電流に比べてもその電流値は小さい。したがって、第1発明に係る固体撮像素子の構成においてアンプ部として1個のMOSトランジスタを用いた場合でも、アンプ部の出力変化時以外に定常的にバイアス電流が流れることを回避して低消費電力化を図ることができる。これにより、画素サイズの縮小と低消費電力化をともに達成できる。また、アンプ部としてCMOS構成のインバータアンプを用いた場合でも、流れる電流を従来よりも削減し、さらなる低消費電力化を図ることができる。
なお、第3発明に係る固体撮像素子及び第4発明に係る固体撮像素子の信号読み出し方法において、第1MOSトランジスタのソース端子にランプ波形状の電圧を印加する構成は上記第1発明に係る固体撮像素子に相当する構成であり、一方、容量素子を介して光電変換部の出力端子にランプ波形状の電圧を印加する構成は前述した従来の低電圧駆動PWM方式イメージセンサに相当する構成である。即ち、第3及び第4発明はいずれの構成の低電圧駆動PWM方式イメージセンサにも適用でき、それによってさらなる低消費電力化を達成できるものである。
また上記各発明における「ランプ波形」とは、時間経過に従って直線状に変化する、つまりXを時間、Aと比例定数としたときにV=A・Xとして表される波形のみならず、時間の乗数に比例する、例えばV=A・Xγで表される波形を含むものとする。また、例えばV=A・X+B、又はV=A・Xγ+Bとして表されるように、所定のオフセット値(B)が初期的に設定されているものも含むものとする。
本発明に係る固体撮像素子の一実施例であるイメージセンサの全体構成を示すブロック図。 本実施例(第1実施例)のイメージセンサにおける1個の画素セル及び1個のPWM変換部の回路構成図。 第1実施例のイメージセンサにおける読み出し動作を説明するためのタイミング図。 第1実施例のイメージセンサにおけるPWM信号変換動作の説明図。 第2実施例のイメージセンサにおける1個の画素セルの回路構成を示す図。 第3実施例のイメージセンサにおける複数画素セル共有型の回路構成の一例を示す図。 第4実施例のイメージセンサにおける1個の画素セル及び1個のPWM変換部の回路構成図。 第4実施例のイメージセンサにおけるPWM信号変換動作を説明するためのタイミング図。 第4実施例のイメージセンサにおける信号読み出し原理の説明図。 第5実施例のイメージセンサにおける1個の画素セル及びPWM変換部の要部の回路構成図。 第5実施例のイメージセンサにおけるPWM信号変換動作を説明するためのタイミング図。 一般的なイメージセンサにおける各種の信号読み出し方式の相違の説明図。 一般的なイメージセンサにおける各種の信号読み出し方式の相違の説明図。 従来の低電圧駆動PWM方式イメージセンサの画素セルの回路構成を示す図。 従来の低電圧駆動PWM方式イメージセンサの読み出し動作を説明するためのタイミング図。
符号の説明
1…イメージセル部
10、10a、10b、10c、10d…画素セル
11、111、112、113、114…フォトダイオード
12、13、14、19、43、201、202、203、204…MOSトランジスタ
15…リセット信号線
16…行選択信号線
17…ランプ電圧信号線
18…垂直信号線
20…画素ユニット
2…行選択デコーダ
3…ランプ電圧発生回路
4…コンパレータ回路
41…差分アンプ
42…コンパレータ
5…条件判定回路
6…メモリ回路
7…列選択デコーダ
8…グレイコードカウンタ
20…タイミング制御回路
21…バイアス回路
22…充電制御回路
[第1実施例]
以下、本発明に係る固体撮像素子の一実施例(第1実施例)であるCMOS型イメージセンサについて図面を参照して説明する。図1は本実施例によるイメージセンサの全体構成を示すブロック図、図2は1個の画素セル及び1個のPWM変換部の回路構成図、図3は本実施例のイメージセンサにおける画素信号読み出し動作を説明するためのタイミング図、図4は本実施例のイメージセンサにおけるPWM信号変換動作の説明図である。
図1に示すように、本実施例によるイメージセンサは、n行m列の2次元状に画素セル10が配置されたイメージセル部1と、該イメージセル部1内の各行毎に後述のような各種制御信号を設定する行選択デコーダ2と、ランプ波形状の電圧を発生するランプ電圧発生回路3と、該イメージセル部1内の各列に対応して設けられたコンパレータ回路4と、そのコンパレータ回路4による出力信号(PWM信号)に基づいて所定のタイミングで(具体的には後記グレイコードカウンタ8を駆動するクロック信号に同期して)パルス信号を生成する条件判定回路5と、所定のクロック信号に同期してカウントアップを行うグレイコードカウンタ8と、一時的なメモリとバッファメモリとを含み、条件判定回路5によるパルス信号に応じてグレイコードカウンタ8のカウント値を読み込んで出力データとしてラッチし、行方向に並んだm個の画素セル10に対応した出力データが揃った時点で順次出力するためのメモリ回路6と、そうしたメモリ回路6等の動作を制御するための列選択デコーダ7と、各部に所定の制御信号を供給するタイミング制御回路20と、アナログ回路をバイアスするためのバイアス回路21と、を備える。なお、行選択デコーダ2、列選択デコーダ7はスキャナでもよいが、ランダムアクセスの可能性からはデコーダのほうが有利である。また、グレイコードカウンタ8はジョンソンカウンタや他の形式のカウンタでもよいが、消費電力を抑える点ではグレイコードカウンタが有利である。
図2に示すように、1個の画素セル10は、1個のフォトダイオード(本発明における光電変換部)11と3個のMOSトランジスタ12、13、14とを含む。即ち、APS方式の3Tr構造に相当する小さな回路規模の構成である。フォトダイオード11はアノード端子が接地され、カソード端子にはリセット用スイッチである第2MOSトランジスタ13とソース接地型アンプとして機能する第1MOSトランジスタ12のゲート端子とが接続されている。第2MOSトランジスタ13のゲート端子はリセット信号線15に、第1MOSトランジスタ12のソース端子はランプ電圧信号線17に接続されており、第1及び第2MOSトランジスタ12、13のドレイン端子はともに、出力選択用スイッチである第3MOSトランジスタ14を介して垂直信号線18に接続されている。この第3MOSトランジスタ14のゲート端子は行選択信号線16に接続されている。
リセット信号線15、行選択信号線16、及びランプ電圧信号線17はイメージセル部1内で行方向に並ぶm個の画素セル10に共通であり、垂直信号線18はイメージセル部1内で列方向に並ぶn個の画素セルに共通である。この垂直信号線18は負荷電流源として機能するMOSトランジスタ43を介して正電圧VDDを供給する電源ラインに接続されている。もちろん、このMOSトランジスタ43に代えてポリシリコンなどを用いた負荷抵抗でもよいし、ダイオード接続したトランジスタなどとすることもできる。
この垂直信号線18はコンパレータ回路4に含まれる差分アンプ41の一入力端に接続され、差分アンプ41の他の入力端にはランプ電圧信号線17に供給されるのと同様のランプ電圧VRAMPが入力されている。この両入力端電圧の差電圧VDIFFはコンパレータ42の一入力端に接続され、コンパレータ42の他の入力端には基準電圧VREFが印加されている。このコンパレータ42は、差電圧VDIFFが基準電圧VREFよりも大きいときに「H」を、差電圧VDIFFが基準電圧VREFよりも小さいときに「L」を出力するから、ここで信号は二値化されてパルス幅に情報を有するPWM信号となる。
図2の回路の動作は後で詳述するが、簡単に言うと、この画素セル10及びコンパレータ回路4では、フォトダイオード11に入射した光の強度に応じたパルス幅を有するPWM信号を生成して出力電圧VOUTとして出力する。上述した条件判定回路5は、直前の時刻(上記クロック信号の1パルス前)における出力電圧VOUTの値を記憶しておくメモリを列毎に有し、現時刻における出力電圧VOUTと比較することで、このPWM信号の「H」→「L」の変化点を検出してパルス信号を生成し、ランプ波形状電圧が下がり始める直前にメモリを「H」に初期化する。また、グレイコードカウンタ8は例えばランプ波形状電圧が下がり始める直前(条件判定回路5のメモリを初期化するタイミングと同じでよい)にカウント値を最小値Dminにリセットして、所定周波数のクロック信号のカウントアップを開始する。このクロック信号はPWM信号のパルス幅に比べて十分に高い周波数を有する。メモリ回路6では、条件判定回路5からの上記パルス信号に応じてグレイコードカウンタ8のカウント値をメモリにラッチする。したがって、PWM信号の「H」レベルのパルス幅が広いほど、つまり入射光量が大きいほどグレイコードカウンタ8のアップカウント開始からラッチまでの時間が長くなり、大きなカウント値(もちろんグレコードとして)がメモリにラッチされることになる。これにより、PWM信号のパルス幅の情報がデジタル値に変換される。
なお、メモリ回路6の各メモリはPWM変換期間の最初に最大値Dmaxにセットされ、上記のように条件判定回路5からのパルス信号がラッチクロックとして得られると、始めに格納されている最大値Dmaxがそのときのグレイコードカウンタ8のカウント値に書き換えられる。これにより、受光強度が小さ過ぎる又は大き過ぎる場合でもオーバーフローやアンダーフローにより誤った値を出力することを防止できる。即ち、このイメージセンサで検出できないほど入射光が弱い場合には最小値Dminが出力され、このイメージセンサでの検出可能範囲を超えるほど強い光が入射した場合には最大値Dmaxが出力される。
次に、本実施例のイメージセンサの最大の特徴であるPWM変換動作を、図3及び図4を参照しつつ詳述する。図3に示すように、1サイクルの動作は、リセット期間、電荷蓄積期間、PWM変換期間を含む。
まず図3(c)に示すように、ランプ電圧信号線17に供給するランプ電圧VRAMPを所定の高い電圧VH1に設定することで、第1MOSトランジスタ12のソース端子の電位をVH1にする。この状態でリセット信号線15に供給するリセット信号RSTを「H」レベルにし、第2MOSトランジスタ13をオンさせることでフォトダイオード11のカソード端子の電位(フォトダイオード電位VPD)をリセットする。このとき、行選択信号線16に供給する行選択信号SELは「H」としておく。それによって第3MOSトランジスタ14はオンしているため、第1及び第2MOSトランジスタ12、13のドレイン端子は正電圧VDDにバイアスされる。リセット時のフォトダイオード電位VPDは第1MOSトランジスタ12のソース電位よりもおおよそその閾値電圧Vthだけ高くなるから、フォトダイオード11のリセット電位VRSTはVH1+Vthとなる。なお、リセット信号RST及び行選択信号SELを「H」レベルとする際には、ブートストラップなどにより充分に大きな電圧を印加することが望ましい。
その後、行選択信号SELを「H」→「L」にすることで第3MOSトランジスタ14をオフさせ電荷蓄積期間に移行する。電荷蓄積期間では、フォトダイオード11に入射した光の強度に応じて流れる電流によってフォトダイオード電位VPDは徐々に下がり始める。単位時間当たりの受光強度が大きいほどフォトダイオード電位VPDの下がり勾配は急になる。この電荷蓄積期間中にはランプ電圧信号線17に印加するランプ電圧VRAMPはVH1よりも高いVH2に維持しておく。これにより、第1MOSトランジスタ12のゲート−ソース間の電圧を負にするか或いは正であっても小さな電位差とすることができ、サブスレショルドリークによる漏洩電流を小さくすることができる。その結果、入射光によるフォトダイオード電位VPDの低下以外の電位低下要因がなくなり、信号変換の精度が向上する。
なお、いま着目している画素セル内で蓄積動作が行われている期間中には、コンパレータ回路4では、垂直信号線18を共有する他の行の画素セルでそれ以前に光電変換により取得されたフォトダイオード電位の情報が読み出されてPWM変換される。
上述したようにリセット動作時にリセット信号RST及び行選択信号SELの電圧を充分に大きくしたことにより、MOSトランジスタ13、14のソース−ドレイン電位が一致しているという前提の下では、図3(d)に示すように、上記電荷蓄積期間内に入射光による信号電荷の積算によってフォトダイオード電位VPDがΔVPDだけ低下するものとすると、電荷蓄積期間終了時のフォトダイオード電位はVRST−ΔVPD、つまりVH1+Vth−ΔVPDとなる。電荷蓄積期間が終了すると、行選択信号SELを「L」→「H」にすることで、第1MOSトランジスタ12のドレイン端子と垂直信号線18とを導通させることで第1MOSトランジスタ12を有効化する。そして、ランプ電圧信号線17に供給しているランプ電圧VRAMPをVH2からVH1に戻し、その電位を開始点として電圧VLまで一定のレート(電圧/時間)で以て電圧を低下させる。即ち、ソース接地型アンプである第1MOSトランジスタ12の接地電位をランプ形状で徐々に下げてゆく。
その電圧低下の開始時点では第1MOSトランジスタ12はオフしているため、画素セル10の出力電圧VSIGはほぼ正電圧VDDに維持される。ランプ電圧VRAMPが下がっていって第1MOSトランジスタ12のゲート端子の電位、つまりフォトダイオード電位VPD(=VRST−ΔVPD)と第1MOSトランジスタ12のソース端子の電位、つまりランプ電圧VRAMPとの電圧差が第1MOSトランジスタ13の閾値電圧Vthを超えると、第1MOSトランジスタ12はオンしてソース−ドレイン間がほぼ導通状態となる。すると、出力電圧VSIGはそれまでのVDDから急に下がる。そのときの出力電圧VSIGはほぼランプ電圧VRAMPの電位であるから、ランプ電圧VRAMPが低下するに従い出力電圧VSIGも低下してゆく。そして、ランプ電圧VRAMPがVLに下がるまでその状態が続くことになる。
図4(a)はランプ電圧VRAMPと出力電圧VSIGとの関係を示す図であり、上述したようにランプ電圧VRAMPをVH1からVLまで下げてゆくと、出力電圧VSIGは図4(a)に示す折れ線を右方から左方へ向かって辿るように変化する。この図で明らかなように出力電圧VSIGが急激に変化するのは、VRST−ΔVPD−VRAMPが閾値電圧Vthに一致した近辺であるから、ΔVPDが大きいほど、ランプ電圧VRAMPの電圧下降開始点から出力電圧VSIGが急激に変化するまでの時間は長くなる。
コンパレータ回路4にあって差分アンプ41の一入力端には、垂直信号線18を介して上記出力電圧VSIGが印加されており、他の入力端にはランプ電圧VRAMPが印加されている。画素セル10内では第1MOSトランジスタ12のソース電位がランプ電圧RAMPで変調されたのと同様の状態になっているため、出力電圧VSIGはこのランプ電圧VRAMPの分だけバイアス(又はオフセット)が加えられたのと等価である。差分アンプ41でこの分を差し引くことにより、図4(b)に示すように差分アンプ41の出力である差電圧VDIFFではランプ電圧VRAMPの影響がなくなる。即ち、図3(f)に示すように差電圧VDIFFは変化する。そして、コンパレータ42でこの差電圧VDIFFを基準電圧VREFと比較して差電圧VDIFFが基準電圧VREFを下回っている間は「H」を出力し、差電圧VDIFFが基準電圧VREFを超えたならば「L」を出力することで、図3(g)に示すようなパルス信号を出力電圧VOUTとして出力する。
上述したように入射光強度の積算値に対応したΔVPDが大きいほどランプ電圧VRAMPの電圧低下開始時点から出力電圧VSIGが急激に変化するまでの時間が長いから、出力電圧VOUTのパルス幅は広くなる。このようにして、ΔVPDはPWM信号に変換される。
上記PWM変換動作を式で表すと次のようになる。PWM変換開始時刻を0とし、そこからの経過時間をtとする。ランプ電圧の波形は次の式で表される。但し、Tはランプ電圧がVH1からVLまで変化するのに要する時間である。
VRAMP=−{(VH1−VL)/T}t+VH1 …(1)
また、ΔVPDは光電流Iphに比例するから、次の(2)式で表すことができる。
ΔVPD=αIph …(2)
(1)式及び(2)式から、次の(3)式が求まる。
VRST−αIph+{(VH1−VL)/T}t−VH1=Vth …(3)
一方、VRSTについては近似的に次の(4)式の関係がある。
VRST=VH1+Vth …(4)
したがって、(3)式及び(4)式から、次の(5)式を導出できる。
τ=α{T/(VH1−VL)}Iph …(5)
これにより、τとIphとは比例関係にあり、光電流量がパルス幅τに変換されることが分かる。
上記第1実施例の構成において、画素セル10内に設けられるソース接地型アンプは構造がシンプルで画素サイズの縮小に有効である。その反面、第1MOSトランジスタ12がオンしているときに常時電流が流れるため、低消費電力化には不利である。
[第2実施例]
そこで、図2で説明した1個の画素セル10の回路構成を図5に示すものに変形したのが第2実施例によるイメージセンサである。即ち、ソース接地型の第1MOSトランジスタ12に別の1個の第4MOSトランジスタ19を追加し、第1及び第4MOSトランジスタ12、19によりCMOS型のインバータを構成している。この構成では、画素セル10内のトランジスタ個数は3から4に増えるためAPS方式の4Tr型相当の画素サイズとなるものの、2個のMOSトランジスタ12、19は相補的にオンするため、上述したようなPWM変換期間内等でも出力レベルの切り替わりの過渡状態を除いて電流が流れず、その点で低消費電力化に有利である。
[第3実施例]
また、上記第1、第2実施例では、1個の画素セル10内にフォトダイオード11以外に3個乃至4個のMOSトランジスタ12、13、14、19を配置していたが、これらMOSトランジスタを複数のフォトダイオードに対して共用する構成としてもよい。図6は第3実施例によるイメージセンサの画素セルの構成を示す図であり、それぞれ独立に入射光を光電変換する4個のフォトダイオード111、112、113、114に対して4個のMOSトランジスタ12、13、14、19を共有化した回路構成の例である。共有化するために各フォトダイオード111、112、113、114のカソード端子にそれぞれPD選択用のMOSトランジスタ201、202、203、204のソース端子を接続し、その4個のMOSトランジスタ201、202、203、204のドレイン端子を全て接続して第1MOSトランジスタ12のゲート端子と第2MOSトランジスタ13のソース端子とに接続してある。
即ち、図6において、4個の画素セル10a、10b、10c、10dはそれぞれフォトダイオードとPD選択用のMOSトランジスタのみを内蔵しており、この4個の画素セル10a、10b、10c、10dと4個のMOSトランジスタ12、13、14、19を含んで1個の画素ユニット20を構成している。したがって、垂直信号線18は列方向に並ぶ複数の画素ユニット20で共通化され、リセット信号線15、行選択信号線16及びランプ電圧信号線17は行方向に並ぶ複数の画素ユニット20で共通化されている。また、4個の画素セル10a、10b、10c、10dを選択するために、4本の画素セル選択信号線TX1、TX2、TX3、TX4が追加されている。この構成においても基本的な信号読み出し動作(PWM変換動作)は上記第1実施例のものと同じである。
また、この構成によれば、1個の画素セルで4個のMOSトランジスタを使用していた上記実施例に比べて、4画素分で16個から8個へと、MOSトランジスタの使用個数を1/2に減らすことができる。それによって画素サイズを縮小することができ、高画素化に有効である。
また図2に示した第1実施例は第1MOSトランジスタ12がN型MOSトランジスタである場合の構成であるが、第1MOSトランジスタ12としてP型MOSトランジスタを用いても同様の構成とすることができることは当業者であれば容易に想到し得ることである。もちろん、P型MOSトランジスタを用いた場合には、電圧の極性(又は大小関係)やランプ電圧の傾きの極性などがN型MOSトランジスタと反対になることは言うまでもない。但し、N型、P型のいずれにおいても、ランプ電圧の傾きの極性はグレイコードカウンタのカウントのアップ/ダウンに応じて変えることもできるから、上述した実施例における関係は一例であり、様々な組合せが可能であることは当然想到し得ることである。また、MOSトランジスタとして、適宜ディプリージョン型、エンハンスメント型などを利用することも容易に想到し得ることである。
[第4実施例]
次に本発明の第4実施例によるイメージセンサの構成及び動作について説明する。図7は第4実施例のイメージセンサにおける1個の画素セル及び1個のPWM変換部の回路構成図、図8はこのイメージセンサにおけるPWM信号変換動作を説明するタイミング図、図9はこのイメージセンサにおける信号読み出し原理の説明図である。この第4実施例のイメージセンサにおいて、1個の画素セル10内の回路構成及び1個のPWM変換用のコンパレータ回路4の構成は第1実施例と全く同じであり、同一符号を付してある。構成上相違する点は、垂直信号線18に接続されている負荷定電流源として機能するMOSトランジスタ43のゲート端子に一定のバイアス電圧VBIASが印加されているのではなく、充電制御部22からMOSトランジスタ43をオン/オフ駆動する制御電圧VSWPが印加されている点である。
第1実施例によるイメージセンサを示す図2の構成において、画素セル10内のアンプである第1MOSトランジスタ12と負荷であるMOSトランジスタ43とを等価的に示すと図9(a)に示すようになる。即ち、ソース接地されたMOSトランジスタ12のドレイン端子と電源供給線との間に定電流源が接続されたものとなる。したがって、入力電圧VinがMOSトランジスタ12の閾値電圧Vthよりも大きくMOSトランジスタ12がオンしている状態では定常的に電流IbがMOSトランジスタ12に流れる。したがって、MOSトランジスタ12での消費電力は電源電圧VDDに一定電流Ibを乗じた値になる。これを、図3のタイミング図でみると、PWM変調期間T中にVSIGが大きく下がった(MOSトランジスタ12のゲート−ソース間電圧が閾値電圧Vthを越えた)時点以降にはMOSトランジスタ12に上記定常電流が流れることになり、この定常電流はフォトダイオード電位に関する情報を有しているわけではないので無駄な電流である。
これに対し本実施例によるイメージセンサでは、MOSトランジスタ43を負荷定電流源として利用するのではなく、垂直信号線18に接続されている浮遊容量を充電するための充電電流を流すための制御用スイッチとして利用する。即ち、図9(b)の等価回路において、図7におけるMOSトランジスタ43はスイッチSW1に対応し、MOSトランジスタ12はSW2に対応し、浮遊容量はCLに対応する。このスイッチSW1、SW2のオン/オフ制御を行うことにより、フォトダイオード電位に応じた出力を取得する。
具体的な動作を図8により説明する。読み出すべき画素セル10のフォトダイオード11に光電変換による電荷が蓄積されてPWM変調期間に移行した後、行選択信号SELを「L」→「H」にする前に充電制御電圧VSWPを所定時間だけ「L」にする(図8(c)参照)。充電制御電圧VSWPが「L」であるときMOSトランジスタ43はオンし、垂直信号線18の電位は電源電圧VDD近くまで持ち上げられ、垂直信号線18とグラウンドとの間に存在する浮遊容量CLは充電され、充電制御電圧VSWPが「H」になってMOSトランジスタ43がオフした後も充電電荷は保持される。その後、行選択信号SELが「L」→「H」に変化すると第3MOSトランジスタ14はオンするが、このとき第1、第2MOSトランジスタ12、13はいずれもオフしており、差分アンプ41の入力インピーダンスも高いため、リーク電流により電位が徐々に下がることを除いては垂直信号線18の電位VSIGは電源電圧VDD近傍に維持される。
それから、第1MOSトランジスタ12のソース端子に印加されているランプ電圧VRAMPが一定レートで以て低下されていって、第1MOSトランジスタ12のソース−ゲート間電圧が閾値電圧Vthを越えると、第1MOSトランジスタ12はオンし、垂直信号線18の浮遊容量CLに保持されている充電電荷の放電により第3MOSトランジスタ14、第1MOSトランジスタ12を通して電流iが流れ、垂直信号線18の電位VSIGは第1MOSトランジスタ12のソース電位まで下がる。そして、その後はランプ電圧VRAMPが低下するに従い電位VSIGも低下してゆく(図8(d)参照)。したがって、出力電圧VSIGの変化の態様は第1実施例のときとほぼ同じであり、コンパレータ回路4を通して取り出される電圧VOUTもほぼ同じとなる。
一方、電流は図8(e)に示すように、第1MOSトランジスタ12がオフ状態からオンする際(図9(b)でスイッチSW2がオンする際)に過渡的に放電電流が流れ、その後、第1MOSトランジスタ12のソース電位が下がるに従い少しずつ電流が流れるだけである。いずれにしてもトータルで流れる電流は最初に(つまり充電制御電圧VSWPが「L」になったときに)充電された分だけである。したがって、出力電圧VSIGが大きく変化した以降に負荷定電流源から定常的に流れるバイアス電流はなくなり、第1実施例の構成に比べて消費電力を大幅に抑制することができる。
[第5実施例]
上記第4実施例で説明した信号読み出し方法は、従来技術として説明した図14に示した低電圧駆動PWM方式イメージセンサに適用することもできる。その場合の構成について第5実施例として説明する。図10は、図14に示した画素セルの構成でアンプ83としてソース接地型のMOSトランジスタ83’を使用し、垂直信号線89に浮遊容量充電制御用のMOSトランジスタ43を追記した構成を示すものである。また、図11はこの回路のPWM信号変換動作を説明するタイミング図である。
この構成の場合、図15に示したタイミング図ではランプ電圧VRAMPを一定レートで以て下がるような形状としていたが、ここでは逆にランプ電圧VRAMPを一定レートで以て上げるような形状としている(図11(b)参照)。これは、PWM変換開始時点でMOSトランジスタ83をオフ状態としておく必要があるためである。それ以外は、上述した読み出し方法と基本的に相違はない。
即ち、行選択信号SELを「L」→「H」にする前に充電制御電圧VSWPを所定時間だけ「L」にし(図11(c)参照)、これによってMOSトランジスタ43をオンさせて垂直信号線89の電位を電源電圧VDD近傍まで持ち上げ、垂直信号線89とグラウンドとの間に存在する浮遊容量CLを充電しておく。その後、行選択信号SELを「L」→「H」に変化させ、コンデンサ82の一端に印加されているランプ電圧VRAMPを一定レートで以て上げていってフォトダイオード電位VPDも同様に上昇させる。そして、フォトダイオード電位VPDがMOSトランジスタ83’の閾値電圧Vthを越えると、MOSトランジスタ83’はオンし、垂直信号線18の浮遊容量CLに保持されている電荷の放電によりMOSトランジスタ85、83’を通して電流iが流れ、垂直信号線89の電位VSIGは接地電位まで下がる(図11(d)参照)。この場合にも、電流は図11(e)に示すよう、MOSトランジスタ83’がオフ状態からオンする際に過渡的に放電電流が流れるだけであり、出力電圧が大きく変化した後に負荷定電流源から定常的に流れる電流はなくなる。
上記第4、第5実施例は、画素セル内のアンプがソース接地型MOSトランジスタ12(83’)である場合について説明したが、第2実施例でも述べたように、アンプをCMOS構成とすることにより、定常的に流れる電流を殆どゼロとすることができる。しかしながら、その場合でも、CMOS型のインバータアンプがオン状態からオフ状態又はその逆に変化する際には電源供給線からグラウンドに瞬間的な貫通電流が流れる。その際の消費電力はゲート−ソース間電圧が閾値電圧Vth付近にある時間に依存する。そのため、ランプ電圧のスルーレートが小さい(傾斜が緩やかである)場合やCMOSインバータアンプの遷移領域幅が広い場合などには、貫通電流の流れる時間もそれだけ長くなり、その分、消費電力も多くなる。これに対し、上述したような信号読み出し方法によれば、CMOS型アンプの特性やランプ波のスルーレートに関係なく浮遊容量に充電された電荷の分しか電流は流れないので、消費電力を抑制し易いという利点がある。また、充電制御電圧VSWPを発生するための充電制御回路22が必要になるものの、アンプをCMOS型とするために各画素セル毎に1個ずつMOSトランジスタを追加するのに比べれば追加する回路規模はかなり少なくて済むので、画素セルを小型化して画素密度を向上させるには有利である。
なお、上記各実施例は単に本発明の一例であって、上記記載の各種変形以外に、本発明の趣旨の範囲で適宜変形や修正、追加を行っても、本願請求の範囲に包含されることは明らかである。

Claims (19)

  1. a)入射光の強度に応じた信号電荷を発生してこれによる電位を保持する光電変換部と、
    b)該光電変換部の保持電位を読み出すようにゲート端子が接続されるとともにドレイン端子を出力とする第1MOSトランジスタを含むアンプ部と、
    c)前記光電変換部に読み出すべき電位が保持され、前記第1MOSトランジスタのゲート端子に該保持電位が印加された状態で、該第1MOSトランジスタのソース端子にランプ波形状の電圧を印加する電圧印加部と、
    d)前記電圧印加部により前記第1MOSトランジスタのソース端子に印加されたランプ波形状電圧の電圧変化開始点から、該第1MOSトランジスタのゲート−ソース間の電位差が閾値電圧を超えて該トランジスタがオフ状態からオン状態に変化し、それに伴って該トランジスタの出力が変化するまでの、前記保持電位に応じたパルス幅を有する二値信号を生成する信号変換部と、
    を備えることを特徴とする固体撮像素子。
  2. 前記アンプ部は、N型又P型である前記第1MOSトランジスタをソース接地形態としたアンプであることを特徴とする請求項1に記載の固体撮像素子。
  3. 前記アンプ部は、N型又P型である前記第1MOSトランジスタのドレイン端子側にさらに逆極性のMOSトランジスタを追加したCMOSインバータアンプであることを特徴とする請求項1に記載の固体撮像素子。
  4. n行m列の二次元状に画素セルが配置され、各画素セルには前記光電変換部と前記アンプ部とを含み、さらに各画素セルは、前記光電変換部の保持電位をリセットするための第2MOSトランジスタと、第1MOSトランジスタの出力電圧を複数の画素セルで共用する信号線に出力するか否かを決める出力選択用の第3MOSトランジスタとを少なくとも備えることを特徴とする請求項1に記載の固体撮像素子。
  5. 前記信号線は1列に属するn個の全画素セルに共用され、前記信号変換部は列毎にそれぞれ設けられることを特徴とする請求項4に記載の固体撮像素子。
  6. n行m列の二次元状に画素セルが配置され、各画素セルには前記光電変換部と該光電変換部の保持電位を選択的に出力するための出力用ゲート回路とを含み、隣接する又は近接する複数の画素セルに対し、前記アンプ部と、その複数の画素セル内の光電変換部の保持電位をリセットするための第2MOSトランジスタと、第1MOSトランジスタの出力電圧を複数の画素セルで共用する信号線に出力するか否かを決める出力選択用の第3MOSトランジスタとを共用したことを特徴とする請求項1に記載の固体撮像素子。
  7. 前記信号変換部は、前記第1MOSトランジスタの出力電圧から前記ランプ波形状電圧に相当する分を差し引いた電圧信号を生成する波形整形部と、該波形整形部の出力電圧を所定の判定閾値で以て判定して二値化する比較部と、を含むことを特徴とする請求項1に記載の固体撮像素子。
  8. 前記第1MOSトランジスタはN型であり、前記光電変換部の保持電位をリセットする際に、前記電圧印加部は該第1MOSトランジスタのソース端子に本素子の最低電位でない電圧VH1を印加することで、前記光電変換部の電位をその電圧VH1よりもそのMOSトランジスタの閾値電圧又はそれに近い電圧分だけ高い電位付近のリセット電位VRSTに初期設定し、前記電圧印加部は下り勾配のランプ波形状の電圧を印加することを特徴とする請求項1に記載の固体撮像素子。
  9. 前記光電変換部の蓄積期間中の保持電位をリセット電位VRSTに設定した後、入射光の強度に応じた信号電荷を発生して保持電位を該リセット電位VRSTから下げてゆく際に、前記電圧印加部は第1MOSトランジスタのソース端子に前記電圧VH1よりも高い電圧VH2を印加することを特徴とする請求項8に記載の固体撮像素子。
  10. 前記第1MOSトランジスタはP型であり、前記光電変換部の保持電位をリセットする際に、前記電圧印加部は第1MOSトランジスタのソース端子に本素子の最高電位でない電圧VH1を印加することで、前記光電変換部の電位をその電圧VH1よりもそのMOSトランジスタの閾値電圧の絶対値又はそれに近い電圧分だけ低い電位付近のリセット電位VRSTに初期設定し、前記電圧印加部は上り勾配のランプ波形状の電圧を印加することを特徴とする請求項1に記載の固体撮像素子。
  11. 前記光電変換部の蓄積期間中の保持電位をリセット電位VRSTに設定した後、入射光の強度に応じた信号電荷を発生して保持電位を該リセット電位VRSTから上げてゆく際に、前記電圧印加部は第1MOSトランジスタのソース端子に前記電圧VH1よりも低い電圧VH2を印加することを特徴とする請求項10に記載の固体撮像素子。
  12. 少なくとも前記アンプ部に含まれるMOSトランジスタをSOI(Silicon on Insulator)基板上に形成したことを特徴とする請求項1に記載の固体撮像素子。
  13. 前記信号変換部は前記信号線と電源供給線との間に接続された第4MOSトランジスタを含み、さらに該第4MOSトランジスタのゲート端子に制御電圧を印加する回路であってランプ波形状電圧の印加前に該第4MOSトランジスタを導通させて前記信号線に一端が接続された浮遊容量を充電する充電制御手段を備え、前記第1MOSトランジスタのソース端子に印加されたランプ波形状電圧の変化に伴ってオフ状態からオン状態に変化した該第1MOSトランジスタを通して前記浮遊容量の充電電荷を放電することで、該第1MOSトランジスタの出力電圧を変化させるようにしたことを特徴とする請求項4に記載の固体撮像素子。
  14. 前記信号変換部は前記信号線と電源供給線との間に接続された第4MOSトランジスタを含み、さらに該第4MOSトランジスタのゲート端子に制御電圧を印加する回路であってランプ波形状電圧の印加前に該第4MOSトランジスタを導通させて前記信号線に一端が接続された浮遊容量を充電する充電制御手段を備え、前記第1MOSトランジスタのソース端子に印加されたランプ波形状電圧の変化に伴ってオフ状態からオン状態に変化した該第1MOSトランジスタを通して前記浮遊容量の充電電荷を放電することで、該第1MOSトランジスタの出力電圧を変化させるようにしたことを特徴とする請求項6に記載の固体撮像素子。
  15. 入射光の強度に応じた信号電荷を発生してこれによる電位を保持する光電変換部と、該光電変換部の保持電位を読み出すようにゲート端子が接続されるとともにドレイン端子を出力とする第1MOSトランジスタを含むアンプ部と、該第1MOSトランジスタの出力に基づいて入射光強度に応じた二値信号を生成する信号変換部と、を具備する固体撮像素子の信号読み出し方法であって、
    前記光電変換部に入射光の強度に応じた読み出すべき電位が保持され、前記第1MOSトランジスタのゲート端子に該保持電位が印加された状態で、第1MOSトランジスタのソース端子にランプ波形状の電圧を印加し、前記信号変換部により、そのランプ波形状電圧の電圧変化開始点から、該第1MOSトランジスタのゲート−ソース間の電位差が閾値電圧を超えて該トランジスタがオフ状態からオン状態に変化し、それに伴って該トランジスタの出力が変化するまでの、前記保持電位に応じたパルス幅を有する二値信号を生成するようにしたことを特徴とする固体撮像素子の信号読み出し方法。
  16. 前記第1MOSトランジスタはN型であり、前記光電変換部の保持電位をリセットする際に、該第1MOSトランジスタのソース端子に本素子の最低電位でない電圧VH1を印加することで、前記光電変換部の電位をその電圧VH1よりもそのMOSトランジスタの閾値電圧又はそれに近い電圧分だけ高い電位付近のリセット電位VRSTに初期設定し、その後に下り勾配のランプ波形状の電圧を印加するようにしたことを特徴とする請求項15に記載の固体撮像素子の信号読み出し方法。
  17. 前記固体撮像素子にあっては、n行m列の二次元状に画素セルが配置され、各画素セルには前記光電変換部と前記アンプ部とを含み、さらに各画素セルは、前記光電変換部の保持電位をリセットするための第2MOSトランジスタと、第1MOSトランジスタの出力電圧を複数の画素セルで共用する信号線に出力するか否かを決める出力選択用の第3MOSトランジスタを少なくとも含み、前記信号変換部は前記信号線と電源供給線との間に接続された第4MOSトランジスタを含み、
    前記ランプ波形状電圧の印加前に前記第4MOSトランジスタのゲート端子に所定電圧を印加することで該第4MOSトランジスタを導通させて前記信号線に一端が接続された浮遊容量を充電し、前記ランプ波形状電圧の印加時に第1MOSトランジスタを通して前記浮遊容量の充電電荷を放電することで該第1MOSトランジスタの出力電圧を変化させるようにしたことを特徴とする請求項15に記載の固体撮像素子の信号読み出し方法。
  18. a)入射光の強度に応じた信号電荷を発生してこれによる電位を保持する光電変換部と、
    b)該光電変換部の保持電位を読み出すように該光電変換部の出力端子にゲート端子が接続されるとともにドレイン端子を出力とする第1MOSトランジスタを含むアンプ部と、
    c)前記光電変換部に読み出すべき電位が保持された状態で、前記第1MOSトランジスタのソース端子、又は容量素子を介して前記光電変換部の出力端子にランプ波形状の電圧を印加する電圧印加部と、
    d)前記アンプ部の出力信号を出力する出力信号線と電源供給線との間に接続された第2MOSトランジスタと、
    e)該第2MOSトランジスタのゲート端子に制御電圧を印加する回路であって、ランプ波形状電圧の印加前に該第2MOSトランジスタを導通させて前記出力信号線に一端が接続された浮遊容量を充電する充電制御手段と、
    f)記電圧印加部により前記第1MOSトランジスタのソース端子又は容量素子を介して前記光電変換部の出力端子に印加されたランプ波形状電圧の電圧変化開始点から、該第1MOSトランジスタのゲート−ソース間の電位差が閾値電圧を超えて該トランジスタがオフ状態からオン状態に変化し、それに伴って該第1MOSトランジスタを通して前記浮遊容量の充電電荷放電されることで前記出力信号線上の電圧が変化するまでの、前記保持電位に応じたパルス幅を有する二値信号を生成する信号変換部と、
    を備えることを特徴とする固体撮像素子。
  19. 入射光の強度に応じた信号電荷を発生してこれによる電位を保持する光電変換部と、該光電変換部の保持電位を読み出すように該光電変換部の出力端子にゲート端子が接続されるとともにドレイン端子を出力とする第1MOSトランジスタを含むアンプ部と、前記第1MOSトランジスタのソース端子、又は容量素子を介して前記光電変換部の出力端子にランプ波形状の電圧を印加する電圧印加部と、前記アンプ部の出力信号を出力する出力信号線と電源供給線との間に接続された第2MOSトランジスタと、前記出力信号線上の電圧に基づいて前記保持電位に応じたパルス幅を有する二値信号を生成する信号変換部と、を具備する固体撮像素子の信号読み出し方法であって、
    前記光電変換部に入射光の強度に応じた読み出すべき電位が保持され、前記第1MOSトランジスタのゲート端子に該保持電位が印加された状態で且つ前記電圧印加部によるランプ波形状電圧の印加前に、前記第2MOSトランジスタのゲート端子に所定の制御電圧を印加することで該MOSトランジスタを導通させて前記出力信号線に一端が接続された浮遊容量を充電しておき、その後に、前記電圧印加部により前記第1MOSトランジスタのソース端子又は容量素子を介して前記光電変換部の出力端子にランプ波形状電圧を印加し始め、前記信号変換部により、そのランプ波形状電圧の電圧変化開始点から、該第1MOSトランジスタのゲート−ソース間の電位差が閾値電圧を超えて該トランジスタがオフ状態からオン状態に変化し、それに伴って該第1MOSトランジスタを通して前記浮遊容量の充電電荷放電されることで前記出力信号線上の電圧が変化するまでの、前記保持電位に応じたパルス幅を有する二値信号を生成するようにしたことを特徴とする固体撮像素子の信号読み出し方法。
JP2007523379A 2005-06-29 2006-06-06 固体撮像素子及びその信号読み出し方法 Active JP4825982B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007523379A JP4825982B2 (ja) 2005-06-29 2006-06-06 固体撮像素子及びその信号読み出し方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005189314 2005-06-29
JP2005189314 2005-06-29
JP2007523379A JP4825982B2 (ja) 2005-06-29 2006-06-06 固体撮像素子及びその信号読み出し方法
PCT/JP2006/311313 WO2007000879A1 (ja) 2005-06-29 2006-06-06 固体撮像素子及びその信号読み出し方法

Publications (2)

Publication Number Publication Date
JPWO2007000879A1 JPWO2007000879A1 (ja) 2009-01-22
JP4825982B2 true JP4825982B2 (ja) 2011-11-30

Family

ID=37595133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007523379A Active JP4825982B2 (ja) 2005-06-29 2006-06-06 固体撮像素子及びその信号読み出し方法

Country Status (3)

Country Link
US (1) US7923674B2 (ja)
JP (1) JP4825982B2 (ja)
WO (1) WO2007000879A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160040139A (ko) * 2013-08-05 2016-04-12 소니 주식회사 촬상 장치, 전자 기기

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7692130B2 (en) * 2006-11-01 2010-04-06 International Business Machines Corporation CMOS imaging sensor having a third FET device with a gate terminal coupled to a second diffusion region of a first FET device and a first terminal coupled to a row select signal
US7830560B2 (en) * 2007-01-31 2010-11-09 Hewlett-Packard Development Company, L.P. System and method for adaptive digital ramp current control
JP4277911B2 (ja) * 2007-02-27 2009-06-10 ソニー株式会社 固体撮像装置及び撮像装置
JP2009081705A (ja) * 2007-09-26 2009-04-16 Panasonic Corp 固体撮像装置、受光強度測定装置、および受光強度測定方法
US9406709B2 (en) 2010-06-22 2016-08-02 President And Fellows Of Harvard College Methods for fabricating and using nanowires
US9515218B2 (en) 2008-09-04 2016-12-06 Zena Technologies, Inc. Vertical pillar structured photovoltaic devices with mirrors and optical claddings
US8299472B2 (en) * 2009-12-08 2012-10-30 Young-June Yu Active pixel sensor with nanowire structured photodetectors
US8748799B2 (en) 2010-12-14 2014-06-10 Zena Technologies, Inc. Full color single pixel including doublet or quadruplet si nanowires for image sensors
US9000353B2 (en) 2010-06-22 2015-04-07 President And Fellows Of Harvard College Light absorption and filtering properties of vertically oriented semiconductor nano wires
US9343490B2 (en) 2013-08-09 2016-05-17 Zena Technologies, Inc. Nanowire structured color filter arrays and fabrication method of the same
US8866065B2 (en) 2010-12-13 2014-10-21 Zena Technologies, Inc. Nanowire arrays comprising fluorescent nanowires
US9478685B2 (en) 2014-06-23 2016-10-25 Zena Technologies, Inc. Vertical pillar structured infrared detector and fabrication method for the same
US20120170029A1 (en) * 2009-09-22 2012-07-05 ISC8 Inc. LIDAR System Comprising Large Area Micro-Channel Plate Focal Plane Array
US20120170024A1 (en) * 2009-09-22 2012-07-05 Medhat Azzazy Long Range Acquisition and Tracking SWIR Sensor System Comprising Micro-Lamellar Spectrometer
TWI488500B (zh) 2011-12-23 2015-06-11 Ind Tech Res Inst X射線主動式畫素感測器讀取電路與讀取方法
KR101926606B1 (ko) * 2012-02-06 2019-03-07 삼성전자 주식회사 이미지 센서 및 이를 이용한 이미지 처리 장치
JP5841894B2 (ja) * 2012-04-25 2016-01-13 ルネサスエレクトロニクス株式会社 固体撮像装置
JP6188451B2 (ja) * 2013-06-27 2017-08-30 オリンパス株式会社 アナログデジタル変換器および固体撮像装置
JPWO2016147887A1 (ja) 2015-03-17 2018-01-11 ソニー株式会社 固体撮像装置およびその制御方法、並びに電子機器
CN106256313B (zh) * 2015-06-17 2021-02-05 松下知识产权经营株式会社 摄像装置
JP6909050B2 (ja) * 2017-05-18 2021-07-28 キヤノン株式会社 固体撮像素子及び撮像装置
CN107396009B (zh) * 2017-08-25 2020-06-09 电子科技大学 脉冲频率调制型图像传感器电路及其处理方法
EP3595294A1 (en) * 2018-07-10 2020-01-15 CSEM Centre Suisse D'electronique Et De Microtechnique SA Pixel circuit for an ultra-low power image sensor
JP7327916B2 (ja) * 2018-09-11 2023-08-16 キヤノン株式会社 光電変換装置および機器
JP7255419B2 (ja) * 2019-08-21 2023-04-11 富士通株式会社 半導体集積回路、赤外線センサ、及び赤外線撮像装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001346102A (ja) * 2000-06-02 2001-12-14 Canon Inc 固体撮像装置、それを用いた固体撮像システム、及び信号転送装置
JP2001346106A (ja) * 2000-06-02 2001-12-14 Canon Inc 撮像装置
JP2002135656A (ja) * 2000-10-24 2002-05-10 Canon Inc 固体撮像装置及び撮像システム
JP2005198149A (ja) * 2004-01-09 2005-07-21 Sharp Corp 固体撮像素子およびその信号読み出し方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2879670B2 (ja) 1997-03-28 1999-04-05 広島大学長 2次元情報処理装置
JPH11252465A (ja) * 1998-03-03 1999-09-17 Citizen Watch Co Ltd 固体撮像装置とその駆動方法
JP2000046645A (ja) * 1998-07-31 2000-02-18 Canon Inc 光電変換装置及びその製造方法及びx線撮像装置
JP2000287130A (ja) * 1999-03-31 2000-10-13 Sharp Corp 増幅型固体撮像装置
US6518910B2 (en) 2000-02-14 2003-02-11 Canon Kabushiki Kaisha Signal processing apparatus having an analog/digital conversion function
US6642495B2 (en) * 2001-02-12 2003-11-04 Princeton Scientific Instruments Optical pulse counting imager and system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001346102A (ja) * 2000-06-02 2001-12-14 Canon Inc 固体撮像装置、それを用いた固体撮像システム、及び信号転送装置
JP2001346106A (ja) * 2000-06-02 2001-12-14 Canon Inc 撮像装置
JP2002135656A (ja) * 2000-10-24 2002-05-10 Canon Inc 固体撮像装置及び撮像システム
JP2005198149A (ja) * 2004-01-09 2005-07-21 Sharp Corp 固体撮像素子およびその信号読み出し方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160040139A (ko) * 2013-08-05 2016-04-12 소니 주식회사 촬상 장치, 전자 기기
US10868989B2 (en) 2013-08-05 2020-12-15 Sony Corporation Imaging device and electronic apparatus with upper and lower substrates
KR102277597B1 (ko) * 2013-08-05 2021-07-15 소니그룹주식회사 촬상 장치, 전자 기기

Also Published As

Publication number Publication date
US7923674B2 (en) 2011-04-12
WO2007000879A1 (ja) 2007-01-04
JPWO2007000879A1 (ja) 2009-01-22
US20100019127A1 (en) 2010-01-28

Similar Documents

Publication Publication Date Title
JP4825982B2 (ja) 固体撮像素子及びその信号読み出し方法
US10257452B2 (en) Solid-state image pickup apparatus, signal processing method for a solid-state image pickup apparatus, and electronic apparatus
JP4937380B2 (ja) Cmosイメージセンサー
KR101258288B1 (ko) 고체 촬상 장치, 고체 촬상 장치의 구동 방법 및 촬상 장치
US8552354B2 (en) Solid-state image pickup element having a control circuit for controlling the operation period of a transfer circuit and method for controlling the same
TWI390976B (zh) 訊號處理裝置、固態攝像裝置以及畫素訊號產生方法
US8072524B2 (en) Solid-state image-sensing device
US7919993B2 (en) Correlated double sampling circuit
KR20070016461A (ko) 아날로그-디지털 변환기 및 이를 포함하는 씨모스 이미지센서, 그리고 씨모스 이미지 센서의 동작 방법
JP2008283467A (ja) 固体撮像装置
CN103365326A (zh) 为像素阵列提供参考电压的均值电压产生电路及方法
KR100962470B1 (ko) 고체 촬상 소자의 픽셀 회로
US20080157151A1 (en) CMOS image sensor
KR100977834B1 (ko) 넓은 동적 범위을 갖는 씨모스 이미지 센서
CN102984471A (zh) 由四管有源像素与数字像素组成的像素阵列
JP4466339B2 (ja) 撮像デバイス回路及び固体撮像装置
JP2024017294A (ja) 光電変換装置
CN114627788A (zh) 光电传感像素补偿电路、驱动方法及显示装置
KR20070047123A (ko) 씨모스 이미지 센서의 픽셀 구동회로
KR20130107492A (ko) 이미지 센싱 장치
KR20070067349A (ko) Cmos형 이미지 센서의 리셋 전압 클램프 회로
KR20050033201A (ko) 씨모스 이미지 센서 및 이의 신호 검출 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110628

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110707

TRDD Decision of grant or rejection written
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110816

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150