JP4818188B2 - Frequency change measuring device, frequency change rate measuring device, and power system control protection device - Google Patents

Frequency change measuring device, frequency change rate measuring device, and power system control protection device Download PDF

Info

Publication number
JP4818188B2
JP4818188B2 JP2007109639A JP2007109639A JP4818188B2 JP 4818188 B2 JP4818188 B2 JP 4818188B2 JP 2007109639 A JP2007109639 A JP 2007109639A JP 2007109639 A JP2007109639 A JP 2007109639A JP 4818188 B2 JP4818188 B2 JP 4818188B2
Authority
JP
Japan
Prior art keywords
voltage
frequency change
frequency
average value
calculating means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007109639A
Other languages
Japanese (ja)
Other versions
JP2008267917A (en
Inventor
建平 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007109639A priority Critical patent/JP4818188B2/en
Publication of JP2008267917A publication Critical patent/JP2008267917A/en
Application granted granted Critical
Publication of JP4818188B2 publication Critical patent/JP4818188B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Frequencies, Analyzing Spectra (AREA)

Description

この発明は、電力系統制御保護装置において電力系統の周波数の変化分或いは変化率を必要とする装置で使用される周波数変化分測定装置、周波数変化率測定装置および電力系統制御保護装置に関するものである。   The present invention relates to a frequency change measuring device, a frequency change rate measuring device, and a power system control protection device used in a device that requires a change or rate of change in the frequency of the power system in the power system control protection device. .

電力系統制御保護装置は、潮流が複雑に変化する電力系統を安定に運用するための重要な設備であるが、構成する装置の中には、周波数の変化分或いは変化率が必要になる場合がある。例えば、直流制御装置や、FACTS(Flexible AC Transmission System:フレキシブル交流送電システム)、PSS(Power System Stabilizer:系統を安定化するための補助励磁装置)などでは周波数変化分の入力が必要になる。また、系統安定化装置(PSS)では、中央制御装置は、負荷制御端末から自端末の周波数変化率を受け取り、それが一定の起動閾値を超えること(これを「95D」と称している)をFS(フェイルセーフ)条件として、負荷制御端末に遮断指令を発行する95D起動方法が広く採用されている。   The power system control and protection device is an important facility for stably operating a power system in which tidal currents change in a complex manner. is there. For example, in a DC control device, FACTS (Flexible AC Transmission System), PSS (Power System Stabilizer), etc., it is necessary to input the amount of frequency change. Further, in the system stabilization device (PSS), the central control device receives the frequency change rate of its own terminal from the load control terminal, and it exceeds a certain activation threshold (this is referred to as “95D”). As an FS (fail safe) condition, a 95D activation method for issuing a shut-off command to a load control terminal is widely adopted.

特開2004−361124号公報(周波数測定装置)JP 2004-361124 A (frequency measuring device)

ところで、電力系統の周波数を測定する手法として、従来、一般的に使用されているゼロクロス法は、ゼロレベルを同一方向にクロスする2つの隣接ゼロクロス点間の時間幅を基本周波数の1周期として検出する手法であるが、このゼロクロス法は、高調波成分やノイズ成分の影響を受け易いという問題がある。   By the way, as a method of measuring the frequency of the power system, the conventionally used zero cross method detects the time width between two adjacent zero cross points that cross the zero level in the same direction as one period of the basic frequency. However, the zero cross method has a problem that it is easily influenced by harmonic components and noise components.

そのため、このゼロクロス法によって測定した電力系統の周波数の変化分或いは変化率を用いる場合、周波数変化率の95D起動を起こす瞬時値に、電圧フリッカの影響で非常に大きな変動が生じるので、誤った95D起動が頻発することがあり、改善が望まれている。   Therefore, when using the change or rate of change of the frequency of the power system measured by the zero cross method, the instantaneous value that causes 95D activation of the frequency change rate has a very large fluctuation due to the influence of voltage flicker. Start-up may occur frequently and improvements are desired.

この発明は、上記に鑑みてなされたものであり、電力系統にリアルタイムで現れる位相急変(電圧フリッカ)に影響されずに、高精度かつ安定な周波数変化分及び変化率を測定可能な周波数変化分及び変化率測定装置を得ることを目的とする。   The present invention has been made in view of the above, and is capable of measuring a highly accurate and stable frequency change and change rate without being affected by a sudden phase change (voltage flicker) that appears in real time in the power system. And it aims at obtaining a change rate measuring device.

上述した目的を達成するために、この発明にかかる周波数変化分測定装置は、基準波の1周期を4N(Nは正の整数)等分した各サンプルタイミングで取得した電力系統の電圧瞬時値サンプリングデータを用いて複素平面上に表した電圧回転ベクトルの振幅値を、前記基準波の1周期における電圧瞬時値サンプリングデータを用いた積分演算で算出する電圧振幅算出手段と、前記電圧振幅算出手段が算出した電圧振幅値を前記基準波の1周期以上の期間に渡る移動平均処理を行って平均化する電圧振幅平均値算出手段と、隣接する2つの電圧回転ベクトルの先端間の間隔である弦長を前記基準波の1周期における電圧瞬時値サンプリングデータを用いた積分演算で算出する弦長算出手段と、前記弦長算出手段が算出した弦長を前記基準波の1周期以上の期間に渡る移動平均処理を行って平均化する弦長平均値算出手段と、前記電圧振幅平均値算出手段が算出した電圧振幅平均値と前記弦長平均値算出手段が算出した弦長平均値とを用いて電圧回転ベクトルの回転位相角を算出する回転位相角算出手段と、前記回転位相角算出手段が算出した回転位相角を前記基準波の1周期以上の期間に渡る移動平均処理を行って平均化する回転位相角平均値算出手段と、前記基準波の周波数と前記回転位相角平均値算出手段が算出した回転位相角平均値とを用いて当該電力系統の静的周波数を算出する周波数算出手段と、一定期間離れた2つのサンプルタイミングの各々における2つの前記静的周波数の差分を取って周波数変化分の瞬時値を求める周波数変化分瞬時値算出手段と、前記周波数変化分瞬時値算出手段が算出した周波数変化分瞬時値を一定期間に渡る移動平均処理を行って平均化する周波数変化分平均値算出手段とを備えることを特徴とする。   In order to achieve the above-described object, the frequency change measuring apparatus according to the present invention is a sampling of instantaneous voltage values of a power system obtained at each sample timing obtained by equally dividing one period of a reference wave by 4N (N is a positive integer). Voltage amplitude calculating means for calculating an amplitude value of a voltage rotation vector represented on a complex plane using data by integration calculation using voltage instantaneous value sampling data in one cycle of the reference wave; and the voltage amplitude calculating means, A chord length which is an interval between the voltage amplitude average value calculation means for averaging the calculated voltage amplitude value by performing a moving average process over a period of one cycle or more of the reference wave, and two adjacent voltage rotation vectors. The chord length calculation means for calculating the chord length calculated by the chord length calculation means by using the integral calculation using the voltage instantaneous value sampling data in one cycle of the reference wave, and the chord length calculated by the chord length calculation means as 1 A chord length average value calculating means for averaging by performing a moving average process over a period of time, a voltage amplitude average value calculated by the voltage amplitude average value calculating means, and a chord length calculated by the chord length average value calculating means Rotation phase angle calculation means for calculating the rotation phase angle of the voltage rotation vector using the average value, and moving average processing over the period of one cycle or more of the reference wave using the rotation phase angle calculated by the rotation phase angle calculation means Rotating phase angle average value calculating means for performing averaging and calculating the static frequency of the power system using the frequency of the reference wave and the rotating phase angle average value calculated by the rotating phase angle average value calculating means A frequency calculating means for calculating a frequency change instantaneous value by obtaining a difference between the two static frequencies at each of two sample timings separated by a fixed period, and obtaining an instantaneous value of the frequency change; and the frequency change The frequency variation instantaneous value instantaneous value calculating means is calculated by performing a moving average process over a predetermined period; and a frequency variation average calculating means for averaging.

この発明によれば、電圧回転ベクトルの振幅値を積分手法によって算出しそれを移動平均化する。また、隣接電圧回転ベクトル先端間の弦長を積分手法によって算出しそれを移動平均化する。そして、電圧振幅平均値と弦長平均値とから回転位相角を求めそれを移動平均化し、その移動平均化した回転位相角平均値と基準波の周波数とを用いて位相急変に影響されない静的周波数を算出する。このように求めた位相急変に影響されない静的周波数を用いて、一定期間離れた周波数間の変化分瞬時値を移動平均化する。これによって、電力系統にリアルタイムで現れる位相急変に影響されずに高精度かつ安定な周波数変化分が測定できるという効果を奏する。   According to the present invention, the amplitude value of the voltage rotation vector is calculated by the integration method, and is averaged. In addition, the chord length between adjacent voltage rotation vector tips is calculated by an integration method and is averaged. Then, the rotational phase angle is obtained from the voltage amplitude average value and the chord length average value, and the moving phase is averaged, and the moving average of the rotational phase angle average value and the frequency of the reference wave are used for static Calculate the frequency. Using the static frequency that is not influenced by the sudden phase change thus obtained, the instantaneous value of the change between the frequencies separated by a certain period is moving averaged. As a result, there is an effect that a highly accurate and stable frequency change can be measured without being affected by a sudden phase change that appears in real time in the power system.

以下に図面を参照して、この発明にかかる周波数変化分及び変化率測定装置の好適な実施の形態を詳細に説明する。   Exemplary embodiments of a frequency change and change rate measuring apparatus according to the present invention will be described below in detail with reference to the drawings.

ここで、この発明の理解を容易にするため、本発明者が既に提案した2つの周波数測定法(静的周波数測定法、動的周波数測定法)の概要を説明する。そして、図10を参照して、従来の「ゼロクロス法」と、本発明者による「静的周波数測定法」「動的周波数測定法」とによる測定周波数の各々を基本周波数として周波数変化分及び変化率測定装置を構成した場合に4つの系統現象における変化率検出性能を比較し、それに対して上記のように構成される「この発明による手法」ではどのような点を改善するものであるかを説明する。   Here, in order to facilitate understanding of the present invention, an outline of two frequency measurement methods (static frequency measurement method and dynamic frequency measurement method) already proposed by the present inventor will be described. Then, referring to FIG. 10, the frequency change and change are based on the measurement frequency according to the conventional “zero cross method” and the “static frequency measurement method” and “dynamic frequency measurement method” by the present inventor as the fundamental frequency. When the rate measurement device is configured, the rate of change detection performance in the four system phenomena is compared, and on the other hand, what is improved by the “method according to the present invention” configured as described above? explain.

本発明者は、交流電圧を複素平面上で反時計回り方向に回転する電圧ベクトルとして表現する手法を用いて、ノイズ等の多い電力系統で系統ノイズの影響を大幅に除去して高速に系統周波数の測定が行える周波数測定装置を先に出願した(特許文献1)。   The present inventor has used a technique for expressing an AC voltage as a voltage vector that rotates counterclockwise on a complex plane, and greatly eliminates the influence of system noise in a noisy power system, and system frequency is increased at high speed. A frequency measurement apparatus capable of measuring the above has been filed earlier (Patent Document 1).

概要を説明する。2つの測定点のうち先行する測定点での電圧値を複素座標の虚数部とし、後続する測定点での電圧値を複素座標の実数部とする複素平面上の電圧ベクトルは、測定時間の経過とともに複素平面上を反時計回り方向に回転する。隣接する2つ電圧回転ベクトルの各先端間の間隔である弦長を算出しそれの1周期分を加算する。また、1周期における各測定点での測定電圧から電圧実効値を求める。そして、1つの測定点での1周期前後における両電圧実効値と前記した弦長の加算値とから電圧ベクトルの位相角を算出し電力系統の周波数を求める。   An outline will be described. The voltage vector on the complex plane where the voltage value at the preceding measurement point of the two measurement points is the imaginary part of the complex coordinates and the voltage value at the subsequent measurement point is the real part of the complex coordinates is At the same time, it rotates counterclockwise on the complex plane. The chord length, which is the distance between the tips of two adjacent voltage rotation vectors, is calculated, and one period is added. Further, the effective voltage value is obtained from the measured voltage at each measurement point in one cycle. Then, the phase angle of the voltage vector is calculated from both voltage effective values at around one cycle at one measurement point and the added value of the chord length, and the frequency of the power system is obtained.

特許文献1にて提案した上記の測定手法を静的周波数測定法と称しているが、本発明者は、その後、同じ静的周波数測定法において、回転電圧ベクトルの振幅と弦長の計算式を改善して測定精度を上げ、計測周波数範囲の拡大を図った周波数測定装置を先に出願した(特願平2006−153649号)。加えて、本発明者は、測定点毎の周波数変化率を計測し、高精度に安定な現時点の動的周波数を計測する動的周波数測定法を用いた周波数測定装置を先に出願した。   The above-described measurement method proposed in Patent Document 1 is referred to as a static frequency measurement method. However, the present inventor subsequently uses the same static frequency measurement method to calculate the rotational voltage vector amplitude and chord length formula. A frequency measurement device that has been improved to improve measurement accuracy and expand the measurement frequency range has been filed earlier (Japanese Patent Application No. 2006-153649). In addition, the inventor previously applied for a frequency measurement device using a dynamic frequency measurement method that measures the frequency change rate at each measurement point and measures the current dynamic frequency that is stable with high accuracy.

次に、図10では、系統現象として、(1)電圧フリッカなし+周波数変化なし、(2)電圧フリッカなし+周波数変化あり、(3)電圧フリッカあり+周波数変化なし、(4)電圧フリッカあり+周波数変化あり、の4つが示されている。   Next, in FIG. 10, as system phenomena, (1) no voltage flicker + no frequency change, (2) no voltage flicker + frequency change, (3) voltage flicker + no frequency change, (4) voltage flicker + Frequency changes are shown.

ここで、「電圧フリッカなし」は、電圧波形に位相急変がなく、正弦波形となる状況である。これに対して「電圧フリッカあり」は、電圧波形に位相急変があり、周波数の測定に大きな影響が出る状況である。   Here, “no voltage flicker” is a situation in which the voltage waveform has no sudden phase change and becomes a sine waveform. On the other hand, “with voltage flicker” is a situation in which there is a sudden phase change in the voltage waveform, which greatly affects the frequency measurement.

また、「周波数変化なし」は、系統周波数変化率が起動閾値以内で変動し、当該周波数変化分及び変化率測定装置が95D起動をすべきでない状況である。これに対して「周波数変化あり」は、系統周波数変化率が起動閾値以上に変動し、当該周波数変化分及び変化率測定装置が高速に95D起動をすべき状況である。   “No frequency change” is a situation in which the system frequency change rate fluctuates within the activation threshold and the frequency change and change rate measurement device should not start 95D. On the other hand, “with frequency change” is a situation in which the system frequency change rate fluctuates beyond the activation threshold, and the frequency change and change rate measurement device should start 95D at high speed.

そして、○印は、周波数変化率の測定結果は、問題ないことを示す。×印は、周波数変化率の測定結果によっては誤動作問題があることを示す。誤動作とは、周波数変化なしにも関わらず、電圧フリッカの影響で起動されることである。△印は、周波数変化率の測定結果によっては誤動作或いは不動作問題の可能性があることを示す。不動作とは、周波数変化があり、起動しない或いは起動が遅くなることである。   The circles indicate that there is no problem with the measurement result of the frequency change rate. A cross indicates that there is a malfunction problem depending on the measurement result of the frequency change rate. The malfunction is to be activated due to the influence of voltage flicker despite no frequency change. Δ indicates that there is a possibility of malfunction or malfunction depending on the measurement result of the frequency change rate. Non-operation means that there is a change in frequency and the activation is not performed or the activation is delayed.

さて、図10において、「ゼロクロス法」を採用する場合、系統現象が(1)(2)(4)の状況での評価結果は、○印であるが、系統現象が(3)の状況での評価結果は、×印である。   In FIG. 10, when the “zero cross method” is adopted, the evaluation result in the situation of the system phenomenon (1), (2), and (4) is ○ mark, but the system phenomenon is in the situation of (3). The evaluation result of is a cross.

すなわち、「ゼロクロス法」を採用する場合は、周波数変化率の95D起動を起こす瞬時値に、電圧フリッカの影響で非常に大きな変動が生じる。これは、誤った95D起動が頻発することを意味する。方策として照合回数の大幅な増加などの対策を取ることも考えられるが、そうすると、実際の95D起動が遅くなる可能性があり、実施することができない。そのため、前記したように、妥当な対策のない現在では、95Dの頻繁な誤起動があり、改善が望まれている。   In other words, when the “zero cross method” is employed, a very large fluctuation occurs due to the influence of voltage flicker on the instantaneous value causing the 95D activation of the frequency change rate. This means that erroneous 95D activation occurs frequently. Although measures such as a significant increase in the number of verifications may be taken as a measure, in that case, the actual 95D activation may be delayed and cannot be implemented. For this reason, as described above, there is a frequent erroneous start of 95D at present when there is no appropriate countermeasure, and improvement is desired.

一方、先に提案した「静的周波数測定法」を採用する場合、系統現象が(1)(2)(4)の状況での評価結果は、○印であるが、系統現象が(3)の状況での評価結果は、△印である。これに対して「動的周波数測定法」を採用する場合、系統現象が(1)(2)(3)の状況での評価結果は、○印であるが、系統現象が(4)の状況での評価結果は、△印である。   On the other hand, when the previously proposed “static frequency measurement method” is adopted, the evaluation result in the situation of the system phenomenon (1), (2), and (4) is ○ mark, but the system phenomenon is (3) The evaluation result in the situation of is △ mark. On the other hand, when the “dynamic frequency measurement method” is adopted, the evaluation result in the situation of the system phenomenon (1), (2), and (3) is ○ mark, but the system phenomenon is the situation of (4). The evaluation result at is a Δ mark.

すなわち、「動的周波数測定法」を採用する場合は、位相急変(電圧フリッカ)があると、原理上周波数変化の傾向検出が鈍くなるので、95D起動が遅くなる可能性がある。この点、「静的周波数測定法」を採用する場合は、位相急変の影響を除去できれば、系統現象(1)〜(4)の全てに対応できる所望の周波数変化分及び変化率測定装置を構成できることが解る。すなわち、「この発明による手法」は、先に提案した「静的周波数測定法」に位相急変の影響を除去できる方策を施し、4つの系統現象(1)〜(4)のいずれにも対応できるようにしたものである。以下、具体的に、実施の形態として説明する。   That is, when the “dynamic frequency measurement method” is adopted, if there is a sudden phase change (voltage flicker), the detection of the tendency of frequency change becomes slow in principle, and there is a possibility that the 95D start-up will be delayed. In this regard, when the “static frequency measurement method” is adopted, if the influence of the sudden phase change can be eliminated, a desired frequency change and change rate measuring apparatus capable of dealing with all the system phenomena (1) to (4) is configured. I understand what I can do. That is, the “method according to the present invention” can cope with any of the four system phenomena (1) to (4) by applying a measure that can eliminate the influence of the sudden phase change to the previously proposed “static frequency measurement method”. It is what I did. Hereinafter, the embodiment will be specifically described.

図1は、この発明の一実施の形態による周波数変化分及び変化率測定装置の構成を示すブロック図である。   FIG. 1 is a block diagram showing the configuration of a frequency change and change rate measuring apparatus according to an embodiment of the present invention.

図1において、この実施の形態による周波数変化分及び変化率測定装置1は、電圧・電流計測手段2と、A/D変換手段3と、電圧振幅及びその移動平均値算出手段4と、弦長及びその移動平均値算出手段5と、回転位相角及びその移動平均値算出手段6と、周波数算出手段7と、周波数変化分瞬時値算出手段8と、周波数変化分平均値算出手段9と、周波数変化率平均値算出手段10と、周波数変化分及び変化率制御出力手段11と、表示手段12と、記憶手段13とを備えている。   In FIG. 1, a frequency change and change rate measuring apparatus 1 according to this embodiment includes a voltage / current measuring means 2, an A / D conversion means 3, a voltage amplitude and moving average value calculating means 4, a chord length. And its moving average value calculating means 5, rotational phase angle and its moving average value calculating means 6, frequency calculating means 7, frequency change instantaneous value calculating means 8, frequency change average value calculating means 9, frequency A change rate average value calculation means 10, a frequency change and change rate control output means 11, a display means 12, and a storage means 13 are provided.

電圧・電流計測手段2は、電力系統14の送電線に装着されたPT(計器用変圧器)を用いて系統電圧を計測する、或いは、電力系統14の送電線に装着された図示しないCT(変流器)を用いて系統電流を計測し、それを系統電圧に変換する。   The voltage / current measuring means 2 measures a system voltage using a PT (instrument transformer) attached to the transmission line of the power system 14 or a CT (not shown) attached to the transmission line of the power system 14. System current is measured using a current transformer and converted to system voltage.

A/D変換手段3は、基準波の1周期を4N(Nは正の整数)等分した各々のサンプルタイミングで電圧・電流計測手段2からの系統電圧信号をサンプリングして時系列のデジタルデータ(電圧瞬時値データ)に変換する。基準波の複数周期に跨って変換された時系列の電圧瞬時値データは、記憶手段13に格納される。   The A / D conversion means 3 samples the system voltage signal from the voltage / current measurement means 2 at each sample timing obtained by equally dividing one period of the reference wave by 4N (N is a positive integer), and time-series digital data Convert to (Voltage instantaneous value data). Time-series voltage instantaneous value data converted over a plurality of cycles of the reference wave is stored in the storage means 13.

電圧振幅及びその移動平均値算出手段4は、まず、記憶手段13から1周期分の電圧瞬時値データを取り出し、その電圧瞬時値データを用いて複素平面上に表した電圧回転ベクトルの振幅値を、その1周期分の電圧瞬時値データを用いた積分演算を行って算出し、それを記憶手段13に逐一格納する。そして、記憶手段13から1周期以上の電圧振幅計算結果を取り出し、移動平均処理を行って電圧振幅値を平均化し、それを記憶手段13に逐一格納する。   The voltage amplitude and moving average value calculation means 4 first takes out voltage instantaneous value data for one cycle from the storage means 13, and uses the voltage instantaneous value data to obtain the amplitude value of the voltage rotation vector represented on the complex plane. Then, the integration calculation using the voltage instantaneous value data for one cycle is performed and stored in the storage means 13 one by one. Then, a voltage amplitude calculation result of one cycle or more is taken out from the storage means 13 and a moving average process is performed to average the voltage amplitude values, which are stored in the storage means 13 one by one.

弦長及びその移動平均値算出手段5は、まず、隣接する2つの電圧回転ベクトルの先端間の間隔である弦長を、記憶手段13から取り出した1周期分の電圧瞬時値データを用いた積分演算を行って算出し、それを記憶手段13に逐一格納する。そして、記憶手段13から1周期以上の弦長計算結果を取り出し、移動平均処理を行って弦長を平均化し、それを記憶手段13に逐一格納する。   The chord length and its moving average value calculation means 5 first integrates the chord length, which is the distance between the tips of two adjacent voltage rotation vectors, using the voltage instantaneous value data for one period taken out from the storage means 13. Calculations are made by calculation and stored in the storage means 13 one by one. Then, a chord length calculation result of one cycle or more is taken out from the storage means 13 and a moving average process is performed to average the chord lengths, which are stored in the storage means 13 one by one.

回転位相角及びその移動平均値算出手段6は、まず、記憶手段13から平均化した電圧振幅値、弦長を取り出して回転位相角を計算し、それを記憶手段13に逐一格納する。そして、記憶手段13から1周期以上の回転位相角計算結果を取り出し、移動平均処理を行って回転位相角を平均化し、それを記憶手段13に逐一格納する。   The rotation phase angle and moving average value calculation means 6 first takes out the averaged voltage amplitude value and chord length from the storage means 13 to calculate the rotation phase angle, and stores it in the storage means 13 one by one. Then, a rotational phase angle calculation result of one cycle or more is taken out from the storage means 13, a moving average process is performed, the rotational phase angles are averaged, and stored in the storage means 13 one by one.

周波数算出手段7は、記憶手段13から回転位相角平均値を取り出して周波数を計算し、それを記憶手段13に逐一格納する。ここで、位相急変(電圧フリッカ)などの影響がある場合は、回転位相角を用いて計算された静的周波数には一定の誤差が存在するので、この実施の形態では、回転位相角平均値を用いることにし、位相急変(電圧フリッカ)などの影響を回避して誤差を少なくするようにしてある。   The frequency calculation means 7 takes out the rotational phase angle average value from the storage means 13, calculates the frequency, and stores it in the storage means 13 one by one. Here, when there is an influence such as sudden phase change (voltage flicker), there is a certain error in the static frequency calculated using the rotational phase angle. Thus, the error is reduced by avoiding the influence of a sudden phase change (voltage flicker) or the like.

周波数変化分瞬時値算出手段8は、記憶手段13から各測定時点の周波数を取り出し、或る時点の周波数と一定時間前の周波数との差分を算出し、それを或る時点での周波数変化分瞬時値として記憶手段13に逐一格納する。   The frequency change instantaneous value calculation means 8 takes out the frequency at each measurement time from the storage means 13, calculates the difference between the frequency at a certain time and the frequency before a certain time, and calculates the difference between the frequency change at a certain time. The instantaneous value is stored in the storage means 13 one by one.

周波数変化分平均値算出手段9は、記憶手段13から一定時間(mT:mは指定の整数、Tはサンプリング間隔)内の周波数変化分瞬時値を取り出し、それに移動平均処理を施した周波数変化分平均値を記憶手段13に逐一格納する。   The frequency change average value calculation means 9 takes out an instantaneous value of frequency change within a predetermined time (mT: m is a specified integer, T is a sampling interval) from the storage means 13, and performs frequency averaging on the frequency change. The average value is stored in the storage means 13 one by one.

周波数変化率平均値算出手段10は、記憶手段13から周波数変化分平均値を取り出し、それを一定時間nT(nは指定の整数)で割り算して周波数変化率の平均値を算出し、それを記憶手段13に逐一格納する。   The frequency change rate average value calculating means 10 takes out the frequency change average value from the storage means 13 and divides it by a predetermined time nT (n is a specified integer) to calculate the average value of the frequency change rate. Store in the storage means 13 one by one.

周波数変化分及び変化率制御出力手段11は、当該装置が周波数変化分測定装置である場合は以上のようにして記憶手段13に格納された周波数変化分を制御出力として、また当該装置が周波数変化率測定装置である場合は以上のようにして記憶手段13に格納された周波数変化率を制御出力として、中央制御装置などの他の装置を出力すること、また、それらが所定の閾値を超えたとして中央制御装置などの他の装置から指令を受け取ると電力系統14の送電線に介在するCB(遮断器)に遮断指令を発行することを行う。   When the device is a frequency change measuring device, the frequency change and change rate control output unit 11 uses the frequency change stored in the storage unit 13 as a control output as described above, and the device changes the frequency. If it is a rate measuring device, the frequency change rate stored in the storage means 13 as described above is used as a control output, and other devices such as a central control device are output, and they exceed a predetermined threshold value. When a command is received from another device such as a central control device, a cutoff command is issued to a CB (breaker) interposed in the power transmission line of the power system 14.

表示手段12は、以上のようにして記憶手段13に格納された周波数変化分及び変化率を含む計算結果を表示装置に表示する。   The display unit 12 displays the calculation result including the frequency change and the change rate stored in the storage unit 13 as described above on the display device.

記憶手段13は、CPUが実現する、以上の電圧振幅及びその移動平均値算出手段4、弦長及びその移動平均値算出手段5、回転位相角及びその移動平均値算出手段6、周波数算出手段7、周波数変化分瞬時値算出手段8、周波数変化分平均値算出手段9、周波数変化率算出手段10、周波数変化分及び変化率制御出力手段11、表示手段12の各プログラムが格納されるROM、電力系統の電圧瞬時値時系列デジタルデータと上記した各手段の演算結果とを格納するRAMで構成される。   The storage means 13 is realized by the CPU, and the voltage amplitude and moving average value calculating means 4, the chord length and moving average value calculating means 5, the rotation phase angle and moving average value calculating means 6 and the frequency calculating means 7 are realized. , A frequency change instantaneous value calculation means 8, a frequency change average value calculation means 9, a frequency change rate calculation means 10, a frequency change and change rate control output means 11, a ROM storing each program of the display means 12, a power It is composed of a RAM for storing the voltage instantaneous value time-series digital data of the system and the calculation results of each means described above.

図1では、電力系統の電圧瞬時値時系列デジタルデータを電圧・電流計測手段2、A/D変換手段3を用いて取得し記憶手段13に格納する構成を示したが、電力系統の電圧瞬時値時系列デジタルデータを別の経路から入手して記憶手段13に格納できる場合は、電圧・電流計測手段2、A/D変換手段3を省略することができる。   FIG. 1 shows a configuration in which the voltage instantaneous value time-series digital data of the power system is acquired using the voltage / current measuring means 2 and the A / D conversion means 3 and stored in the storage means 13. When the value time-series digital data can be obtained from another route and stored in the storage unit 13, the voltage / current measurement unit 2 and the A / D conversion unit 3 can be omitted.

次に、図1〜図3を参照して、以上のように構成される周波数変化分及び変化率測定装置1の動作について説明する。なお、図2は、周波数変化分及び変化率の測定手順を説明するフローチャートである。図2では、処理手順を示すステップは、「ST」と表記している。図3は、図2に示す周波数変化分瞬時値算出手順(ST106)から周波数変化率平均値算出手順(ST108)までの処理動作を説明するタイムチャートである。   Next, the operation of the frequency change and change rate measuring apparatus 1 configured as described above will be described with reference to FIGS. FIG. 2 is a flowchart for explaining the procedure for measuring the frequency change and the change rate. In FIG. 2, the step indicating the processing procedure is denoted as “ST”. FIG. 3 is a time chart illustrating processing operations from the frequency change instantaneous value calculation procedure (ST106) to the frequency change rate average value calculation procedure (ST108) shown in FIG.

図2において、ST101では、電圧電流計測手段2とA/D変換手段3が電力系統の電圧瞬時値時系列デジタルデータを取得する。周波数計測用の入力電圧には、相電圧(A相電圧、B相電圧、C相電圧のいずれか1相の電圧)、あるいは、線間電圧(AB線間電圧、BC線間電圧、AC線間電圧のいずれか1つの線間電圧)を使用することができる。つまり、ここで用いる周波数計測用の入力電圧には、1相の電圧或いは1つの線間電圧である。交流回路の電圧瞬時値vは、フーリエ変換によれば、以下の式(1)で表わすことができる。   In FIG. 2, in ST101, the voltage / current measurement means 2 and the A / D conversion means 3 acquire the voltage instantaneous value time-series digital data of the power system. The input voltage for frequency measurement includes a phase voltage (A phase voltage, B phase voltage, or C phase voltage), or a line voltage (AB line voltage, BC line voltage, AC line) Any one of the line voltages) can be used. That is, the frequency measurement input voltage used here is a one-phase voltage or a single line voltage. The instantaneous voltage v of the AC circuit can be expressed by the following equation (1) according to Fourier transform.

Figure 0004818188
Figure 0004818188

但し、式(1)において、Vは基本波電圧振幅、ωは基本波角速度、ψは基本波電圧初期位相、Vkはk次高調波電圧振幅、ωkはk次高調波電圧角速度、ψkはk次高調波電圧初期位相、Mは任意の大きさの正の整数である。すなわち、式(1)に示すように、電圧瞬時値νは、電圧基本波成分と複数の電圧高調波成分とで構成される。なお、以下に示す式展開では、説明を簡単にするため、電圧高調波成分を省略している。これは、電圧高調波成分を無視する意味ではなく、本発明では積分計算手法を用いるので高調波の影響を除去できることによる。 However, in Formula (1), V is fundamental wave voltage amplitude, ω is fundamental wave angular velocity, ψ is fundamental wave voltage initial phase, V k is k-order harmonic voltage amplitude, ω k is k-order harmonic voltage angular velocity, ψ k is an initial phase of the k-th harmonic voltage, and M is a positive integer having an arbitrary magnitude. That is, as shown in Expression (1), the voltage instantaneous value ν is composed of a voltage fundamental wave component and a plurality of voltage harmonic components. In the following formula expansion, voltage harmonic components are omitted for the sake of simplicity. This does not mean that the voltage harmonic component is ignored. In the present invention, the integral calculation method is used, so that the influence of the harmonic can be removed.

電圧回転ベクトルは、前記したように、隣接する2つのサンプル点で得られた電圧瞬時値のうち、先行する電圧瞬時値を複素座標の虚数部とし、後続する電圧瞬時値を複素座標の実数部として表現される複素平面上の電圧ベクトルであり、サンプル点の時間経過とともに複素平面上を反時計回り方向に回転する。この電圧回転ベクトルの実数部vreと虚数部imは次の式(2)で表せる。なお、以降に示す各式で用いる電圧瞬時値vは、この電圧回転ベクトルの実数部vreを示している。   As described above, the voltage rotation vector has the preceding voltage instantaneous value as the imaginary part of the complex coordinate among the voltage instantaneous values obtained at the two adjacent sample points, and the subsequent voltage instantaneous value as the real part of the complex coordinate. Is a voltage vector on the complex plane expressed as, and rotates counterclockwise on the complex plane with the passage of time of the sample points. The real part vre and the imaginary part im of this voltage rotation vector can be expressed by the following equation (2). Note that the voltage instantaneous value v used in the following equations indicates the real part vre of this voltage rotation vector.

Figure 0004818188
Figure 0004818188

ST102では、電圧振幅及びその移動平均値算出手段4が、電圧回転ベクトルの電圧振幅値とその移動平均値とを算出する。まず、理論的な電圧回転ベクトルの電圧振幅値V(t)は、積分手法を用いた次の式(3)に基準波の1周期T0を4N(Nは正の整数)等分した各サンプル点で計測した各電圧瞬時値v(t)を適用して求めることができる。なお、1周期T0は、例えば、基準周波数が60Hzの電力系統では、T0=1/60=0.01666667秒である。   In ST102, the voltage amplitude and its moving average value calculation means 4 calculates the voltage amplitude value of the voltage rotation vector and its moving average value. First, the voltage amplitude value V (t) of the theoretical voltage rotation vector is obtained by dividing each period T0 of the reference wave into 4N (N is a positive integer) equal to the following equation (3) using an integration method. It can be obtained by applying each voltage instantaneous value v (t) measured at a point. Note that one cycle T0 is, for example, T0 = 1/60 = 0.0166667sec in a power system with a reference frequency of 60 Hz.

Figure 0004818188
Figure 0004818188

但し、この実施の形態では、基準周波数から外れることのある系統周波数での計算精度を高めるために、式(3)に代えて、積分手法を用いた次の式(4)によって周波数変動に影響されない電圧振幅値V(t)を計算する。   However, in this embodiment, in order to improve the calculation accuracy at the system frequency that may deviate from the reference frequency, the frequency fluctuation is affected by the following expression (4) using an integration method instead of the expression (3). The voltage amplitude value V (t) not to be calculated is calculated.

Figure 0004818188
Figure 0004818188

次に、移動平均手法による次の式(5)を用いて、式(4)によって求めた電圧振幅値V(t)を平均化する。なお、式(5)は、1周期の移動平均を示すが、移動平均を取る周期数が増えるに伴い、動揺も小さくなっていく。   Next, the voltage amplitude value V (t) obtained by the equation (4) is averaged using the following equation (5) by the moving average method. Equation (5) represents a moving average of one cycle, but the fluctuation also decreases as the number of cycles for moving average increases.

Figure 0004818188
Figure 0004818188

ST103では、弦長及びその移動平均値算出手段5が、隣接する電圧回転ベクトル先端間の弦長V2(t)とその移動平均値V2aveとを算出する。隣接する電圧回転ベクトル先端間の弦長V2(t)は、理論的には、積分手法を用いた次の式(6)を計算することで得られる。   In ST103, the chord length and its moving average value calculation means 5 calculates the chord length V2 (t) between adjacent voltage rotation vector tips and its moving average value V2ave. The chord length V2 (t) between adjacent voltage rotation vector tips is theoretically obtained by calculating the following equation (6) using an integration method.

Figure 0004818188
Figure 0004818188

但し、この実施の形態では、基準周波数から外れることのある系統周波数での計算精度を高めるために、式(6)に代えて、積分手法を用いた次の式(7)によって周波数変動に影響されない弦長V2(t)を計算する。   However, in this embodiment, in order to improve the calculation accuracy at the system frequency that may deviate from the reference frequency, the frequency fluctuation is affected by the following equation (7) using an integration method instead of the equation (6). The chord length V2 (t) not calculated is calculated.

Figure 0004818188
Figure 0004818188

次に、移動平均手法による次の式(8)を用いて、式(7)によって求めた弦長V2(t)を平均化する。なお、式(8)は、1周期の移動平均を示すが、移動平均を取る周期数が増えるに伴い、動揺も小さくなっていく。   Next, the chord length V2 (t) obtained by the equation (7) is averaged using the following equation (8) by the moving average method. Equation (8) represents a moving average of one cycle, but as the number of cycles taking the moving average increases, the fluctuation also decreases.

Figure 0004818188
Figure 0004818188

ST104では、回転位相角及びその移動平均値算出手段6が、電圧回転ベクトルが基準波の1周期で回転する電気角である回転位相角δ(t)とその移動平均値δave(t)とを算出する。回転位相角δ(t)は次の式(9)の演算によって得られ、その移動平均値δave(t)は次の式(10)の演算によって得られる。なお、式(10)は、1周期の移動平均を示すが、移動平均を取る周期数が増えるに伴い、動揺も小さくなっていく。   In ST104, the rotational phase angle and its moving average value calculation means 6 calculate the rotational phase angle δ (t), which is an electrical angle at which the voltage rotation vector rotates in one cycle of the reference wave, and its moving average value δave (t). calculate. The rotational phase angle δ (t) is obtained by the following equation (9), and the moving average value δave (t) is obtained by the following equation (10). In addition, although Formula (10) shows the moving average of 1 period, a fluctuation | variation also becomes small as the number of periods which take a moving average increases.

Figure 0004818188
Figure 0004818188

ST105では、周波数算出手段7が、系統の周波数f(t)を算出する。系統の電圧回転ベクトルは、基準波の1周期、つまりt=0〜t=T0の間に複素平面上を反時計回り方向に位相角Ψ(t)==4N×δ(t)だけ回転する。したがって、系統周波数f(t)は、この位相角Ψ(t)と基準周波数f0との比例関係から、f(t)=(Ψ(t)/2π)×f0=4N×δ(t)と表せる。このようにして求めた周波数が、本発明者の言う「静的周波数」であるが、この実施の形態では、位相急変(電圧フリッカ)などの影響を回避して誤差を少なくするために、式(9)に示す位相角δ(t)に代えて、式(10)に示す回転位相角平均値δave(t)を用いた次の式(11)によって周波数f(t)を求めるようにしている。   In ST105, the frequency calculation means 7 calculates the system frequency f (t). The voltage rotation vector of the system rotates by a phase angle Ψ (t) == 4N × δ (t) in the counterclockwise direction on the complex plane during one period of the reference wave, that is, t = 0 to t = T0. . Therefore, the system frequency f (t) is expressed as f (t) = (Ψ (t) / 2π) × f0 = 4N × δ (t) from the proportional relationship between the phase angle Ψ (t) and the reference frequency f0. I can express. The frequency obtained in this way is the “static frequency” that the inventor says, but in this embodiment, in order to avoid the influence of a sudden phase change (voltage flicker) and the like and reduce the error, Instead of the phase angle δ (t) shown in (9), the frequency f (t) is obtained by the following equation (11) using the rotational phase angle average value δave (t) shown in the equation (10). Yes.

Figure 0004818188
Figure 0004818188

次に、図3を参照して、周波数変化分瞬時値算出手順(ST106)から周波数変化率算出手順(ST108)までの処理動作を説明する。図3において、Tは、1サンプリング間隔である。例えば、基準周波数が60Hzの電力系統では、電気角度30度を1サンプリング間隔Tとすれば、1サンプリング間隔Tは、T=1/60/12=0.00138889秒である。そして、n,mは、それぞれ正の整数であるが、図3に示す区間nTは、周波数瞬時値計算の時間差分を取る区間であり、例えば、基準波の3周期である。また、図3に示す区間mTは、周波数変化分平均値計算の時間区間であり、例えば、基準波の3周期である。   Next, referring to FIG. 3, processing operations from the frequency change instantaneous value calculation procedure (ST106) to the frequency change rate calculation procedure (ST108) will be described. In FIG. 3, T is one sampling interval. For example, in an electric power system with a reference frequency of 60 Hz, if an electrical angle of 30 degrees is defined as one sampling interval T, the one sampling interval T is T = 1/60/12 = 0.13838889 seconds. Each of n and m is a positive integer, and a section nT shown in FIG. 3 is a section for taking a time difference of the instantaneous frequency value calculation, for example, three periods of the reference wave. Also, the section mT shown in FIG. 3 is a time section for calculating the frequency variation average value, and is, for example, three periods of the reference wave.

図3では、上記のST105にて周波数算出手段7が算出した各サンプル時点での系統周波数f(t)のうち、n+mサンプル前の時点での周波数f{t−(n+m)T}と、n+1サンプル前の時点での周波数f{t−(n+1)T}と、nサンプル前の時点での周波数f{t−nT}と、mサンプル前の時点での周波数f{t−mT}と、1サンプル前の時点での周波数f{t−T}と、現時点での周波数f(t)とが示されている。   In FIG. 3, the frequency f {t− (n + m) T} at the time point before n + m samples out of the system frequency f (t) at each sample time point calculated by the frequency calculating means 7 at ST105, and n + 1. A frequency f {t− (n + 1) T} at a time point before the sample, a frequency f {t−nT} at a time point n samples before, a frequency f {t−mT} at a time point m samples before, A frequency f {t−T} at a time point one sample before and a frequency f (t) at the present time are shown.

そして、図3では、ST106において周波数変化分瞬時値算出手段8が算出する周波数変化分瞬時値として、現時点で算出した周波数変化分瞬時値Δf(t)と、1サンプル前の時点で算出した周波数変化分瞬時値Δf(t−T)と、mサンプル前の時点で算出した周波数変化分瞬時値Δf(t−mT)とが示されている。   In FIG. 3, as the frequency change instantaneous value calculated by the frequency change instantaneous value calculating means 8 in ST106, the frequency change instantaneous value Δf (t) calculated at the present time and the frequency calculated at the time one sample before A change instantaneous value Δf (t−T) and a frequency change instantaneous value Δf (t−mT) calculated at a time point m samples before are shown.

また、図3では、ST107において周波数変化分平均値算出手段9が算出する周波数変化分平均値として、現時点で算出した周波数変化分平均値Δfave(t)が示され、ST108において周波数変化率平均値算出手段10が算出する周波数変化率平均値として、現時点で算出した周波数変化率平均値f’ave(t)が示されている。   Also, in FIG. 3, the frequency change average value Δfave (t) calculated at the present time is shown as the frequency change average value calculated by the frequency change average value calculating means 9 in ST107, and the frequency change rate average value in ST108. As the frequency change rate average value calculated by the calculation means 10, the frequency change rate average value f′ave (t) calculated at the present time is shown.

さて、ST106において、周波数変化分瞬時値算出手段8は、mサンプル前の周波数変化分瞬時値Δf(t−mT)を、mサンプル前の周波数f(t−mT)とn+mサンプル前の周波数f(t−(n+m))との差分(Δf(t−mT)=f(t−mT)−f(t−(n+m)T)として求め、1サンプル前の周波数変化分瞬時値Δf(t−T)を、1サンプル前の周波数f(t−T)とn+1サンプル前の周波数f(t−(n+1)T)との差分(Δf(t−T)=f(t−T)−f(t−(n+1)T)として求め、現時点での周波数変化分瞬時値Δf(t)を、現時点での周波数f(t)とnサンプル前の周波数f(t−nT)との差分(Δf(t)=f(t)−f(t−nT)として求める。   In ST106, the frequency change instantaneous value calculating means 8 calculates the frequency change instantaneous value Δf (t−mT) before m samples as the frequency f (t−mT) before m samples and the frequency f before n + m samples. The difference (Δf (t−mT) = f (t−mT) −f (t− (n + m) T) with respect to (t− (n + m)) is obtained as an instantaneous value Δf (t− T) is the difference (Δf (t−T) = f (t−T) −f () between the frequency f (t−T) before one sample and the frequency f (t− (n + 1) T) before n + 1 samples. t− (n + 1) T), and the instantaneous value Δf (t) of the current frequency change is obtained by calculating the difference (Δf (t)) between the current frequency f (t) and the frequency f (t−nT) n samples before. t) = f (t) −f (t−nT).

なお、周波数変化率瞬時値f’in(t)は、周波数変化分瞬時値Δf(t)を時間区間nTで割り算することで求まる。すなわち、f’in(t)=Δf(t)/nTで計算することができる。   The frequency change rate instantaneous value f′in (t) is obtained by dividing the frequency change instantaneous value Δf (t) by the time interval nT. That is, it can be calculated by f′in (t) = Δf (t) / nT.

また、ST107において、周波数変化分平均値算出手段9は、現時点での周波数変化分平均値Δfave(t)を次の式(12)を演算することで求める。   Further, in ST107, the frequency change average value calculating means 9 obtains the current frequency change average value Δfave (t) by calculating the following equation (12).

Figure 0004818188
Figure 0004818188

また、ST108において、周波数変化率算出手段10は、現時点での周波数変化率の平均値f’ave(t)を、次の式(13)を演算して求める。   In ST108, the frequency change rate calculating means 10 calculates the average value f'ave (t) of the current frequency change rate by calculating the following equation (13).

Figure 0004818188
Figure 0004818188

図2に戻って、ST109において、以上のST101〜ST108までの処理を終了するか否かを判定し、終了する(ST109:Yes)と判定するまで(ST109:No)、ST101に戻り、以上のST101〜ST108までの処理を繰り返す。なお、以上のST101〜ST108までの処理を終了する時期は、図3に示す時間区間nTや時間区間mTなどを勘案して適宜に定められる。   Returning to FIG. 2, in ST109, it is determined whether or not to end the above processes from ST101 to ST108. Until it is determined to end (ST109: Yes) (ST109: No), the process returns to ST101. The processing from ST101 to ST108 is repeated. Note that the timing for ending the processes from ST101 to ST108 is appropriately determined in consideration of the time interval nT and the time interval mT shown in FIG.

次に、以上のように算出測定した「周波数」「周波数変化分」「周波数変化率平均値」について、図10に示した系統現象(3)「位相急変(電圧フリッカ)あり+周波数変化なし」と、系統現象(4)「位相急変(電圧フリッカ)あり+周波数変化あり」とについてシミュレーションを行った結果、図4〜図9に示す結果が得られた。なお、図4〜図6は、系統現象(3)の場合であり、図7〜図9は、系統現象(4)の場合である。   Next, with respect to the “frequency”, “frequency change amount”, and “frequency change rate average value” calculated and measured as described above, the system phenomenon (3) “with sudden phase change (voltage flicker) + no frequency change” shown in FIG. As a result of the simulation of the system phenomenon (4) “with sudden phase change (voltage flicker) + with frequency change”, the results shown in FIGS. 4 to 9 were obtained. 4 to 6 show the case of the system phenomenon (3), and FIGS. 7 to 9 show the case of the system phenomenon (4).

系統現象(3)「位相急変(電圧フリッカ)あり+周波数変化なし」の場合、電圧波形入力周波数の理論値は60Hzで、0.16805556秒の時点で、0.5度(0.00872665ラジアン)の電圧波形の位相を急変させると、図4に示すように、周波数測定結果に大きな変動が生じた。そして、電圧波形の位相急変の影響で、周波数変化分の測定結果は、図5に示すように変動し、周波数変化率平均値の測定結果も、図6に示すように変動した。   System phenomenon (3) In the case of “with sudden phase change (voltage flicker) + no frequency change”, the theoretical value of the voltage waveform input frequency is 60 Hz, and 0.5 degrees (0.008726665 radians) at 0.16805566 seconds When the phase of the voltage waveform was suddenly changed, a large fluctuation occurred in the frequency measurement result as shown in FIG. The measurement result of the frequency change fluctuated as shown in FIG. 5 due to the influence of the sudden phase change of the voltage waveform, and the measurement result of the frequency change rate average value fluctuated as shown in FIG.

しかし、図5に示すように、周波数変化分平均値20の変動幅は、周波数変化分瞬時値21の変動幅よりも小さくなっている。また、図6に示すように、プラス側の周波数変化率起動しきい値22aを+0.5Hz/sとし、マイナス側の周波数変化率起動しきい値22bを−0.5Hz/sとする場合、周波数変化率平均値23の変動幅は、周波数変化率起動しきい値22a,22bの範囲内に収まる程に小さくなっている。これは、誤起動がないことを示している。そして、図6に示す周波数変化率瞬時値24は、比較のために算出したものであるが、周波数変化率起動しきい値22a,22bを大きく超えて変動している。これは、誤起動があることを示している。   However, as shown in FIG. 5, the fluctuation range of the frequency change average value 20 is smaller than the fluctuation range of the frequency change instantaneous value 21. As shown in FIG. 6, when the positive frequency change rate activation threshold 22a is +0.5 Hz / s and the negative frequency change rate activation threshold 22b is −0.5 Hz / s, The fluctuation range of the frequency change rate average value 23 is small enough to be within the range of the frequency change rate starting threshold values 22a and 22b. This indicates that there is no erroneous start. The frequency change rate instantaneous value 24 shown in FIG. 6 is calculated for comparison, but fluctuates greatly exceeding the frequency change rate starting threshold values 22a and 22b. This indicates that there is a false start.

次に、系統現象(4)「位相急変(電圧フリッカ)あり+周波数変化あり」の場合、電圧波形入力周波数の理論値は60Hzで、0.14027778秒の時点で、周波数を1.5Hz/sの速度で上昇させ、さらに、0.16805556秒の時点で0.5度(0.00872665ラジアン)の電圧波形の位相を急変させると、図7に示すように、周波数測定結果に位相急変(電圧フリッカ)の影響を受ける。そして、周波数変化分の測定結果は、図8に示すように変動し、周波数変化率平均値の測定結果も、図9に示すように変動した。   Next, in the case of system phenomenon (4) “with sudden phase change (voltage flicker) + with frequency change”, the theoretical value of the voltage waveform input frequency is 60 Hz, and the frequency is 1.5 Hz / s at 0.14027778 seconds. Further, when the phase of the voltage waveform of 0.5 degree (0.00872665 radians) is suddenly changed at the time of 0.168055556 seconds, as shown in FIG. Affected by flicker). Then, the measurement result of the frequency change fluctuated as shown in FIG. 8, and the measurement result of the frequency change rate average value fluctuated as shown in FIG.

しかし、図8に示すように、周波数変化分平均値26の変動は、周波数変化分瞬時値27の変動よりも緩和されている。また、図9に示すように、周波数変化率起動しきい値28を+0.5Hz/sとする場合、周波数変化率平均値29は、周波数変化率起動しきい値28を超えたところで変動し、周波数変化率起動しきい値28よりも小さくなることがない。これは、高速+照合時間(例えば4周期)で出力することができることを示している。   However, as shown in FIG. 8, the fluctuation of the frequency change average value 26 is more relaxed than the fluctuation of the frequency change instantaneous value 27. Further, as shown in FIG. 9, when the frequency change rate activation threshold value 28 is set to +0.5 Hz / s, the frequency change rate average value 29 fluctuates when the frequency change rate activation threshold value 28 is exceeded, It does not become smaller than the frequency change rate activation threshold 28. This indicates that the data can be output at high speed + collation time (for example, 4 cycles).

そして、図9に示す周波数変化率瞬時値30は、比較のために算出したものであるが、周波数変化率起動しきい値28を大きく超えて変動するとともに、周波数変化率起動しきい値28よりも小さくなってから再び周波数変化率起動しきい値28を超えて変動する。これは、高速に起動できるが、照合時間の間に不感帯(周波数変化率起動しきい値28よりも小さくなっている期間)に入るので、出力の時間が遅くなることを示している。   The frequency change rate instantaneous value 30 shown in FIG. 9 is calculated for comparison. The frequency change rate instantaneous value 30 fluctuates far beyond the frequency change rate activation threshold 28, and from the frequency change rate activation threshold 28. Then, the frequency fluctuates again exceeding the frequency change rate activation threshold 28. This indicates that although it can be started at a high speed, since the dead zone (a period during which the frequency change rate activation threshold 28 is smaller) is entered during the verification time, the output time is delayed.

以上のように、この実施の形態によれば、電力系統にリアルタイムで現れる位相急変(電圧フリッカ)に影響されずに、高精度かつ安定な周波数変化分及び変化率を測定することができる。したがって、電力系統制御保護装置において電力系統の周波数の変化分及び変化率を必要とする装置に装備すれば、電力系統制御保護装置の性能を向上させることができる。   As described above, according to this embodiment, a highly accurate and stable frequency change and change rate can be measured without being affected by a sudden phase change (voltage flicker) that appears in real time in the power system. Therefore, if the power system control protection device is equipped with a device that requires a change in frequency and a change rate of the power system, the performance of the power system control protection device can be improved.

以上のように、この発明にかかる周波数変化分測定装置は、電力系統にリアルタイムで現れる位相急変(電圧フリッカ)に影響されずに、高精度かつ安定な周波数変化分を測定するのに有用であり、特に電力系統制御保護装置の中で周波数変化分を必要とする装置に装備して電力系統制御保護装置の性能を向上させるのに好適である。   As described above, the frequency change measuring device according to the present invention is useful for measuring a highly accurate and stable frequency change without being affected by a sudden phase change (voltage flicker) appearing in real time in the power system. In particular, it is suitable for improving the performance of the power system control protection device by installing it in a device that requires a frequency change in the power system control protection device.

また、この発明にかかる変化率測定装置は、電力系統にリアルタイムで現れる位相急変(電圧フリッカ)に影響されずに、高精度かつ安定な周波数変化率を測定するのに有用であり、特に電力系統制御保護装置の中で周波数変化率を必要とする装置に装備して電力系統制御保護装置の性能を向上させるのに好適である。   The change rate measuring apparatus according to the present invention is useful for measuring a highly accurate and stable frequency change rate without being affected by a sudden phase change (voltage flicker) appearing in real time in the power system. It is suitable for improving the performance of a power system control protection device by installing it in a device that requires a frequency change rate among the control protection devices.

この発明の一実施の形態による周波数変化分及び変化率測定装置の構成を示すブロック図である。1 is a block diagram showing a configuration of a frequency change and change rate measuring apparatus according to an embodiment of the present invention. 周波数変化分及び変化率の測定手順を説明するフローチャートである。It is a flowchart explaining the measurement procedure of a frequency change part and a change rate. 図2に示す周波数変化分瞬時値算出手順(ST106)から周波数変化率算出手順(ST108)までの処理動作を説明するタイムチャートである。3 is a time chart for explaining processing operations from a frequency change instantaneous value calculation procedure (ST106) to a frequency change rate calculation procedure (ST108) shown in FIG. 系統現象が位相急変(電圧フリッカ)あり+周波数変化なし場合の周波数の測定結果を示すグラフである。It is a graph which shows the measurement result of the frequency in case a system phenomenon has a sudden phase change (voltage flicker) + no frequency change. 系統現象が位相急変(電圧フリッカ)あり+周波数変化なし場合の周波数変化分の測定結果を示すグラフである。It is a graph which shows the measurement result of the frequency change in case a system phenomenon has a sudden phase change (voltage flicker) + no frequency change. 系統現象が位相急変(電圧フリッカ)あり+周波数変化なし場合の周波数変化率の測定結果を示すグラフである。It is a graph which shows the measurement result of the frequency change rate in case a system phenomenon has a sudden phase change (voltage flicker) + no frequency change. 系統現象が位相急変(電圧フリッカ)あり+周波数変化あり場合の周波数の測定結果を示すグラフである。It is a graph which shows the measurement result of the frequency when a system phenomenon has a phase sudden change (voltage flicker) + frequency change. 系統現象が位相急変(電圧フリッカ)あり+周波数変化あり場合の周波数変化分の測定結果を示すグラフである。It is a graph which shows the measurement result of the frequency change in case a system phenomenon has a phase sudden change (voltage flicker) + frequency change. 系統現象が位相急変(電圧フリッカ)あり+周波数変化あり場合の周波数変化率の測定結果を示すグラフである。It is a graph which shows the measurement result of the frequency change rate in case a system phenomenon has a phase sudden change (voltage flicker) + frequency change. 周波数変化率検出における各手法を4つの系統現象について比較して示す図である。It is a figure which compares and shows each method in a frequency change rate detection about four system | strain phenomena.

符号の説明Explanation of symbols

1 周波数変化分及び変化率測定装置
2 電圧・電流計測手段
3 A/D変換手段
4 電圧振幅及びその移動平均値算出手段
5 弦長及びその移動平均値算出手段
6 回転位相角及びその移動平均値算出手段
7 周波数算出手段
8 周波数変化分瞬時値算出手段
9 周波数変化分平均値算出手段
10 周波数変化率平均値算出手段
11 周波数変化分及び変化率制御出力手段
12 表示手段
13 記憶手段
DESCRIPTION OF SYMBOLS 1 Frequency change and change rate measuring device 2 Voltage / current measuring means 3 A / D conversion means 4 Voltage amplitude and moving average value calculating means 5 String length and moving average value calculating means 6 Rotating phase angle and moving average value thereof Calculation means 7 Frequency calculation means 8 Frequency change instantaneous value calculation means 9 Frequency change average value calculation means 10 Frequency change rate average value calculation means 11 Frequency change and change rate control output means 12 Display means 13 Storage means

Claims (3)

基準波の1周期を4N(Nは正の整数)等分した各サンプルタイミングで取得した電力系統の電圧瞬時値サンプリングデータを用いて複素平面上に表した電圧回転ベクトルの振幅値を、前記基準波の1周期における電圧瞬時値サンプリングデータを用いた積分演算で算出する電圧振幅算出手段と、
前記電圧振幅算出手段が算出した電圧振幅値を前記基準波の1周期以上の期間に渡る移動平均処理を行って平均化する電圧振幅平均値算出手段と、
隣接する2つの電圧回転ベクトルの先端間の間隔である弦長を前記基準波の1周期における電圧瞬時値サンプリングデータを用いた積分演算で算出する弦長算出手段と、
前記弦長算出手段が算出した弦長を前記基準波の1周期以上の期間に渡る移動平均処理を行って平均化する弦長平均値算出手段と、
前記電圧振幅平均値算出手段が算出した電圧振幅平均値と前記弦長平均値算出手段が算出した弦長平均値とを用いて電圧回転ベクトルの回転位相角を算出する回転位相角算出手段と、
前記回転位相角算出手段が算出した回転位相角を前記基準波の1周期以上の期間に渡る移動平均処理を行って平均化する回転位相角平均値算出手段と、
前記基準波の周波数と前記回転位相角平均値算出手段が算出した回転位相角平均値とを用いて当該電力系統の静的周波数を算出する周波数算出手段と、
一定期間離れた2つのサンプルタイミングの各々における2つの前記静的周波数の差分を取って周波数変化分の瞬時値を求める周波数変化分瞬時値算出手段と、
前記周波数変化分瞬時値算出手段が算出した周波数変化分瞬時値を一定期間に渡る移動平均処理を行って平均化する周波数変化分平均値算出手段と、
を備えることを特徴とする周波数変化分測定装置。
The amplitude value of the voltage rotation vector expressed on the complex plane using the instantaneous voltage value sampling data of the power system obtained at each sample timing obtained by equally dividing one period of the reference wave by 4N (N is a positive integer) Voltage amplitude calculating means for calculating by integral calculation using voltage instantaneous value sampling data in one cycle of the wave;
Voltage amplitude average value calculating means for averaging the voltage amplitude value calculated by the voltage amplitude calculating means by performing a moving average process over a period of one cycle or more of the reference wave;
Chord length calculation means for calculating a chord length, which is an interval between the tips of two adjacent voltage rotation vectors, by an integration operation using voltage instantaneous value sampling data in one cycle of the reference wave;
A chord length average value calculating means for averaging the chord length calculated by the chord length calculating means by performing a moving average process over a period of one cycle or more of the reference wave;
A rotation phase angle calculation unit that calculates a rotation phase angle of a voltage rotation vector using the voltage amplitude average value calculated by the voltage amplitude average value calculation unit and the chord length average value calculated by the string length average value calculation unit;
A rotation phase angle average value calculation means for averaging the rotation phase angle calculated by the rotation phase angle calculation means by performing a moving average process over a period of one cycle or more of the reference wave;
Frequency calculation means for calculating a static frequency of the power system using the frequency of the reference wave and the rotation phase angle average value calculated by the rotation phase angle average value calculation means;
A frequency change instantaneous value calculating means for obtaining an instantaneous value of a frequency change by taking a difference between the two static frequencies at each of two sample timings separated by a fixed period;
A frequency change average value calculating means for averaging the frequency change instantaneous value calculated by the frequency change instantaneous value calculating means by performing a moving average process over a fixed period;
A frequency variation measuring device comprising:
基準波の1周期を4N(Nは正の整数)等分した各サンプルタイミングで取得した電力系統の電圧瞬時値サンプリングデータを用いて複素平面上に表した電圧回転ベクトルの振幅値を、前記基準波の1周期における電圧瞬時値サンプリングデータを用いた積分演算で算出する電圧振幅算出手段と、
前記電圧振幅算出手段が算出した電圧振幅値を前記基準波の1周期以上の期間に渡る移動平均処理を行って平均化する電圧振幅平均値算出手段と、
隣接する2つの電圧回転ベクトルの先端間の間隔である弦長を前記基準波の1周期における電圧瞬時値サンプリングデータを用いた積分演算で算出する弦長算出手段と、
前記弦長算出手段が算出した弦長を前記基準波の1周期以上の期間に渡る移動平均処理を行って平均化する弦長平均値算出手段と、
前記電圧振幅平均値算出手段が算出した電圧振幅平均値と前記弦長平均値算出手段が算出した弦長平均値とを用いて電圧回転ベクトルの回転位相角を算出する回転位相角算出手段と、
前記回転位相角算出手段が算出した回転位相角を前記基準波の1周期以上の期間に渡る移動平均処理を行って平均化する回転位相角平均値算出手段と、
前記基準波の周波数と前記回転位相角平均値算出手段が算出した回転位相角平均値とを用いて系統の静的周波数を算出する周波数算出手段と、
一定期間離れた2つのサンプルタイミングの各々における2つの前記静的周波数の差分を取って周波数変化分の瞬時値を求める周波数変化分瞬時値算出手段と、
前記周波数変化分瞬時値算出手段が算出した周波数変化分瞬時値を一定期間に渡る移動平均処理を行って平均化する周波数変化分平均値算出手段と、
前記周波数変化分平均値算出手段が算出した周波数変化分平均値を一定期間で割り算して周波数変化率平均値を求める周波数変化率平均値算出手段と、
を備えることを特徴とする周波数変化率測定装置。
The amplitude value of the voltage rotation vector expressed on the complex plane using the instantaneous voltage value sampling data of the power system obtained at each sample timing obtained by equally dividing one period of the reference wave by 4N (N is a positive integer) Voltage amplitude calculating means for calculating by integral calculation using voltage instantaneous value sampling data in one cycle of the wave;
Voltage amplitude average value calculating means for averaging the voltage amplitude value calculated by the voltage amplitude calculating means by performing a moving average process over a period of one cycle or more of the reference wave;
Chord length calculation means for calculating a chord length, which is an interval between the tips of two adjacent voltage rotation vectors, by an integration operation using voltage instantaneous value sampling data in one cycle of the reference wave;
A chord length average value calculating means for averaging the chord length calculated by the chord length calculating means by performing a moving average process over a period of one cycle or more of the reference wave;
A rotation phase angle calculation unit that calculates a rotation phase angle of a voltage rotation vector using the voltage amplitude average value calculated by the voltage amplitude average value calculation unit and the chord length average value calculated by the string length average value calculation unit;
A rotation phase angle average value calculation means for averaging the rotation phase angle calculated by the rotation phase angle calculation means by performing a moving average process over a period of one cycle or more of the reference wave;
Frequency calculating means for calculating a static frequency of the system using the frequency of the reference wave and the rotating phase angle average value calculated by the rotating phase angle average value calculating means;
A frequency change instantaneous value calculating means for obtaining an instantaneous value of a frequency change by taking a difference between the two static frequencies at each of two sample timings separated by a fixed period;
A frequency change average value calculating means for averaging the frequency change instantaneous value calculated by the frequency change instantaneous value calculating means by performing a moving average process over a fixed period;
Frequency change rate average value calculating means for dividing the frequency change average value calculated by the frequency change average value calculating means by a predetermined period to obtain a frequency change rate average value;
A frequency change rate measuring apparatus comprising:
請求項1に記載の周波数変化分測定装置と請求項2に記載の周波数変化率測定装置とのいずれか一方を備えていることを特徴とする電力系統制御保護装置。   A power system control protection device comprising either the frequency change measurement device according to claim 1 or the frequency change rate measurement device according to claim 2.
JP2007109639A 2007-04-18 2007-04-18 Frequency change measuring device, frequency change rate measuring device, and power system control protection device Expired - Fee Related JP4818188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007109639A JP4818188B2 (en) 2007-04-18 2007-04-18 Frequency change measuring device, frequency change rate measuring device, and power system control protection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007109639A JP4818188B2 (en) 2007-04-18 2007-04-18 Frequency change measuring device, frequency change rate measuring device, and power system control protection device

Publications (2)

Publication Number Publication Date
JP2008267917A JP2008267917A (en) 2008-11-06
JP4818188B2 true JP4818188B2 (en) 2011-11-16

Family

ID=40047626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007109639A Expired - Fee Related JP4818188B2 (en) 2007-04-18 2007-04-18 Frequency change measuring device, frequency change rate measuring device, and power system control protection device

Country Status (1)

Country Link
JP (1) JP4818188B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103809020A (en) * 2014-01-17 2014-05-21 浙江大学 Interconnected network low-frequency oscillation frequency and damping estimation value joint confidence interval determination method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4841511B2 (en) * 2007-07-04 2011-12-21 三菱電機株式会社 Frequency change rate protection relay device
CN102033161B (en) * 2010-12-17 2013-04-10 南京邮电大学 Frequency measuring method of alternating current signal
CN106802367B (en) * 2017-01-17 2019-09-24 基康仪器股份有限公司 Vibrating string type sensor signal period measurement method and device based on overlapping grouping
CN112986675B (en) * 2021-01-28 2023-03-24 苏州海鹏科技有限公司 Method for detecting frequency change rate

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10246738A (en) * 1997-03-03 1998-09-14 Toshiba Corp Frequency change sensor
JP4080952B2 (en) * 2003-06-02 2008-04-23 三菱電機株式会社 Frequency measuring device
JP4038484B2 (en) * 2004-01-13 2008-01-23 三菱電機株式会社 Synchronous phasor measuring device
JP4507092B2 (en) * 2004-12-22 2010-07-21 三菱電機株式会社 Switching pole phase controller
JP4657151B2 (en) * 2006-06-01 2011-03-23 三菱電機株式会社 Rotational phase angle measuring device, frequency measuring device using the same, synchronous phasor measuring device, switching pole phase control device, synchronous input device and phase discrimination device
CN101479612B (en) * 2007-02-19 2011-09-14 三菱电机株式会社 Frequency measuring instrument
US8129980B2 (en) * 2007-02-27 2012-03-06 Mitsubishi Electric Corporation AC electric quantity measuring device
US8198904B2 (en) * 2007-03-30 2012-06-12 Mitsubishi Electric Corporation Synchrophasor measuring device and inter-bus-line phase angle difference measurement unit using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103809020A (en) * 2014-01-17 2014-05-21 浙江大学 Interconnected network low-frequency oscillation frequency and damping estimation value joint confidence interval determination method
CN103809020B (en) * 2014-01-17 2016-04-27 浙江大学 The defining method of interconnected network low-frequency oscillation frequency and damping estimated value simultaneous confidence intervals

Also Published As

Publication number Publication date
JP2008267917A (en) 2008-11-06

Similar Documents

Publication Publication Date Title
JP4879319B2 (en) Frequency measuring device
JP4038484B2 (en) Synchronous phasor measuring device
JP4080952B2 (en) Frequency measuring device
JP4657151B2 (en) Rotational phase angle measuring device, frequency measuring device using the same, synchronous phasor measuring device, switching pole phase control device, synchronous input device and phase discrimination device
JP4987068B2 (en) AC electric quantity measuring device
JP4818188B2 (en) Frequency change measuring device, frequency change rate measuring device, and power system control protection device
US8198904B2 (en) Synchrophasor measuring device and inter-bus-line phase angle difference measurement unit using the same
BR112013029141B1 (en) method, device and algorithm for monitoring the condition of an electromechanical system
WO2015029098A1 (en) Angle error correction device and angle error correction method for position detector
JP6272508B2 (en) Angular error correction device and angular error correction method for position detector
JP6416072B2 (en) Synchronous phasor measuring device and pulse generator
JP4841511B2 (en) Frequency change rate protection relay device
US10191094B2 (en) Synchrophasor measurement method for power systems
JP3805718B2 (en) Power system frequency fluctuation occurrence detection method, power system frequency deviation measurement method, and power system frequency measurement method
JP5942094B2 (en) Motor constant calculation method and motor constant calculation device for PM motor
JP3220327B2 (en) Frequency detection method and apparatus, and power system stabilization system
JP5188449B2 (en) Synchronous phasor measuring device
CN116137895A (en) Frequency of providing power in an electrical power system
JP2021071336A (en) Excitation inrush current discrimination device and discrimination method
JP5334401B2 (en) Sampling pulse generator
JP2018186660A (en) Electric power system monitoring device, and electric power system monitoring method
JP3507838B2 (en) Power fundamental wave phase detector
JP6591274B2 (en) Protective relay device
JP2017020913A (en) Insulation monitoring device and inverter device
JP2006250618A (en) Speed detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4818188

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees