JP4817633B2 - Method for preparing ceramic slurry and method for producing ceramic - Google Patents

Method for preparing ceramic slurry and method for producing ceramic Download PDF

Info

Publication number
JP4817633B2
JP4817633B2 JP2004282384A JP2004282384A JP4817633B2 JP 4817633 B2 JP4817633 B2 JP 4817633B2 JP 2004282384 A JP2004282384 A JP 2004282384A JP 2004282384 A JP2004282384 A JP 2004282384A JP 4817633 B2 JP4817633 B2 JP 4817633B2
Authority
JP
Japan
Prior art keywords
ceramic
organic resin
powder
slurry
ceramic slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004282384A
Other languages
Japanese (ja)
Other versions
JP2006096584A (en
Inventor
宏 吉満
吉健 寺師
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004282384A priority Critical patent/JP4817633B2/en
Publication of JP2006096584A publication Critical patent/JP2006096584A/en
Application granted granted Critical
Publication of JP4817633B2 publication Critical patent/JP4817633B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of preparing ceramic slurry by which even fine ceramic powder is dispersed with high dispersibility and a method of manufacturing a ceramic by making a formed body using the slurry and firing the formed body. <P>SOLUTION: In the method of preparing the ceramic slurry obtained by mixing at least the ceramic power with an organic resin, when the average particle diameter of the ceramic powder is defined as D and the molecular length of the organic resin is defined as L, the relation of L/D=0.05-0.4 is satisfied. <P>COPYRIGHT: (C)2006,JPO&amp;NCIPI

Description

本発明は、セラミックスラリの調製方法およびセラミックスの製法に関し、特に、積層セラミックコンデンサや積層型圧電素子のような積層セラミック電子部品の製造に使用される微細なセラミック粉末を含有するセラミックスラリの調製方法、並びに、そのセラミックスラリを用いて成形体を形成し、該成形体を焼成することにより得られるセラミックスの製法に関する。   The present invention relates to a method for preparing a ceramic slurry and a method for producing a ceramic, and in particular, a method for preparing a ceramic slurry containing fine ceramic powder used for the production of multilayer ceramic electronic components such as multilayer ceramic capacitors and multilayer piezoelectric elements. In addition, the present invention relates to a method for producing a ceramic obtained by forming a molded body using the ceramic slurry and firing the molded body.

近年、電子機器の小型化に伴い、積層セラミック電子部品の代表例である積層セラミックコンデンサについては、市場の小型大容量化への要求に応えるため、誘電体層の薄層化および多層化が一層進められているが、誘電体層の製造工程で用いられるセラミックグリーンシートは、膜厚を薄層化するために用いるセラミック粉末の微粒化が図られている。   In recent years, with the downsizing of electronic devices, multilayer ceramic capacitors, which are representative examples of multilayer ceramic electronic components, have been further reduced in thickness and multilayered dielectric layers in order to meet the demand for smaller size and larger capacity in the market. Although progress is being made, the ceramic green sheet used in the dielectric layer manufacturing process is intended to atomize ceramic powder used to reduce the film thickness.

用いるセラミック粉末の粒径が小さくなってくると、セラミックグリーンシートの製造工程においてセラミックスラリを調製する場合に均一に分散することが困難となり、分散性に優れたセラミックスラリが得にくくなることが知られている。   As the particle size of the ceramic powder used becomes smaller, it becomes difficult to uniformly disperse the ceramic slurry when preparing the ceramic slurry in the ceramic green sheet manufacturing process, and it is difficult to obtain a ceramic slurry with excellent dispersibility. It has been.

このような問題に対して、例えば、下記に示す特許文献1では、平均粒径が0.01〜1μmのセラミック粉末を用いる場合、セラミック粉末と有機樹脂と溶剤とを、玉石やビーズなどの分散媒体を用いて混合、解砕してセラミックスラリを得た後、このセラミックスラリを10MPa以上の圧力で高圧分散させて、分散性を高めるという方法が採られている。   For example, in Patent Document 1 shown below, when ceramic powder having an average particle diameter of 0.01 to 1 μm is used, ceramic powder, an organic resin, and a solvent are dispersed in cobblestones, beads, or the like. A method is employed in which a ceramic slurry is obtained by mixing and crushing using a medium, and then the ceramic slurry is dispersed at a high pressure at a pressure of 10 MPa or more to enhance dispersibility.

また、特許文献2では、微粒化したセラミック粉末を含むセラミックスラリを高分散させる方法として、平均粒径が0.5〜1.4μmのセラミック粉末に対して、そのイオン性を考慮して有機樹脂とともにアニオン性の有機系分散剤を添加して混合する方法が開示されている。
特開2001−163675号公報 特開平7−118062号公報
In Patent Document 2, as a method for highly dispersing a ceramic slurry containing atomized ceramic powder, an organic resin is considered in consideration of its ionicity with respect to ceramic powder having an average particle diameter of 0.5 to 1.4 μm. In addition, a method of adding and mixing an anionic organic dispersant is disclosed.
JP 2001-163675 A Japanese Patent Laid-Open No. 7-118062

しかしながら、上記特許文献1に開示された製法では、均一分散したセラミックスラリを調製するための特殊な設備が必要となるばかりか、上記の機械的な分散方法では、一時的に高い分散状態が得られるものの、このように機械的に分散させただけのセラミックスラリでは長期間にわたって均一な分散安定性を保つことが困難であった。   However, the manufacturing method disclosed in Patent Document 1 requires special equipment for preparing a uniformly dispersed ceramic slurry, and the mechanical dispersion method described above temporarily provides a high dispersion state. However, it has been difficult to maintain uniform dispersion stability over a long period of time by using a ceramic slurry that has been mechanically dispersed in this manner.

また、特許文献2に開示された製法では、アニオン性の分散剤により化学的に分散状態
を維持できるものの、このような分散剤を用いたとしても、平均粒径が0.5μmよりも小さいセラミック粉末については、均一な分散状態を形成できないという問題があった。
In addition, in the production method disclosed in Patent Document 2, although the dispersion state can be maintained chemically by an anionic dispersant, a ceramic having an average particle size smaller than 0.5 μm even if such a dispersant is used. The powder has a problem that a uniform dispersion state cannot be formed.

従って本発明は、微粒のセラミック粉末であっても高い分散性を有するセラミックスラリの調製方法およびそのようなセラミックスラリを用いて成形体となし、該成形体を焼成することにより得られるセラミックスの製法を提供することを目的とする。   Accordingly, the present invention relates to a method for preparing a ceramic slurry having high dispersibility even if it is a fine ceramic powder, and a method for producing a ceramic obtained by firing such a molded body by using such a ceramic slurry. The purpose is to provide.

本発明のセラミックスラリの調製方法は、(1)ラミック粉末としてのBaCO 粉末およびTiO 粉末と有機樹脂とを混合して得られるセラミックスラリの調製方法であって、前記セラミック粉末の平均粒径が200nm以下、前記有機樹脂の分子量が12000以下で、かつ前記有機樹脂が直鎖状であるとともに、前記セラミック粉末の平均粒径をD、前記有機樹脂の分子長をLとしたときに、L/D=0.05〜0.4の関係を満足することを特徴とする。
Process for the preparation of ceramic slurry of the present invention, (1) a ceramic BaCO 3 powder and TiO 2 powder and an organic resin and a process for the preparation of mixed ceramics obtained slurry as a powder, the average particle of the ceramic powder When the diameter is 200 nm or less, the molecular weight of the organic resin is 12000 or less, the organic resin is linear, the average particle diameter of the ceramic powder is D, and the molecular length of the organic resin is L, L / D = 0.05 to 0.4 is satisfied.

また本発明では、(2)有機樹脂の親水性と疎水性の強さのバランスを示すHLB値が12〜20の範囲であること、()セラミック粉末の顕微鏡電気泳動法によるpH7〜10のときのゼータ電位が−10〜−60mVであること、が望ましい。
In the present invention also by (2) organic possible HLB value indicating the balance between hydrophilicity and hydrophobicity of the strength of the resin is in the range of 12 to 20, (3) the ceramic powder microscopy electrophoresis pH7~10 It is desirable that the zeta potential at this time is −10 to −60 mV.

そして、本発明のセラミックスの製法は、()上記のセラミックスラリの調整方法により得られたセラミックスラリを用いて成形体を形成し、焼成する工程を具備することを特徴とするものである。
And the manufacturing method of the ceramic of this invention comprises the process of forming and baking a molded object using the ceramic slurry obtained by the ( 4 ) said ceramic slurry adjustment method, It is characterized by the above-mentioned.

本発明によれば、セラミック粉末の平均粒径をD、有機樹脂の分子長をLとしたときに、L/D比を0.05〜0.4の関係を満足するセラミック粉末と有機樹脂を用いることで、隣接するセラミック粒子の架橋を抑制できるために、微粒なセラミック粉末であって、その粉末間に容易に有機樹脂を侵入させることが可能となり、しかも有機樹脂がセラミック粉末の平均粒径よりも短いものであれば、有機樹脂がセラミック粉末表面に吸着しやくなり、こうしてセラミック粉末間に介在した有機樹脂による立体的障害効果による分散作用を高めることができる。   According to the present invention, when the average particle diameter of the ceramic powder is D and the molecular length of the organic resin is L, the ceramic powder and the organic resin satisfying the relationship of L / D ratio of 0.05 to 0.4. By using it, it is possible to suppress cross-linking of adjacent ceramic particles, so that it is a fine ceramic powder, and an organic resin can easily enter between the powders, and the organic resin has an average particle size of the ceramic powder. If the length is shorter, the organic resin is easily adsorbed on the surface of the ceramic powder, and thus the dispersion action due to the steric hindrance effect by the organic resin interposed between the ceramic powders can be enhanced.

この場合、セラミック粉末の平均粒径が200nm以下である場合、有機樹脂の分子量が12000以下でかつ直鎖状であることが、セラミック粉末間への侵入がしやすくなる。   In this case, when the average particle size of the ceramic powder is 200 nm or less, it is easy for the organic resin to have a molecular weight of 12000 or less and to be in a straight chain state.

さらに本発明によれば、有機樹脂の親水性と疎水性の強さのバランスを示すHLB値が12〜20の範囲で、セラミック粉末の顕微鏡電気泳動法によるpH7〜10のときのゼータ電位が−10〜−60mVである場合に、セラミック原料粉末の静電的反発力による分散作用も発生し、有機樹脂の立体的障害効果とセラミック粉末の静電的反発力による相互作用により、通常、分散性が極端に悪くなるような粒子の大きさとされるような微粉末のセラミック粉末であっても均一に分散することが可能となる。   Furthermore, according to the present invention, when the HLB value indicating the balance between hydrophilicity and hydrophobicity of the organic resin is in the range of 12 to 20, the zeta potential when the ceramic powder is pH 7 to 10 by microscopic electrophoresis is − In the case of 10 to -60 mV, a dispersion action due to the electrostatic repulsion force of the ceramic raw material powder is also generated, and it is usually dispersible due to the steric hindrance effect of the organic resin and the interaction due to the electrostatic repulsion force of the ceramic powder. Even a finely divided ceramic powder having such a particle size that extremely deteriorates the particle size can be uniformly dispersed.

こうして上記の製法により得られるセラミックスラリを用いることにより、上記した微粉末であっても成形体中のセラミック粉末の充填率を高めることができ、焼成後には高密度のセラミック焼結体を得ることができる。   Thus, by using the ceramic slurry obtained by the above production method, the filling rate of the ceramic powder in the molded body can be increased even with the fine powder described above, and a high-density ceramic sintered body can be obtained after firing. Can do.

本発明の製法について、チタン酸バリウム粉末を用いて積層セラミックコンデンサを製造する際の製法について詳細に説明する。   About the manufacturing method of this invention, the manufacturing method at the time of manufacturing a multilayer ceramic capacitor using a barium titanate powder is demonstrated in detail.

本発明のセラミックスラリの調製方法に用いるセラミック粉末は、例えば、素原料粉末である炭酸バリウム酸化チタンの混合粉末、またはその粉末の各種添加剤を含ませた調製粉末が好適に用いられる。これらのセラミック粉末の平均粒径は積層セラミックコンデンサの誘電体層の薄層化を進める上で200nm以下、特に、150nmが好ましい。この場合、高い比誘電率が得られるという点で30nm以上が好ましい。ここで平均粒径とは粒度分布の累積度数が50%(D50)の点をいう。また、本発明にかかるセラミック粉末は、特に、顕微鏡電気泳動法によるpH7〜10のときのゼータ電位が−10〜−60mVであることが望ましい。
Ceramic powder used in the process for the preparation of ceramic slurry of the present invention, for example, mixed powder of barium carbonate and titanium oxide emissions, also prepared powder contained various additives powder Waso is used suitably a raw material powder It is done. The average particle size of these ceramic powders is preferably 200 nm or less, particularly 150 nm, in order to reduce the thickness of the dielectric layer of the multilayer ceramic capacitor. In this case, 30 nm or more is preferable in that a high relative dielectric constant can be obtained. Here, the average particle size refers to a point where the cumulative frequency of particle size distribution is 50% (D50). In addition, the ceramic powder according to the present invention preferably has a zeta potential of −10 to −60 mV at pH 7 to 10 by microscopic electrophoresis.

有機樹脂は、例えば、アクリル樹脂系、ブチラール樹脂系およびセルロース樹脂系などから選ばれる少なくとも1種が好ましく、特に、少量でもスラリの粘度を容易に調整できるという点でアクリル樹脂系が好ましい。具体的には、ポリアクリル酸アンモニウム塩、ポリアクリル酸ソーダ、ナフタリンスルホン酸ホルマリン縮合物ソーダなどの群から選ばれる少なくとも1種が好ましい。   The organic resin is preferably at least one selected from, for example, an acrylic resin system, a butyral resin system, and a cellulose resin system, and particularly preferably an acrylic resin system in that the viscosity of the slurry can be easily adjusted even with a small amount. Specifically, at least one selected from the group of polyacrylic acid ammonium salt, polyacrylic acid soda, naphthalenesulfonic acid formalin condensate soda and the like is preferable.

また本発明では、かかる有機樹脂の分子長をL、上記セラミック粉末の平均粒径をDとしたときに、L/D=0.05〜0.4の関係を満足することが重要であり、L/D比は、特に、0.05〜0.3の範囲がより好ましい。L/Dが0.05より小さいと、有機樹脂のセラミック粉末の表面に対する立体的障害効果が低下する。一方、L/D比が0.4よりも大きいと隣接粉末間での架橋確立が大きくなり、却って分散性が低下することになる。   In the present invention, when the molecular length of the organic resin is L and the average particle size of the ceramic powder is D, it is important to satisfy the relationship of L / D = 0.05 to 0.4, In particular, the L / D ratio is more preferably in the range of 0.05 to 0.3. When L / D is smaller than 0.05, the steric hindrance effect on the surface of the ceramic powder of the organic resin is lowered. On the other hand, if the L / D ratio is greater than 0.4, the establishment of crosslinking between adjacent powders increases, and the dispersibility decreases.

そして、有機樹脂により隣接するセラミック粉末の架橋を抑制しつつ、有機樹脂のセラミック粉末への吸着量を高めるという点で、分子量が12000以下、特に、9000以下が好ましく、一方、セラミック粉末同士の分散状態を維持するという理由から分子量は1000以上が好ましい。また有機樹脂の形状としてはセラミック粉末間の立体障害を抑制するという点で直鎖状であることが望ましい。なお、本発明でいう直鎖状とは、高分子がほぼ直線状に並んだものをいい、多少のジグザク状も含まれる意である。また、有機樹脂の分子長とは、例えば、直鎖状の高分子の端部間の最長の間隔をいい、この場合、例えばジグザクした高分子の状態そのままの引き伸ばさない自然な状態の間隔である。有機樹脂のこのような分子長Lは多角度光散乱検出器(MALS)を用いて測定できる。   Further, the molecular weight is preferably 12000 or less, particularly preferably 9000 or less, in view of increasing the adsorption amount of the organic resin to the ceramic powder while suppressing cross-linking of the adjacent ceramic powder by the organic resin. The molecular weight is preferably 1000 or more for the reason of maintaining the state. The organic resin is preferably linear in terms of suppressing steric hindrance between the ceramic powders. In addition, the linear form said by this invention means what the polymer | macromolecule arranged in substantially linear form, and means that some zigzag forms are also included. The molecular length of the organic resin refers to, for example, the longest distance between the ends of the linear polymer, and in this case, for example, the natural state of the zigzag polymer as it is without stretching. . Such a molecular length L of the organic resin can be measured using a multi-angle light scattering detector (MALS).

さらに本発明にかかる有機樹脂は、親水性と疎水性の強さのバランスを示すHLB値が12〜20の範囲であることが好ましい。HLB値とは有機樹脂の親水性、疎水性の程度を示す指標である。   Further, the organic resin according to the present invention preferably has an HLB value in the range of 12 to 20 indicating a balance between hydrophilicity and hydrophobicity. The HLB value is an index indicating the degree of hydrophilicity and hydrophobicity of the organic resin.

また、本発明の製法において用いる溶剤としては、トルエンやアルコールなどの有機溶剤やその混合溶媒、あるいは水などを用いることができるが、セラミック粉末のイオン性的な分散性の点で水が好ましい。   Moreover, as a solvent used in the production method of the present invention, an organic solvent such as toluene or alcohol, a mixed solvent thereof, water, or the like can be used, but water is preferable in terms of ionic dispersibility of the ceramic powder.

次に、上記した本発明にかかるセラミックスラリを用い、例えば、ドクターブレード法によりシート状の成形体を形成する。この場合の厚みは積層セラミックコンデンサとして高容量化という点で1μm以下が好ましく、一方、シート内のピンホールの発生を抑制し高い絶縁性を維持するという点で0.1μm以上が好ましい。   Next, using the ceramic slurry according to the present invention described above, for example, a sheet-like molded body is formed by a doctor blade method. The thickness in this case is preferably 1 μm or less from the viewpoint of increasing the capacity of the multilayer ceramic capacitor, while it is preferably 0.1 μm or more from the viewpoint of suppressing the generation of pinholes in the sheet and maintaining high insulation.

次に、得られたセラミックグリーンシートを焼成してセラミック焼結体を形成する。この場合、得られるセラミック焼結体の機械的強度や絶縁性を高く維持するという点で、相対密度は主成分の理論密度を基準として95%以上が好ましい。また、セラミックグリーンシートの一方表面に導体パターンを形成し、このシートを積層したものを焼成(同時焼成)すると、セラミック層と導体層とが積層されたものが得られ、薄層化したセラミック層が多層に積層された積層セラミックコンデンサを得ることができる。   Next, the obtained ceramic green sheet is fired to form a ceramic sintered body. In this case, the relative density is preferably 95% or more on the basis of the theoretical density of the main component in terms of maintaining high mechanical strength and insulation of the ceramic sintered body to be obtained. Also, when a conductive pattern is formed on one surface of a ceramic green sheet and the laminate of this sheet is fired (simultaneous firing), a laminate of the ceramic layer and the conductor layer is obtained, and the thinned ceramic layer Can be obtained as a multilayer ceramic capacitor.

次に、本発明を明らかにした実施例を説明する。用いたセラミック粉末の組成、平均粒径(D50)、ゼータ電位およびpHを、また、有機樹脂の種類、分子量(重量平均分子量)、HLB値、分子長Lおよび分子形状を、それぞれ表1に示した。   Next, an embodiment in which the present invention is clarified will be described. Table 1 shows the composition, average particle size (D50), zeta potential and pH of the ceramic powder used, and the type, molecular weight (weight average molecular weight), HLB value, molecular length L and molecular shape of the organic resin. It was.

セラミックスラリは、上記した種々のセラミック粉末100質量部に対して、有機樹脂を1.5質量部、これに溶剤として純水を500質量部加えて、ジルコニアをボールとして用いたミルを用いて混合し調製した。   The ceramic slurry is mixed with a mill using zirconia as a ball, adding 1.5 parts by weight of an organic resin and 500 parts by weight of pure water as a solvent to 100 parts by weight of the various ceramic powders described above. Prepared.

次に、上記調製したセラミックスラリについて沈降試験を行い、36時間経過後の沈降量を求め分散性を評価し、次いで、得られたセラミック焼結体について以下のようにして相対密度を求めた。なお、以下の実施例の各種物性は下記の方法により測定した。   Next, a sedimentation test was performed on the prepared ceramic slurry, the amount of sedimentation after 36 hours was determined to evaluate dispersibility, and then the relative density of the obtained ceramic sintered body was determined as follows. Various physical properties of the following examples were measured by the following methods.

セラミック粉末の平均粒径(D50)は電子顕微鏡(SEM)径より求めた。ゼータ電位はセラミック粉末を蒸留水に懸濁した状態でのゼータ電位を、顕微鏡電気泳動法に基づく次の方法によって求めた。すなわち、ゼータ電位測定器として、PEN KEM社製LAZER ZEE METER MODEL501を用い、セラミック粉末を蒸留水に懸濁させて濃度を150ppm、pH7.3〜9.6、電極間距離10cm、印加電圧100V、温度24〜30度で1サンプルにつき5回測定を実施し、その平均値を求めた。
有機樹脂の分子長Lは、多角度光散乱検出器(MALS)を用いて測定した。スラリー沈降量は、固形分濃度20wt%、有機樹脂濃度1.5wt%、溶媒は純水の条件にてボールミルにて24時間攪拌し、作製したスラリーを試験管(試験管20ml)に移し、36時間放置後の沈降量を観測した。セラミック焼結体の相対密度は、各実施例で作製したスラリーを110℃にて24時間乾燥させたものを、乳鉢にて20分間処理した粉末3グラムを一軸プレス成型器にて直径20mm、約厚さ2mmのペレットを作製し、表1に示す温度で大気中にて焼成した。これをアルキメデス法により各サンプル毎に相対密度を求めた。ただし、BaCOについてはこの化合物の状態で焼結体になりにくいため焼成しなかった。比較例として、L/D=0.025(試料番号15)、0.04(試料番号17)、0.5(試料番号18)の場合のセラミックスラリを上記と同様に評価した。表1に結果を示した。なお、試料No.1〜8、13、14、16は参考試料を示す。
The average particle diameter (D50) of the ceramic powder was determined from the electron microscope (SEM) diameter. The zeta potential in the state where the ceramic powder was suspended in distilled water was determined by the following method based on microscopic electrophoresis. That is, as a zeta potential measuring device, LAZER ZEE METER MODEL501 manufactured by PEN KEM was used, the ceramic powder was suspended in distilled water, the concentration was 150 ppm, pH 7.3 to 9.6, interelectrode distance 10 cm, applied voltage 100 V, The measurement was performed 5 times per sample at a temperature of 24 to 30 degrees, and the average value was obtained.
The molecular length L of the organic resin was measured using a multi-angle light scattering detector (MALS). The slurry sedimentation amount was a solid content concentration of 20 wt%, an organic resin concentration of 1.5 wt%, and the solvent was stirred in a ball mill for 24 hours under the condition of pure water, and the prepared slurry was transferred to a test tube (test tube 20 ml). The amount of sedimentation after standing for a period of time was observed. The relative density of the ceramic sintered body was such that the slurry produced in each example was dried at 110 ° C. for 24 hours, 3 grams of powder treated for 20 minutes in a mortar, about 20 mm in diameter with a uniaxial press molding machine. A pellet having a thickness of 2 mm was produced and fired in the air at the temperature shown in Table 1. The relative density was determined for each sample by the Archimedes method. However, BaCO 3 was not fired because it was difficult to form a sintered body in the state of this compound. As a comparative example, the ceramic slurry in the case of L / D = 0.025 (sample number 15), 0.04 (sample number 17), 0.5 (sample number 18) was evaluated in the same manner as described above. Table 1 shows the results. Sample No. Reference numerals 1 to 8, 13, 14 , and 16 denote reference samples.

表1の結果から明らかなように、L/D=0.05〜0.4の条件を満たすセラミック粉末と有機樹脂を用いるとき、沈降量が2cm以下となり、セラミックスラリが高い分散性を示すことがわかった。また、このような条件により得られたセラミックスラリを用いて作製したセラミック焼結体の相対密度は95%以上となり、いずれも高密度の焼結体が得られた。 As is apparent from the results in Table 1, when ceramic powder and organic resin satisfying the condition of L / D = 0.05 to 0.4 are used, the sedimentation amount is 2 cm 3 or less, and the ceramic slurry exhibits high dispersibility. I understood it. Moreover, the relative density of the ceramic sintered compact produced using the ceramic slurry obtained on such conditions became 95% or more, and all obtained the high-density sintered compact.

特に、用いるセラミック粉末の平均粒径が120nm以下で、pH=7〜9.1のときのゼータ電位が−12.5〜−60mVとし、有機樹脂の分子量が12000以下で、直鎖状であり、しかも親水性と疎水性の強さのバランスを表すHLB値が12〜20のものを用いると、沈降量を0.3cm以下、相対密度を96%以上にできた。 In particular, the ceramic powder used has an average particle size of 120 nm or less, a zeta potential of −12.5 to −60 mV when the pH is 7 to 9.1, the molecular weight of the organic resin is 12000 or less, and is linear. Moreover, when an HLB value representing a balance between hydrophilicity and hydrophobicity of 12 to 20 was used, the sedimentation amount was 0.3 cm 3 or less and the relative density was 96% or more.

これに対して、L/Dを本発明外とした試料では、セラミックスラリの沈降量が15cm以上となり、セラミック焼結体の相対密度も95%より低かった。 On the other hand, in the sample with L / D outside the present invention, the sedimentation amount of the ceramic slurry was 15 cm 3 or more, and the relative density of the ceramic sintered body was also lower than 95%.

Claims (4)

ラミック粉末としてのBaCO 粉末およびTiO 粉末と有機樹脂とを混合して得られるセラミックスラリの調製方法であって、前記セラミック粉末の平均粒径が200nm以下、前記有機樹脂の分子量が12000以下で、かつ前記有機樹脂が直鎖状であるとともに、前記セラミック粉末の平均粒径をD、前記有機樹脂の分子長をLとしたときに、L/D=0.05〜0.4の関係を満足することを特徴とするセラミックスラリの調製方法。 A BaCO 3 powder and TiO 2 powder and an organic resin and the mixture was ceramic slurry process for the preparation obtained as ceramic powder, the average particle size of the ceramic powder is 200nm or less, the molecular weight of the organic resin is 12000 or less And the organic resin is linear, the average particle diameter of the ceramic powder is D, and the molecular length of the organic resin is L, L / D = 0.05 to 0.4 A method for preparing a ceramic slurry, wherein: 前記有機樹脂の親水性と疎水性の強さのバランスを示すHLB値が12〜20の範囲である請求項1記載のセラミックスラリの調整方法。   The method for adjusting a ceramic slurry according to claim 1, wherein an HLB value indicating a balance between hydrophilicity and hydrophobicity of the organic resin is in a range of 12 to 20. 前記セラミック粉末の顕微鏡電気泳動法によるpH7〜10のときのゼータ電位が−10〜−60mVである請求項1または2記載のセラミックスラリの調整方法。   The method for adjusting a ceramic slurry according to claim 1 or 2, wherein the ceramic powder has a zeta potential of -10 to -60 mV at a pH of 7 to 10 by microscopic electrophoresis. 請求項1乃至3のうちいずれか記載のセラミックスラリの調整方法により得られたセラミックスラリを用いて成形体を形成し、該成形体を焼成する工程を具備するセラミックスの製法。   A method for producing ceramics comprising the steps of: forming a molded body using the ceramic slurry obtained by the method for adjusting a ceramic slurry according to any one of claims 1 to 3; and firing the molded body.
JP2004282384A 2004-09-28 2004-09-28 Method for preparing ceramic slurry and method for producing ceramic Expired - Fee Related JP4817633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004282384A JP4817633B2 (en) 2004-09-28 2004-09-28 Method for preparing ceramic slurry and method for producing ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004282384A JP4817633B2 (en) 2004-09-28 2004-09-28 Method for preparing ceramic slurry and method for producing ceramic

Publications (2)

Publication Number Publication Date
JP2006096584A JP2006096584A (en) 2006-04-13
JP4817633B2 true JP4817633B2 (en) 2011-11-16

Family

ID=36236746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004282384A Expired - Fee Related JP4817633B2 (en) 2004-09-28 2004-09-28 Method for preparing ceramic slurry and method for producing ceramic

Country Status (1)

Country Link
JP (1) JP4817633B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008169050A (en) * 2007-01-09 2008-07-24 National Institute Of Advanced Industrial & Technology Ceramics green sheet and method of producing the same
JP6892122B2 (en) * 2015-12-11 2021-06-18 国立大学法人豊橋技術科学大学 Powder particles and a method for producing a green body using them
CN109899723A (en) * 2019-03-21 2019-06-18 苏州源泽光电科技集团有限公司 A kind of ceramic heat-dissipating LED downlight

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0517133A (en) * 1991-07-15 1993-01-26 Nippon Shokubai Co Ltd Solution of calcium carbonated colloid and its production and use
US6268054B1 (en) * 1997-02-18 2001-07-31 Cabot Corporation Dispersible, metal oxide-coated, barium titanate materials
JP3951420B2 (en) * 1998-03-19 2007-08-01 株式会社村田製作所 Ceramic slurry composition
JP2002321980A (en) * 2001-04-23 2002-11-08 Tdk Corp Ceramic paint, manufacturing method of ceramic green sheet and manufacturing method of ceramic electronic part

Also Published As

Publication number Publication date
JP2006096584A (en) 2006-04-13

Similar Documents

Publication Publication Date Title
Li et al. Dispersion and properties of zirconia suspensions for stereolithography
CN1117708C (en) Low temp. sinterable and low loss dielectric ceramic compositions and method thereof
CN1117707C (en) Low temp sinterable and low loss dielectric ceramic compsns. and method thereof
CN103288452B (en) Dielectric ceramic composition and electronic device
CN110171963B (en) Low-temperature co-fired ceramic microwave and millimeter wave dielectric powder
Jian et al. A strategy for design of non-percolative composites with stable giant dielectric constants and high energy densities
KR20100097038A (en) Laminated ceramic capacitor
JP2002255552A (en) Barium titanate powder and method for producing the same
JP2010067418A (en) Conductive paste and method of manufacturing the same
JP4766910B2 (en) Method for producing barium titanate powder, barium titanate powder, and barium titanate sintered body
KR102498656B1 (en) Dielectric ceramic material, method for manufacturing same, and composite dielectric material
TW583154B (en) Method for producing dielectric particles
KR20100073704A (en) Methods of manufacturing complex oxide nano particles and complex oxide nano particles manufactured thereby
JP4817633B2 (en) Method for preparing ceramic slurry and method for producing ceramic
JP2006124212A (en) Dielectric ceramic, method of manufacturing the same and laminated ceramic capacitor
CN1974479A (en) Low temperature sintered high frequency heat stable dielectric ceramic and its prepn process
US20200273620A1 (en) Method For Manufacturing Spherical Ceramic-Glass Nanocomposite Dielectrics For Multilayer Ceramic Capacitor Applications
CN1433996A (en) Production process for oxide magnetic material and oxide magnetic material
CN111662081B (en) Ceramic powder and its use
JP3421810B2 (en) Method for producing ultrafine barium titanate dielectric ceramic material
JP4438495B2 (en) Barium titanate powder
Liu et al. Tape casting of borosilicate glass/Al2O3 composites for LTCC substrate with various relative molecular masses of PVB
JP2020152630A (en) Method for preparing dielectric having low dielectric loss and dielectric prepared thereby
JP2004247719A (en) Layered ceramic capacitor
CN109437888A (en) A kind of preparation method of low-loss huge dielectric constant X8R type dielectric substance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees