JP2006124212A - Dielectric ceramic, method of manufacturing the same and laminated ceramic capacitor - Google Patents

Dielectric ceramic, method of manufacturing the same and laminated ceramic capacitor Download PDF

Info

Publication number
JP2006124212A
JP2006124212A JP2004312454A JP2004312454A JP2006124212A JP 2006124212 A JP2006124212 A JP 2006124212A JP 2004312454 A JP2004312454 A JP 2004312454A JP 2004312454 A JP2004312454 A JP 2004312454A JP 2006124212 A JP2006124212 A JP 2006124212A
Authority
JP
Japan
Prior art keywords
dielectric
powder
dielectric ceramic
ray diffraction
diffraction pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004312454A
Other languages
Japanese (ja)
Other versions
JP4789449B2 (en
Inventor
Yoichi Yamazaki
洋一 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004312454A priority Critical patent/JP4789449B2/en
Priority to US11/258,669 priority patent/US7365958B2/en
Priority to CN 200510118730 priority patent/CN1770341B/en
Priority to TW094137715A priority patent/TWI402872B/en
Publication of JP2006124212A publication Critical patent/JP2006124212A/en
Application granted granted Critical
Publication of JP4789449B2 publication Critical patent/JP4789449B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dielectric ceramic comprising a crystal grain having high specific dielectric constant even if being finely pulverized, a method of manufacturing the same and a laminated ceramic capacitor. <P>SOLUTION: The crystal grain consisting mainly of barium titanate is characterized in that the average particle diameter is ≤150 nm and the volume V per unit cell which is expressed by the product of lattice constants (a, b, c) determined by an X-ray diffraction pattern of the crystal grain, is ≤0.0643 nm<SP>3</SP>. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、積層セラミックコンデンサ等に用いられる誘電体磁器およびその製法に関する。   The present invention relates to a dielectric ceramic used for a multilayer ceramic capacitor or the like and a method for manufacturing the dielectric ceramic.

近年、携帯電話などモバイル機器の普及やパソコンなどの主要部品である半導体素子の高速高周波化に伴い、このような電子機器に搭載される積層セラミックコンデンサは、小型、高容量化の要求がますます高まっている。   In recent years, with the widespread use of mobile devices such as mobile phones and the high speed and high frequency of semiconductor elements, which are the main parts of personal computers, multilayer ceramic capacitors mounted on such electronic devices are required to be smaller and have higher capacities. It is growing.

そのため積層セラミックコンデンサを構成する誘電体層は、薄層化と高積層化が図られているが、誘電体層における上記した薄層化および高積層化の要求に応えるために、誘電体磁器を構成する誘電体粉末について微粒化と比誘電率の向上が図られている(例えば、特許文献1)。   For this reason, the dielectric layers constituting the multilayer ceramic capacitor have been reduced in thickness and increased in thickness, but in order to meet the above-mentioned demands for thinning and increasing the number of layers in the dielectric layer, dielectric ceramics are used. An attempt is made to atomize the dielectric powder and to improve the dielectric constant (for example, Patent Document 1).

上記特許文献1によれば、例えば、誘電体粉末の代表例であるチタン酸バリウムは、水酸化バリウム水溶液とTiアルコキシド溶液とを混合し、その混合容器内で所定時間熟成した後、脱水、乾燥させることにより、微粒のチタン酸バリウムが得られると記載されている。
特開2004−210636号公報
According to Patent Document 1, for example, barium titanate, which is a typical example of dielectric powder, is mixed with a barium hydroxide aqueous solution and a Ti alkoxide solution, aged for a predetermined time in the mixing container, and then dehydrated and dried. It is described that fine barium titanate can be obtained.
Japanese Patent Laid-Open No. 2004-210636

しかしながら、上記した液相法により得られるチタン酸バリウム粉末は、混合、熟成後の乾燥が110℃、3時間の条件であり、単に、混合液に含まれる水分を除くだけの条件しか採用していないことから、得られたチタン酸バリウム粉末中には、多くの結晶水や粉末中にも水酸化物のような不純物が存在したものとなっており、そのために、得られたチタン酸バリウム粉末は平均粒径が50nmと小さく形成されているものの、格子定数が本来単結晶から導かれる値よりも大きくなり(a=0.4032nm、V=0.065548nm)、結晶構造的にも立方晶が主体となり、得られた誘電体粉末を用いて作製した誘電体磁器は比誘電率が低いという問題があった。 However, the barium titanate powder obtained by the liquid phase method described above is mixed and aged after drying at 110 ° C. for 3 hours, and only employs conditions that remove the moisture contained in the mixed solution. Therefore, in the obtained barium titanate powder, many crystal waters and impurities such as hydroxide existed in the powder. For this reason, the obtained barium titanate powder Although the average grain size is formed as small as 50 nm, the lattice constant is larger than the value originally derived from the single crystal (a = 0.40332 nm, V = 0.065548 nm 3 ), and the crystal structure is also cubic. The dielectric porcelain produced using the obtained dielectric powder has a problem of low relative dielectric constant.

従って本発明は、微粒化しても比誘電率の高い結晶粒子により構成される誘電体磁器およびその製法、並びに積層セラミックコンデンサを提供することである。   Accordingly, an object of the present invention is to provide a dielectric ceramic composed of crystal grains having a high relative dielectric constant even when atomized, a manufacturing method thereof, and a multilayer ceramic capacitor.

本発明の誘電体磁器は、(1)チタン酸バリウムを主成分とする結晶粒子の平均径が150nm以下であり、かつ前記結晶粒子のX線回折パターンから求められる格子定数(a、b、c)の積で表されるユニットセル当りの体積Vが0.0643nm以下であることを特徴とする。 In the dielectric ceramic of the present invention, (1) the crystal grains mainly composed of barium titanate have an average diameter of 150 nm or less and the lattice constants (a, b, c) determined from the X-ray diffraction pattern of the crystal grains. ), The volume V per unit cell represented by the product of 0.0643 nm 3 or less.

即ち本発明にかかる誘電体磁器は、磁器を構成する結晶粒子の平均径が150nm以下であっても、結晶粒子のX線回折パターンから求められる格子定数(a、b、c)の積で表されるユニットセル当りの体積Vを0.0643nm以下にしたものとすると高い比誘電率が得られる。また、本発明の誘電体磁器では(2)結晶粒子は、立方晶と正方晶とが共存していること、(3)格子定数のc/a比が1.005〜1.01であること、誘電体磁器表面のX線回折で得られた回折パターンの、チタン酸バリウム単結晶のX線回折パターンとの比較におけるピーク位置のずれから求められる応力が絶対値で1MPa以上であることが、高誘電率化という点で好ましい。 That is, the dielectric ceramic according to the present invention is represented by the product of the lattice constants (a, b, c) obtained from the X-ray diffraction pattern of the crystal particles even when the average diameter of the crystal particles constituting the ceramic is 150 nm or less. When the volume V per unit cell is set to 0.0643 nm 3 or less, a high relative dielectric constant can be obtained. Further, in the dielectric ceramic according to the present invention, (2) the crystal particles have cubic and tetragonal coexistence, and (3) the lattice constant c / a ratio is from 1.005 to 1.01. The stress obtained from the shift of the peak position in the comparison of the diffraction pattern obtained by X-ray diffraction on the surface of the dielectric ceramic with the X-ray diffraction pattern of the barium titanate single crystal is 1 MPa or more in absolute value. This is preferable in terms of increasing the dielectric constant.

また本発明の積層セラミックコンデンサは、上記の誘電体磁器からなる誘電体層と内部電極層とを交互に積層して構成されたコンデンサ本体を具備してなることを特徴とする。   The multilayer ceramic capacitor of the present invention is characterized in that it comprises a capacitor body formed by alternately laminating dielectric layers made of the above dielectric ceramics and internal electrode layers.

そして、このような誘電体磁器は、(4)(a)シュウ酸法、ゾル−ゲル法、水熱合成法等等のうちいずれか1種の液相法によって平均粒径が100nm以下の誘電体素粉末を得る工程と、(b)該誘電体素粉末を、大気圧下、温度300〜500℃の雰囲気において、ゼオライト系乾燥剤を用いて乾燥熱処理して誘電体粉末を得る工程と、(c)該誘電体粉末を用いて所定形状の成形体に成形し、該成形体を焼成する工程と、を具備する製法により得られる。   Such a dielectric ceramic has a dielectric having an average particle diameter of 100 nm or less by a liquid phase method such as (4) (a) oxalic acid method, sol-gel method, hydrothermal synthesis method, and the like. A step of obtaining a body powder, and (b) a step of obtaining a dielectric powder by subjecting the dielectric powder to a heat treatment using a zeolitic desiccant in an atmosphere at a temperature of 300 to 500 ° C. under atmospheric pressure. (C) The dielectric powder is used to form a molded body having a predetermined shape, and the molded body is fired.

本発明の誘電体磁器は、チタン酸バリウムを主成分とする結晶粒子の平均径が150nm以下であり、かつ前記結晶粒子のX線回折パターンから求められる格子定数(a、b、c)の積で表されるユニットセル当りの体積Vが0.0643nm以下のであることを特徴とするものである。ここで、体積Vはペロブスカイト型結晶構造を形成するという点で0.062nm以上が好ましく、また、上記格子定数(a、b、c)の積で表されるユニットセル当りの体積Vは0.063〜0.064nmの範囲がより好ましい。また、結晶粒子の平均径は高い比誘電率を得るという点で30nm以上がより好ましい。さらに、本発明にかかる誘電体磁器の磁器密度は5.8〜5.9g/cmとなり、しかも、結晶粒子中に立方晶と正方晶とが共存し、そのため格子定数のc/a比が1.006〜1.009であることがより望ましい。 The dielectric ceramic according to the present invention has a product of lattice constants (a, b, c) obtained from an X-ray diffraction pattern of crystal grains in which the average diameter of crystal grains mainly composed of barium titanate is 150 nm or less. The volume V per unit cell represented by is 0.0643 nm 3 or less. Here, the volume V is preferably 0.062 nm 3 or more in terms of forming a perovskite crystal structure, and the volume V per unit cell represented by the product of the lattice constants (a, b, c) is 0. A range of 0.063 to 0.064 nm 3 is more preferable. Further, the average diameter of the crystal particles is more preferably 30 nm or more from the viewpoint of obtaining a high relative dielectric constant. Furthermore, the ceramic density of the dielectric ceramic according to the present invention is 5.8 to 5.9 g / cm 3 , and cubic crystals and tetragonal crystals coexist in the crystal grains, so that the c / a ratio of the lattice constant is It is more desirable to be 1.006 to 1.009.

結晶粒子の平均径が150nmよりも大きい場合には、積層セラミックコンデンサの誘電体層の単位厚み当たりの粒界の数が少なくなり高い絶縁性が得られなくなる。また、格子定数(a、b、c)の積で表されるユニットセル当りの体積Vが0.0643nmより大きいと比誘電率が低下する。 When the average diameter of the crystal grains is larger than 150 nm, the number of grain boundaries per unit thickness of the dielectric layer of the multilayer ceramic capacitor is reduced, and high insulation cannot be obtained. Further, when the volume V per unit cell represented by the product of the lattice constants (a, b, c) is larger than 0.0643 nm 3 , the relative dielectric constant is lowered.

さらに本発明の誘電体磁器は、誘電体磁器表面のX線回折で得られた回折パターンの、チタン酸バリウム単結晶のX線回折パターンとの比較におけるピーク位置のずれから求められる応力が絶対値で1MPa以上であることが好ましい。特に、積層セラミックコンデンサにおいては積層数が100層以上であれば、例えば、ニッケルを主成分とする内部電極層との熱膨張係数差により誘電体層に作用する圧縮応力も付加され、応力は絶対値で5MPa以上であることがより好ましい。   Furthermore, the dielectric ceramic according to the present invention has an absolute value of the stress obtained from the shift of the peak position in comparison with the X-ray diffraction pattern of the barium titanate single crystal of the diffraction pattern obtained by X-ray diffraction on the surface of the dielectric ceramic. It is preferably 1 MPa or more. In particular, in a multilayer ceramic capacitor, if the number of layers is 100 or more, for example, a compressive stress acting on the dielectric layer is added due to a difference in thermal expansion coefficient from the internal electrode layer mainly composed of nickel, and the stress is absolutely The value is more preferably 5 MPa or more.

次に、本発明にかかる誘電体磁器の製法について説明する。まず、本発明では、(a)シュウ酸法、ゾル−ゲル法、水熱合成法等のうちいずれか1種の液相法によって平均粒径が100nm以下の誘電体素粉末を得る。上記した製法のうち単分散性が高いという点で特にゾルーゲル法が好ましく、この場合Ba源としてBa(OH)を用い、Ti源としてTiOを用いる。この場合Ba/Ti比は0.995〜1.005の範囲が比誘電率の向上および焼結性の点で好ましい。 Next, a method for manufacturing a dielectric ceramic according to the present invention will be described. First, in the present invention, a dielectric elementary powder having an average particle size of 100 nm or less is obtained by any one liquid phase method among (a) oxalic acid method, sol-gel method, hydrothermal synthesis method and the like. Of the above-described production methods, the sol-gel method is particularly preferable in terms of high monodispersibility. In this case, Ba (OH) 2 is used as the Ba source and TiO 2 is used as the Ti source. In this case, the Ba / Ti ratio is preferably in the range of 0.995 to 1.005 from the viewpoint of improvement of relative dielectric constant and sinterability.

次に、BaおよびTi源を混合して得られたスラリを大気圧、200℃の条件で予備乾燥を行う。   Next, the slurry obtained by mixing the Ba and Ti sources is preliminarily dried under conditions of atmospheric pressure and 200 ° C.

次に、(b)誘電体素粉末を、大気圧下、温度300〜500℃、特に、350〜450℃の雰囲気において、ゼオライト系乾燥剤を用いて乾燥熱処理して誘電体粉末を得る。得られる誘電体粉末の粒度のばらつき(CV値)が50%以下であることが好ましい。   Next, (b) a dielectric powder is obtained by subjecting the dielectric powder to a dry heat treatment using a zeolitic desiccant in an atmosphere at a temperature of 300 to 500 ° C., particularly 350 to 450 ° C. under atmospheric pressure. It is preferable that variation in the particle size (CV value) of the obtained dielectric powder is 50% or less.

ゼオライト系乾燥剤はモレキュラーシーブ、メタロシリケート、クローバライトなどが好適であるが、特に、耐熱性の点でモレキュラーシーブがより好ましい。また、ゼオライト系乾燥剤の比表面積は400m/g以上であればよく、特に、乾燥効率および耐久性の点で500〜700m/gが好ましい。また誘電体素粉末100質量部に対するゼオライト系乾燥剤の量は5〜20質量部が好ましい。ゼオライト系乾燥剤の比表面積を維持するという点で温度が600℃より低いことが好ましく、それより高い場合にはゼオライト系乾燥剤が変質し比表面積が小さくなる。 As the zeolitic desiccant, molecular sieve, metallosilicate, cloverite and the like are suitable, but molecular sieve is more preferred from the viewpoint of heat resistance. The specific surface area of the zeolite drying agent should be at 400 meters 2 / g or more, particularly, 500 to 700 m 2 / g is preferable from the viewpoint of drying efficiency and durability. The amount of the zeolitic desiccant with respect to 100 parts by mass of the dielectric powder is preferably 5 to 20 parts by mass. The temperature is preferably lower than 600 ° C. in terms of maintaining the specific surface area of the zeolitic desiccant, and if it is higher, the zeolitic desiccant is altered and the specific surface area is reduced.

次に、(c)該誘電体粉末を主成分として用いて所定形状の成形体に成形し、該成形体を焼成する。成形は上記誘電体粉末をバインダとともに成形して、例えば、単板コンデンサとなる所定形状の(円板状の)成形体を形成する。   Next, (c) the dielectric powder is used as a main component to form a molded body having a predetermined shape, and the molded body is fired. In the molding, the dielectric powder is molded together with a binder to form a molded body having a predetermined shape (disk shape) to be a single plate capacitor, for example.

また、積層セラミックコンデンサを形成する場合には、上記誘電体粉末をバインダおよび溶剤とともに混合してスラリを得、次いで、このスラリをドクターブレード法などのシート成形法により、例えば厚み1μmのシート状成形体を形成する。この後シート状成形体上に導体パターンを印刷して、導体パターンが形成されたシートを形成し、これらのシートを複数積層して積層成形体を形成した後に、導体パターンの焼結温度付近の温度で焼成することにより積層セラミックコンデンサが得られる。   Also, when forming a multilayer ceramic capacitor, the dielectric powder is mixed with a binder and a solvent to obtain a slurry, and then this slurry is formed into a sheet having a thickness of, for example, 1 μm by a sheet forming method such as a doctor blade method. Form the body. Thereafter, a conductor pattern is printed on the sheet-like molded body to form a sheet on which the conductor pattern is formed. After a plurality of these sheets are laminated to form a laminated molded body, the conductive pattern near the sintering temperature of the conductor pattern is formed. A multilayer ceramic capacitor is obtained by firing at a temperature.

液相法によって得られる誘電体素粉末の平均粒径が100nmよりも大きい場合には、焼結後に得られる結晶粒子の大きさが大きくなり絶縁抵抗が低くなる原因となる。また、誘電体素粉末の乾燥温度が300℃以下の場合には、乾燥不足となり、粉末中に依然として水酸基などの液相法に由来する不純物を除くことが困難となりまた粒成長も起こりにくくなる。一方、温度が600℃より高い場合には誘電体素粉末の平均粒径が大きくなりすぎて所望の大きさの誘電体粉末が得られなくなり、薄層化したグリーンシートが得られなくなる。圧力が大気圧よりも低い場合、あるいは大気圧より高い場合には工業的に高コストの減圧装置や加圧装置が必要となり、原料粉末となる誘電体粉末の低コストでの製造が困難となる。   When the average particle size of the dielectric powder obtained by the liquid phase method is larger than 100 nm, the size of the crystal particles obtained after sintering becomes large, which causes a decrease in insulation resistance. Moreover, when the drying temperature of the dielectric element powder is 300 ° C. or lower, the drying is insufficient, and it is still difficult to remove impurities derived from the liquid phase method such as hydroxyl groups in the powder, and grain growth is less likely to occur. On the other hand, when the temperature is higher than 600 ° C., the average particle diameter of the dielectric powder becomes too large to obtain a desired size of dielectric powder, and a thin green sheet cannot be obtained. When the pressure is lower than atmospheric pressure or higher than atmospheric pressure, an industrially expensive decompression device or pressurization device is required, making it difficult to produce dielectric powder as a raw material powder at low cost. .

つまり、上記工程により得られる誘電体粉末は、従来の単に乾燥しただけの誘電体粉末に比較して、粉末の表層や内部に不純物が除かれた状態であり、そのため欠陥が多くなり、表層部分の格子が縮みやすくなることによって粉末内部に圧縮応力がかかり、全体的に格子定数が小さくなりこのためユニットセル当りの体積が減少する。   In other words, the dielectric powder obtained by the above process is in a state in which impurities are removed from the surface layer and the inside of the powder as compared with the conventional dielectric powder that is simply dried, so that there are more defects and the surface layer portion. Since the lattice of the material tends to shrink, a compressive stress is applied to the inside of the powder, and the lattice constant is reduced as a whole, thereby reducing the volume per unit cell.

先ず、表1に示すゾルーゲル法、水熱合成法、蓚酸塩法、ならびに固相法により得られた誘電体素粉末を用意した。これらの粉末はBa/Ti比が1.005になるように混合した。   First, dielectric powders obtained by the sol-gel method, hydrothermal synthesis method, oxalate method, and solid phase method shown in Table 1 were prepared. These powders were mixed so that the Ba / Ti ratio was 1.005.

次に、粉末の乾燥は、ゼオライト系乾燥剤を用いない場合は、上記の粉末を大気圧下、温度200℃の雰囲気の条件で予備乾燥を行った。   Next, when the zeolite-type desiccant was not used, the powder was preliminarily dried under the atmospheric pressure and 200 ° C. atmosphere conditions.

一方、ゼオライト系乾燥剤を用いる場合は、調製した誘電体素粉末を、大気圧下、400℃にてアルミノ珪酸塩を主成分とし比表面積が600m/gのゼオライト系乾燥剤を用いて乾燥熱処理を行って誘電体粉末を得た。誘電体素粉末100質量部に対するゼオライト系乾燥剤の量は10質量部とした。 On the other hand, when using a zeolitic desiccant, the prepared dielectric powder is dried using a zeolitic desiccant having an aluminosilicate as a main component and a specific surface area of 600 m 2 / g at 400 ° C. under atmospheric pressure. A heat treatment was performed to obtain a dielectric powder. The amount of the zeolitic desiccant with respect to 100 parts by mass of the dielectric powder was 10 parts by mass.

次に、上記に得られた誘電体粉末を用いて、直径15mm、厚み1mmの成形体に成形し、温度900℃、圧力10Paの条件でホットプレスを行い、この後に、大気中、800℃で酸化処理を行った。 Next, the dielectric powder obtained above was molded into a molded body having a diameter of 15 mm and a thickness of 1 mm, and hot-pressed under conditions of a temperature of 900 ° C. and a pressure of 10 7 Pa. Oxidation treatment was performed at ° C.

次に、得られた誘電体磁器について、走査型電子顕微鏡を用いて結晶粒子の平均径を測定した。1試料あたり測定点は1000点とし平均値として求めた。平均径は100nmであった。   Next, with respect to the obtained dielectric ceramic, the average diameter of crystal grains was measured using a scanning electron microscope. The number of measurement points per sample was 1000, and the average value was obtained. The average diameter was 100 nm.

次に、得られた試料についてX線回折の測定を行い、ユニットセル当りの体積Vを算出した。回折角度は44〜46°とし、格子定数a、b、cを求め、それらの値からユニットセルの体積を求めた。また、このX線回折ピークについてチタン酸バリウム単結晶について求めた同回折角度のX線回折ピークからの差を求め応力を求めた。本発明の試料の応力はいずれも1.5MPaであった。また、ここで作製した本発明の試料の誘電体磁器を構成する結晶粒子は、リートベルト解析によれば、いずれも立方晶と正方晶とが共存していた。また、格子定数比c/aは1.008(試料No.6)、1.009(試料No.6)であった。本発明外の製法で作製した試料の格子定数比c/aは、立方晶比率は1.003から1.007であった。   Next, X-ray diffraction measurement was performed on the obtained sample, and the volume V per unit cell was calculated. The diffraction angle was 44 to 46 °, the lattice constants a, b, and c were determined, and the volume of the unit cell was determined from these values. Moreover, the stress was calculated | required by calculating | requiring the difference from the X-ray diffraction peak of the same diffraction angle calculated | required about the barium titanate single crystal about this X-ray diffraction peak. The stresses of the samples of the present invention were all 1.5 MPa. Further, according to Rietveld analysis, the crystal particles constituting the dielectric ceramic of the sample of the present invention produced here coexisted with cubic crystals and tetragonal crystals. The lattice constant ratio c / a was 1.008 (sample No. 6) and 1.009 (sample No. 6). As for the lattice constant ratio c / a of the sample produced by the production method outside the present invention, the cubic ratio was from 1.003 to 1.007.

次に電極を形成するために、焼成した誘電体磁器を研磨した後寸法と重量を測定した後にGa−In電極を対向する表面に塗布した。この後、誘電体磁器の静電容量をLCRメータを用いて、周波数1kHz、電圧1Vにて、1分間測定し、試料の直径および厚みとその静電容量から比誘電率を算出した。また比誘電率の温度特性(TCC)についても評価した。結果を表1に示す。

Figure 2006124212
Next, in order to form an electrode, after the sintered dielectric ceramic was polished, the size and weight were measured, and then a Ga-In electrode was applied to the opposing surface. Thereafter, the capacitance of the dielectric ceramic was measured for 1 minute using a LCR meter at a frequency of 1 kHz and a voltage of 1 V, and the relative permittivity was calculated from the diameter and thickness of the sample and the capacitance. Moreover, it evaluated also about the temperature characteristic (TCC) of a dielectric constant. The results are shown in Table 1.
Figure 2006124212

表1の結果から明らかなように、誘電体粉末を調製する際に、誘電体素粉末をゼオライト系乾燥剤を用いて乾燥熱処理して得られた誘電体素粉末を用い焼成して得られた誘電体磁器では、誘電体素粉末の含水率が0.21、0.23%であり、構成する結晶粒子の平均径が150nm以下となり、かつX線回折パターンから求められる格子定数(a、b、c)の積で表されるユニットセル当りの体積Vが0.064〜0.0643nmの範囲となり、比誘電率が1565以上、25℃を基準にした比誘電率に対する変化率としての温度特性が1.22%、2.19%であった。 As is apparent from the results in Table 1, when preparing the dielectric powder, the dielectric powder was obtained by firing using the dielectric powder obtained by drying and heat treatment using a zeolite desiccant. In the dielectric ceramic, the moisture content of the dielectric powder is 0.21 and 0.23%, the average diameter of the constituent crystal particles is 150 nm or less, and the lattice constant (a, b) obtained from the X-ray diffraction pattern , C) The volume V per unit cell represented by the product is in the range of 0.064 to 0.0643 nm 3 , the relative dielectric constant is 1565 or more, and the temperature as the rate of change relative to the relative dielectric constant based on 25 ° C. The characteristics were 1.22% and 2.19%.

これに対して、従来の製法により調製した誘電体粉末の場合には、誘電体素粉末の含水率が0.44〜0.56%であり、誘電体磁器を構成する結晶粒子の平均径が150nm以下にできたものの、X線回折パターンから求められる格子定数(a、b、c)の積で表されるユニットセル当りの体積Vが0.0643nmより大きくなり、比誘電率が1500より低く、25℃を基準にした比誘電率に対する変化率としての温度特性が−3.92〜−10.98%と本発明の試料に比較して絶対値的に大きかった。 In contrast, in the case of a dielectric powder prepared by a conventional manufacturing method, the moisture content of the dielectric powder is 0.44 to 0.56%, and the average diameter of the crystal particles constituting the dielectric ceramic is Although it was made 150 nm or less, the volume V per unit cell represented by the product of the lattice constants (a, b, c) obtained from the X-ray diffraction pattern was larger than 0.0643 nm 3 and the relative dielectric constant was 1500 The temperature characteristic as a change rate with respect to the relative dielectric constant with 25 ° C. as a reference was −3.92 to −10.98%, which was larger in absolute value than the sample of the present invention.

Claims (6)

チタン酸バリウムを主成分とする結晶粒子の平均径が150nm以下であり、かつ前記結晶粒子のX線回折パターンから求められる格子定数(a、b、c)の積で表されるユニットセル当りの体積Vが0.0643nm以下であることを特徴とする誘電体磁器。 The average particle diameter of the crystal grains mainly composed of barium titanate is 150 nm or less, and the unit cell expressed by the product of the lattice constants (a, b, c) obtained from the X-ray diffraction pattern of the crystal grains. A dielectric ceramic having a volume V of 0.0643 nm 3 or less. 結晶粒子は、立方晶と正方晶とが共存している請求項1記載の誘電体磁器。 The dielectric ceramic according to claim 1, wherein the crystal grains coexist with cubic crystals and tetragonal crystals. 格子定数のc/a比が1.005〜1.01である請求項1または2に記載の誘電体磁器。 The dielectric ceramic according to claim 1 or 2, wherein a c / a ratio of a lattice constant is 1.005 to 1.01. 誘電体磁器表面のX線回折で得られた回折パターンの、チタン酸バリウム単結晶のX線回折パターンとの比較におけるピーク位置のずれから求められる応力が絶対値で1MPa以上である請求項1乃至3のうちいずれか記載の誘電体磁器。 The stress obtained from the shift of the peak position in the comparison of the diffraction pattern obtained by X-ray diffraction on the surface of the dielectric ceramic with the X-ray diffraction pattern of the barium titanate single crystal is 1 MPa or more in absolute value. 4. The dielectric ceramic according to any one of 3. (a)シュウ酸法、ゾル−ゲル法、水熱合成法等のうちいずれか1種の液相法によって平均粒径が100nm以下の誘電体素粉末を得る工程と、(b)該誘電体素粉末を、大気圧下、温度300〜500℃の雰囲気において、ゼオライト系乾燥剤を用いて乾燥熱処理して誘電体粉末を得る工程と、(c)該誘電体粉末を用いて所定形状の成形体に成形し、該成形体を焼成する工程と、を具備することを特徴とする誘電体磁器の製法。 (A) a step of obtaining a dielectric powder having an average particle size of 100 nm or less by any one liquid phase method among an oxalic acid method, a sol-gel method, a hydrothermal synthesis method, and the like; (b) the dielectric A step of obtaining a dielectric powder by subjecting the raw powder to a dry heat treatment using a zeolitic desiccant in an atmosphere of 300 to 500 ° C. under atmospheric pressure; and (c) forming a predetermined shape using the dielectric powder. Forming a body, and firing the formed body. A method for producing a dielectric ceramic, comprising: 請求項1乃至4のうちいずれか記載の誘電体磁器からなる誘電体層と内部電極層とを交互に積層して構成されたコンデンサ本体を具備してなることを特徴とする積層セラミックコンデンサ。 5. A multilayer ceramic capacitor comprising a capacitor body formed by alternately laminating dielectric layers made of the dielectric ceramic according to claim 1 and internal electrode layers.
JP2004312454A 2004-10-27 2004-10-27 Dielectric porcelain and multilayer ceramic capacitor using the same Active JP4789449B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004312454A JP4789449B2 (en) 2004-10-27 2004-10-27 Dielectric porcelain and multilayer ceramic capacitor using the same
US11/258,669 US7365958B2 (en) 2004-10-27 2005-10-25 Dielectric ceramics, multilayer ceramic capacitor and method for manufacturing the same
CN 200510118730 CN1770341B (en) 2004-10-27 2005-10-27 Dielectric ceramics, multilayer ceramic capacitor and method for manufacturing the same
TW094137715A TWI402872B (en) 2004-10-27 2005-10-27 Electrolyte procelain, laminated ceramic capacitor and methods for manufacturing electrolyte porcelain and laminated ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004312454A JP4789449B2 (en) 2004-10-27 2004-10-27 Dielectric porcelain and multilayer ceramic capacitor using the same

Publications (2)

Publication Number Publication Date
JP2006124212A true JP2006124212A (en) 2006-05-18
JP4789449B2 JP4789449B2 (en) 2011-10-12

Family

ID=36719299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004312454A Active JP4789449B2 (en) 2004-10-27 2004-10-27 Dielectric porcelain and multilayer ceramic capacitor using the same

Country Status (2)

Country Link
JP (1) JP4789449B2 (en)
CN (1) CN1770341B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110092661A (en) * 2018-01-31 2019-08-06 Tdk株式会社 Dielectric ceramic composition, electronic component and laminated ceramic capacitor
CN110092656A (en) * 2018-01-31 2019-08-06 Tdk株式会社 Dielectric ceramic composition, electronic component and laminated ceramic capacitor

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101595074B (en) * 2007-01-29 2012-11-21 京瓷株式会社 Dielectric ceramic and capacitor
JP5629719B2 (en) 2012-03-30 2014-11-26 太陽誘電株式会社 Ceramic powder and multilayer ceramic capacitor
JP5484506B2 (en) 2012-03-30 2014-05-07 太陽誘電株式会社 Ceramic powder and multilayer ceramic capacitor
CN103000369B (en) * 2012-12-11 2015-09-23 北京元六鸿远电子技术有限公司 The preparation method of high withstand voltage chip ceramic capacitor
JP2017120853A (en) * 2015-12-28 2017-07-06 Tdk株式会社 Ceramic electronic part
JP6781544B2 (en) * 2015-12-28 2020-11-04 Tdk株式会社 Ceramic electronic components
JP6986360B2 (en) * 2017-04-05 2021-12-22 太陽誘電株式会社 Multilayer ceramic capacitors and their manufacturing methods
US10593475B2 (en) * 2017-09-22 2020-03-17 Taiyo Yuden Co., Ltd. Multi-layer ceramic capacitor
KR102304250B1 (en) * 2018-08-01 2021-09-23 삼성전기주식회사 Multilayer capacitor
CN109942291B (en) * 2019-03-14 2021-08-10 华南理工大学 SrTiO3Basal crystal boundary layer ceramic capacitor and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001089230A (en) * 1999-09-20 2001-04-03 Hokko Chem Ind Co Ltd Powdery composition for production of barium titanate- base sintered compact and sintered compact
JP2002060219A (en) * 2000-08-11 2002-02-26 Murata Mfg Co Ltd Barium titanate fine powder, calcium-modified barium titanate fine powder and its manufacturing method
JP2002234771A (en) * 2001-02-05 2002-08-23 Murata Mfg Co Ltd Oxide powder having tetragonal perovskite structure, method for producing the same, dielectric ceramic and multilayer ceramic capacitor
JP2003002748A (en) * 2001-06-22 2003-01-08 Murata Mfg Co Ltd Method for producing powdery ceramic raw material, powdery ceramic raw material, dielectric ceramic and multilayer ceramic electronic parts
WO2003004416A1 (en) * 2001-07-04 2003-01-16 Showa Denko K. K. Barium titanate and its production method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3705141B2 (en) * 2001-03-19 2005-10-12 株式会社村田製作所 Dielectric ceramic, manufacturing method and evaluation method thereof, and multilayer ceramic electronic component
JP3858717B2 (en) * 2002-02-13 2006-12-20 松下電器産業株式会社 Ceramic capacitor and manufacturing method thereof
KR101108958B1 (en) * 2003-02-25 2012-01-31 쿄세라 코포레이션 Laminated ceramic capacitor and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001089230A (en) * 1999-09-20 2001-04-03 Hokko Chem Ind Co Ltd Powdery composition for production of barium titanate- base sintered compact and sintered compact
JP2002060219A (en) * 2000-08-11 2002-02-26 Murata Mfg Co Ltd Barium titanate fine powder, calcium-modified barium titanate fine powder and its manufacturing method
JP2002234771A (en) * 2001-02-05 2002-08-23 Murata Mfg Co Ltd Oxide powder having tetragonal perovskite structure, method for producing the same, dielectric ceramic and multilayer ceramic capacitor
JP2003002748A (en) * 2001-06-22 2003-01-08 Murata Mfg Co Ltd Method for producing powdery ceramic raw material, powdery ceramic raw material, dielectric ceramic and multilayer ceramic electronic parts
WO2003004416A1 (en) * 2001-07-04 2003-01-16 Showa Denko K. K. Barium titanate and its production method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110092661A (en) * 2018-01-31 2019-08-06 Tdk株式会社 Dielectric ceramic composition, electronic component and laminated ceramic capacitor
CN110092656A (en) * 2018-01-31 2019-08-06 Tdk株式会社 Dielectric ceramic composition, electronic component and laminated ceramic capacitor
JP2019131436A (en) * 2018-01-31 2019-08-08 Tdk株式会社 Dielectric ceramic composition, electronic component, and multilayer ceramic capacitor
JP2019131437A (en) * 2018-01-31 2019-08-08 Tdk株式会社 Dielectric ceramic composition, electronic component, and multilayer ceramic capacitor
JP7025694B2 (en) 2018-01-31 2022-02-25 Tdk株式会社 Dielectric Porcelain Compositions, Electronic Components and Multilayer Ceramic Capacitors
JP7025695B2 (en) 2018-01-31 2022-02-25 Tdk株式会社 Dielectric Porcelain Compositions, Electronic Components and Multilayer Ceramic Capacitors

Also Published As

Publication number Publication date
CN1770341A (en) 2006-05-10
JP4789449B2 (en) 2011-10-12
CN1770341B (en) 2010-06-16

Similar Documents

Publication Publication Date Title
TWI402872B (en) Electrolyte procelain, laminated ceramic capacitor and methods for manufacturing electrolyte porcelain and laminated ceramic capacitor
CN1117707C (en) Low temp sinterable and low loss dielectric ceramic compsns. and method thereof
CN100439284C (en) Dielectric ceramic composition for low temperature sintering and multilayer ceramic capacitor using the same
CN1770341B (en) Dielectric ceramics, multilayer ceramic capacitor and method for manufacturing the same
JP2001316114A (en) Oxide having perovskite structure, barium titanate and its manufacturing method and derivative ceramics and ceramic electronic part
KR101431472B1 (en) Ceramic powder and multi layer ceramic capacitor
WO2007074606A1 (en) Method for production of forsterite powder, forsterite powder, sintered forsterite, ceramic insulator composition, and laminated ceramic electronic element
JP2010510955A (en) Non-glass microwave dielectric ceramics and method for producing the same
JP5233763B2 (en) Barium titanate-based dielectric raw material powder, method for producing the same, method for producing ceramic green sheet, and method for producing multilayer ceramic capacitor
JP5185924B2 (en) Dielectric porcelain and capacitor
JP4766910B2 (en) Method for producing barium titanate powder, barium titanate powder, and barium titanate sintered body
CN114242454B (en) Bismuth sodium titanate-based quaternary system high-temperature stable high-dielectric lead-free ceramic capacitor dielectric material and preparation method thereof
JP3783678B2 (en) Method for producing raw material powder for dielectric ceramic, dielectric ceramic and multilayer ceramic capacitor
JP4721576B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
WO2020209039A1 (en) Dielectric inorganic composition
JP2008222522A (en) Barium titanate powder, its manufacturing method and multilayer ceramic capacitor using the same
JP5207675B2 (en) Dielectric porcelain and multilayer ceramic capacitor using the same
KR20130111266A (en) Ceramic powder and multi layer ceramic capacitor
JP2020152630A (en) Method for preparing dielectric having low dielectric loss and dielectric prepared thereby
KR100703080B1 (en) Method for Manufacturing Dielectric Powder for Low Temperature Sintering and Method for Manufacturing Multilayer Ceramic Condenser Using the Same
JP2022088409A (en) Ceramic capacitor
JP4594049B2 (en) Multilayer ceramic capacitor
JP7169069B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JPWO2006035576A1 (en) Ceramic capacitor and manufacturing method thereof
JP5289239B2 (en) Dielectric porcelain and capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4789449

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150