JP4817138B2 - Giant magnetostrictive material flakes, method for producing the same, and giant magnetostrictive sintered body - Google Patents

Giant magnetostrictive material flakes, method for producing the same, and giant magnetostrictive sintered body Download PDF

Info

Publication number
JP4817138B2
JP4817138B2 JP2004045633A JP2004045633A JP4817138B2 JP 4817138 B2 JP4817138 B2 JP 4817138B2 JP 2004045633 A JP2004045633 A JP 2004045633A JP 2004045633 A JP2004045633 A JP 2004045633A JP 4817138 B2 JP4817138 B2 JP 4817138B2
Authority
JP
Japan
Prior art keywords
giant magnetostrictive
phase
flake
magnetostrictive material
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004045633A
Other languages
Japanese (ja)
Other versions
JP2004270033A5 (en
JP2004270033A (en
Inventor
忠直 伊藤
史郎 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2004045633A priority Critical patent/JP4817138B2/en
Publication of JP2004270033A publication Critical patent/JP2004270033A/en
Publication of JP2004270033A5 publication Critical patent/JP2004270033A5/ja
Application granted granted Critical
Publication of JP4817138B2 publication Critical patent/JP4817138B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は超磁歪材薄片、特に焼結法に用いられる超磁歪材薄片、その製造方法及び超磁歪焼結体に関する。   The present invention relates to a giant magnetostrictive material flake, particularly a giant magnetostrictive material flake used in a sintering method, a method for producing the same, and a giant magnetostrictive sintered body.

TbFe2,DyFe2等に代表される超磁歪合金は、コイルに流れる電流の変化や、磁石との距離を変えることで寸法が大きく変化する性質を利用し、超音波振動子、スピーカー等に利用されており、また、その発生エネルギーが大きいことからアクチュエーター素材等に古くから利用されている。 Giant magnetostrictive alloys such as TbFe 2 and DyFe 2 are used for ultrasonic transducers, speakers, etc. by utilizing the property that the dimensions change greatly by changing the current flowing through the coil and the distance to the magnet. Moreover, since the generated energy is large, it has been used for actuator materials for a long time.

超磁歪合金素子の製法としては、大きく二つに分類される。一つは、鋳造によるものであり、もう一つは、粉末の焼結によるものである。
超磁歪合金の組成は、希土類元素と鉄系の組合せが磁歪量が大きく、特にDyFe2、TbFe2が大きいため、これを組合せたTb0.3Dy0.7Fe2が一般的に最もポピュラーであり、また歪量が大きいものとして知られている。その後、この組成のDyやTbを他の希土類金属に代替したもの、Feの一部を他の遷移金属にて改良したものが数々発明されているが、基本的には、RTxで表される希土類元素(R)とFeに代表される遷移元素(T)を組み合わせたものである(xは原子比を表す)。
この磁歪材料の歪量は、その結晶構造から〔111〕に強い異方性を示すことから、鋳造による製法は、その鋳造後の結晶方位をなるべく〔111〕方向に合わせるべく一方向凝固をさせる方法がとられている。
There are two major methods for producing giant magnetostrictive alloy elements. One is by casting and the other is by powder sintering.
The composition of the giant magnetostrictive alloy is that the combination of rare earth elements and iron has a large amount of magnetostriction, in particular, DyFe 2 and TbFe 2 are large. Therefore, Tb 0.3 Dy 0.7 Fe 2 combined therewith is generally the most popular, It is known that the amount of distortion is large. Since then, there have been many inventions in which Dy and Tb of this composition are replaced with other rare earth metals, and a part of Fe is improved with other transition metals, but it is basically represented by RTx. It is a combination of a rare earth element (R) and a transition element (T) represented by Fe (x represents an atomic ratio).
The strain of this magnetostrictive material shows strong anisotropy in [111] due to its crystal structure, so that the casting method causes unidirectional solidification so that the crystal orientation after casting is as close as possible to the [111] direction. The method is taken.

一方向凝固のための鋳造方法としては、浮遊帯域溶融法(Floating Zone Melting)(特許文献1参照)や、改良Bridgeman法(特許文献2参照)が代表的なものであり、これは、いずれも単結晶を作ることを基本としたもので凝固速度が極端に遅いため生産性が悪いという欠点をもっている。また、小さな径のロッドしか得られないという大きな欠点があった。
これを改良した一方向凝固法についての数多くの特許が出されている。例えば、温度勾配をつけた加熱鋳型に鋳造することにより任意の形状の比較的大きな形状の材料で結晶方向の揃ったものが得られるとしている。(特許文献3参照)
いずれにしても、これら一方向凝固による鋳造材は丸棒等の棒材に鋳造されるのが多く、そのままでは、最終用途の寸法精度からかけ離れたものであるため、使用する用途、形状に応じてこれを最終形状まで機械加工、研削加工することが必要となる。
Typical casting methods for unidirectional solidification include a floating zone melting method (see Patent Document 1) and an improved Bridgeman method (see Patent Document 2). It is based on the production of single crystals and has the disadvantage of poor productivity due to extremely slow solidification rate. In addition, there is a great disadvantage that only a rod having a small diameter can be obtained.
Numerous patents have been issued for unidirectional solidification methods that improve this. For example, it is supposed that a material having a relatively large shape having an arbitrary shape and having a uniform crystal direction can be obtained by casting on a heating mold having a temperature gradient. (See Patent Document 3)
In any case, these unidirectionally solidified castings are often cast into rods such as round bars, and as they are, they are far from the dimensional accuracy of the final application. It is necessary to machine and grind this to the final shape.

この鋳造法による製造の問題点は、一方向凝固をさせるために鋳造速度を極端に小さくし凝固速度を制御する必要があることであり、そのために生産性が著しく落ちることとなる。また鋳造方法のため、できる形状が一般的には、丸棒形状となり、これを素材として必要な形状まで研削加工等を何段階も経なければならず、手間がかかることとなる。更に、削り落としを経る結果、材料歩留まりが極端に悪いこととなる。希土類金属は、高価であるため、この歩留りの低下は、大きく部品製造上のネックとなる。   The problem with this casting method is that it is necessary to control the solidification rate by making the casting rate extremely small in order to achieve unidirectional solidification, which significantly reduces productivity. In addition, because of the casting method, the shape that can be formed is generally a round bar shape, which requires many steps of grinding and the like to the required shape, which is time-consuming. Furthermore, the material yield is extremely poor as a result of scraping off. Since rare earth metals are expensive, this decrease in yield is a major bottleneck in manufacturing parts.

これを解決する手段として、使用する製品形状に近いものを焼結にて作ろうという試みがなされている。この場合の製造工程としては、材料金属を配合し、均一な磁歪材合金としたものを必要な粒度まで粉砕し、この粉体を金型中で最終形状に近いものに成形し、焼結する。これにより、特に複雑形状の最終製品に近いものが出来るため、最終に研削がほとんど要らず、端面を揃える程度の研削でよいので歩留りが良いという効果がある。
また、焼結用の磁歪材合金の製法の例として主相用合金を通常の鋳造法による鋳塊を粉砕した粉末を用い、Rリッチ相をアトマイズ法により得た粉末を用い、両者を混合して成形、焼結する方法がある(特許文献4参照)。
しかし、この方法は、主相用合金粉末とRリッチ相合金粉末を別々の工程で得るためにコストアップになることは避けられない。
特開昭62−109946号公報 特開昭63−242442号公報 特開平4―297545号公報 特開平6―256912号公報
As a means for solving this, an attempt has been made to make a product close to the product shape to be used by sintering. As a manufacturing process in this case, the material metal is blended and a uniform magnetostrictive alloy is pulverized to a required particle size, and this powder is molded into a mold close to the final shape and sintered. . As a result, a product close to the final product having a complicated shape can be obtained, so that there is almost no grinding at the end and there is an effect that the yield is good because the grinding can be performed so as to align the end faces.
In addition, as an example of a method for producing a magnetostrictive material alloy for sintering, a powder obtained by pulverizing an ingot by an ordinary casting method as an alloy for a main phase and a powder obtained by atomizing an R-rich phase are mixed. There is a method of molding and sintering (see Patent Document 4).
However, this method inevitably increases costs because the main phase alloy powder and the R-rich phase alloy powder are obtained in separate steps.
Japanese Patent Application Laid-Open No. 62-109946 JP-A-63-242442 JP-A-4-297545 JP-A-6-256912

焼結法にて最終製品を製造する場合の合金は、単体金属を必要な最終組成に配合して均一な磁歪材合金を得るために溶解、鋳造することが必要である。この溶解は通常、希土類金属を使用するために真空中又は不活性ガス中にて行なわれるのが普通である。
鋳造の方法は、例えば先に上げた一方向凝固法によるものを採ることも出来るが、その凝固速度のあまりの遅さから生産性が悪いと言う問題が一つある。
また、焼結は、液相焼結により行なわれるため、低融点の液相を必要とする。そのために、主相とともに主相間に出る希土類がリッチな相(Rリッチ相)を、低融点金属として利用する必要がある。従って、その合金の組織は、主相となるRTx相とその間隙にRリッチ相が分散するように、ややRが多い側へ磁歪材合金の組成をずらしたほうがこのRリッチ相が得られ易い。
しかし、その場合の問題は、その凝固速度の遅さから、Rリッチ相とともに必要となるRT2組成の主相の他に、特性上有害なRT3相等の異相が晶出してしまうことが避けられない。
In the case of producing a final product by a sintering method, it is necessary to melt and cast an alloy in order to obtain a uniform magnetostrictive alloy by blending a single metal with a necessary final composition. This dissolution is usually carried out in vacuum or in an inert gas in order to use rare earth metals.
The casting method may be, for example, the one based on the unidirectional solidification method previously raised, but there is one problem that the productivity is poor because of the slow solidification rate.
In addition, since sintering is performed by liquid phase sintering, a low melting point liquid phase is required. Therefore, it is necessary to use a rare earth-rich phase (R-rich phase) that appears between the main phases together with the main phase as a low melting point metal. Therefore, the R-rich phase is more easily obtained when the composition of the magnetostrictive alloy is shifted to the side with a little R so that the R-rich phase is dispersed in the gap between the RTx phase as the main phase. .
However, the problem in that case is that, due to the slow solidification rate, in addition to the main phase of the RT 2 composition required together with the R-rich phase, it is avoided that different phases such as the RT 3 phase, which are harmful in terms of properties, crystallize. I can't.

これを解消するために、通常とられる方法は、均質化のための熱処理である。これは、鋳造後、融点より低い温度にて長時間の加熱を行なうことにより、晶出した異相を再度固溶させ均一な主相とする処理である。
しかし、このために長時間の熱処理工程が必要であることの問題とともに、長時間熱処理により粒界のRリッチ相が凝集し、プール状になる。この現象により、液相として必要なRリッチ相が全体に均一に分散されず、粉砕時に、粉砕粉の一部に局所的に存在するようになるため、焼結性が阻害される。
In order to solve this problem, a commonly used method is a heat treatment for homogenization. This is a process in which, after casting, heating is performed for a long time at a temperature lower than the melting point, thereby resolving the crystallized heterogeneous phase to form a uniform main phase.
However, along with the problem that a long heat treatment step is required for this purpose, the R-rich phase at the grain boundary aggregates and forms a pool due to the long heat treatment. Due to this phenomenon, the R-rich phase required as a liquid phase is not uniformly dispersed throughout, and at the time of pulverization, it locally exists in a part of the pulverized powder, so that the sinterability is hindered.

また、低融点のプール状のRリッチ相内でも不均一な相分離が起こり、これは均質化熱処理にても解消されない。この結果、焼結後の特性にも影響が出る可能性がある。
鋳造法としては、文献4の主相合金のように金型へ鋳込む方法もあるが、均質化の熱処理の必要性、Rリッチ相の相分離は、避けられない。更に鋳造体が大きな塊となるため、後の粉砕も数段の工程が必要で手間がかかることとなる。
In addition, non-uniform phase separation occurs even in the low melting point pool-like R-rich phase, and this is not eliminated even by the homogenization heat treatment. As a result, the characteristics after sintering may be affected.
As a casting method, there is a method of casting into a mold like the main phase alloy of Document 4, but the necessity of heat treatment for homogenization and phase separation of the R-rich phase cannot be avoided. Furthermore, since the cast body becomes a large lump, the subsequent pulverization requires several steps and is troublesome.

本発明は、異相の晶出、相分離の無い合金を得、鋳造後の均質化熱処理の余分な工程がない、かつRリッチ相を細かく分散させることで焼結性の良い合金を得ることを目的とし、更に粉砕に手間のかからない、薄片状とすることにより後の粉砕工程も簡略化できる超磁歪材用薄片の製造方法を提供することを目的とする。   It is an object of the present invention to obtain an alloy having no crystallization of a different phase and no phase separation, no extra step of homogenization heat treatment after casting, and obtaining an alloy having good sinterability by finely dispersing the R-rich phase. It is an object to provide a method for producing a thin piece for a giant magnetostrictive material, which can be simplified and the subsequent grinding step can be simplified by making it into a flake shape that does not require much time for grinding.

本発明者はストリップキャスト法により上記の目的が達成されることを見出し本発明に至った。即ち、本発明は以下の各項からなる。
(1) 希土類元素−鉄系合金からなる超磁歪材薄片であって、該薄片の断面の組織が主として、主相であるRT2相(Rは希土類元素、TはFeまたはFeを含む遷移元素の1種以上)とRT2相よりもRリッチな相からなり、Rリッチな相の間隔が2〜20μmであり、薄片の厚さが0.1〜2mmである超磁歪材薄片。
(2) 希土類元素−鉄系合金の組成をRTx(Rは希土類元素、TはFeまたはFeを含む遷移元素の1種以上、xは原子比)で表すとき、1.5≦x≦2.0である上記(1)に記載の超磁歪材薄片。
(3) Rリッチな相の厚さが10μm以下である上記(1)乃至(2)のいずれかに記載の超磁歪材薄片。
(4) RがTb及び/又はDyである上記(1)乃至(3)のいずれかに記載の超磁歪材薄片。
(5) 薄片が単ロールまたは双ロールによるストリップキャスト法で得られたものである上記(1)乃至(4)のいずれかに記載の超磁歪材薄片。
(6) 上記(1)乃至(5)のいずれかに記載の超磁歪材薄片を粉砕した平均粒度300μm以下の粉体。
(7) 上記(6)に記載の粉体を成形、焼結し、必要に応じ熱処理した超磁歪焼結体。
(8) 超磁歪材用の希土類元素−鉄系合金の原料溶湯を単ロールまたは双ロールによるストリップキャスティング法により鋳造することを特徴とする超磁歪材薄片の製造方法。
(9) 希土類元素−鉄系合金の組成をRTx(Rは希土類元素、TはFeまたはFeを含む遷移元素の1種以上、xは原子比)で表すとき、1.5≦x≦2.0である上記(8)に記載の超磁歪材薄片の製造方法。
(10) RがTb及び/又はDyである上記(8)乃至(9)のいずれかに記載の超磁歪材薄片の製造方法。
The inventor has found that the above object can be achieved by the strip casting method, and has reached the present invention. That is, the present invention comprises the following items.
(1) A giant magnetostrictive flake composed of a rare earth element-iron-based alloy, the RT 2 phase (R is a rare earth element, T is a transition element containing Fe or Fe), and the cross-sectional structure of the flake is mainly the main phase consists R-rich phase than 1 s) and RT 2 phase, interval R-rich phase is 2 to 20 [mu] m, super magnetostrictive material thin the thickness of the flake is 0.1 to 2 mm.
(2) When the composition of the rare earth element-iron-based alloy is expressed by RTx (R is a rare earth element, T is one or more of transition elements including Fe or Fe, and x is an atomic ratio), 1.5 ≦ x ≦ 2. The giant magnetostrictive material flake according to (1), which is 0.
(3) The giant magnetostrictive material flake according to any one of (1) to (2), wherein the R-rich phase has a thickness of 10 μm or less.
(4) The giant magnetostrictive material flake according to any one of (1) to (3), wherein R is Tb and / or Dy.
(5) The giant magnetostrictive material flake according to any one of (1) to (4) above, wherein the flake is obtained by a strip casting method using a single roll or a twin roll.
(6) A powder having an average particle size of 300 μm or less obtained by pulverizing the giant magnetostrictive flakes according to any one of (1) to (5).
(7) A giant magnetostrictive sintered body obtained by molding and sintering the powder according to (6) above, and heat-treating the powder as necessary.
(8) A method for producing a giant magnetostrictive material flake, comprising casting a raw material melt of a rare earth element-iron alloy for a giant magnetostrictive material by a strip casting method using a single roll or a twin roll.
(9) When the composition of the rare earth element-iron alloy is expressed by RTx (R is a rare earth element, T is one or more of transition elements including Fe or Fe, and x is an atomic ratio), 1.5 ≦ x ≦ 2. The method for producing a giant magnetostrictive flake according to the above (8), which is 0.
(10) The method for producing a giant magnetostrictive material flake according to any one of (8) to (9), wherein R is Tb and / or Dy.

本発明による超磁歪材薄片は、鋳造後の均質化熱処理をすることなく粉砕、成形及び焼結ができ、焼結体の後加工に対する靭性強度も十分であり生産性の良い、かつ磁歪量も十分な特性が得られる。   The giant magnetostrictive flakes according to the present invention can be pulverized, molded and sintered without performing a homogenization heat treatment after casting, have sufficient toughness strength for post-processing of the sintered body, have good productivity, and have a large amount of magnetostriction. Sufficient characteristics can be obtained.

本発明品の超磁歪材は、希土類(R)と遷移金属(T)の化合物でRTx(xは原子比)として表される組成の合金からなるもので、TはFe又はFeの一部を他の遷移金属で代えてもよい。代替遷移元素としては、Mn,Co,Ni,Cr、Mo等が代表的なものであるが、これらに限定されない。これらの代替遷移元素はFeに対し、原子比で0.5下が好ましい。xは好ましくは1.5≦x≦2.0で、その場合に超磁歪特性が一層発揮される。   The giant magnetostrictive material of the present invention is a compound of a rare earth (R) and transition metal (T) compound having a composition expressed as RTx (x is an atomic ratio), where T is Fe or a part of Fe. Other transition metals may be substituted. Representative examples of the transition element include Mn, Co, Ni, Cr, and Mo, but are not limited thereto. These alternative transition elements are preferably less than 0.5 in atomic ratio with respect to Fe. x is preferably 1.5 ≦ x ≦ 2.0, and in this case, the giant magnetostrictive characteristics are further exhibited.

この組成の合金を特定の条件により急冷凝固させることにより、主相としてのRT2相と、RT2よりもRリッチな低融点の相が出現するが、そのRリッチな相同士の間隔が平均2〜20μmが好ましい。ここでRリッチな相同士の間隔とは、断面の組織を観察した時、一般的に主相の成長の最終凝固部分、すなわち主相同士の境界領域にRリッチな相が現れる。従ってこれらの間隔は、試料断面を研摩後、エッチングすることにより主相の境界をはっきりさせることが出来るが、エッチングによってRリッチな相が消滅する可能性があるので、SEM(走査電子顕微鏡)にて観察することが好ましい。これにより、反射電子像としてRリッチな相が、主相より重元素として白いコントラストで分離される。 By rapidly solidifying an alloy of this composition under specific conditions, an RT 2 phase as a main phase and a R-melting low-melting phase than RT 2 appear, but the interval between the R-rich phases is an average. 2-20 micrometers is preferable. Here, the interval between R-rich phases means that when a cross-sectional structure is observed, an R-rich phase generally appears in the final solidified portion of the growth of the main phase, that is, the boundary region between the main phases. Therefore, these intervals can be used to clarify the boundary of the main phase by polishing the sample cross-section and then etching, but the R-rich phase may disappear by etching. It is preferable to observe. As a result, the R-rich phase as the reflected electron image is separated with a white contrast as a heavy element from the main phase.

本発明の合金のような特にR成分の大きい組成では、急冷凝固により主相の凝固が早く、図1のように主相の凝固方向に揃ってRリッチな相が伸びている。図1は凝固方向の断面を模式的に表したもので、図の左側が冷却面(ロール面)で、左から右に主相結晶が成長する。図1で1が主相で、2がRリッチ相である。このように方向性のある場合は、Rリッチな相の間隔は凝固方向断面にて凝固方向と直角な方向(図1の上下方向)に任意の直線を引いたときの一定距離におけるRリッチな相の交点の数から平均間隔を求める、いわゆる切断法にて簡略的に計算することができる。直線を引く位置によって平均間隔は変わるので、本発明では鋳造凝固方向に直角に等間隔に5本の線を引き、夫々の平均間隔を求め、それらの平均値を用いることとする。
Rリッチな相が少ない場合、また熱処理をした場合は、線状でなく図2のようにプールした点状、塊状に存在する場合があるがこの場合は、隣り合う点状、塊状のRリッチ相間の距離を実測し平均する。
In the composition having a particularly large R component such as the alloy of the present invention, the solidification of the main phase is rapid due to rapid solidification, and the R-rich phase is extended along the solidification direction of the main phase as shown in FIG. FIG. 1 schematically shows a cross section in the solidification direction. The left side of the figure is a cooling surface (roll surface), and main phase crystals grow from left to right. In FIG. 1, 1 is the main phase and 2 is the R-rich phase. When there is directionality in this way, the interval between R-rich phases is R-rich at a constant distance when an arbitrary straight line is drawn in a direction perpendicular to the solidification direction (vertical direction in FIG. 1) in the cross-section of the solidification direction. It can be simply calculated by a so-called cutting method in which an average interval is obtained from the number of phase intersections. Since the average interval varies depending on the position where the straight line is drawn, in the present invention, five lines are drawn at equal intervals perpendicular to the casting solidification direction, the respective average intervals are obtained, and the average value thereof is used.
When there are few R-rich phases, or when heat treatment is performed, it may exist in the form of pooled dots or lumps as shown in FIG. Measure and average the distance between the phases.

Rリッチな相の間隔を平均2〜20μmに限定したのは、粉砕時に粒度としてこの付近の平均粒度にするため、Rリッチな相も主相の分断に伴って粒間に均一に分散し、焼結初期に均一な液相融解を行なえるためである。2μm未満では、粉砕粒の主相内にRリッチ相が点在し、焼結に寄与する効果が少なくなる。また、20μmを越えると、主相の凝固速度が遅くなることによる異相が出やすく磁歪効果が低減する。あるいは、均質化の熱処理が必要となる。Rリッチ相の平均間隔は鋳造時の冷却条件により制御することができる。平均間隔が2μmのように小さくしたい時は冷却速度を速めればよく、20μmのように大きくするときは遅くすればよい。   The reason why the interval between the R-rich phases is limited to an average of 2 to 20 μm is to make the average particle size near this as the particle size at the time of pulverization. This is because uniform liquid phase melting can be performed in the early stage of sintering. If it is less than 2 μm, R-rich phases are scattered in the main phase of the pulverized grains, and the effect of contributing to sintering is reduced. On the other hand, if it exceeds 20 μm, a heterogeneous phase is likely to occur due to a slow solidification rate of the main phase, and the magnetostrictive effect is reduced. Alternatively, a heat treatment for homogenization is required. The average interval between R-rich phases can be controlled by the cooling conditions during casting. When it is desired to make the average interval as small as 2 μm, the cooling rate may be increased, and when it is increased as 20 μm, it may be decreased.

本発明の合金は、鋳造のままで基本的にRT2の主相とRリッチな相の2相状態にあり、各相に異相が存在しないため、鋳造後の均質化熱処理を省略することができる。また、Rリッチな相が細かく分散しており、粉砕後の焼結性に優れる。
合金は、焼結用に粉砕するためなるべく薄片状が良いので厚さは0.1〜2mmとする。0.1mm未満では鋳造が難しく、またアモルファス状態に近づくため、磁歪効果が発揮されにくい。また、2mmを越えると鋳造の際の冷却速度が不足し、所望の組織が得られない。
本発明の合金は、先に述べたように粉砕して成形,焼結するものであるため、その焼結初期に液相となるRリッチ相が、分散していたほうが好ましい。
その意味で、Rリッチ相の厚さは、10μm以下が好ましい。これを越えると、Rリッチ相が球状にプールしやすくなり好ましくない。
The alloy of the present invention is basically in a two-phase state of an RT 2 main phase and an R-rich phase as cast, and there is no heterogeneous phase in each phase, so that homogenization heat treatment after casting can be omitted. it can. Further, the R-rich phase is finely dispersed, and the sinterability after pulverization is excellent.
Since the alloy is crushed for sintering, its thickness is preferably 0.1 to 2 mm. If the thickness is less than 0.1 mm, casting is difficult, and an amorphous state is approached, so that the magnetostrictive effect is hardly exhibited. On the other hand, if it exceeds 2 mm, the cooling rate at the time of casting is insufficient, and a desired structure cannot be obtained.
Since the alloy of the present invention is pulverized, molded, and sintered as described above, it is preferable that the R-rich phase, which is a liquid phase, is dispersed at the initial stage of sintering.
In that sense, the thickness of the R-rich phase is preferably 10 μm or less. Exceeding this is not preferable because the R-rich phase tends to pool in a spherical shape.

希土類としては、Tb,Dy,Nd,Ho等各種考えられるが、磁歪量と異方性の特性を考えるとTbとDyの組合せが好ましい。
この組成の金属は活性であるため、通常は、真空中あるいは不活性ガス雰囲気中にて溶解し、102〜104℃/秒の冷却速度にて凝固させることが好ましい。このための最適な鋳造方法は、単ロール法あるいは双ロール法と呼ばれるいわゆるストリップキャスト法を用いることである。これは、冷却したロール上あるいはロール間に溶湯を流しこみ、高速回転させ薄片を製造する方法である。この方法により鋳造された合金ではロール面から板厚方向に向って方向性をもった主相の微細な柱状晶が発達する。
Various rare earth elements such as Tb, Dy, Nd, and Ho can be considered, but a combination of Tb and Dy is preferable in view of magnetostriction and anisotropy characteristics.
Since the metal of this composition is active, it is usually preferable to melt in a vacuum or an inert gas atmosphere and solidify at a cooling rate of 10 2 to 10 4 ° C / second. The optimum casting method for this purpose is to use a so-called strip casting method called a single roll method or a twin roll method. This is a method for producing a flake by pouring molten metal on or between cooled rolls and rotating at high speed. In the alloy cast by this method, fine columnar crystals of the main phase having directionality from the roll surface toward the plate thickness direction develop.

本発明の超磁歪材薄片は比較的脆く容易に機械破砕可能であるが、水素吸蔵により解砕させることも可能である。本発明の超磁歪材から粉体を製造する場合、成形の必要性、条件に応じて粒度分布を選ぶことができるが、平均粒度が300μmを越えると、焼結性が落ちると共に焼結品の強度が低下するので300μm以下にすることが好ましい。
上記の粉体は超磁歪材薄片を鋳造後、粗粉砕あるいは水素解砕等を行なった後、必要に応じ所要の粒度分布を得るために,ボールミル、ジェットミル等にて微粉砕をしてもよい。
こうして得られた粉体を所定形状の金型に入れ、プレス成形をする。形状によっては、CIP等の等方プレスを用いてもよい。得られた成形体は、真空中あるいは不活性ガス雰囲気中にて高温焼結される。その後、必要に応じ、一般的に焼結温度より低い温度での時効処理を入れてもよい。
得られた焼結体の寸法精度を出すために必要なら表面研削加工等を若干いれることができる。
The giant magnetostrictive flakes of the present invention are relatively brittle and can be easily mechanically crushed, but can also be crushed by hydrogen storage. When producing powder from the giant magnetostrictive material of the present invention, the particle size distribution can be selected according to the necessity and conditions of molding. However, if the average particle size exceeds 300 μm, the sinterability decreases and the sintered product Since the strength is lowered, the thickness is preferably 300 μm or less.
The above powder may be finely pulverized by ball mill, jet mill, etc. in order to obtain the required particle size distribution as necessary after casting the giant magnetostrictive flakes, coarsely pulverizing or hydrogen crushing. Good.
The powder thus obtained is put into a mold having a predetermined shape and press-molded. Depending on the shape, an isotropic press such as CIP may be used. The obtained molded body is sintered at high temperature in vacuum or in an inert gas atmosphere. Thereafter, if necessary, an aging treatment at a temperature generally lower than the sintering temperature may be added.
If necessary to obtain dimensional accuracy of the obtained sintered body, surface grinding can be slightly applied.

本発明の超磁歪材薄片から製造した焼結体は、細かいRリッチ相が比較的均一に分散しているので、焼結体の強度が十分であり後の面削、研削加工等の機械加工時の欠落、割れ等が生じにくく、またハンドリング時の折損等もしにくい。
以下、実施例に従って説明する。
Since the sintered body produced from the giant magnetostrictive material flakes of the present invention has the fine R-rich phase relatively uniformly dispersed, the sintered body has sufficient strength, and subsequent machining such as chamfering and grinding. Time loss, cracking, etc. are unlikely to occur, and breakage during handling is difficult.
Hereinafter, it demonstrates according to an Example.

実施例1
Tb0.3Dy0.7Fe1.85の組成に合わせた合金をAr雰囲気中の高周波溶解炉にて溶解し、内部を水冷した直径300mmφ、巾80mmの銅製のロール上に流した。この鋳造方法を図3に示す。図3において3は高周波溶解炉、4はタンディッシュ、5はロール、6は収納容器、7は溶湯、8は鋳造薄片である。ロール周速は、約1.0m/秒であった。得られた鋳造薄片の厚さは、0.2mmであった。その厚さ方向の断面をSEM観察した結果、(Tb、Dy)Fe2の主相がロール面から自由面に柱状に伸びており、主相を取り囲むようにしてRリッチな相が存在した。Rリッチな相の平均間隔は約5〜7μmで網目状に発達していた。主相とRリッチ相は、いずれも1000倍のSEMにて観察した結果、異相は見当たらなかった。
上記の合金薄片をブラウンミルにより100μm下、平均約50μmまで粉砕し、10mmφの円柱金型中に挿入し1.5t/cm2の圧力にて成形した。その後、Ar雰囲気の電気炉にて1100〜1150℃の温度にて4時間焼結を行ない30mm長の焼結体を得た。
このサンプル(焼結体)に、7MPaの圧縮応力を加え、100KA/mの磁化をかけたところ950ppmの磁歪量が認められた。このサンプルを旋盤により表面0.2mmの面削を行なったが全く問題なく表面の欠け割れ等は無かった。
Example 1
An alloy having a composition of Tb 0.3 Dy 0.7 Fe 1.85 was melted in a high frequency melting furnace in an Ar atmosphere, and the inside was poured onto a copper roll having a diameter of 300 mmφ and a width of 80 mm, which was water-cooled. This casting method is shown in FIG. In FIG. 3, 3 is a high-frequency melting furnace, 4 is a tundish, 5 is a roll, 6 is a storage container, 7 is a molten metal, and 8 is a cast flake. The roll peripheral speed was about 1.0 m / sec. The thickness of the obtained cast flake was 0.2 mm. As a result of SEM observation of the cross section in the thickness direction, the main phase of (Tb, Dy) Fe 2 extended in a columnar shape from the roll surface to the free surface, and an R-rich phase was present so as to surround the main phase. The average interval between the R-rich phases was about 5 to 7 μm and developed in a network. As a result of observing the main phase and the R-rich phase with a SEM of 1000 times, no heterogeneous phase was found.
The above alloy flakes were crushed to an average of about 50 μm under a brown mill by 100 μm, inserted into a 10 mmφ cylindrical mold, and molded at a pressure of 1.5 t / cm 2 . Thereafter, sintering was performed for 4 hours at a temperature of 1100 to 1150 ° C. in an electric furnace in an Ar atmosphere to obtain a 30 mm long sintered body.
When a compressive stress of 7 MPa was applied to this sample (sintered body) and magnetization of 100 KA / m was applied, a magnetostriction amount of 950 ppm was observed. The sample was chamfered to a surface of 0.2 mm with a lathe, but there was no problem and no cracks on the surface.

比較例1
実施例1と同様の組成の金属をArガス雰囲気にて溶解し、これを径10mmφ×150mm長の石英管を複数立て、底部に水冷封止管を備え、外周を加熱した鋳型に流しこんだ。外周温度を調節することにより合金は、底部から上方に向って一方向に凝固が進み、円柱棒状の鋳造品を得た。
鋳造品の横断面を観察した結果、数100μmの大きさの主相とそれらの間にRリッチの相が平均間隔約30〜50μmのラメラー状に存在していた。
これを、ブラウンミルにて100μm下まで粉砕し、平均約50μmの粉体を得た。これを実施例1と同様条件にて成形、焼結をした。
この焼結サンプルを実施例1と同条件にて同様に磁歪量を測定した結果、800ppmであった。これを旋盤にて表面0.2mmの面削を行なったが、面削中に表面の欠けが随所に起こり面削が不可能であった。
Comparative Example 1
A metal having the same composition as in Example 1 was dissolved in an Ar gas atmosphere, and a plurality of quartz tubes having a diameter of 10 mmφ × 150 mm were set up, and a water-cooled sealing tube was provided at the bottom, and the outer periphery was poured into a heated mold. . By adjusting the outer peripheral temperature, the alloy solidified in one direction from the bottom to the top, and a cylindrical bar-shaped casting was obtained.
As a result of observing a cross section of the cast product, a main phase having a size of several hundreds of μm and an R-rich phase existed in a lamellar shape with an average interval of about 30 to 50 μm.
This was pulverized to 100 μm or less with a brown mill to obtain a powder having an average of about 50 μm. This was molded and sintered under the same conditions as in Example 1.
As a result of measuring the magnetostriction amount of this sintered sample in the same manner as in Example 1, it was 800 ppm. The surface was chamfered with a lathe on a surface of 0.2 mm, but surface clawing occurred everywhere during the chamfering, and chamfering was impossible.

比較例2
比較例1にあげた鋳造棒を950℃で24時間均質化熱処理を行なった。この熱処理品の断面組織を観察した結果、数百μmの大きさの主相と約50μm程度の球状に凝縮したRリッチな相が点在していた。Rリッチな相を拡大するとその中に、Rリッチな相と10μm程度の主相に近いラメラー相が混在していた。
実施例1と同様に、粉砕、焼結、時効処理を行ない焼結体を作成し、同様に磁歪量を測定した結果、900ppmであった。これを旋盤にて0.2mmの面削を行なったが、数カ所の表面欠けが生じた。
Comparative Example 2
The casting rod shown in Comparative Example 1 was subjected to homogenization heat treatment at 950 ° C. for 24 hours. As a result of observing the cross-sectional structure of the heat-treated product, a main phase having a size of several hundred μm and an R-rich phase condensed in a spherical shape of about 50 μm were scattered. When the R-rich phase was expanded, the R-rich phase and the lamellar phase close to the main phase of about 10 μm were mixed therein.
As in Example 1, grinding, sintering, and aging treatment were performed to prepare a sintered body, and the magnetostriction amount was measured in the same manner. As a result, it was 900 ppm. Although this was chamfered with a lathe by 0.2 mm, several surface cracks occurred.

本発明の超磁歪材薄片は超音波振動子やスピーカー等に利用することができる。   The giant magnetostrictive material flakes of the present invention can be used for ultrasonic transducers, speakers, and the like.

本発明の超磁歪材薄片の断面組織の模式図である。It is a schematic diagram of the cross-sectional structure of the giant magnetostrictive material flakes of the present invention. 従来の熱処理をした合金の断面組織の模式図である。It is a schematic diagram of the cross-sectional structure | tissue of the alloy which carried out the conventional heat processing. 本発明で使用されるストリップキャスト法の装置の1例を示す図である。It is a figure which shows an example of the apparatus of the strip cast method used by this invention.

符号の説明Explanation of symbols

1 主相
2 Rリッチな相
3 高周波溶解炉
4 タンディッシュ
5 回転ロール
6 収納容器
7 溶湯
8 鋳造薄片
DESCRIPTION OF SYMBOLS 1 Main phase 2 R rich phase 3 High frequency melting furnace 4 Tundish 5 Rotating roll 6 Storage container 7 Molten metal 8 Cast flake

Claims (3)

希土類元素−鉄系合金で組成がRTx(RはTb及び/又はDy、TはFeまたはFeを含む遷移元素の1種以上、xは原子比で表すとき、1.5≦x≦2.0)からなる、単ロールまたは双ロールによるストリップキャスト法で得られた超磁歪材薄片であって、該薄片の断面の組織が、主相であるRT2相とRT2相よりもRリッチな相の2相からなり、Rリッチな相の間隔が2〜20μmであり、Rリッチな相の厚さが10μm以下であり、薄片の厚さが0.1〜2mmであり、熱処理していない状態で前記主相及びRリッチ相に異相の晶出がない超磁歪材薄片。 Rare earth element-iron-based alloy having a composition of RTx (R is Tb and / or Dy, T is one or more of transition elements including Fe or Fe, and x is an atomic ratio, 1.5 ≦ x ≦ 2.0. And a magnetostrictive material flake obtained by a strip casting method using a single roll or a twin roll , wherein the cross-sectional structure of the flake is an R richer phase than the main RT 2 and RT 2 phases. The R-rich phase interval is 2 to 20 μm, the R-rich phase thickness is 10 μm or less, the flake thickness is 0.1 to 2 mm, and is not heat-treated A giant magnetostrictive material flake in which the main phase and the R-rich phase have no crystallization of different phases . 請求項1に記載の超磁歪材薄片を粉砕した平均粒度300μm以下の粉体。   A powder having an average particle size of 300 µm or less obtained by pulverizing the giant magnetostrictive flakes according to claim 1. 超磁歪材用の希土類元素−鉄系合金の原料溶湯を単ロールまたは双ロールによるストリップキャスティング法により鋳造することを特徴とする請求項1に記載の超磁歪材薄片の製造方法。
The method for producing a giant magnetostrictive material flake according to claim 1, wherein a raw material melt of a rare earth element-iron alloy for the giant magnetostrictive material is cast by a strip casting method using a single roll or a twin roll.
JP2004045633A 2003-02-21 2004-02-23 Giant magnetostrictive material flakes, method for producing the same, and giant magnetostrictive sintered body Expired - Fee Related JP4817138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004045633A JP4817138B2 (en) 2003-02-21 2004-02-23 Giant magnetostrictive material flakes, method for producing the same, and giant magnetostrictive sintered body

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003043819 2003-02-21
JP2003043819 2003-02-21
JP2004045633A JP4817138B2 (en) 2003-02-21 2004-02-23 Giant magnetostrictive material flakes, method for producing the same, and giant magnetostrictive sintered body

Publications (3)

Publication Number Publication Date
JP2004270033A JP2004270033A (en) 2004-09-30
JP2004270033A5 JP2004270033A5 (en) 2006-11-16
JP4817138B2 true JP4817138B2 (en) 2011-11-16

Family

ID=33134218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004045633A Expired - Fee Related JP4817138B2 (en) 2003-02-21 2004-02-23 Giant magnetostrictive material flakes, method for producing the same, and giant magnetostrictive sintered body

Country Status (1)

Country Link
JP (1) JP4817138B2 (en)

Also Published As

Publication number Publication date
JP2004270033A (en) 2004-09-30

Similar Documents

Publication Publication Date Title
JP4288687B2 (en) Amorphous alloy composition
US8961868B2 (en) Nanocomposite bulk magnet and process for producing same
EP2513917B1 (en) Rare earth magnet and manufacturing method therefor
CN101370606B (en) Rare earth sintered magnet and method for producing same
EP1762632A1 (en) Iron-based rare-earth-containing nanocomposite magnet and process for producing the same
EP0509628B1 (en) Magnetostrictive alloys and method of manufacturing thereof
KR0151244B1 (en) Permanent magnet
JP3505261B2 (en) Sm-Co permanent magnet material, permanent magnet and method for producing the same
JP3771710B2 (en) Raw material alloy for rare earth magnet and method for producing the same
CN104114305A (en) R-T-B-Ga-BASED MAGNET MATERIAL ALLOY AND METHOD FOR PRODUCING SAME
JP4817138B2 (en) Giant magnetostrictive material flakes, method for producing the same, and giant magnetostrictive sintered body
JP4238999B2 (en) Manufacturing method of rare earth sintered magnet
US20210062310A1 (en) Alloys, magnetic materials, bonded magnets and methods for producing the same
JP6863008B2 (en) Method for manufacturing RTB-based rare earth sintered magnet alloy and RTB-based rare earth sintered magnet
JP5344296B2 (en) TANDISH AND METHOD FOR PRODUCING R-T-B BASE ALLOY USING THE SAME
WO2004094090A1 (en) Method for producing rare earth based alloy powder and method for producing rare earth based sintered magnet
EP3007192A1 (en) Method for manufacturing rare-earth magnets
US20190311851A1 (en) Method of producing nd-fe-b magnet
JP3299630B2 (en) Manufacturing method of permanent magnet
JPH08229641A (en) Production of r-fe-b permanent magnet cast slab
JPH09129424A (en) Magnetic powder for permanent magnet, permanent magnet, and manufacture thereof
JP3278431B2 (en) Rare earth metal-iron-boron anisotropic permanent magnet powder
JPH10270224A (en) Manufacture of anisotropic magnet powder and anisotropic bonded magnet
JPS63115304A (en) High-performance rare-earth cast magnet
JP7238504B2 (en) Bulk body for rare earth magnet

Legal Events

Date Code Title Description
RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20050411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060928

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081117

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090803

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090908

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20091009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110719

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110822

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees